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Abstract 
This review describes the biological activity and synthesis of structurally and biologically 
significant isoindoloindolone compounds. The various synthetic reports are mainly described 
under two headings based on use of palladium chemistry or the Wittig reaction as the key step 
for the construction of the indole or isoindole ring. Other methods are included in the 
miscellaneous approaches. 
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1.  Introduction 
 
Indole based compounds are frequently encountered in bioactive substrates. 6H-Isoindolo[2,1-a]-
indol-6-one 1 is a predominant candidate of such type. Structurally it is a tetracyclic system 
having an indole ring fused to an isoindoline moiety with tethered (bridgehead) nitrogen (Figure 
1). 
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Figure 1.  6H-Isoindolo[2,1-a]indol-6-one. 
 
Although this heterocyclic structural motif is yet to be revealed in any natural product, it has 

already received a position of major importance as a bioactive compound.1-4  
 

2.  Biological Activity 
 
The derivatives of isoindoloindolone are well known for their specific bioactivity profiles. 
Isoindoloindolone derivatives are reported as potent ligands of MT3.

5 The third melatonin 
binding site, MT3, is an enzyme, quinone reductase-2 and not a usual seven transmembrane 
domains receptor. Hydroxyisoindoloindolone derivative 2a has subnanomolar affinity for the 
melatonin binding site MT3. 
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Figure 2.  Biologically important isoindoloindolones. 
 
Chloroisoindoloindolone derivative 2b, amidoisoindoloindolone derivative 2c, and 

aminoisoindoloindolone 2d show DNA binding ability and non-specific interference with the 
topoisomerase-I catalytic cycle (Figure 2). Compound 2b also has an antiproliferative effect 
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against HT-29 and L1210 cell lines. Compounds 2c and 2d exhibit inhibitory potency for 
topoisomerase-II comparable to that of etoposide.6,7 Compound 2e shows moderate binding 
affinity towards human neurokinin-1 (hNK1) receptors in the central nervous system.1 

The NorA protein is a multidrug resistant efflux in the bacterium Staphylococcus aureus. 
This has resulted in resistance towards numerous structurally dissimilar antibiotics such as 
norfloxacin, ethidium bromide, berberine, etc. Isoindoloindolone 1 is used as a precursor in the 
synthesis of 2-aryl-5-nitroindoles as NorA efflux pump inhibitors.8,9 Isoindoloindolone 1 also 
exhibit charge-transfer fluorescence with high quantum yields in non polar solvents.10  

 
3.  Synthetic Strategies 
 
Synthetic strategies of isoindoloindolones have been explored by research groups all over the 
world for decades (1979-2014) due to their diverse applications. Some of these efficient and 
remarkable achievements are discussed below.  
 
3.1. Palladium catalyzed coupling reactions 
Palladium acetate promoted intramolecular-dehydrogenative cyclisation of 1-benzoylindole is a 
short and simple method for the synthesis of isoindoloindolones (Scheme 1).11-18 It was first 
explored by Itahara in 197911-14 and was further developed by many other research groups. 
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Scheme 1. Intramolecular-dehydrogenative cyclisation approach. 
 

Bremner and his group8 prepared 1-benzoylindole 4 and reacted with palladium acetate in 
refluxing acetic acid to give isoindoloindolone 1. Dinnell et al. used Pd(PPh3)4 as catalyst and 
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KOAc as a base in refluxing DMA for the synthesis of isoindoloindolones.1 DeBoef and co-
workers used Cu(OAc)2 along with Pd(OAc)2 in refluxing acetic acid in O2 atmosphere for 
intramolecular aerobic oxidative coupling of 1-benzoylindoles to give isoindoloindolones.15 
Electron rich tethered arenes gave better yields than unsubstituted arenes. Kandukuri and 
Oestreich used methyl nicotinate as ligand for Pd(OAc)2 in mesitylene and pivalic acid in O2 
atmosphere for aerobic dehydrogenative double C-H coupling in 1-benzoylindoles to give 
isoindoloindolones.16 

Hibino and co-workers prepared isoindoloindolone by employing Suzuki–Miyaura reaction 
of N-Boc-indole-boronic acid 5 and methyl-o-iodobenzoate 6 to give N-Boc-indole esters 7 
followed by deprotection to give prominent precursor 8 and finally base mediated cyclisation to 
isoindoloindolones (Scheme 2).19 The method was further modified to complete the total 
synthesis of indoloquinoline alkaloid isocryptolepine. 
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Scheme 2. Hibino’s method. 
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Bao’s group20 reported a synthesis of isoindoloindolones through one-pot sequential Cu catalyzed  
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C-N coupling and Pd catalyzed C-H activation reaction (Scheme 3). This two-step one-pot 
synthesis uses o-gem-dibromovinylanilines 9 as a starting material for benzoylation with benzoyl 
chloride and simultaneous intramolecular Buchwald-Hartwig C-N coupling with CuBr catalyst to 
give N-benzoylated 2-bromoindole 10. Finally Pd catalyzed intramolecular Heck C-C coupling 
gave isoindoloindolones. Various derivatives with substituents on both aryl rings were prepared 
efficiently (Table 1) in moderate to good yields. The yields of 7-methyl and 10-chloro-11-methyl 
derivatives of 1 were somewhat low. 
 
