Synthesis of diospongin A, ent-diospongin A and C-5 epimer of diospongin B from tri-O-acetyl-d-glucal

Andrea Zúñiga, ${ }^{\text {a }}$ Manuel Pérez, ${ }^{\text {a }}$ Zoila Gándara, ${ }^{\text {a }}$ Alioune Fall, ${ }^{\text {b }}$ Generosa Gómez, ${ }^{\text {a }}$ and Yagamare Fall ${ }^{\text {a,* }}$
${ }^{a}$ Departamento de Química Orgánica, Facultad de Química and Instituto de Investigación Biomédica (IBI), University of Vigo, Campus Lagoas de Marcosende, 36310 Vigo, Spain
${ }^{b}$ Laboratoire de Chimie de Coordination Organique, Département de Chimie, Faculté des Sciences et Techniques. Université Cheikh Anta Diop de Dakar, Sénégal E-mail: yagamare@uvigo.es

DOI: http://dx.doi.org/10.3998/ark.5550190.p009.191

Abstract

We describe a new synthesis of diospogin A, its enantiomer ent-diospongin A and C-5 epimer of diospongin B from commercially available tri-O-acetyl-D-glucal, based on a copper catalyzed Michael addition of phenyllitium to the corresponding α, β-unsaturated ketone. The stereochemical course of the Michael addition was unambiguously established by X-ray crystallographic analysis.

Keywords: Diospongin, natural products, total synthesis, Michael addition, Mitsunobu reaction

Introduction

Diospongins A (1) and B (2) are a novel class of cyclic 1,7-diarylheptanoid natural products (Figure 1). They were isolated in 2004 by S. Kadota and co-workers, from the rhizomes of Dioscorea spongiosa. ${ }^{1}$ While diospongin A (1) did not show any activity, diospongin B (2) exhibited a potent inhibitory activity on bone resorption induced by parathyroid hormone in a bone organ culture system and hence can be regarded as a lead compound for the development of antiosteoporotic drugs. ${ }^{1}$

Diospongin A(1)

Diospongin B(2)

C-5 epimer of Diospongin B (4)

Figure 1. Structures of diospongins A and B and their enantiomers and C-5 epimers.

Because of their biological activities, diospongins have attracted much interest in the synthetic community. Since the first asymmetric total synthesis of diospongins A and B carried out in 2006 by Jennings and co-workers, ${ }^{2}$ several total syntheses of $\mathbf{1}$ and 2 and their enantiomers have been developed. ${ }^{3-20}$

Results and Discussion

As part of our ongoing program focusing on the use of readily available chiral substrate tri-O-acetyl-D-glucal (5) for the synthesis of natural products, ${ }^{21-25}$ we wish now to report the synthesis of diospongin A, ent-diospongin A and C-5 epimer of diospongin B, using this compound.
Our retrosynthetic basis is outlined in Scheme 1.

Scheme 1. Retrosynthetic analysis for diastereoisomers of diospongin B.

We anticipated that a Michael addition with diphenylcuprate on enone 6 would give diastereoisomers $\mathbf{8}$ and $\mathbf{9}$, precursors of target compounds 7. Accordingly, compound $\mathbf{1 0}$ was prepared in 2 steps from 5 in 91% yield, following the procedure described by Mori and Hayashi ${ }^{26}$ (Scheme 2).

PDC oxidation of $\mathbf{1 0}$ afforded α, β-unsaturated ketone $\mathbf{6}$ in 97% yield which underwent copper catalyzed Michael addition of PhLi , giving a separable mixture of diastereomeric ketones 8 and $\mathbf{9}$ in a 1:1.2 ratio.

Scheme 2 Reagents and conditions. (i) (a) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}$; (b) $t-\mathrm{Bu} \mathrm{L}_{2} \mathrm{Si}(\mathrm{OTf})_{2}$, $\mathrm{DMF}, \mathrm{Py},-30^{\circ} \mathrm{C}$. (ii) PDC, DMF, rt (iii) $\mathrm{PhLi}, \mathrm{CuCN}, \mathrm{BF}_{3} \mathrm{OEt}_{2}, \mathrm{Et}_{2} \mathrm{O},-78^{\circ} \mathrm{C}$ to rt.

The structures of $\mathbf{8}$ and $\mathbf{9}$ were unambiguously established by X-ray crystallographic analysis of $\mathbf{9}^{27}$ (Figure 2).

Figure 2. X-ray crystal structure (ORTEP) of ketone 9.

We anticipated that stereoselective reduction of ketones $\mathbf{8}$ and $\mathbf{9}$ followed by side chain elaboration would lead to ent-diospongin A, in the case of ketone $\mathbf{8}$ and to diospongin B in the case of ketone 9. Accordingly, ent-diospongin A was prepared as shown in Scheme 3.

Scheme 3 Reagents and conditions. (i) L-Selectride, THF, $-38{ }^{\circ} \mathrm{C}$. (ii) $\mathrm{ClMOM}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, DIEA. (iii) TBAF, THF, rt. (iv) TBSCl, DMAP, Imidazole, THF, rt. (v) $\mathrm{Im}_{2} \mathrm{CS}$, THF, $70^{\circ} \mathrm{C}$. (vi) AIBN, $\mathrm{Bu}_{3} \mathrm{SnH}$, toluene, $120^{\circ} \mathrm{C}$. (vii) TBAF, THF, rt. (viii) p-TsCl, $\mathrm{Pyr}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$. (ix) NaCN , DMSO, $90^{\circ} \mathrm{C}$. (x) (a) DIBAL-H, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}$; (b) PhLi, THF, $-78^{\circ} \mathrm{C}$. (xi) $\mathrm{PDC}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt. (xii) $\mathrm{HCl}(37 \%)$, MeOH .

Diospongin $A(1)$
Scheme 4 Reagents and conditions. (i) L-Selectride, THF, $-38{ }^{\circ} \mathrm{C}$. (ii) $\mathrm{ClMOM}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, DIEA. (iii) TBAF, THF, rt. (iv) TBSCl, DMAP, Imidazole, THF, rt. (v) $\mathrm{Im}_{2} \mathrm{CS}$, THF, $70{ }^{\circ} \mathrm{C}$. (vi) AIBN, $\mathrm{Bu}_{3} \mathrm{SnH}$, toluene, $120^{\circ} \mathrm{C}$. (vii) TBAF, THF, rt. (viii) p-TsCl, Pyr, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. (ix) NaCN , DMSO, $90^{\circ} \mathrm{C}$. (x) (a) DIBAL-H, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}$; (b) PhLi, THF, $-78{ }^{\circ} \mathrm{C}$. (xi) TPAP, NMO, Molecular sieves, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt. (xii) HCl (37\%), MeOH. (xiii) (a) $\mathrm{PPh}_{3}, p-\mathrm{NO}_{2} \mathrm{PhCO}_{2} \mathrm{H}$; (b) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}$.

L-Selectride reduction of ketone $\mathbf{8}$ afforded stereoselectively 90% yield of alcohol $\mathbf{1 1}$ which was protected as MOM ether to give 12 in 90% yield. Removal of the silyl protecting group of compound 12 afforded the diol 13 (96%). The primary hydroxyl group of 13 was selectively protected giving almost quantitatively alcohol 14. Radical deoxygenation ${ }^{28}$ of alcohol 14 led to tert-butyldimethylsilylether $\mathbf{1 6}$ in 72% overall yield. Removal of the TBS protecting group of $\mathbf{1 6}$ afforded alcohol 17 in 85% yield. Alcohol 17 was uneventfully converted into nitrile 19 in 93% overall yield by tosylation followed by tosylate displacement with sodium cyanide. Reduction of nitrile 19 with DIBALH ${ }^{29}$ gave an aldehyde which was subjected to a reaction with PhLi to obtain alcohol 20 in 67\% overall yield. PDC oxidation of alcohol 20 afforded ketone 21 (65% yield). Removal of the MOM protecting group of 21 gave 84% yield of target ent-diospongin A .

Using a similar sequence of reactions to that used above, ketone 9 led to the synthesis of C-5-epimer of diospongin B (4) (Scheme 4).

Our intention was to synthesize diospongin B (2) from 4, by means of a Mitsunobu reaction, ${ }^{30}$ but instead of the expected compound we got diospongin A (1). The formation of $\mathbf{1}$ from 4 can be rationalized by first inversion of C-5 configuration, a retro-Michael reaction followed by an intramolecular Michael reaction which then leads to the thermodynamically more stable diospongin 1 (Scheme 5). This type of epimerization is not unprecedented as observed by Kumaraswamy and co-workers ${ }^{10}$ while deprotecting a TBDPS group with excess of TBAF (10 equiv).

4

Scheme 5. Rationalization of the formation of 1 from 4.

Conclusions

We have developed a new synthesis of diospongin A, its enantiomer and C-5-epimer of diospongin B , from a relatively cheap starting material. To the best of our knowledge this is so
far only the second synthesis described for ent-diospongin A. Our strategy could be used to generate a library of small molecules with varying substitutions in the aromatic rings. Work is now in progress for the synthesis of such diospongin analogues with a view to their biological evaluation.

Experimental Section

General. Solvents were purified and dried by standard procedures before use. Melting points are uncorrected. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded with a Bruker ARX-400 spectrometer (400 MHz for 1 H NMR, 100.61 MHz for ${ }^{13} \mathrm{C}$ NMR) using TMS as internal standard (Chemical shifts in δ values, J in Hz). Flash chromatography (FC) was performed on silica gel (Merck 60, 230-400 mesh); analytical TLC was performed on plates precoated with silica gel (Merck 60 F254, 0.25 mm); mass spectra (FAB, EI) were recorded using FISONS VG and electron spray ionization (ESI-MS) spectroscopy was recorded using Bruker FTMS APEXIII.

