A facile green chemistry approaches towards the synthesis of bis-Schiff bases using ultrasound versus microwave and conventional method without catalyst

Wael A. A. Arafa, a* Raafat M. Shaker b

a Chemistry Department, Faculty of Science, Fayoum University 63514, Fayoum, Egypt
b Chemistry Department, Faculty of Science, Minia University, 61519 Minia, Egypt
E-mail: waa00@fayoum.edu.eg

Table of Contents

1. 1H NMR, 13C NMR and HRMS for 3a S2
2. 1H NMR, 13C NMR and HRMS for 3b S5
3. 1H NMR, 13C NMR and HRMS for 3c S8
4. 1H NMR, 13C NMR and HRMS for 3d S11
5. 1H NMR and HRMS for 3e S14
6. 1H NMR, 13C NMR and HRMS for 3f S16
7. 1H NMR, 13C NMR, 19F NMR and HRMS for 3g S19
8. 1H NMR, 13C NMR and HRMS for 3h S23
9. 1H NMR, 13C NMR and HRMS for 4a S26
10. 1H NMR, 13C NMR and HRMS for 4b S29
11. 1H NMR, 13C NMR and HRMS for 4c S32
12. 1H NMR, 13C NMR and HRMS for 4d S35
13. 1H NMR, 13C NMR and HRMS for 4e S38
14. 1H NMR, 13C NMR and HRMS for 4f S41
15. 1H NMR and HRMS for 4g S44
16. 1H NMR, 13C NMR, 19F NMR and HRMS for 4h S46
17. 1H NMR, 13C NMR and HRMS for 4i S50
18. 1H NMR and 13C NMR for 5 S53
19. Synthesis of 5-bromo-2-hydroxybenzaldehyde (I1) S54
20. 1H NMR and 13C NMR for (I1) S55
21. Synthesis of 2-hydroxy-5-(2-(trimethylsilyl)ethynyl)benzaldehyde (I2) S57
22. 1H NMR and 13C NMR for (I2) S57
23. Synthesis of 5-ethynyl-2-hydroxybenzaldehyde (I3) S59
24. 1H NMR, 13C NMR and HRMS for (I3) S59
25. Synthesis of 2,2'-bipyridine-N'-oxide (I4) S61
26. 1H NMR and 13C NMR for (I4) S62
27. Synthesis of 4'-nitro-2,2'-bipyridine-N'-oxide (I5) S63
28. 1H NMR, 13C NMR and HRMS for (I5) S64
29. Synthesis of 4'-azido-2,2'-bipyridine-N'-oxide (I6) S66
30. 1H NMR, 13C NMR and HRMS for (I6) S67
31. 1H NMR, 13C NMR and HRMS for (8) S70
32. 1H NMR and HRMS for (9a) S73
33. 1H NMR and HRMS for (9b) S75
34. 1H NMR and HRMS for (9c) S77

References

Figure S1. 3a, 1H NMR.
Figure S2. 3a, 13C NMR.
Figure S3. 3a, HRMS.
Figure S4. 3b, 1H NMR.
Figure S5. 3b, 13C NMR.
Figure S6. 3b, HRMS.
Figure S7. 3c, 1H NMR.
Figure S8. 3c, 13C NMR.
Figure S8. 3c, HRMS.
Figure S9. 3d, 1H NMR.
Figure S10. 3d, 13C NMR.
Figure S11. 3d, HRMS.
Figure S12. 3e, 1H NMR.
Figure S13. 3e, HRMS.
Figure S14. 3f, 1H NMR.
Figure S15. 3f, 13C NMR.
Figure S16. 3f, HRMS.
Figure S17. 3g, 1H NMR.
Figure S18. 3g, 13C NMR.
Figure S19. 3g, 19F NMR.
Figure S20. 3g, HRMS.
Figure S21. 3h, 1H NMR.
Figure S22. 3h, 13C NMR.
Figure S23. 3h, HRMS.
Figure S24. 4a, 1H NMR.
Figure S25. 4a, 13C NMR.
Figure S26. 4a, HRMS.
Figure S27. 4b, 1H NMR.
Figure S28. 4b, 13C NMR.
Figure S29. 4b, HRMS.
Figure S30. 4c, 1H NMR.
Figure S31. 4c, 13C NMR.
Figure S32. 4c, HRMS.
Figure S33. 4d, 1H NMR.
Figure S34. 4d, 13C NMR.
Figure S35. 4d, HRMS.
Figure S36. 4e, 1H NMR.
Figure S37. 4e, 13C NMR.
Figure S38. 4e, HRMS.
Figure S39. 4f, 1H NMR.
Figure S39. 4f, 13C NMR.
Figure S40. 4f, HRMS.
Figure S41. 4g, 1H NMR.
Figure S42. 4g, HRMS.
Figure S43. 4h, 1H NMR.
Figure S44. 4h, ^{13}C NMR.
Figure S45. 4h, 19F NMR.
Figure S46. 4h, HRMS.
Figure S47. 4i, 1H NMR.
Figure S48. 4i, 13C NMR.
Figure S49. 4i, HRMS.
Figure S50. 1H NMR.
Synthesis of 5-bromo-2-hydroxybenzaldehyde (II)\(^1\)

4-Bromophenol (1.47 g, 8.49 mmol) and hexamethylenetetramine (9.52 g, 67.9 mmol) were dissolved in anhydrous CF\(_3\)COOH (25 mL) and the yellow solution was heated at 110 °C for 18 h. After cooling to room temperature, the mixture was added to aqueous HCl (4 M, 50 mL) and stirred for 5 h. Filtration and washing with H\(_2\)O (3 × 15 mL) afforded the product as a yellow

Figure S51. 5, \(^{13}\)C NMR.