Table 1. Bao’s method for isoindoloindolones 
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Cyclisation of dihalo-N-vinylbenzamide 13 to isoindoloindolone by tandem intramolecular 
Heck reaction is demonstrated by Dominguez’s group taking advantage of difference in 
reactivity between two halo groups (Scheme 4).21 The required dihalo-N-vinylbenzamide 13 was 
obtained by condensation of o-bromoarylamine 11 with acetaldehyde followed by benzoylation 
with o-iodobenzoyl chloride 12. Chemoselective palladation with the iodo group of benzamide 
13 to form methylene phthalimide intermediate via 5-exo-trig cyclisation followed by endo 
cyclisation furnished the isoindoloindolone. The overall yield of the sequence was 35%. 
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Scheme 4. Dominguez’s method. 
 
Estevez’s laboratory reported a copper-mediated intramolecular cyclisation of methyl 2-(2-

aminophenylethynyl)benzoates 16 to isoindoloindolones (Scheme 5, Table 2).22 This precursor 
was prepared by double Sonogashira coupling reactions initially between trimethylsilylacetylene 
and methyl-o-iodobenzoate 6 then subsequently with o-iodoaniline 15. Though the chemistry 
involved in the synthesis is quite interesting, the low overall yields (6-38%) discourage its 
application on a larger scale. 
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Scheme 5.  Estevez’s method. 
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Table 2. Estevez’s method for isoindoloindolones 

Entry Product 1 
Overall 

yield %a 
Entry Product 1 

Overall 

yield % a 

a N

O  

16 c N

O

MeO

MeO

OMe

OMe

 

6 

b N

O

OMe

OMe

 

38  

a Calculated over 3 steps. 

 
Ponpandian and Muthusubramanian achieved isoindoloindolone synthesis using copper 

catalyzed domino sp-sp2 decarboxylative cross coupling reaction of arylpropiolic acids 17 with 
o-iodotrifluoroacetanilide 18 and subsequent cyclisation (Scheme 6) in excellent yield.23 
However, the scope of this method to prepare other derivatives was not studied.  
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Scheme 6.  Muthusubramanian’s method. 
 
Zhu and co-workers developed synthesis of isoindoloindolones with Pd-catalyzed 

intramolecular cyclization via tert-butyl isocyanide insertion on 2-(2-bromophenyl)-1H-indoles 
19 (Scheme 7, Table 3).24 This method efficiently demonstrates the utility of isocyanides in C-N 
or C-C bond construction with N-tert-butyl intermediate 20. Using this method a library of 
twelve compounds was prepared in good to excellent yield. 
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Scheme 7. Zhu’s method. 
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Table 3. Zhu’s method for isoindoloindolones 

Entry Product 1 Yield % a Entry Product 1 Yield % a 
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3.2. Wittig reactions 
Boutin and co-workers have developed a sequence involving Wittig olefination of o-
nitrobenzaldehyde 21 with in situ phosphorane formed from the phosphonium salt 22 to give 
nitroarene 23.5 The nitro group was reduced by catalytic hydrogenation in the presence of Raney 
Ni followed by base hydrolysis of the amino-lactone 24 to give the indole acid 25 (Scheme 8). 
The acid was then converted into isoindoloindolones by refluxing in toluene in presence of p-
TSA. Six isoindoloindolone derivatives with substituents on both the rings were prepared using 
this four-step protocol in overall yields of 32-58% (Table 4). 
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Scheme 8. Boutin’s method. 

 
Table 4.  Boutin’s method for isoindoloindolones 

Entry Product 1 
Overall 

yield %a 
Entry Product 1 
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yield %a 
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Our group has developed a two-step route to 6H-Isoindolo[2,1-a]indol-6-ones starting from 

o-nitrobenzaldehydes 26.25 The methodology involves Wittig reaction followed by tandem 
reductive cyclization–lactamization (Scheme 9). 
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Scheme 9. Tilve’s method. 
 