Due to some C signals overlapping the number of C signals in some spectra might be less. Also some hydroxy groups H might be missing.
(4aR,8aR)-2,2-Di-tert-butyl-4,4adihydropyrano[3,2-d][1,3,2]dioxasilin-8(8aH)-one (6). To a solution of $\mathbf{1 0}(1 \mathrm{~g}, 3.5 \mathrm{mmol})$ in DMF (33 mL) was added PDC $(5.1 \mathrm{~g}, 13.9 \mathrm{mmol})$ and the mixture was stirred at room temperature for 1 hour, quenched with $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and extracted with AcOEt (30 ml), the organic phase was washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 30 \mathrm{ml})$ and brine ($3 \times 30 \mathrm{~mL}$). After drying with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and solvent evaporation the residue was chromatographed on silica using $15 \% \mathrm{AcOEt} / \mathrm{Hexane}$ affording 6 ($960 \mathrm{mg}, 97 \%$). Compound 6: colourless oil, $[\alpha]_{\mathrm{D}}{ }^{24}=+95.2\left(\mathrm{c} 1.09, \mathrm{CHCl}_{3}\right)$, Rf: 0.37 ($30 \% \mathrm{AcOEt}$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, \delta\right): 7.18(\mathrm{~d}, J 5.8 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CH}-6), 5.30(\mathrm{~d}, ~ J 5.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-7), 4.49(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}-8 \mathrm{a}), 4.20\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}-4\right), 4.10(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{CH}-4 \mathrm{a}), 0.98\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{tBu}\right), 0.91\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{tBu}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, \delta\right): 191.08(\mathrm{CO})$, 160.84 (CH-6), 105.75 (CH-7), $77.36(\mathrm{CH}-8 \mathrm{a}), 74.68(\mathrm{CH}-4 \mathrm{a}), 65.45\left(\mathrm{CH}_{2}-4\right), 27.32\left(\mathrm{CH}_{3}-\mathrm{tBu}\right)$, $26.85\left(\mathrm{CH}_{3}{ }^{t} \mathrm{Bu}\right), 22.78\left(\mathrm{C}-{ }^{t} \mathrm{Bu}\right), 20.02\left(\mathrm{C}-{ }^{t} \mathrm{Bu}\right)$; MS (ESI) [m/z, (\%)]: $285([\mathrm{M}+1]+, 100), 331$ (71). HRMS (ESI): 285.1444 calcd for $\mathrm{C}_{14} \mathrm{H}_{25} \mathrm{O}_{4} \mathrm{Si}$, found 285.1517.
(4aR,6S,8aR)-2,2-Di-tert-butyl-tetrahydro-6-phenylpyrano[3,2-d][1,3,2]dioxasilin-8(8aH)one (8) and (4aR,6R,8aR)-2,2-di-tert-butyl-tetrahydro-6-phenylpyrano[3,2-d][1,3,2]-dioxasilin-8(8aH)-one (9). To a solution of $\mathrm{CuCN}(1.86,20.84 \mathrm{mmol})$ in ether (20 mL) cooled to $-78{ }^{\circ} \mathrm{C}$ was slowly added $\mathrm{PhLi}(23.15 \mathrm{~mL}, 41.68 \mathrm{mmol})$. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 10 minutes and then was cooled again at $-78^{\circ} \mathrm{C}$ for 30 minutes. On the other hand, to a solution of compound $6(2.96 \mathrm{~g}, 10.42 \mathrm{mmol})$ in ether (20), cooled to $-78^{\circ} \mathrm{C}$, was added $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(1.28 \mathrm{~mL}$, $10.42 \mathrm{mmol})$ and was stirred in the same conditions for 5 minutes. After that this solution was added over the PhLi solution at $-78^{\circ} \mathrm{C}$ and was stirred for 1 hour. The reaction was quenched with $\mathrm{NH}_{4} \mathrm{Cl}(30 \mathrm{~mL})$ and was extracted with AcOEt $(3 \times 30 \mathrm{~mL})$. The combined organic phases
were washed with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ and brine $(50 \mathrm{~mL})$ and were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent evaporated under reduced pressure. The residue was chromatographed on silica gel using 1% $\mathrm{AcOEt} /$ Hexane affording 8 and 9 (75\%, ratio 1:1.2). Compound 8: yellow oil, $[\alpha]_{\mathrm{D}}{ }^{24}=16.4$ $\left(\mathrm{c}=1.13, \mathrm{CHCl}_{3}\right), \mathrm{R}_{\mathrm{f}}: 0.5(30 \% \mathrm{AcOEt}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \delta\right): 7.40-7.29\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{CH}_{\mathrm{o}, \mathrm{m}, \mathrm{p}}\right), 4.81-4.75$ (m, 1H, CH-6), 4.59 (d,J $9.84 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-8 \mathrm{a}), 4.32\left(\mathrm{dd}, J 9.9, J 5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-4\right), 4.11(\mathrm{t}, J 10.2$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-4\right), 3.77$ (td,J 9.9,J $\left.4.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-4 \mathrm{a}\right), 2.79-2.75$ (m,2H, CH2-7), 1.10 (s,9H, CH3$\left.{ }^{\mathrm{t}} \mathrm{Bu}\right), 1.06\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}{ }^{\mathrm{t}} \mathrm{Bu}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, \delta\right): 202.02(\mathrm{CO}), 139.57(\mathrm{C}-\mathrm{Ph}), 128.76\left(\mathrm{CH}_{\mathrm{m}}-\mathrm{Ph}\right)$, $128.46\left(\mathrm{CH}_{\mathrm{p}}-\mathrm{Ph}\right), 125.67\left(\mathrm{CH}_{0}-\mathrm{Ph}\right), 80.33(\mathrm{CH}-6), 80.19(\mathrm{CH}-8 \mathrm{a}), 77.54(\mathrm{CH}-4 \mathrm{a}), 66.89\left(\mathrm{CH}_{2}-\right.$ 4), $49.26\left(\mathrm{CH}_{2}-7\right), 27.37\left(\mathrm{CH}_{3}{ }^{-} \mathrm{Bu}\right), 27.00\left(\mathrm{CH}_{3}{ }^{-} \mathrm{Bu}\right), 22.76\left(\mathrm{C}-{ }^{\mathrm{t}} \mathrm{Bu}\right), 20.18(\mathrm{C}-\mathrm{Bu}) . \mathrm{MS}(\mathrm{ESI})$ [$\mathrm{m} / \mathrm{z}, \quad(\%)]: 361\left([\mathrm{M}-\mathrm{H}]^{+}, 100 \%\right), 363$ (39\%),345 ([M-H2O] $\left.{ }^{+}, 39 \%\right)$. HRMS (ESI): 363.19861 calculated for $\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{O}_{4} \mathrm{Si}$, found 363.19821. Compound 9: colourless solid, $\mathrm{mp} 87^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{24}=$ $62.8\left(\mathrm{c}=2.93, \mathrm{CHCl}_{3}\right), \mathrm{R}_{\mathrm{f}}: 0.45(30 \% \mathrm{AcOEt}){ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, \delta\right): 7.40-7.27\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{CH}_{\mathrm{o}, \mathrm{m}, \mathrm{p}}{ }^{-}\right.$ $\mathrm{Ph}), 5.47-5.42(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}-6), 4.56(\mathrm{~d}, \mathrm{~J} 10.12 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-8 \mathrm{a}), 4.07-3.98\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}-4\right), 3.58-3.49$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}-4 \mathrm{a}$), 3.15-3.10 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}-7$), $1.06\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{Bu}\right), 0.88\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}-{ }^{\mathrm{t}} \mathrm{Bu}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, \delta\right): 203.05(\mathrm{CO}), 138.22(\mathrm{C}-\mathrm{Ph}), 128.75\left(\mathrm{C}_{\mathrm{m}}-\mathrm{Ph}\right), 128.50\left(\mathrm{C}_{\mathrm{p}}-\mathrm{Ph}\right), 127.76\left(\mathrm{C}_{0}-\mathrm{Ph}\right), 80.41$ (CH-8a), $76.05(\mathrm{CH}-6), 70.82(\mathrm{CH}-4 \mathrm{a}), 66.87\left(\mathrm{CH}_{2}-4\right), 42.97\left(\mathrm{CH}_{2}-7\right), 27.32\left(\mathrm{CH}_{3}{ }^{-}{ }^{\mathrm{H}} \mathrm{Bu}\right), 26.79$ $\left.\left(\mathrm{CH}_{3}{ }^{\mathrm{t}} \mathrm{Bu}\right), 22.69 \quad(\mathrm{C}-\mathrm{Bu}), 20.03 \quad\left(\mathrm{C}-{ }^{\mathrm{t}} \mathrm{Bu}\right) . \quad \mathrm{MS} \quad(\mathrm{ESI}) \quad[\mathrm{m} / \mathrm{z} \text {, (\%)]:361 ([M-H] }]^{+}, \quad 100\right), 363$ (39),345([M- $\left.\left.\mathrm{H}_{2} \mathrm{O}\right]^{+}, 39\right)$. HRMS (ESI): 363.19861 calcd for $\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{O}_{4} \mathrm{Si}$, found 363.1987.
(4aR,6R,8S,8aS)-2,2-di-tert-butyl-6-phenylhexahydropyrano[3,2-d][1,3,2]dioxasilin-8-ol
(11). To a solution of ketone $8(0.362 \mathrm{~g}, 0.99 \mathrm{mmol})$ in THF (8 mL) cooled at $-78^{\circ} \mathrm{C}$ was slowly added L-selectride ($2.5 \mathrm{~mL}, 2.5 \mathrm{mmol}$). After 1.5 hours the reaction was quenched with $\mathrm{NH}_{4} \mathrm{Cl}$ $(10 \mathrm{~mL})$ and was stirred for 30 minutes. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 15$ $\mathrm{mL})$.The combined organic phases were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent evaporated under reduced pressure. The residue was chromatographed on silica gel using $2 \% \rightarrow 4 \% \mathrm{AcOEt} /$ Hexane affording alcohol $11(0.326 \mathrm{~g}, 90 \%)$. Compound 11: white solid, $\mathrm{mp} 102^{\circ} \mathrm{C}$. $[\alpha]_{\mathrm{D}}{ }^{24}=14.6$ $\left(\mathrm{c}=2.39, \mathrm{CHCl}_{3}\right), \mathrm{R}_{\mathrm{f}}: 0.3(10 \% \mathrm{AcOEt}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, \delta\right): 7.30$ (quasi d, J $1.9 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{0}, \mathrm{~m}^{-}$ Ph), 7.25 (m, 1H, CH-Ph), 4.87 (dd,J $11.6, J 1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-6), 4.20$ (dd,J 10.0,J $4.6 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{2}-4\right), 4.17(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}-8), 4.0-3.98(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}-4 \mathrm{a}), 3.94(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}-8 \mathrm{a}), 3.91\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}-\right.$ 4), $2.54(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 2.20\left(\mathrm{dt}, J 14.1, J 3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-7\right), 1.87\left(\mathrm{t}, J 12.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-7\right), 1.07$ (s, $\left.9 \mathrm{H}, \mathrm{CH}_{3}{ }^{\mathrm{t}} \mathrm{Bu}\right), 1.04\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}{ }^{\mathrm{t}} \mathrm{Bu}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, \delta\right): 141.48(\mathrm{C}-\mathrm{Ph}), 128.39\left(\mathrm{CH}_{0}-\mathrm{Ph}\right), 127.6$ $\left(\mathrm{CH}_{\mathrm{p}}-\mathrm{Ph}\right), 125.89\left(\mathrm{CH}_{\mathrm{m}}-\mathrm{Ph}\right), 75.24(\mathrm{CH}-8 \mathrm{a}), 73.78(\mathrm{CH}-6), 70.85(\mathrm{CH}-4 \mathrm{a}), 67.12 \quad\left(\mathrm{CH}_{2}-4, \mathrm{CH}-\right.$ 8), $38.86\left(\mathrm{CH}_{2}-7\right), 27.46\left(\mathrm{CH}_{3}{ }^{\mathrm{t}} \mathrm{Bu}\right), 27.26\left(\mathrm{CH}_{3}{ }^{\mathrm{t}} \mathrm{Bu}\right), 22.71(\mathrm{C}-\mathrm{Bu}), 19.48\left(\mathrm{C}-{ }^{\mathrm{t}} \mathrm{Bu}\right) . \mathrm{MS}(\mathrm{ESI})[\mathrm{m} / \mathrm{z}$, (\%)]:298 (100),385 ([M+Na-2H] ${ }^{+}$, 94),345 (94), 363([M-H] $\left.{ }^{+}, 34\right)$. HRMS (ESI): 363.19861 calcd for $\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{O}_{4} \mathrm{Si}$, found 363.19869.
(4aR,6R,8S,8aS)-2,2-Di-tert-butyl-8-(methoxymethoxy)-6-phenylhexahydropyrano[3,2-d][1,3,2]dioxasiline (12). To a solution of $11(1.05 \mathrm{~g}, 2.88 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ cooled to 0 ${ }^{\circ} \mathrm{C}$ was added DIPEA ($2.51 \mathrm{~mL}, 14.41 \mathrm{mmol}$) dropwise at the same temperature. After 10 minutes the ClMOM ($1.09 \mathrm{~mL}, 14.41 \mathrm{mmol}$) was added and the mixture was stirred for 16 hours to room temperature.The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ and was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 15 \mathrm{~mL})$ and the combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ and brine
(20 mL) and were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent evaporated under reduced pressure. The residue was chromatographed on silica gel using $2 \% \mathrm{AcOEt} /$ Hexane affording 12 ($1.06 \mathrm{~g}, 90 \%$). Compound 12: white solid, mp $101^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{27}=-21.8\left(\mathrm{c}=0.78, \mathrm{CHCl}_{3}\right), \mathrm{R}_{\mathrm{f}} 0.66(30 \%$ $\mathrm{AcOEt} / \mathrm{Hexane}$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \delta\right) 7.36$ (quasi d, $J 4.4,4 \mathrm{H}, \mathrm{CH}_{\mathrm{o}, \mathrm{m}}-\mathrm{Ph}$), $7.32-7.27$ (m, 1 H , $\mathrm{CH}_{\mathrm{p}}-\mathrm{Ph}$), 5.03 (d, $2 \mathrm{~J} 6.6,1 \mathrm{H}, \mathrm{CH}_{2}$-MOM), 4.90 (dd, J $2.1,11.7,1 \mathrm{H}, \mathrm{CH}-6$), $4.82(\mathrm{~d}, 2 \mathrm{~J} 6.6,1 \mathrm{H}$, CH_{2}-MOM), $4.26-4.18$ (m, 2H, CH2-5, CH-8), 4.14 (td, J 4.9, 9.9, 1H, CH-4a), 4.01 - 3.94 (m, $1 \mathrm{H}, \mathrm{CH}-8 \mathrm{a}$), 3.92 (d, J 10.1, 1H, $\mathrm{CH}_{2}-4$), 3.48 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{MOM}$), 2.14 (ddd, J 2.3, 3.6, 14.1, $1 \mathrm{H}, \mathrm{CH}_{2}-7$), 1.92 (ddd, $J 2.4,11.8,14.1,1 \mathrm{H}, \mathrm{CH}_{2}-7$), 1.11 ($\mathrm{s}, 9 \mathrm{H}, \mathrm{CH}_{3}{ }^{\mathrm{t}} \mathrm{Bu}$), 1.07 ($\mathrm{s}, 9 \mathrm{H}, \mathrm{CH}_{3}-$ $\left.{ }^{t} \mathrm{Bu}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, \delta\right) 141.59(\mathrm{C}-\mathrm{Ph}), 128.45\left(\mathrm{CH}_{0}-\mathrm{Ph}\right), 127.71\left(\mathrm{CH}_{\mathrm{p}}-\mathrm{Ph}\right), 126.01\left(\mathrm{CH}_{\mathrm{m}}-\mathrm{Ph}\right)$, $97.02\left(\mathrm{CH}_{2}\right.$-MOM), $76.24(\mathrm{CH}-8 \mathrm{a}), 74.30(\mathrm{CH}-6), 72.47(\mathrm{CH}-8), 71.20(\mathrm{CH}-4 \mathrm{a}), 67.18\left(\mathrm{CH}_{2}-4\right)$, $55.40\left(\mathrm{CH}_{3}-\mathrm{MOM}\right), 39.43\left(\mathrm{CH}_{2}-7\right), 27.56\left(\mathrm{CH}_{3}-{ }^{\mathrm{t}} \mathrm{Bu}\right), 27.03\left(\mathrm{CH}_{3}{ }^{\mathrm{t}} \mathrm{Bu}\right), 22.80\left(\mathrm{C}-{ }^{\mathrm{t}} \mathrm{Bu}\right), 20.24(\mathrm{C}-$ $\left.{ }^{\mathrm{t}} \mathrm{Bu}\right) . \mathrm{MS}(\mathrm{ESI})[\mathrm{m} / \mathrm{z},(\%)]: 432\left([\mathrm{M}+\mathrm{H}+\mathrm{Na}]^{+}, 32\right), 431\left([\mathrm{M}+\mathrm{Na}]^{+}, 100\right), 301$ (8), 255 (11). HRMS (ESI): 431.2224 calcd for $\mathrm{C}_{22} \mathrm{H}_{36} \mathrm{NaO}_{5} \mathrm{Si}$, found 431.2220.
(2R,3S,4S,6R)-2-(Hydroxymethyl)-4-(methoxymethoxy)-6-phenyltetrahydro-2H-pyran-3-ol (13). To a solution of $12(1.04 \mathrm{~g}, 2.55 \mathrm{mmol})$ in THF (20 mL) was added a $1,0 \mathrm{M}$ solution of TBAF ($7.64 \mathrm{~mL}, 7.64 \mathrm{mmol}$) at r.t. and the mixture was stirred for 24 hours in the same conditions. The solvent was evaporated and the residue was chromatographed on silica gel using $50 \% \mathrm{AcOEt} /$ Hexane affording diol 13 ($656 \mathrm{mg}, 96 \%$). Compound 13: white solid, $\mathrm{mp} 140^{\circ} \mathrm{C}$, $[\alpha]_{\mathrm{D}}{ }^{27}=78.3\left(\mathrm{c} 1,65, \mathrm{CHCl}_{3}\right), \mathrm{R}_{\mathrm{f}} 0.22(100 \% \mathrm{AcOEt}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \delta\right): 7.57-7.10(\mathrm{~m}, 5 \mathrm{H}$, $\left.\mathrm{CH}_{\mathrm{o}, \mathrm{m}, \mathrm{p}}-\mathrm{Ph}\right), 4.84\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{MOM}, \mathrm{CH}-6\right), 4.08(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}-4), 3.97\left(\mathrm{M}, 1 \mathrm{H}, \mathrm{CH}_{2}-1\right.$ '), $3.88-$ 3.77 (m, 2H, CH ${ }_{2}-1^{\prime}, \mathrm{CH}-2$), $3.66-3.57(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}-3)$, 3.51 ($\left.\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{MOM}\right), 2.30-2.16$ $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}_{2}-5\right), 1.97-1.78\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}-5\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, \delta\right): 141.53(\mathrm{C}-\mathrm{Ph}), 128.44\left(\mathrm{CH}_{0}-\right.$ $\mathrm{Ph}), 127.74\left(\mathrm{CH}_{\mathrm{p}}-\mathrm{Ph}\right), 125.94\left(\mathrm{CH}_{\mathrm{m}}-\mathrm{Ph}\right), 97.44\left(\mathrm{CH}_{2}-\mathrm{MOM}\right), 77.27(\mathrm{CH}-4), 76.89(\mathrm{CH}-2), 73.69$ (CH-6), $68.36(\mathrm{CH}-3), 63.67\left(\mathrm{CH}_{2}-1^{\prime}\right), 56.04\left(\mathrm{CH}_{3}-\mathrm{MOM}\right), 39.23\left(\mathrm{CH}_{2}-5\right) . \mathrm{MS}(\mathrm{ESI})[\mathrm{m} / \mathrm{z},(\%)]$: $292\left([\mathrm{M}+\mathrm{H}+\mathrm{Na}]^{+}, 17\right), 291\left([\mathrm{M}+\mathrm{Na}]^{+}, 100\right), 245$ (2). HRMS (ESI): 291.1203 calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NaO}_{5}$, found 291.1204.
(2R,3S,4S,6R)-2-((tert-butyldimethylsilyloxy)methyl)-4-(methoxymethoxy)-6-phenyl-tetrahydro-2H-pyran-3-ol (14). To a solution of diol 13 ($595 \mathrm{mg}, 2.22 \mathrm{mmol}$) in THF (10 mL) were added imidazole ($181 \mathrm{mg}, 2.66 \mathrm{mmol}$), a catalytic amount of DMAP and TBSCl (399 mg , $2.66 \mathrm{mmol})$ and the mixture was stirred for 18 hours at r.t.. The solvent was evaporated, $\mathrm{H}_{2} \mathrm{O}(10$ $\mathrm{mL})$ added and the product extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 10 \mathrm{~mL})$.). The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent evaporated under reduced pressure. The residue was purified by chromatography on silica gel ($30 \% \mathrm{EtOAc} / \mathrm{Hexane}$) affording 14 ($848 \mathrm{mg}, 99 \%$). Compound 14: colourless oil, $[\alpha]_{\mathrm{D}}{ }^{27}=40.8$ (c 4.45, CHCl_{3}), $\mathrm{R}_{\mathrm{f}} 0.24$ ($30 \% \mathrm{EtOAc} / \mathrm{Hexane}$). ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, \delta\right): 7.48-7.22\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{CH}_{\mathrm{o}, \mathrm{m}, \mathrm{p}}-\mathrm{Ph}\right), 4.98-4.71\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{MOM}, \mathrm{CH}-6\right), 4.11$ (s, 1H, CH-4), $4.04-3.88$ (m, 2H, CH2-1'), $3.87-3.76$ (m, 1H, CH-2), 3.71 (dd, J 1.8, 9.8, 1H, CH-3), 3.50 (d, J $1.5,3 \mathrm{H}, \mathrm{CH}_{3}$-MOM), $2.32-2.10\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}-5\right), 1.81\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}-5\right), 0.94$ (s, $9 \mathrm{H},{ }^{\mathrm{t}} \mathrm{Bu}-\mathrm{TBS}$), 0.13 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$-TBS), 0.11 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$-TBS). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3} \delta\right): 142.12$ (C-Ph), $128.29\left(\mathrm{CH}_{0}-\mathrm{Ph}\right), 127.40\left(\mathrm{CH}_{\mathrm{p}}-\mathrm{Ph}\right), 125.87\left(\mathrm{CH}_{\mathrm{m}}-\mathrm{Ph}\right), 97.29\left(\mathrm{CH}_{2}-\mathrm{MOM}\right), 76.40(\mathrm{CH}-$ 2), $75.94(\mathrm{CH}-4), 73.53(\mathrm{CH}-6), 69.43(\mathrm{CH}-3), 64.88\left(\mathrm{CH}_{2}-1^{\prime}\right), 55.82\left(\mathrm{CH}_{3}-\mathrm{MOM}\right), 39.32\left(\mathrm{CH}_{2}-\right.$
5), $25.95\left(\mathrm{CH}_{3}{ }^{\mathrm{t}} \mathrm{Bu}(\mathrm{TBS})\right), 18.39\left(\mathrm{C}-{ }^{\mathrm{t}} \mathrm{Bu}(\mathrm{TBS})\right),-5.25\left(\mathrm{CH}_{3}-\mathrm{Me}(\mathrm{TBS})\right),-5.30\left(\mathrm{CH}_{3}-\mathrm{Me}(\mathrm{TBS})\right)$. MS (ESI) $[\mathrm{m} / \mathrm{z},(\%)]: 406\left([\mathrm{M}+\mathrm{H}+\mathrm{Na}]^{+}, 29\right), 405\left([\mathrm{M}+\mathrm{Na}]^{+}, 100\right), 383\left([\mathrm{M}+\mathrm{H}]^{+}, 5\right)$. HRMS (ESI): 405.2068 calcd for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{NaO}_{5} \mathrm{Si}$, found 405.2050 .
O-(2R,3S,4S,6R)-2-((tert-butyldimethylsilyloxy)methyl)-4-(methoxymethoxy)-6-phenyl-tetrahydro-2H-pyran-3-yl $\mathbf{1 H}$-imidazole-1-carbothioate (15). To a solution of $\mathbf{1 4}$ (535 mg , 1.397 mmol) in THF (15 mL) was added $\mathrm{Im}_{2} \mathrm{CS}(498 \mathrm{mg}, 2.79 \mathrm{mmol})$ and the mixture was stirred for 23 hours at $70{ }^{\circ} \mathrm{C}$. The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ extracted with AcOEt ($2 \times 15 \mathrm{~mL}$) and the combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ and brine $(20 \mathrm{~mL})$ dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent evaporated under reduced pressure. The residue was purified by chromatography on silica gel ($20 \% \mathrm{EtOAc} / \mathrm{Hexane}$) affording 15 (624 $\mathrm{mg}, 91 \%$). Compound 15: colourless oil, $[\alpha]_{\mathrm{D}}{ }^{27}=52.4$ (c $0.58, \mathrm{CHCl}_{3}$), $\mathrm{R}_{\mathrm{f}} 0.17$ (30\% EtOAc/Hexane). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \delta\right) 8.39$ (s, 1H, H2-Im), 7.69 (s, 1H, H5-Im), 7.38 (m, 4H, $\mathrm{CH}_{\mathrm{o}, \mathrm{m}}-\mathrm{Ph}$), $7.34-7.26\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{P}}-\mathrm{Ph}\right.$), $7.08(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 4-\mathrm{Im}), 5.74$ (dd, J 2.9, 10.0, 1H, CH-3'), 4.96 (d, J 10.6, 1H, CH-6'), 4.76 (d, J6.9, 1H, CH ${ }_{2}$-MOM), 4.67 (d, J 6.9, 1H, CH ${ }_{2}$-MOM), 4.61 (s, 1H, CH-4'), 4.33 (d, J 9.8, 1H, CH-2'), 3.92 (d, J 9.9, 1H, CH2-1'), 3.83 (dd, J 3.5, 11.5, 1H, $\mathrm{CH}_{2}-1^{\prime \prime}$), 3.32 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$-MOM), 2.23 (d, J $14.3,1 \mathrm{H}, \mathrm{CH}_{2}-5^{\prime}$), 1.93 (t, J 12.2, $1 \mathrm{H}, \mathrm{CH}_{2}-5^{\prime}$), 0.88 (s, $9 \mathrm{H},{ }^{\mathrm{t}} \mathrm{Bu}-\mathrm{TBS}$), 0.05 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{TBS}$), -0.01 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{TBS}$). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, \delta\right)$ $182.72(\mathrm{CS}), 141.40(\mathrm{C}-\mathrm{Ph}), 136.76(\mathrm{CH}-\mathrm{Im}), 130.94(\mathrm{CH}-\mathrm{Im}), 128.41\left(\mathrm{CH}_{0}-\mathrm{Ph}\right), 127.69\left(\mathrm{CH}_{\mathrm{p}}-\right.$ $\mathrm{Ph}), 125.86\left(\mathrm{CH}_{\mathrm{m}}-\mathrm{Ph}\right), 117.98(\mathrm{CH}-\mathrm{Im}), 96.33\left(\mathrm{CH}_{2}-\mathrm{MOM}\right), 77.97\left(\mathrm{CH}-3^{\prime}\right), 74.38\left(\mathrm{CH}-2^{\prime}\right)$, 74.14 (CH-6'), 70.63 ($\left.\mathrm{CH}-4^{\prime}\right), 63.08\left(\mathrm{CH}_{2}-1^{\prime \prime}\right)$, $55.60\left(\mathrm{CH}_{3}-\mathrm{MOM}\right), 38.98\left(\mathrm{CH}_{2}-5^{\prime}\right), 25.86\left(\mathrm{CH}_{3}-\right.$ $\mathrm{tBu}(\mathrm{TBS})), 18.28$ (C-TBS), $-5.32\left(\mathrm{CH}_{3}-\mathrm{TBS}\right),-5.43\left(\mathrm{CH}_{3}-\mathrm{TBS}\right) . \mathrm{MS}(\mathrm{ESI})[\mathrm{m} / \mathrm{z},(\%)]: 494$ (46\%), $493\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right), 477(55 \%)$. HRMS (ESI): 493.2187 calcd for $\mathrm{C}_{24} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{SSi}$, found 493.2178.