\(^{1}\) Assignments and spectra are provided in the supporting information.
solid. **I1** was obtained following silica gel flash chromatography (Rf = 0.35 in 20% DCM/Pentane) as colorless crystals. 1H NMR (400 MHz, CDCl$_3$): δ_H 10.92 (s, 1 H), 9.84 (s, 1 H), 7.67 (d, J 2.5 Hz, 1 H), 7.60 (dd, J 8.8, 2.5 Hz, 1 H), 6.91 (d, J 8.8, 1 H). 13C NMR (100 MHz, CDCl$_3$): δ_C 195.6, 160.7, 139.9, 135.8, 121.9, 120.0, 111.5.

Figure S52. I1, 1H NMR.
Figure S53. 13C NMR.
Synthesis of 2-hydroxy-5-(2-(trimethylsilyl)ethynyl)benzaldehyde (I2)²

To a mixture of 5-bromosalicylaldehyde (5.00 g, 24.87 mmol), Pd(PPh₃)₂Cl₂ (0.52 g, 0.74 mmol), PPh₃ (0.74 mmol) and CuI (0.15 g, 0.75 mmol) in 80 mL of Et₃N (0.7255 g/mL), trimethylsilylacetylene (5.5 mL, 38.72 mmol, 0.69 g/mL) was added. The mixture refluxed for 8 h under an atmosphere of argon. After cooling, CH₂Cl₂ (100 mL) was added and filtered. Solvent was removed under vacuum and the residue was purified by chromatography on silica gel with pentane/DCM (2:1) as eluent. Removal of solvent under vacuum afforded a yellow powder, and the product was identified as 5-trimethylsilylethynylsalicylaldehyde (4.8 g, 88.51 %). ¹H NMR (400 MHz, CDCl₃): δ_H 11.09 (s, 1 H, OH), 9.84 (s, 1H, CHO), 7.69 (d, J 2.0 Hz, 1H, Ar-H), 7.60 (dd, J 8.6, 2.0 Hz, 1H, Ar-H), 6.92 (d, J 8.6 Hz, 1H, Ar-H), 0.24 (s, 9H, 3CH₃). ¹³C NMR (100 MHz, CDCl₃): δ_C 196.1, 161.6, 140.2, 137.5, 120.5, 115.2, 118.1, 103.3, 93.9, 0.07.

Figure S54. I2, ¹H NMR.
Figure S55. 12, 13C NMR.
Synthesis of 5-ethynyl-2-hydroxybenzaldehyde (I3)²

5-Ethynyltrimethylsilylsalicylaldehyde (4.945 g, 22.6 mmol) was dissolved in CH₂Cl₂ (30 mL). Potassium hydroxide (1.268 g, 22.6 mmol) was dissolved in MeOH (15 mL) and added to the CH₂Cl₂ solution. The reaction mixture was stirred at room temperature overnight, and then the solvent was removed under reduced pressure. The residue was dissolved in H₂O (15 mL) and acidified with 0.05 M HCl. The mixture was extracted with CH₂Cl₂ (3 x 20). The organic phase was dried over MgSO₄, filtered, and the solvent was removed by rotary evaporation to obtain 3.15 g (95.11%) of light yellow powder. ¹H NMR (400 MHz, CDCl₃): δH 11.12 ppm (s, 1 H, OH), 9.86 (s, 1H, CHO), 7.72 (d, J = 2.0 Hz, 1H, Ar-H), 7.62 (dd, J = 8.6, 2.0 Hz, 1H, Ar-H), 6.96 (d, J = 8.6 Hz, 1H, Ar-H), 3.03 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δC 196.1, 161.9, 140.3, 137.6, 120.5, 118.3, 114.1, 82.0, 76.9 ppm. ESI-HRMS m/z calcd. for C₉H₆O₂ (M – H)⁺: 145.0284; found 145.0288.