Table 5. Tilve’s method for isoindoloindolones 

Entry Product 1 
Overall 

yield %a 
Entry Product 1 

Overall 

yield %a 

a N

O  

64 d 
N

O

MeO

MeO

OMe

 

47 

b N

O

Cl

 

54 e N

O

O

O

 

58 

c N

O

MeO

MeO

 

56 f N

O

MeO

 

56 

a Calculated over 2 steps. 

 
Various substituted o-nitrobenzaldehydes were subjected to Wittig reaction with the 

phosphorane formed from the benzylic phosphorus salt 27 to obtain the corresponding 
substituted ethyl 2-(2-nitrostyryl)benzoates 28. These were then subjected to tandem reductive 
cyclisation – lactamization using PPh3 in refluxing diphenyl ether. The corresponding 
isoindoloindolones were obtained in good overall yields. (Table 5) The flexibility of this method 
was demonstrated by synthesizing a series of isoindoloindolones with electron-donating groups 
like methoxy, dimethoxy, trimethoxy, and methylenedioxy, as well as electron-withdrawing 
groups like chloro. 

Intramolecular Wittig reaction is employed as a key step by Monneret and his group6-7 to 
synthesize isoindoloindolones (Scheme 10, Table 6). The Wittig salt 32 was prepared by 
benzylic bromination of N-(o-tolyl)-phthalimides 31 followed by reaction with PPh3. The overall 
yield of the four compounds ranges from 28-55%. 
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Scheme 10. Monneret’s method. 

 
Table 6. Monneret’s method for isoindoloindolones 

Entry Product 1 
Overall 

yield %a 
Entry Product 1 

Overall 

yield %a 

a N

O

O2N

 

28 c N

O
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O
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a Calculated over 3 steps. 
 

3.3.  Miscellaneous approaches 
Griffiths and his group26 developed a novel route to isoindoloindolones using o-(N-
phthaloyl)benzoic acids 34 (Scheme 11, Table 7). The process involves formation of acid 
chlorides followed by reaction with triethyl phosphite to give tetracyclic-β-keto phosphonates 35 
via a carbon-carbon bond forming reaction involving phosphonate anion. This ketoamide 
phosphonate 35 on reduction with NaBH4 furnished the required isoindoloindolones in 31-44 % 
overall yields. 
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Scheme 11.  Griffiths’s method. 

 
Table 7.  Griffiths’s method for isoindoloindolones 

Entry Product 1 
Overall 

yield %a 
Entry Product 1 

Overall 

yield %a 

a N

O  
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Cl
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b N

O
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a Calculated over 3 steps. 
 

Flash vacuum pyrolysis of methyl-2-(indol-1-yl)-benzoate 37 to isoindoindolone was 
developed by McNab et al.27,28 (Scheme 12). Here high temperature cascade reaction involving 
sigmatropic shift-elimination-cyclisation provided isoindoloindolone. Methyl 2-(indol-1-yl)-
benzoate 37 was prepared by C-N coupling of indole and o-iodobenzoic acid followed by 
esterification. 
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Scheme 12. McNab’s method. 
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Kanaoka’s group29-31 has developed a photochemical isoindoloindolone synthesis. UV 
irradiation of N-(o-tolyl)tetrachlorophthalimide 38 resulted in photocyclisation to give the 
tetracyclic alcohol 39. Further dehydration in presence of acid gave tetrachloroisoindoloindolone 
40 (Scheme 13).  
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Scheme 13. Kanaoka’s method. 

 
A metal free synthesis of isoindoloindolone was reported by Wang’s group using 

dibenzocyclohepten-5-one 41 as starting material (Scheme 14).32 This method involves 
Beckmann rearrangement of the oxime 42 to the lactam 43 using TFA, followed by bromination 
and intramolecular cyclisation of dibromodihydrodibenzoazocin-6-one 44 to yield 
isoindoloindolone. 
 

N

O

N
H

O

Br Br

NH2OH.HCl
pyr idine TFA

Br2, CH2Cl2
Et3N
THF

reflux reflux

0 °C - r .t. r.t.

Overall yield: 41%

42
43

44 1

O NOH
N
H

O41

 
 
Scheme 14. Wang’s method. 

 
4.  Conclusions 

 
The synthesis of isoindoloindolones has been extensively studied on account of their diverse 
biological applications. The methods use different approaches for constructing the indole or 
isoindole ring. Palladium-catalyzed cyclisation to the indole C-2 is widely used in assembling the 
isoindole ring. The Wittig reaction was also explored in a few approaches for assembling the 
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indole ring. Clean and high yielding general strategies are required for making newer analogues 
for biological testing. 
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