tert-Butyl(((2S,4S,6R)-4-(methoxymethoxy)-6-phenyltetrahydro-2H-pyran-2-yl)methoxy)

 dimethylsilane (16). A solution of $\mathbf{1 5}(219 \mathrm{mg}, 0.445 \mathrm{mmol})$ in toluene (5 mL) in a sealed tube was desoxygenated the following way: first the solution was freezed in liquid N_{2}, then the sealed tube connected to vacuum to eliminated the oxygen and finally purged with argon. This process is repeated until the whole oxygen has been eliminated. To the solution was added at room temperature $\mathrm{Bu}_{3} \mathrm{SnH}(0.144 \mathrm{~mL}, 0.534 \mathrm{mmol})$ and then AIBN $(0.178 \mathrm{~mL}, 0.035 \mathrm{mmol})$, the tube was closed and the solution was stirred at $120^{\circ} \mathrm{C}$ for 5 hours. The solvent was evaporated under reduced pressure. The residue was purified by chromatography on silica gel ($2 \% \mathrm{AcOEt} /$ Hexane) affording 16 ($129 \mathrm{mg}, 79 \%$). Compound 16: colourless oil, $[\alpha]_{\mathrm{D}}{ }^{27}=15.6$ (c 1.69, $\left.\mathrm{CHCl}_{3}\right), \mathrm{R}_{\mathrm{f}} 0.58(30 \% \mathrm{AcOEt} / \mathrm{Hexane}) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, \delta\right): 7.42-7.33\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{\mathrm{o}, \mathrm{m}} \mathrm{Ph}\right)$, 7.28 (m, 1H, CHP-Ph), 4.86 (d, J 10.1, 1H, CH-6), $4.82-4.76$ (m, 2H, CH2-MOM), $4.21-4.16$ (m, 1H, CH-4), 4.03 (dd, J5.0, 10.4, 1H, CH-2), 3.81 (dd, J5.0, 10.4, 1H, CH2-2'), 3.65 (dd, J $5.8,10.4,1 \mathrm{H}, \mathrm{CH}_{2}-2^{\prime}$), $3.46\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{MOM}\right), 2.09-1.96\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}-3, \mathrm{CH}_{2}-5\right), 1.78-1.64$ (m, 2H, CH2-5), $1.64-1.53\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}-3\right), 0.95\left(\mathrm{~d}, J 10.3,9 \mathrm{H},{ }^{\mathrm{t}} \mathrm{Bu}-\mathrm{TBS}\right), 0.11\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\right.$ TBS), 0.09 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{TBS}$). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, \delta\right): 143.06(\mathrm{C}-\mathrm{Ph}), 128.26\left(\mathrm{CH}_{0}-\mathrm{Ph}\right), 127.23$ $\left(\mathrm{CH}_{\mathrm{p}}-\mathrm{Ph}\right), 125.91\left(\mathrm{CH}_{\mathrm{m}}-\mathrm{Ph}\right), 95.19\left(\mathrm{CH}_{2}-\mathrm{MOM}\right), 74.24(\mathrm{CH}-6), 73.41(\mathrm{CH}-2), 70.17(\mathrm{CH}-4)$, $66.64\left(\mathrm{CH}_{2}-{ }^{\prime}\right), 55.44\left(\mathrm{CH}_{3}-\mathrm{MOM}\right), 38.97\left(\mathrm{CH}_{2}-5\right), 32.71\left(\mathrm{CH}_{2}-3\right), 25.95\left(\mathrm{CH}_{3}{ }^{\mathrm{t}} \mathrm{Bu}(\mathrm{TBS})\right)$,18.38 (C-TBS), $-5.18\left(\mathrm{CH}_{3}-\mathrm{TBS}\right),-5.23\left(\mathrm{CH}_{3}-\mathrm{TBS}\right) . \mathrm{MS}(\mathrm{ESI})[\mathrm{m} / \mathrm{z},(\%)]: 390\left([\mathrm{M}+\mathrm{Na}+\mathrm{H}]^{+}\right.$, 39), $389\left([\mathrm{M}+\mathrm{Na}]^{+}, 100\right), 384$ (19), $367\left([\mathrm{M}+\mathrm{H}]^{+}, 5\right)$. HRMS (ESI): 389.2119 calcd for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{NaO}_{4} \mathrm{Si}$, found 389.2133 .
((2S,4S,6R)-4-(Methoxymethoxy)-6-phenyltetrahydro-2H-pyran-2-yl)methanol(17). To a solution of $\mathbf{1 6}(330 \mathrm{mg}, 0.9 \mathrm{mmol})$ in THF $(10 \mathrm{~mL})$ was added a $1,0 \mathrm{M}$ solution of TBAF (1.35 $\mathrm{mL}, 1.35 \mathrm{mmol}$) at r.t. and stirred for 12 hours in the same conditions. The solvent was evaporated and the residue was chromatographed on silica gel using $50 \% \mathrm{AcOEt} / \mathrm{Hexane}$ affording 17 (194 mg, 85\%). Compound 17: Colourless oil, $[\alpha]_{\mathrm{D}}{ }^{27}=35.3$ (c 1.27, CHCl_{3}), R_{f} 0.13 (30\% AcOEt/Hexane). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \delta\right): 7.41-7.32\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{\mathrm{om}}-\mathrm{Ph}\right), 7.31-7.26(\mathrm{~m}$, $\left.1 \mathrm{H}, \mathrm{CH}_{\mathrm{P}}-\mathrm{Ph}\right), 4.87-4.82(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}-6), 4.77-4.72\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{MOM}\right), 4.16-4.11(\mathrm{~m}, 1 \mathrm{H}$, CH-4), $4.10-4.02(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}-2), 3.68-3.52\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}-2^{\prime}\right), 3.42$ (s, $3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{MOM}$), 2.76 $(\mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 2.07-1.96\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}-5\right), 1.79-1.66\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}-5, \mathrm{CH}_{2}-3\right), 1.64-1.49(\mathrm{~m}$, $\left.1 \mathrm{H}, \mathrm{CH}_{2}-3\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, \delta\right): 142.61(\mathrm{C}-\mathrm{Ph}), 128.37\left(\mathrm{CH}_{0}-\mathrm{Ph}\right), 127.54\left(\mathrm{CH}_{\mathrm{p}}-\mathrm{Ph}\right), 126.08$ $\left(\mathrm{CH}_{\mathrm{m}}-\mathrm{Ph}\right), 95.12\left(\mathrm{CH}_{2}-\mathrm{MOM}\right), 74.31(\mathrm{CH}-6), 73.46(\mathrm{CH}-2), 69.90(\mathrm{CH}-4), 66.07\left(\mathrm{CH}_{2}-2^{\prime}\right)$, $55.47\left(\mathrm{CH}_{3}-\mathrm{MOM}\right), 38.48\left(\mathrm{CH}_{2}-5\right), 31.76\left(\mathrm{CH}_{2}-3\right) . \mathrm{MS}(\mathrm{ESI})[\mathrm{m} / \mathrm{z},(\%)]: 276\left([\mathrm{M}+\mathrm{Na}+\mathrm{H}]^{+}, 17\right)$, 275 ([M+Na] $\left.{ }^{+}, 100\right)$. HRMS (ESI): 275.1254 calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NaO}_{4}$, found 275.1260.
((2S,4S,6R)-4-(Methoxymethoxy)-6-phenyltetrahydro-2H-pyran-2-yl)methyl4-
methylbenzenesulfonate (18). To a solution of $17(115 \mathrm{mg}, 0.456 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 mL) was added pyridine $(0.5 \mathrm{~mL})$ and $\mathrm{p}-\mathrm{TsCl}(174 \mathrm{mg}, 0.912 \mathrm{mmol})$ and was stirred at room temperature for 28 hours. The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and was extracted with EtOAc (2×10 mL) and the combined organic layers were washed with $\mathrm{Cu}_{2} \mathrm{SO}_{4}(15 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$ and brine (15 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent evaporated under reduced pressure. The residue was purified by chromatography on silica gel ($20 \% \mathrm{EtOAc} / \mathrm{Hexane}$) affording 18 ($184 \mathrm{mg}, 99 \%$). Compound 18: colourless oil, $[\alpha]_{\mathrm{D}}{ }^{27}=25.1$ (c $0.51, \mathrm{CHCl}_{3}$), $\mathrm{R}_{\mathrm{f}} 0.67$ (50\% EtOAc/Hexane). ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, \delta\right): 7.84-7.78(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}-\mathrm{Ts}), 7.37-7.24(\mathrm{~m}, 7 \mathrm{H}, \mathrm{CH}-\mathrm{Ts}$, $\left.\mathrm{CH}_{\mathrm{o}, \mathrm{m}, \mathrm{p}} \mathrm{Ph}\right), 4.82-4.72\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{MOM}, \mathrm{CH}-6\right), 4.17(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}-2, \mathrm{CH}-4), 4.10(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}_{2}-2^{\prime}$), 3.43 (s, $3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{MOM}$), 2.44 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{Ts}$), $2.05-1.97$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}_{2}-3$), $1.87-1.80$ $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}_{2}-3\right), 1.71-1.56\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}-5\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, \delta\right): 144.69(\mathrm{C}-\mathrm{Ts}), 142.25(\mathrm{C}-$ $\mathrm{Ph}), 132.89(\mathrm{C}-\mathrm{Ts}), 129.78(\mathrm{CH}-\mathrm{Ts}), 128.28\left(\mathrm{CH}_{0}-\mathrm{Ph}\right), 128.04(\mathrm{CH}-\mathrm{Ts}), 127.44\left(\mathrm{CH}_{\mathrm{p}}-\mathrm{Ph}\right), 125.78$ $\left(\mathrm{CH}_{\mathrm{m}}-\mathrm{Ph}\right), \quad 95.16\left(\mathrm{CH}_{2}-\mathrm{MOM}\right), \quad 74.21(\mathrm{CH}-6), \quad 72.53(\mathrm{CH}-2), \quad 70.22(\mathrm{CH}-4), \quad 69.46\left(\mathrm{CH}_{2}-2^{\prime}\right)$, 55.57($\left.\mathrm{CH}_{3}-\mathrm{MOM}\right), 38.24\left(\mathrm{CH}_{2}-5\right)$, $31.98\left(\mathrm{CH}_{2}-3\right)$, $21.69\left(\mathrm{CH}_{3}-\mathrm{Ts}\right) . \mathrm{MS}(\mathrm{ESI})[\mathrm{m} / \mathrm{z}$, (\%)]: 430 $\left([\mathrm{M}+\mathrm{Na}+\mathrm{H}]^{+}, 32\right), 429\left([\mathrm{M}+\mathrm{Na}]^{+}, 100\right), 245$ (29). HRMS (ESI): 429.1342 calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{NaO}_{6} \mathrm{~S}$, found 429.1327 .
2-((2R,4R,6R)-4-(methoxymethoxy)-6-phenyltetrahydro-2H-pyran-2-yl)acetonitrile (19).
To a solution of $\mathbf{1 8}(173 \mathrm{mg}, 0.426 \mathrm{mmol})$ in DMSO (8 mL) was added $\mathrm{NaCN}(64 \mathrm{mg}, 1.28$ $\mathrm{mmol})$ and was stirred at $50{ }^{\circ} \mathrm{C}$ for 6 hours. The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ and was extracted with EtOAc ($2 \times 10 \mathrm{~mL}$) and the combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}$ $(15 \mathrm{~mL})$ and brine (15 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent evaporated under reduced pressure. The residue was purified by chromatography on silica gel $(10 \%$ EtOAc/Hexane) affording 19 (104 mg, 94\%). Compound 19: Colourless oil, $[\alpha]_{\mathrm{D}}{ }^{27}=22.6$ (c
$\left.0.28, \mathrm{CHCl}_{3}\right), \mathrm{R}_{\mathrm{f}} 0.5(50 \% \mathrm{EtOAc} / \mathrm{Hexane}) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, \delta\right): 7.42-7.34\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{\mathrm{o}, \mathrm{m}^{-}}\right.$ $\mathrm{Ph}), 7.33$ - 7.26 (m, 1H, CHP-Ph), 4.89 (dd, J $11.8,2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-6), 4.77$ (s, 2H, CH2-MOM), 4.26 (dtd, J $11.6,5.7,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-2), 4.20(\mathrm{p}, J 3.0 \mathrm{~Hz}, 1 \mathrm{HCH}-4), 3.45(\mathrm{~d}, J 0.7 \mathrm{~Hz}, 3 \mathrm{H}$, $\mathrm{CH}_{3}-\mathrm{MOM}$), $2.71-2.58$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}-1^{\prime}$), $2.11-1.97$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}-3, \mathrm{CH}_{2}-5$), $1.78-1.68(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2}-3, \mathrm{CH}_{2}-5\right) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl} 3, \delta\right): 141.97(\mathrm{C}-\mathrm{Ph}), 128.44\left(\mathrm{C}_{\mathrm{o}}-\mathrm{Ph}\right), 127.65\left(\mathrm{C}_{\mathrm{p}}-\mathrm{Ph}\right)$, $125.81\left(\mathrm{C}_{\mathrm{m}}-\mathrm{Ph}\right), 117.18(\mathrm{CN}), 95.32\left(\mathrm{CH}_{2}-\mathrm{MOM}\right), 74.63(\mathrm{CH}-6), 69.65(\mathrm{CH}-4), 68.20(\mathrm{CH}-2)$, $55.62\left(\mathrm{CH}_{3}-\mathrm{MOM}\right), 37.96\left(\mathrm{CH}_{2}-5\right), 35.25\left(\mathrm{CH}_{2}-3\right), 24.79\left(\mathrm{CH}_{2}-1^{\prime}\right) . \mathrm{MS}(\mathrm{ESI})[\mathrm{m} / \mathrm{z},(\%)]: 285$ $\left([\mathrm{M}+\mathrm{Na}+\mathrm{H}]^{+}, 21\right), 284\left(\left([\mathrm{M}+\mathrm{Na}]^{+}, 100\right), 279\right.$ (27). HRMS (ESI):284.1257, calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NNaO}_{3}$, found 284.1247.

2-((2S,4R,6R)-4-(Methoxymethoxy)-6-phenyltetrahydro-2H-pyran-2-yl)-1-phenylethanone