Figure S56. I3, ¹H NMR.
Figure S57. I3, 13C NMR.
Synthesis of 2,2'-bipyridine-N'-oxide (I4)3,4

2,2'-Bipyridine (10 g, 64 mmol) was dissolved in 50 mL trifluoroacetic acid and cooled to 5 °C. To the cold solution, 10 mL of hydrogen peroxide (30 mass %, 77.5 mmol, 1.11 g/mL) was added and the obtained mixture was stirred at room temperature for 4 h. The product was extracted with chloroform (3 x 100 mL), and the combined organic extracts were washed with 3 M NaOH (3 x 50 mL) then dried with MgSO\textsubscript{4} and evaporated to give 11.0 g of white solid. 1H NMR (400 MHz, CDCl\textsubscript{3}): δ_H 8.84 (br d, J 8.0 Hz, 1 H), 8.66 (m, 1 H), 8.25 (dd, J 6.5, 1.0 Hz, 1H), 8.11 (dd, J 8.0, 2.1 Hz, 1H), 7.76 (ddd, J 9.4, 7.8, 1.8 Hz, 1H), 7.31 - 7.26 (m, 2 H), 7.20 (ddd, J 8.8, 7.5, 2.1 Hz, 1H). 13C NMR (100 MHz, CDCl\textsubscript{3}): δ_C 149.6, 149.3, 147.3, 140.6, 136.2, 127.8, 125.6, 125.4, 125.2, 124.2.
Figure S59. I4, 1H NMR.
Synthesis of 4'-nitro-2,2'-bipyridine-N'-oxide (I5)³,⁴

2,2'-Bipyridine-N'-oxide (9 g, 51 mmol) was dissolved in concentrated sulphuric acid (57 mL, 3.5 mol, 1.84 g/mL) under stirring. A mixture of fuming nitric acid (90 mL, 2.08 mol, 1.48 g/mL) and concentrated sulphuric acid (42 mL, 0.78 mol, 1.84 g/mL) was added dropwise over 30 min. and then the reaction mixture was heated at 100 °C for 5h. After cooling to room temperature, pour the reaction mixture onto ice/water mixture (500 mL) and the pH was adjusted using 4 M NaOH. Filter the formed precipitate and wash with water (3 x 100 mL). The solid was suspended in water and extracted with DCM (3 x 100 mL). The combined organic extracts were
washed with water (100 mL) and dried with MgSO₄. After the solvent was evaporated, the product (7.2 g) was obtained as light yellow solid. 1H NMR (400 MHz, CDCl₃): δH 9.15 (d, J 3.2 Hz, 1 H), 8.88 (d, J 8.0 Hz, 1 H), 8.78 (dd, J 4.5, 0.6 Hz, 1 H), 8.35 (d, J 7.1 Hz, 1 H), 8.05 (dd, J 7.1, 3.2 Hz, 1 H), 7.87 (ddd, J 9.5, 7.9, 1.8 Hz, 1 H), 7.44-7.40 (m, 1 H). 13C NMR (100 MHz, CDCl₃): δC 149.96, 148.40, 147.72, 142.60, 142.07, 136.81, 125.48, 125.23, 122.74, 119.00. ESI-HRMS m/z calcd. for C$_{10}$H$_7$N$_3$O$_3$ (M + Na)$^+$: 240.0380; found 240.0395.

![Figure S61. I5, 1H NMR.](image-url)
Figure S62. I5, 13C NMR.
Figure S63. I5, HRMS.

Synthesis of 4'-azido-2,2'-bipyridine-N'-oxide (I6)3,4
4'-Nitro-2,2'-bipyridine-N'-oxide (3.27 g, 15 mmol) and sodium azide (3.51 g, 54 mmol) were suspended in dry DMF (100 mL) at ambient temperature. The reaction mixture was heated at 80 °C for 48 h. After the removal of the solvent, 100 mL water was added and the mixture was extracted with DCM (3 x 50 mL). The combined organic layers were dried with MgSO\textsubscript{4}, and the solvent was evaporated. The product (3.1 g) was obtained as orange solid. 1H NMR (400 MHz, CDCl\textsubscript{3}): \(\delta_H \) 9.01-8.98 (m, 1 H), 8.72-8.71 (m, 1 H), 8.22 (dd, \(J \) 7.3, 0.2 Hz, 1H), 7.95 (d, \(J \) 3.2 Hz, 1H), 7.83 (ddd, \(J \) 9.5, 7.9, 1.8 Hz, 1H), 7.38-7.35 (m, 1H), 6.8 (dd, \(J \) 7.0, 3.3 Hz, 1H), 13C NMR (100 MHz, CDCl\textsubscript{3}): \(\delta_C \) 149.5, 148.8, 148.0, 141.9, 138.5, 136.6, 125.7, 124.9, 117.6, 116.2. ESI-HRMS m/z calcd. for C\textsubscript{10}H\textsubscript{7}N\textsubscript{5}O (M + Na)+: 236.0543; found 236.0546.
Figure S64. I6, 1H NMR.
Figure S65. I6, 13C NMR.
Figure S66. I6, HRMS.
Figure S67. 8, 1H NMR.
Figure S68. 8, 13C NMR.
Figure S69. 8, HRMS.
Figure S70. 9a, 1H NMR.
Figure S71. 9a, HRMS.
Figure S72. 9b, 1H NMR.
Figure S73. 9b, HRMS.
Figure S74.9c, 1H NMR.
Figure S75. 9c, HRMS.

References