(21). To a solution of $\mathbf{1 9}(98.5 \mathrm{mg}, 0.337 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added dropwise at $-78{ }^{\circ} \mathrm{C}$ DIBAL-H ($0.566 \mathrm{~mL}, 0.566 \mathrm{mmol}$) and was stirred at the same temperature for 5 hours. The reaction was quenched with $\mathrm{NH}_{4} \mathrm{Cl}(6 \mathrm{~mL})$ and was stirred for 30 min at room temperature. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x} 8 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent evaporated under reduced pressure affording an aldehyde (99.5 $\mathrm{mg}, 99 \%$), used in the next reaction without further purification. The crude aldehyde (99.5 mg , 0.377 mmol) was disolved in THF (5 mL) and was cooled to $-78^{\circ} \mathrm{C}$. PhLi ($0.452 \mathrm{mmol}, 0.251$ mL) was added dropwise and the mixture stirred for 4 hours at $-78{ }^{\circ} \mathrm{C}$. The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and the mixture was extracted with EtOAc $(2 \times 10 \mathrm{~mL})$ and the combined organic layers were washed with brine (10 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent evaporated under reduced pressure. The residue was purified by chromatography on silica gel ($5 \% \mathrm{EtOAc} / \mathrm{Hexane}$) affording $20(87 \mathrm{mg}, 68 \%)$ as a mixture of diastereoisomeric alcohols. Mixture of alcohols 20: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \delta\right): 7.43-7.25(\mathrm{~m}, 20 \mathrm{H}, \mathrm{Ph}), 5.13-5.07$ (m, 1H, CH-6), 5.03 (dd, J $9.8,2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-6), 4.95$ (dd, J 11.8, $2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-2$ '), 4.83 (dd, J 11.8, $2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-2^{\prime}$), 4.78 (s, 2H, CH2-MOM), 4.73 (s, 2H, CH $\mathrm{CH}_{2}-\mathrm{MOM}$), 4.35 (m, 1H, $\mathrm{CH}-2), 4.22$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}-2, \mathrm{CH}-4$), 4.14 ($\mathrm{m}, 4 \mathrm{H}, \mathrm{CH}-4$), 3.45 (s, $3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{MOM}$), 3.37 ($\mathrm{s}, 3 \mathrm{H}$, CH_{3}-MOM), 2.12 - 1.99 ($\mathrm{m}, 4 \mathrm{H}, \mathrm{CH}_{2}-1^{\prime}, \mathrm{CH}_{2}-3, \mathrm{CH}_{2}-5$), $1.90-1.69$ (m, $8 \mathrm{H}^{2}, \mathrm{CH}_{2}-1^{\prime}, \mathrm{CH}_{2}-3$, $\left.\mathrm{CH}_{2}-5\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, \delta\right): 144.74(\mathrm{C}-\mathrm{Ph}), 144.54(\mathrm{C}-\mathrm{Ph}), 142.58(\mathrm{C}-\mathrm{Ph}), 142.28(\mathrm{C}-\mathrm{Ph})$, $128.52\left(\mathrm{C}_{0}-\mathrm{Ph}\right), 128.49\left(\mathrm{C}_{0}-\mathrm{Ph}\right), 128.33\left(\mathrm{C}_{0}-\mathrm{Ph}\right), 128.32\left(\mathrm{C}_{\mathrm{o}}-\mathrm{Ph}\right), 127.60\left(\mathrm{C}_{\mathrm{p}}-\mathrm{Ph}\right), 127.54\left(\mathrm{C}_{\mathrm{p}}-\right.$ $\mathrm{Ph}), 127.24\left(\mathrm{C}_{\mathrm{p}}-\mathrm{Ph}\right), 127.00\left(\mathrm{C}_{\mathrm{p}}-\mathrm{Ph}\right), 125.78\left(2 \mathrm{C}_{\mathrm{m}}-\mathrm{Ph}\right), 125.72\left(\mathrm{C}_{\mathrm{m}}-\mathrm{Ph}\right), 125.60\left(\mathrm{C}_{\mathrm{m}}-\mathrm{Ph}\right), 95.19$ ($\left.\mathrm{CH}_{2}-\mathrm{MOM}\right), 95.16\left(\mathrm{CH}_{2}-\mathrm{MOM}\right), 74.59$ (CH-2, CH-6), 74.51 (CH-2'), 74.26 (CH-2'), 71.44 (CH-6), $70.68(\mathrm{CH}-2), 70.10(\mathrm{CH}-4), 69.86(\mathrm{CH}-4), 55.54\left(\mathrm{CH}_{3}-\mathrm{MOM}\right), 55.45\left(\mathrm{CH}_{3}-\mathrm{MOM}\right)$, $45.51\left(\mathrm{CH}_{2}-5\right), 43.96\left(\mathrm{CH}_{2}-5\right), 38.46\left(\mathrm{CH}_{2}-3\right), 38.30\left(\mathrm{CH}_{2}-3\right), 36.58\left(\mathrm{CH}_{2}-1^{\prime}\right), 35.75\left(\mathrm{CH}_{2}-\mathrm{I}^{\prime}\right)$. To a solution of $20(87 \mathrm{mg}, 0.254 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ was added PDC ($287 \mathrm{mg}, 0.763$ mmol) and was stirred at room temperature for 30 hours. The reaction was quenched with $\mathrm{Et}_{2} \mathrm{O}$ $(5 \mathrm{~mL})$ and a formation of a precipitate was observed and was filtered over celita and was washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The residue was purified by chromatography on silica gel $(5 \%$ $\mathrm{EtOAc} / \mathrm{Hexane}$) affording ketone $21(56 \mathrm{mg}, 65 \%)$. Compound 21: Colourless oil, $[\alpha]_{\mathrm{D}}{ }^{27}=13.8$ (c 1.13, $\left.\mathrm{CHCl}_{3}\right), \mathrm{R}_{\mathrm{f}} 0.48(50 \% \mathrm{EtOAc} / \mathrm{Hexane}) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, \delta\right): 8.06-7.97\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{0}-\right.$ $\mathrm{Ph}(\mathrm{C} 1)), 7.62-7.55\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{p}}-\mathrm{Ph}(\mathrm{C} 1)\right), 7.48\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{\mathrm{m}}-\mathrm{Ph}(\mathrm{C} 1)\right), 7.37-7.31(\mathrm{~m}, 4 \mathrm{H}$,
$\left.\mathrm{CH}_{0, \mathrm{~m}}-\mathrm{Ph}\left(\mathrm{C}-6^{\prime}\right)\right), 7.29-7.23\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{p}}-\mathrm{Ph}\left(\mathrm{C}-6^{\prime}\right)\right), 4.91\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}-6^{\prime}\right), 4.84-4.75(\mathrm{~m}, 2 \mathrm{H}$, CH_{2}-MOM), 4.63 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}-2^{\prime}$), $4.17\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}-4^{\prime}\right), 3.46\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{MOM}\right), 3.42(\mathrm{~d}, J 5.8$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-2$), 3.08 (dd, J $15.9,6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-2$), $2.16-2.03\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}-5^{\prime}, \mathrm{CH}_{2}-3^{\prime}\right), 1.81$ $-1.68\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}-5^{\prime}\right), 1.61\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}-3^{\prime}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, \delta\right): 198.28(\mathrm{CO}), 142.77(\mathrm{C}-$ $\left.\mathrm{Ph}\left(\mathrm{C}^{\prime}\right)\right)$, $137.38(\mathrm{C}-\mathrm{Ph}(\mathrm{C} 1))$, $133.07\left(\mathrm{CH}_{\mathrm{p}}-\mathrm{Ph}\left(\mathrm{C}^{\prime}\right)\right), 128.55\left(\mathrm{CH}_{0}-\mathrm{Ph}(\mathrm{C} 1)\right), 128.36\left(\mathrm{CH}_{0}-\right.$ $\mathrm{Ph}(\mathrm{C} 6))$, $128.28\left(\mathrm{CH}_{\mathrm{m}}-\mathrm{Ph}\left(\mathrm{C}^{\prime}\right)\right)$, $127.27\left(\mathrm{CH}_{\mathrm{p}}-\mathrm{Ph}\left(\mathrm{C}^{\prime}\right)\right)$, $125.82\left(\mathrm{CH}_{\mathrm{m}}-\mathrm{Ph}(\mathrm{C} 1)\right)$, $95.15\left(\mathrm{CH}_{2}-\right.$ MOM), 74.34 (CH-6'), 69.93 (CH-4'), 69.77 ($\left.\mathrm{CH}-2^{\prime}\right), 55.53\left(\mathrm{CH}_{3}-\mathrm{MOM}\right), 45.26\left(\mathrm{CH}_{2}-2\right), 38.36$ $\left(\mathrm{CH}_{2}-5^{\prime}\right), 35.93\left(\mathrm{CH}_{2}-3^{\prime}\right) . \mathrm{MS}(\mathrm{ESI})[\mathrm{m} / \mathrm{z},(\%)]: 364\left([\mathrm{M}+\mathrm{Na}+\mathrm{H}]^{+}, 24\right), 363\left([\mathrm{M}+\mathrm{Na}]^{+}, 100\right), 341$ ($[\mathrm{M}+\mathrm{H}]^{+}, 10$). HRMS (ESI): 363.1567 calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{NaO}_{4}$, found 363.1564 .
2-((2'S, $\left.\mathbf{4}^{\prime} R, 6^{\prime} R\right)-4^{\prime}$-hydroxy- 6^{\prime}-phenyltetrahydro- $2 H$-pyran-2'-yl)-1-phenylethanone (ent1). To a solution $21(31 \mathrm{mg}, 0.091 \mathrm{mmol})$ in $\mathrm{MeOH}(2 \mathrm{~mL})$ was added dropwise $\mathrm{HCl}(37 \%, 34$ drops) and the reaction was followed by TLC. The reaction was concentrated and the crude was purified by chromatography on silica gel ($20 \% \mathrm{EtOAc} / \mathrm{Hexane}$) affording ent-Diospongin \mathbf{A} $(22.7 \mathrm{mg}, 84 \%)$. Ent-Diospongin A: white solid, mp $128^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{28}=25.4$ (c 1.07, CHCl_{3}), R_{f} 0.24 (50\% EtOAc/Hexane). ${ }^{1} \mathrm{H}$ NMR (CDCl3, δ): 8.01 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{0}-\mathrm{Ph}(\mathrm{CH}-1)$), $7.62-7.54$ (m, $\left.1 \mathrm{H}, \mathrm{CH}_{\mathrm{p}}-\mathrm{Ph}(\mathrm{CH}-1)\right), 7.48\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{\mathrm{m}}-\mathrm{Ph}(\mathrm{CH}-1)\right), 7.37-7.22\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{CH}_{0, \mathrm{~m}, \mathrm{p}}-\mathrm{Ph}\left(\mathrm{CH}-6^{\prime}\right)\right)$, 4.97 (dd, J 11.7, 2.1 Hz, 1H, CH-6'), 4.68 (m, 1H, CH-2'), 4.44 - 4.33 (m, 1H, CH4'), 3.45 (dd, J 16.1, $\left.5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-2\right), 3.10\left(\mathrm{dd}, J 16.1,6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-2\right), 2.39-2.12(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OH}), 2.07$ - 1.92 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}-3^{\prime}, \mathrm{CH}_{2}-5^{\prime}$), 1.74 (m, 2H, $\left.\mathrm{CH}_{2}-3^{\prime}, \mathrm{CH}_{2}-5^{\prime}\right) .{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl} 3, \delta$): 198.50 (CO), 142.71 (C-Ph(CH-6')), $137.25\left(\mathrm{C}-\mathrm{Ph}(\mathrm{CH}-1), 133.18\left(\mathrm{CH}_{\mathrm{p}}-\mathrm{Ph}(\mathrm{CH}-1)\right)\right.$, $128.57\left(\mathrm{CH}_{\mathrm{m}^{-}}\right.$ $\left.\mathrm{Ph}\left(\mathrm{CH}-6^{\prime}\right)\right), 128.36\left(\mathrm{CH}_{0}-\mathrm{Ph}(\mathrm{CH}-1)\right), 128.28\left(\mathrm{CH}_{\mathrm{m}}-\mathrm{Ph}(\mathrm{CH}-1)\right), 127.27\left(\mathrm{CH}_{\mathrm{p}}-\mathrm{Ph}\left(\mathrm{CH}-6^{\prime}\right)\right), 125.86$ ($\mathrm{CH}_{0}-\mathrm{Ph}\left(\mathrm{CH}-6^{\prime}\right)$), 73.84 (CH-6'), 69.07 (CH-2'), 64.63 ($\left.\mathrm{CH}-4^{\prime}\right), 45.18\left(\mathrm{CH}_{2}-2\right), 40.02\left(\mathrm{CH}_{2}-5^{\prime}\right)$, $38.48\left(\mathrm{CH}_{2}-3^{\prime}\right)$. MS (ESI) $[\mathrm{m} / \mathrm{z},(\%)]: 320\left([\mathrm{M}+\mathrm{Na}+\mathrm{H}]^{+}, 19\right), 319\left([\mathrm{M}+\mathrm{Na}]^{+}, 100\right), 297\left([\mathrm{M}+\mathrm{H}]^{+}\right.$, 14). HRMS (ESI): 319.1305 calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{NaO}_{3}$, found 319.1300 .
(4aR,6S,8S,8aS)-2,2-Di-tert-butyl-6-phenylhexahydropyrano[3,2-d][1,3,2]dioxasilin-8-ol (22). To a solution of ketone $9(2.05 \mathrm{~g}, 5.65 \mathrm{mmol})$ in THF (20 mL) cooled at $-78^{\circ} \mathrm{C}$ was added slowly L-selectride ($14.14 \mathrm{~mL}, 14.14 \mathrm{mmol}$). After $2^{\prime} 5$ hours the reaction was quenched with $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$ and was stirred for 30 minutes. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(4 \times 25 \mathrm{~mL})$.The combined organic phases were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent evaporated under reduced pressure. The residue was chromatographed on silica gel using $2 \% \rightarrow 4 \% \mathrm{AcOEt} / \mathrm{Hexane}$ affording alcohol $22(1.91 \mathrm{~g}, 93 \%)$. Compound 22: colourless oil, $[\alpha]_{\mathrm{D}}{ }^{21}=31.1$ (c $\left.0.67, \mathrm{CHCl}_{3}\right)$, $\mathrm{R}_{\mathrm{f}} 0.42(30 \% \mathrm{EtOAc} / \mathrm{Hexane}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, \delta\right): 7.54\left(\mathrm{~d}, J 7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{0}-\mathrm{Ph}\right), 7.41(\mathrm{t}, J$ $7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{\mathrm{m}}-\mathrm{Ph}$), $7.36-7.23\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{p}}-\mathrm{Ph}\right), 5.05(\mathrm{~d}, \mathrm{~J} 6.8,1 \mathrm{H}, \mathrm{CH}-6), 4.26\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}-\right.$ 4), $4.23(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}-8), 4.01(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}-4 \mathrm{a}), 3.95\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}-8 \mathrm{a}, \mathrm{CH}_{2}-4\right), 2.82\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}-7\right)$, $2.32\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}-7\right), 1.12\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}{ }^{\mathrm{t}} \mathrm{Bu}\right), 0.97\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}{ }^{-} \mathrm{Bu}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, \delta\right): 141.05$ (C-Ph), $\left.128.12\left(\mathrm{CH}_{0}-\mathrm{Ph}\right), 126.81\left(\mathrm{CH}_{\mathrm{p}}-\mathrm{Ph}\right), 126.23\left(\mathrm{CH}_{\mathrm{m}}-\mathrm{Ph}\right), 75.35(\mathrm{CH}-4 a), 71.83 \mathrm{CH}-6\right)$, $67.07\left(\mathrm{CH}_{2}-4\right), 66.38(\mathrm{CH}-8), 63.88(\mathrm{CH}-8 \mathrm{a}), 31.62\left(\mathrm{CH}_{2}-7\right), 27.55\left(\mathrm{CH}_{3}{ }^{\mathrm{t}} \mathrm{Bu}\right), 27.21\left(\mathrm{CH}_{3}{ }^{\mathrm{t}} \mathrm{Bu}\right)$, 22.79 (C- ${ }^{\text {t }} \mathrm{Bu}$), 20.18 (C- ${ }^{\mathrm{t}} \mathrm{Bu}$). MS (ESI) [m/z, (\%)]:363 (30), 345 (100). HRMS (ESI):363.19861 calcd for $\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{O}_{4} \mathrm{Si}$, found 363.19874.
(4aR,6S,8S,8aS)-2,2-Di-tert-butyl-8-(methoxymethoxy)-6-phenylhexahydropyrano[3,2-d]-
[1,3,2]dioxasiline (23). To a solution of $22(1.73 \mathrm{~g}, 4.75 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$ cooled to $0{ }^{\circ} \mathrm{C}$ was added DIPEA ($4.13 \mathrm{~mL}, 23.75 \mathrm{mmol}$) dropwise at the same temperature. after 10 minutes the CIMOM ($1.80 \mathrm{~mL}, 23.75 \mathrm{mmol}$) was added and the mixture was stirred for 16 hours to room temperature. The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$ and was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 10$ $\mathrm{mL})$ and the combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ and brine (20 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent evaporated under reduced pressure. The residue was chromatographed on silica gel using 2\% AcOEt/Hexane affording 23 ($1.45 \mathrm{~g}, 75 \%$). Compound 23: colourless oil, $[\alpha]_{\mathrm{D}}{ }^{21}=5.9\left(\mathrm{c} 7.43, \mathrm{CHCl}_{3}\right), \mathrm{R}_{\mathrm{f}} 0.61(10 \% \mathrm{EtOAc} /$ Hexane $) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \delta\right): 7.45(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{0}-\mathrm{Ph}\right), 7.37\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{\mathrm{m}}-\mathrm{Ph}\right), 7.26\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{p}}-\mathrm{Ph}\right), 5.05(\mathrm{~d}, J 6.5,1 \mathrm{H}, \mathrm{CH}-6), 4.65(\mathrm{~d}, J 6.7$, $1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{MOM}$), 4.52 (d, J 6.6, 1H, CH2-MOM), $4.28\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}-4\right), 4.14(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}-8, \mathrm{CH}-$ 8a), $4.03(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}-4 \mathrm{a}), 3.95\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}-4\right), 3.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{MOM}\right), 2.70\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}-\right)$, $2.29\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}-7\right), 1.07\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}{ }^{\mathrm{t}} \mathrm{Bu}\right), 1.01\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}{ }^{-} \mathrm{Bu}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, \delta\right): 141.62$ (C-Ph), $127.98\left(\mathrm{CH}_{0}-\mathrm{Ph}\right), 126.38\left(\mathrm{CH}_{\mathrm{p}}-\mathrm{Ph}\right), 125.48\left(\mathrm{CH}_{\mathrm{m}}-\mathrm{Ph}\right), 96.17\left(\mathrm{CH}_{2}-\mathrm{MOM}\right), 76.04(\mathrm{CH}-$ $4 a), 71.70(\mathrm{CH}-6), 70.95(\mathrm{CH}-8), 67.08\left(\mathrm{CH}_{2}-4\right), 64.69(\mathrm{CH}-8 \mathrm{a}), 55.31\left(\mathrm{CH}_{3}-\mathrm{MOM}\right), 32.25$ $\left(\mathrm{CH}_{2}-7\right), 27.59\left(\mathrm{CH}_{3}{ }^{\mathrm{t}} \mathrm{Bu}\right), 26.90\left(\mathrm{CH}_{3}{ }^{-} \mathrm{Bu}\right), 22.80\left(\mathrm{C}-{ }^{\mathrm{t}} \mathrm{Bu}\right), 20.12(\mathrm{C}-\mathrm{Bu}) . \mathrm{MS}(\mathrm{ESI})[\mathrm{m} / \mathrm{z}$, (\%)]:409 ([M+H] ${ }^{+}$, 65), 408 ([M] $\left.{ }^{+}, 44\right), 407\left([M-H]^{+}, 100\right), 377$ (50), 345 (33). HRMS (ESI): 409.2405 calcd for $\mathrm{C}_{22} \mathrm{H}_{37} \mathrm{O}_{5} \mathrm{Si}$, found 409.2395 .
(2R,3S,4S,6S)-2-(Hydroxymethyl)-4-(methoxymethoxy)-6-phenyltetrahydro-2H-pyran-3-ol (24). To a solution of $23(1.45 \mathrm{~g}, 3.55 \mathrm{mmol})$ in THF (20 mL) was added a $1,0 \mathrm{M}$ solution of TBAF ($10.65 \mathrm{~mL}, 10.65 \mathrm{mmol}$) at r.t. and stirred for 24 hours in the same conditions. The solvent was evaporated and the residue was chromatographed on silica gel using $50 \% \mathrm{AcOEt} / \mathrm{Hexane}$ affording diol 24 (948 mg,99\%). Compound 24: white solid, mp $120^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{21}=34.7$ (c 1.65, $\left.\mathrm{CHCl}_{3}\right), \mathrm{R}_{\mathrm{f}} 0.76$ ($100 \% \mathrm{EtOAc}$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \delta\right): 7.42\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{0}-\mathrm{Ph}\right), 7.36\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{\mathrm{m}}{ }^{-}\right.$ $\mathrm{Ph}), 7.29\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{p}}-\mathrm{Ph}\right), 4.78(\mathrm{dd}, J 3.3,9.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-6), 4.72\left(\mathrm{~d}, J 6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-\right.$ MOM), 4.67 (d, J $6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$-MOM), $4.25-4.15$ (m, 1H, CH-2), $4.08-3.99$ (m, 1H, CH4), 3.95 (dd, J $8.3,11.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-1^{\prime}$), $3.89(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}-3), 3.74$ (dd, J $4.7,11.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-$ $\left.1^{\prime}\right), 3.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{MOM}\right), 2.23\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}-5\right), 2.08-1.97\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}-5\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, \delta\right): 141.46(\mathrm{C}-\mathrm{Ph}), 128.39\left(\mathrm{CH}_{0}-\mathrm{Ph}\right), 127.59\left(\mathrm{CH}_{\mathrm{p}}-\mathrm{Ph}\right), 125.95\left(\mathrm{CH}_{\mathrm{m}}-\mathrm{Ph}\right), 94.90\left(\mathrm{CH}_{2}-\right.$ MOM), $77.37(\mathrm{CH}-2), 72.88(\mathrm{CH}-4), 71.95(\mathrm{CH}-6), 66.68(\mathrm{CH}-3), 60.69\left(\mathrm{CH}_{2}-1{ }^{\prime}\right), 55.74\left(\mathrm{CH}_{3}-\right.$ MOM), $33.51\left(\mathrm{CH}_{2}-5\right) . \mathrm{MS}(\mathrm{ESI})\left[\mathrm{m} / \mathrm{z}\right.$, (\%)]: $291\left([\mathrm{M}+\mathrm{Na}]^{+}, 100\right)$, 288 (33). HRMS (ESI): 291.1203 calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NaO}_{5}$, found 291.1201.
(2R,3S,4S,6S)-2-((tert-Butyldimethylsilyloxy)methyl)-4-(methoxymethoxy)-6-phenyl-tetrahydro-2H-pyran-3-ol (25). To a solution of diol 24 ($0.285 \mathrm{mg}, 1.06 \mathrm{mmol}$) in THF (5 mL) were added imidazole ($87 \mathrm{mg}, 1.28 \mathrm{mmol}$), a catalytic amount of DMAP and TBSCl (192 mg , $1.28 \mathrm{mmol})$ and stirred for 18 hours at r.t.. The solvent was evaporated, $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ added and the product extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 5 \mathrm{~mL})$. $)$. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent evaporated under reduced pressure. The residue was purified by chromatography on silica gel ($30 \% \mathrm{EtOAc} / \mathrm{Hexane}$) affording 25 ($361 \mathrm{mg}, 89 \%$). Compound 25: colourless oil, $[\alpha]_{\mathrm{D}}{ }^{22}=7.8$ (c 1.74, CHCl_{3}), $\mathrm{R}_{\mathrm{f}} 0.77$ ($30 \% \mathrm{EtOAc} /$ Hexane). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $\delta): 7.42$ (d, J $7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{\mathrm{o}}-\mathrm{Ph}$), $7.35\left(\mathrm{t}, J 7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{\mathrm{m}}-\mathrm{Ph}\right), 7.28\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{p}}-\mathrm{Ph}\right), 4.91$
(dd, J 2.6, 10.9 Hz, 1H, CH-6), 4.76 (d, J $\left.6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{MOM}\right), 4.72\left(\mathrm{~d}, J 6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-\right.$ MOM), $4.35-4.25$ (m, 1H, CH-4), $4.21-4.13(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}-2), 4.08$ (d, J $2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-3$), 4.01 (dd, J $5.5,10.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-1^{\prime}$), $3.90\left(\mathrm{dd}, J 4.7,10.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-1^{\prime}\right), 3.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}{ }^{-}\right.$ MOM), 2.72 (d, J $2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}$), $2.21-2.03\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}-5\right), 2.03-1.94\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}-5\right)$, 0.96 (s, $9 \mathrm{H},{ }^{\mathrm{t}} \mathrm{Bu}-\mathrm{TBS}$), 0.13 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{TBS}$), 0.12 ($\left.\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{TBS}\right) .{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3} \delta$): $142.20(\mathrm{C}-\mathrm{Ph}), 128.34\left(\mathrm{CH}_{0}-\mathrm{Ph}\right), 127.49\left(\mathrm{CH}_{\mathrm{p}}-\mathrm{Ph}\right), 125.96\left(\mathrm{CH}_{\mathrm{m}}-\mathrm{Ph}\right), 94.61\left(\mathrm{CH}_{2}-\mathrm{MOM}\right), 78.31$ (CH-2), $\left.73.70(\mathrm{CH}-6), 72.51(\mathrm{CH}-4), 67.05(\mathrm{CH}-3), 64.03\left(\mathrm{CH}_{2}-1\right)^{\prime}\right), 55.52\left(\mathrm{CH}_{3}-\mathrm{MOM}\right), 33.65$ $\left(\mathrm{CH}_{2}-5\right), 25.89\left(\mathrm{CH}_{3}{ }^{-} \mathrm{Bu}(\mathrm{TBS})\right), 18.18\left(\mathrm{C}^{\mathrm{t}} \mathrm{Bu}(\mathrm{TBS})\right),-5.47\left(\mathrm{CH}_{3}-\mathrm{Me}(\mathrm{TBS})\right),-5.54\left(\mathrm{CH}_{3}-\right.$ $\mathrm{Me}(\mathrm{TBS})) . \mathrm{MS}(\mathrm{ESI})[\mathrm{m} / \mathrm{z},(\%)]: 406\left([\mathrm{M}+\mathrm{Na}+\mathrm{H}]^{+}, 37\right), 405\left([\mathrm{M}+\mathrm{Na}]^{+}, 100\right), 383\left([\mathrm{M}+\mathrm{H}]^{+}, 10\right)$, 351 (38), 303 (49). HRMS (ESI): 405.2068 calcd for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{NaO}_{5} \mathrm{Si}$, found 405.2080 .
O-(2R,3S,4S,6S)-2-((tert-Butyldimethylsilyloxy)methyl)-4-(methoxymethoxy)-6-phenyl-tetrahydro-2H-pyran-3-yl 1H-imidazole-1-carbothioate (26). To a solution of alcohol 25 (895 $\mathrm{mg}, 2.34 \mathrm{mmol}$) in THF (15 mL) was added Im_{2} CS ($570 \mathrm{mg}, 4.68 \mathrm{mmol}$) and was stirred for 34 hours at $70^{\circ} \mathrm{C}$. The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ extracted with $\mathrm{AcOEt}(2 \times 15 \mathrm{~mL})$ and the combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ and brine $(20 \mathrm{~mL})$ were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent evaporated under reduced pressure. The residue was purified by chromatography on silica gel ($20 \% \mathrm{EtOAc} / \mathrm{Hexane}$) affording 26 ($835 \mathrm{mg}, 73 \%$). Compound 26: yellow oil, $[\alpha]_{\mathrm{D}}{ }^{22}=2.6$ (c 2.27, CHCl_{3}), $\mathrm{R}_{\mathrm{f}} 0.47$ ($50 \% \mathrm{EtOAc} / \mathrm{Hexane}$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \delta\right): 8.45$ (s, 1H, CH2-Im), 7.73 (s, 1H, CH5-Im), 7.39 (m, $4 \mathrm{H}, \mathrm{CH}_{\mathrm{o}, \mathrm{m}}-\mathrm{Ph}$), $7.32(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{CH}_{\mathrm{P}}-\mathrm{Ph}$), 7.08 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CH} 4-\mathrm{Im}$), $6.10\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}-3^{\prime}\right), 5.06\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}-6^{\prime}\right), 4.73$ (d, J $7.0 \mathrm{~Hz}, 1 \mathrm{H}$, CH_{2}-MOM), $4.68\left(\mathrm{~d}, J 7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{MOM}\right), 4.61\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}-4{ }^{\prime}\right), 4.41\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}-2^{\prime}\right), 4.10$ (dd, J 5.6, 11.0 Hz, 1H, CH2-1''), 4.00 (dd, J $4.5,11.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-1^{\prime \prime}$), 3.35 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}-$ MOM), 2.16 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}_{2}-5^{\prime}$), $2.10\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}-5^{\prime}\right), 0.99\left(\mathrm{~s}, 9 \mathrm{H},{ }^{\mathrm{t}} \mathrm{Bu}-\mathrm{TBS}\right), 0.17$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}-$ TBS), 0.16 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{TBS}$). ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, \delta\right): 183.81(\mathrm{CS}), 141.57(\mathrm{C}-\mathrm{Ph}), 136.87(\mathrm{CH} 2-$ Im), $130.87(\mathrm{CH} 4-\mathrm{Im}), 128.64\left(\mathrm{CH}_{0}-\mathrm{Ph}\right), 128.02\left(\mathrm{CH}_{\mathrm{p}}-\mathrm{Ph}\right), 125.81\left(\mathrm{CH}_{\mathrm{m}}-\mathrm{Ph}\right), 118.14(\mathrm{CH} 5-\mathrm{Im})$, $94.86\left(\mathrm{CH}_{2}-\mathrm{MOM}\right), 78.69\left(\mathrm{CH}-3^{\prime}\right), 76.51\left(\mathrm{CH}-2^{\prime}\right), 74.25\left(\mathrm{CH}-6^{\prime}\right), 70.14\left(\mathrm{CH}-4^{\prime}\right), 63.61\left(\mathrm{CH}_{2}-\right.$ $\left.1^{\prime \prime}\right)$, $55.62\left(\mathrm{CH}_{3}-\mathrm{MOM}\right), 35.82\left(\mathrm{CH}_{2}-5{ }^{\prime}\right), 25.86\left(\mathrm{CH}_{3}-\mathrm{tBu}(\mathrm{TBS})\right.$), $18.12(\mathrm{C}-\mathrm{TBS}),-5.48\left(\mathrm{CH}_{3}{ }^{-}\right.$ TBS), $-5.59\left(\mathrm{CH}_{3}\right.$-TBS). MS (ESI) [m/z, (\%)]: 405 (100), 351 (39), 303 (52). HRMS (ESI): 493.2187 calcd for $\mathrm{C}_{24} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Ssi}$, found 493.2190 .
tert-Butyl(((2S,4S,6S)-4-(methoxymethoxy)-6-phenyltetrahydro-2H-pyran-2-yl)methoxy)
dimethylsilane (27). A solution of $26(485 \mathrm{mg}, 0.985 \mathrm{mmol})$ in toluene (5 mL) in a sealed tube was desoxygenate the following way: first the solution was freezed in liquid N_{2}, then the sealed tube connected to vacuum to remove the oxygen and finally purged with argon. This process is repeated until the whole oxygen has been eliminated. To the solution was added at room temperature $\mathrm{Bu}_{3} \mathrm{SnH}(0.318 \mathrm{~mL}, 1.182 \mathrm{mmol})$ and then $\operatorname{AIBN}(0.394 \mathrm{~mL}, 0.078 \mathrm{mmol})$, the tube was closed and the solution was stirred at $120^{\circ} \mathrm{C}$ for 5 hours. The solvent was evaporated under reduced pressure. The residue was purified by chromatography on silica gel ($2 \% \mathrm{AcOEt} /$ Hexane) affording 27 ($292 \mathrm{mg}, 81 \%$). Compound 27: colourless oil, $[\alpha]_{\mathrm{D}}{ }^{22}=8.9$ (c 3.16, $\left.\mathrm{CHCl}_{3}\right), \mathrm{R}_{\mathrm{f}} 0.45(30 \% \mathrm{EtOAc} / \mathrm{Hexane}) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, \delta\right): 7.43-7.33\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{\mathrm{o}, \mathrm{m}}-\mathrm{Ph}\right)$, $7.32-7.25\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{P}}-\mathrm{Ph}\right), 4.78(\mathrm{dd}, J 11.4,2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-6), 4.73\left(\mathrm{q}, J 6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-\right.$

MOM), $4.25-4.16(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}-4, \mathrm{CH}-2), 3.94-3.88\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}-2^{\prime}\right), 3.88-3.82(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{CH}_{2}-2^{\prime}$), 3.39 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{MOM}$), $2.27-2.16\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}-3, \mathrm{CH}_{2}-5\right), 1.82-1.73\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}-\right.$ 5), $1.70-1.58\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}-3\right), 0.95\left(\mathrm{~s}, 9 \mathrm{H},{ }^{\mathrm{t}} \mathrm{Bu}-\mathrm{TBS}\right), 0.12\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{TBS}\right), 0.11\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\right.$ TBS $).{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, \delta\right): 142.51(\mathrm{C}-\mathrm{Ph}), 128.39\left(\mathrm{CH}_{\mathrm{o}}-\mathrm{Ph}\right), 127.52\left(\mathrm{CH}_{\mathrm{p}}-\mathrm{Ph}\right), 126.03\left(\mathrm{CH}_{\mathrm{m}^{-}}\right.$ $\mathrm{Ph}), 94.44\left(\mathrm{CH}_{2}-\mathrm{MOM}\right), 73.91(\mathrm{CH}-2), 73.13(\mathrm{CH}-6), 69.91(\mathrm{CH}-4), 64.52\left(\mathrm{CH}_{2}-2{ }^{\prime}\right), 55.27$ $\left(\mathrm{CH}_{3}-\mathrm{MOM}\right), 40.12\left(\mathrm{CH}_{2}-5\right), 32.35\left(\mathrm{CH}_{2}-3\right), 25.92\left(\mathrm{CH}_{3}-\mathrm{tBu}(\mathrm{TBS})\right), 18.25$ (C-TBS), -5.37 $\left(\mathrm{CH}_{3}-\mathrm{TBS}\right),-5.43\left(\mathrm{CH}_{3}-\mathrm{TBS}\right) . \mathrm{MS}(\mathrm{ESI})[\mathrm{m} / \mathrm{z},(\%)]: 389\left([\mathrm{M}+\mathrm{Na}]^{+}, 100\right), 386$ (45), 287 (76). HRMS (ESI): 389.2119 calcd for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{NaO}_{4} \mathrm{Si}$, found 389.2106.
((2S,4S,6S)-4-(Methoxymethoxy)-6-phenyltetrahydro-2H-pyran-2-yl)methanol(28). To a solution of $27(159 \mathrm{mg}, 0.434 \mathrm{mmol})$ in THF $(8 \mathrm{~mL})$ was added a $1,0 \mathrm{M}$ solution of TBAF $(0.651 \mathrm{~mL}, 0.651 \mathrm{mmol})$ at r.t. and stirred for 18 hours in the same conditions. The solvent was evaporated and the residue was chromatographed on silica gel using $50 \% \mathrm{AcOEt} / \mathrm{Hexane}$ affording 28 ($106 \mathrm{mg}, 96 \%$). Compound 28: colourless oil, $[\alpha]_{\mathrm{D}}{ }^{22}=2.2$ (c 2.61, CHCl_{3}), $\mathrm{R}_{\mathrm{f}} 0.85$ (50\% EtOAc/Hexane). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \delta\right): 7.41-7.34\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{\mathrm{o}, \mathrm{m}}-\mathrm{Ph}\right), 7.33-7.27(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{\mathrm{P}}-\mathrm{Ph}\right), 4.72-4.63\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2}\right.$-MOM, CH-6), $4.33-4.26$ (m, 1H, CH-2), 4.03 - 3.92 (m, $\left.2 \mathrm{H}, \mathrm{CH}_{2}-2^{\prime}, \mathrm{CH}-4\right), 3.59-3.50\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}-2^{\prime}\right), 3.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{MOM}\right), 2.46(\mathrm{~d}, J 5.9 \mathrm{~Hz}, 1 \mathrm{H}$, OH), $2.25-2.18\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}-5\right), 2.02-1.94\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}-3\right), 1.88-1.78\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}-3\right), 1.71$ $-1.61\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}-5\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, \delta\right): 141.91(\mathrm{C}-\mathrm{Ph}), 128.46\left(\mathrm{CH}_{0}-\mathrm{Ph}\right), 127.73\left(\mathrm{CH}_{\mathrm{p}}-\mathrm{Ph}\right)$, $126.07\left(\mathrm{CH}_{\mathrm{m}}-\mathrm{Ph}\right), 94.56\left(\mathrm{CH}_{2}-\mathrm{MOM}\right), 73.91(\mathrm{CH}-2), 71.50(\mathrm{CH}-6), 69.84(\mathrm{CH}-4), 61.73\left(\mathrm{CH}_{2}-\right.$ $\left.2^{\prime}\right), 55.39\left(\mathrm{CH}_{3}-\mathrm{MOM}\right), 40.17\left(\mathrm{CH}_{2}-5\right), 32.30\left(\mathrm{CH}_{2}-3\right) . \mathrm{MS}(\mathrm{ESI})[\mathrm{m} / \mathrm{z},(\%)]: 279$ (30), 276 ($\left.[\mathrm{M}+\mathrm{Na}+\mathrm{H}]^{+}, 18\right), 275\left([\mathrm{M}+\mathrm{Na}]^{+}, 100\right), 272$ (17). HRMS (ESI): 275.1254 calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NaO}_{4}$, found 275.1263.
((2S,4S,6S)-4-(Methoxymethoxy)-6-phenyltetrahydro-2H-pyran-2-yl)methyl4-methyl-
benzenesulfonate (29). To a solution of alcohol $28(154 \mathrm{mg}, 0.611 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ was added pyridine $(1 \mathrm{~mL})$ and $\mathrm{p}-\mathrm{TsCl}(269 \mathrm{mg}, 1.22 \mathrm{mmol})$ and was stirred at room temperature for 36 hours. The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and was extracted with EtOAc (2×10 mL) and the combined organic layers were washed with $\mathrm{Cu}_{2} \mathrm{SO}_{4}(15 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$ and brine (15 mL) were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent evaporated under reduced pressure. The residue was purified by chromatography on silica gel ($20 \% \mathrm{EtOAc} / \mathrm{Hexane}$) affording tosylate 29 ($235 \mathrm{mg}, 95 \%$). Compound 29: colourless oil, $[\alpha]_{\mathrm{D}}{ }^{22}=27.9$ (c 0.86 , CHCl_{3}), $\mathrm{R}_{\mathrm{f}} 0.27$ ($50 \% \mathrm{EtOAc} / \mathrm{Hexane}$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \delta\right): 7.82-7.77$ (m, 2H, CH-Ts), 7.38 7.31 (m, 2H, CH-Ts), 7.31 - 7.24 (m, $5 \mathrm{H}, \mathrm{CH}-\mathrm{Ph}), 4.67\left(\mathrm{q}, J 6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{MOM}\right), 4.50(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{CH}-6), 4.41$ (m, 1H, CH-2), 4.35 (dd, J $10.1,7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-2$ '), 4.14 (dd, J 10.2, 4.7 Hz , $1 \mathrm{H}, \mathrm{CH}_{2}-2$), 3.94 (m, 1H, CH-4), 3.36 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{MOM}$), 2.42 (s, 3H, CH3-Ts), 2.26 - 2.17 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}_{2}-5$), $2.06-1.98\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}-3\right), 1.81\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}-3\right), 1.69-1.55\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}-5\right)$. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, \delta\right): 144.98(\mathrm{C}-\mathrm{Ts}), 141.55(\mathrm{C}-\mathrm{Ph}), 132.76(\mathrm{C}-\mathrm{Ts}), 129.96(\mathrm{CH}-\mathrm{Ts}), 128.36$ $\left(\mathrm{CH}_{0}-\mathrm{Ph}\right), 127.92(\mathrm{CH}-\mathrm{Ts}), 127.65\left(\mathrm{CH}_{\mathrm{p}}-\mathrm{Ph}\right), 125.95\left(\mathrm{CH}_{\mathrm{m}}-\mathrm{Ph}\right), 94.65\left(\mathrm{CH}_{2}-\mathrm{MOM}\right), 72.20(\mathrm{CH}-$ 6), $70.64(\mathrm{CH}-2), 69.44(\mathrm{CH}-4), 69.10\left(\mathrm{CH}_{2}-2^{\prime}\right), 55.42\left(\mathrm{CH}_{3}-\mathrm{MOM}\right), 39.76\left(\mathrm{CH}_{2}-5\right), 32.16\left(\mathrm{CH}_{2}-\right.$ 3), $21.67\left(\mathrm{CH}_{3}-\mathrm{Ts}\right)$. MS (ESI) [m/z, (\%)]: 430 (26), 429 ([M+Na] ${ }^{+}$, 100), 345 (13). HRMS (ESI): 429.1342 calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{NaO}_{6} \mathrm{~S}$, found 429.1334 .

2-((2R,4R,6S)-4-(Methoxymethoxy)-6-phenyltetrahydro-2H-pyran-2-yl)acetonitrile (30). To a solution of tosylate $29(148 \mathrm{mg}, 0.364 \mathrm{mmol})$ in DMF (5 mL) was added $\mathrm{NaCN}(55 \mathrm{mg}, 1.09$ $\mathrm{mmol})$ and was stirred at $65^{\circ} \mathrm{C}$ for 46 hours. The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{~mL})$ and was extracted with EtOAc $(2 x 8 \mathrm{~mL})$ and the combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}(10$ $\mathrm{mL})$ and brine (10 mL) were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent evaporated under reduced pressure. The residue was purified by chromatography on silica gel (10% EtOAc/Hexane) affording nitrile 30 ($75.3 \mathrm{mg}, 79 \%$). Compound 30: colourless oil, $[\alpha]_{\mathrm{D}}{ }^{22}=$ 13.84 (c $\left.0.25, \mathrm{CHCl}_{3}\right), \mathrm{R}_{\mathrm{f}} 0.55(50 \% \mathrm{EtOAc} / \mathrm{Hexane}) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, \delta\right): 7.42-7.35(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{CH}_{\mathrm{o}, \mathrm{m}}$), $7.35-7.27\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{p}}\right), 4.75-4.65\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{MOM}, \mathrm{CH}-6\right), 4.58$ (dd, J 5.4, 2.9 $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}-2), 4.05$ (dt, J $10.1,5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-4), 3.38\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{MOM}\right), 2.82$ (dd, J 16.8, $7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-2^{\prime}$), 2.73 (dd, J 16.8, $7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-2^{\prime}$), $2.34-2.25\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}-5\right), 2.14-$ $2.06\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}-3\right), 1.91\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}-3\right), 1.84-1.70\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}-5\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, \delta\right)$: $140.94(\mathrm{C}-\mathrm{Ph}), 128.51\left(\mathrm{CH}_{\mathrm{o}}\right), 127.85\left(\mathrm{CH}_{\mathrm{p}}\right), 126.03\left(\mathrm{CH}_{\mathrm{m}}\right), 117.24(\mathrm{CN}), 94.58\left(\mathrm{CH}_{2}-\mathrm{MOM}\right)$, 72.02 ($\mathrm{CH}-6), 68.72(\mathrm{CH}-2), 68.56(\mathrm{CH}-4), 55.52\left(\mathrm{CH}_{3}-\mathrm{MOM}\right), 38.70\left(\mathrm{CH}_{2}-5\right), 34.18\left(\mathrm{CH}_{2}-3\right)$, $21.48\left(\mathrm{CH}_{2}-2^{\prime}\right)$. MS (ESI) [m/z, (\%)]: $285\left([\mathrm{M}+\mathrm{Na}+\mathrm{H}]^{+}, 20\right), 284\left([\mathrm{M}+\mathrm{Na}]^{+}, 100\right), 281$ (36). HRMS (ESI): 284.1257 calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NNaO}_{3}$, found 284.1247.

2-((2S,4R,6R)-4-(Methoxymethoxy)-6-phenyltetrahydro-2H-pyran-2-yl)-1-phenylethanone

(32). To a solution of $30(41 \mathrm{mg}, 0.156 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added at $-78^{\circ} \mathrm{C}$ DIBAL-H dropwise ($0.234 \mathrm{~mL}, 0.234 \mathrm{mmol}$) and was stirred at the same temperature for 6 hours. The reaction was quenched with $\mathrm{NH}_{4} \mathrm{Cl}(8 \mathrm{~mL})$ and was stirred for 30 min at room temperature. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filteredand the solvent evaporated under reduced pressure affording (42 mg). The residue ($42 \mathrm{mg}, 0.160 \mathrm{mmol}$) was disolved in THF (4 mL) and was cooled to $-78^{\circ} \mathrm{C}$. $\mathrm{PhLi}(0.240$ $\mathrm{mmol}, 0.133 \mathrm{~mL}$) was added dropwise and was stirred for 5 hours at $-78^{\circ} \mathrm{C}$. The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and the mixture was extracted with EtOAc ($2 \times 10 \mathrm{~mL}$) and the combined organic layers were washed with brine (10 mL), were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent evaporated under reduced pressure. The residue was solved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and was added molecular sieves (18 mg), NMO ($29 \mathrm{mg}, 0.250 \mathrm{mmol}$) and a catalitic amount of TPAP and was stirred at room temperature for 16 hours. The reaction was filtered under celite and the residue was purified by chromatography on silica gel ($5 \% \mathrm{EtOAc} / \mathrm{Hexane}$) affording ketone 32 (21 mg , 39% three steps). Compound 32:colourless oil, $[\alpha]_{\mathrm{D}}{ }^{24}=75.9\left(\mathrm{c} 0.53, \mathrm{CHCl}_{3}\right), \mathrm{R}_{\mathrm{f}} 0.66(30 \%$ EtOAc/Hexane). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \delta\right): 8.02-7.96\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{0}-\mathrm{Ph}(\mathrm{C} 1)\right), 7.63-7.57(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{CH}_{\mathrm{p}}-\mathrm{Ph}(\mathrm{C} 1)$), $7.52-7.46\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{\mathrm{m}}-\mathrm{Ph}(\mathrm{C} 1)\right)$, $7.38-7.32\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{0, \mathrm{~m}}-\mathrm{Ph}\left(\mathrm{C}-6^{\prime}\right)\right)$, $7.31-$ 7.26 (s, 1H, CH $\mathrm{C}_{\mathrm{p}}-\mathrm{Ph}\left(\mathrm{C}-6^{\prime}\right)$), $4.99-4.89\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}-6^{\prime}\right), 4.79-4.68\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}-2^{\prime}, \mathrm{CH}_{2}-\right.$ MOM), $4.20-4.07$ (m, 1H, CH-4'), $3.57-3.45$ (m, 1H, CH2-2), $3.41-3.30\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}-2\right.$, CH_{3}-MOM), $2.35-2.24\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}-3^{\prime}\right), 2.15-2.04\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}-5^{\prime}\right), 1.97-1.86(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{2}-5^{\prime}\right), 1.75-1.65\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}-3^{\prime}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, \delta\right): 197.86(\mathrm{CO}), 141.81\left(\mathrm{C}-\mathrm{Ph}\left(\mathrm{C}^{\prime}\right)\right)$, $136.83(\mathrm{C}-\mathrm{Ph}(\mathrm{C} 1))$, $133.33\left(\mathrm{CH}_{\mathrm{p}}-\mathrm{Ph}\left(\mathrm{C}^{\prime}\right)\right)$, $128.75\left(\mathrm{CH}_{0}-\mathrm{Ph}(\mathrm{C} 1)\right)$, $128.42\left(\mathrm{CH}_{0}-\mathrm{Ph}(\mathrm{C} 6)\right), 128.22$ $\left(\mathrm{CH}_{\mathrm{m}}-\mathrm{Ph}\left(\mathrm{C}^{\prime}\right)\right), 127.65\left(\mathrm{CH}_{\mathrm{p}}-\mathrm{Ph}\left(\mathrm{C}^{\prime}\right)\right)$, $126.11\left(\mathrm{CH}_{\mathrm{m}}-\mathrm{Ph}(\mathrm{C} 1)\right), 94.47\left(\mathrm{CH}_{2}-\mathrm{MOM}\right), 71.98(\mathrm{CH}-$ $\left.2^{\prime}\right), 70.19$ (CH-6'), $69.47\left(\mathrm{CH}-4{ }^{\prime}\right), 55.43\left(\mathrm{CH}_{3}-\mathrm{MOM}\right), 41.07\left(\mathrm{CH}_{2}-2\right), 40.04\left(\mathrm{CH}_{2}-3^{\prime}\right), 35.06$
$\left(\mathrm{CH}_{2}-5^{\prime}\right) . \mathrm{MS}(\mathrm{ESI})[\mathrm{m} / \mathrm{z},(\%)]: 364\left([\mathrm{M}+\mathrm{Na}+\mathrm{H}]^{+}, 24\right), 363\left([\mathrm{M}+\mathrm{Na}]^{+}, 100\right), 360$ (35), 279 (17). HRMS (ESI): 363.1567 calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{NaO}_{4}$, found 363.1570.
2-((2'S,4'R,6'S)-4'-Hydroxy-6'-phenyltetrahydro-2H-pyran-2'-yl)-1-phenylethanone (4). To a solution $32(15 \mathrm{mg}, 0.044 \mathrm{mmol})$ in $\mathrm{MeOH}(1 \mathrm{~mL})$ was added dropwise $\mathrm{HCl}(37 \%, 30$ drops $)$ and the reaction was followed by TLC. The reaction was concentrated and the crude was purified by chromatography on silica gel (20% EtOAc/Hexane), affording 4 ($11.7 \mathrm{mg}, 90 \%$). Compound 4: colourless oil, $[\alpha]_{\mathrm{D}}{ }^{21}=88.6$ (c $0.26, \mathrm{CHCl}_{3}$), $\mathrm{R}_{\mathrm{f}} 0.28$ ($50 \% \mathrm{EtOAc} / \mathrm{Hexane}$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $\delta): 8.08-7.89\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{0}-\mathrm{Ph}(\mathrm{C} 1)\right), 7.66-7.54\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{p}}-\mathrm{Ph}(\mathrm{C} 1)\right)$, 7.49 (dd, J 8.4, 6.9 Hz , $\left.2 \mathrm{H}, \mathrm{CH}_{\mathrm{m}}-\mathrm{Ph}(\mathrm{C} 1)\right), 7.40-7.26\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{CH}-\mathrm{Ph}\left(\mathrm{C}^{\prime}\right)\right), 4.98-4.87\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}-6^{\prime}\right), 4.76$ (dd, J $10.8,2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-2$ '), 4.24 (m, 1H, CH-4'), 3.50 (dd, J 15.4, $6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-2$), 3.34 (dd, J $15.4,8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-2$), 2.31 - 2.22 (m, 1H, CH2 -3 '), $2.13-2.06\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}-5^{\prime}\right), 1.84$ (ddd, J $\left.12.8,10.6,5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-5^{\prime}\right), 1.69$ (dd, $\left.J 12.8,10.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-3^{\prime}\right) .{ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, \delta\right)$: 197.92 (CO), $141.63\left(\mathrm{C}-\mathrm{Ph}\left(\mathrm{C}^{\prime}\right)\right)$, $136.81\left(\mathrm{C}-\mathrm{Ph}(\mathrm{C} 1), 133.35\left(\mathrm{CH}_{\mathrm{p}}-\mathrm{Ph}(\mathrm{C} 1)\right)\right.$, $128.76\left(\mathrm{CH}_{\mathrm{m}}-\right.$ $\left.\mathrm{Ph}\left(\mathrm{C}^{\prime}\right)\right)$, $128.48\left(\mathrm{CH}_{0}-\mathrm{Ph}(\mathrm{C} 1)\right)$, $128.23\left(\mathrm{CH}_{\mathrm{m}}-\mathrm{Ph}(\mathrm{C} 1)\right)$, $127.67\left(\mathrm{CH}_{\mathrm{p}}-\mathrm{Ph}\left(\mathrm{C}^{\prime}\right)\right)$, $126.10\left(\mathrm{CH}_{0}-\right.$ Ph(C6')), 71.90 (CH-'6), 69.77 (CH-2'), 64.72 (CH-4'), 41.99 (CH-2), 41.33 ($\left.\mathrm{CH}_{2}-5^{\prime}\right), 37.60$ $\left(\mathrm{CH}_{2}-3^{\prime}\right)$. MS (ESI) $[\mathrm{m} / \mathrm{z},(\%)]: 615(100), 297\left([\mathrm{M}+\mathrm{H}]^{+}, 16\right)$. HRMS (ESI): 319.13047 calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{NaO}_{3}$, found 319.13052 .
2-((2S,4R,6S)-4-Hydroxy-6-phenyltetrahydro-2H-pyran-2-yl)-1-phenylethanone (1). To a solution of $4(12 \mathrm{mg}, 0.04 \mathrm{mmol})$ in THF (3 mL) was added $\mathrm{PPh}_{3}(42 \mathrm{mg}, 0.16 \mathrm{mmol}$), pnitrobenzene ($27 \mathrm{mg}, 0.16 \mathrm{mmol}$) and the resulting mixture was cooled to $0^{\circ} \mathrm{C}$ and DIAD $(0.031$ $\mathrm{mL}, 0.16 \mathrm{mmol}$) was added slowly. When the addition was finished the reaction was introduced in the Microwaves at $40^{\circ} \mathrm{C}$ for 20 minutes. The reaction was concentrated and the crude was dissolved in MeOH and a catalytic amount of $\mathrm{K}_{2} \mathrm{CO}_{3}$ was added and was stirred at room temperature for 12 hours. The mixture was concentrated and the crude was purified by chromatography on silica gel ($20 \% \mathrm{EtOAc} / \mathrm{Hexane}$) affording Diospongin A (1) ($10 \mathrm{mg}, 83 \%$). Diospongin A: Colourless oil, $[\alpha]_{\mathrm{D}}{ }^{28}=-22.6$ (c 0.66, CHCl_{3}), $\mathrm{R}_{\mathrm{f}} 0.46$ (50\% EtOAc/Hexane). ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, \delta\right): 8.01-7.95\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{0}-\mathrm{Ph}(\mathrm{C} 1)\right), 7.58-7.52\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{p}}-\mathrm{Ph}(\mathrm{C} 1)\right)$, $7.45(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{CH}_{\mathrm{m}}-\mathrm{Ph}(\mathrm{C} 1)\right), 7.32-7.19$ (m, 5H, CH-Ph(C6')), 4.92 (dd, J 11.9, $\left.2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-6^{\prime}\right), 4.69$ - 4.60 (m, 1H, CH-2'), $4.40-4.33$ (m, 1H, CH-4'), 3.41 (dd, J 15.9, $5.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-2$), 3.06 (dd, J 16.0, $6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-2$), 1.95 (dt, J $13.9,2.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-3^{\prime}$), $1.81-1.64\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}-\right.$ $\left.5^{\prime}\right) .{ }^{13} \mathrm{C}$ NMR (CDCl3, $\left.\delta\right): 198.26(\mathrm{CO}), 142.66\left(\mathrm{C}-\mathrm{Ph}\left(\mathrm{C}^{\prime}\right)\right), 137.30\left(\mathrm{C}-\mathrm{Ph}(\mathrm{C} 1), 133.08\left(\mathrm{CH}_{\mathrm{p}}-\right.\right.$ $\mathrm{Ph}(\mathrm{C} 1))$, $128.53\left(\mathrm{CH}_{\mathrm{m}}-\mathrm{Ph}(\mathrm{C} 1)\right)$, $128.32\left(\mathrm{CH}_{0}-\mathrm{Ph}(\mathrm{C} 1)\right)$, $128.25\left(\mathrm{CH}_{\mathrm{m}}-\mathrm{Ph}\left(\mathrm{C}^{\prime}\right), 127.25\left(\mathrm{CH}_{\mathrm{p}}-\right.\right.$ $\mathrm{Ph}\left(\mathrm{C}^{\prime}\right)$, $125.80\left(\mathrm{CH}_{0}-\mathrm{Ph}\left(\mathrm{C}^{\prime}\right)\right.$, 73.77 ($\left.\mathrm{CH}-{ }^{\prime} 6\right)$, 69.06 ($\left.\mathrm{CH}-2^{\prime}\right), 64.70\left(\mathrm{CH}-4{ }^{\prime}\right), 45.14\left(\mathrm{CH}_{2}-2\right)$, $40.04\left(\mathrm{CH}_{2}-5^{\prime}\right), 38.51\left(\mathrm{CH}_{2}-3^{\prime}\right) . \mathrm{MS}(\mathrm{ESI})[\mathrm{m} / \mathrm{z},(\%)]: 615(100), 297\left([\mathrm{M}+\mathrm{H}]^{+}, 11\right)$. HRMS (ESI):297.14852 calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{O}_{3}$, found 297.14857.

Acknowledgements

This work was supported financially by the Xunta de Galicia (CN 2012/184). The work of the NMR, SC-XRD and MS divisions of the research support services of the University of Vigo
(CACTI) is also gratefully acknowledged. Z.G. and M.P. thank the Xunta de Galicia for Angeles Alvariño contracts and A. Z. the University of Vigo for a Ph D fellowship. A.F. thanks the University Cheikh Anta Diop (Dakar) for financial support for a research stay at the University of Vigo.

References

1. Yin, J.; Kouda, K.; Tezuka,Y.; Tran, Q. L.; Miyahara, T.; Chen,Y.; Kadota, S. Planta Med. 2004, 70, 54-58. https://www.thieme-connect.de/DOI/DOI?10.1055/s-2004-815456
2. Sawant, K. B.; Jennings, M. P. J. Org. Chem. 2006, 71, 7911-7914. http://pubs.acs.org/doi/pdf/10.1021/jo061296f
3. Bressy, C.; Allais, F.; Cossy, J. Synlett 2006, 3455-3456. https://www.thieme-connect.de/DOI/DOI?10.1055/s-2006-956485
4. Kawai, N.; Hande, S. M.; Uenishi,J. Tetrahedron 2007, 63, 9049-9056. http://www.sciencedirect.com/science/article/pii/S0040402007011581
5. Bates, R. W.; Song, P. Tetrahedron 2007, 63, 4497-4499. http://www.sciencedirect.com/science/article/pii/S0040402007004589
6. Yadav, J. S.; Padmavani, B.; Reddy, B. V. S. ; Venugopal, C.; Rao, A. B. Synlett 2007, 2045-2048.
https://www.thieme-connect.de/DOI/DOI?10.1055/s-2007-984886
7. Hiebel, M.-A. ; Pelotier, B.; Piva, O. Tetrahedron 2007, 63, 7874-7878. http://www.sciencedirect.com/science/article/pii/S0040402007009611
8. Sabitha, G.; Padmaja, P.; Yadav, J. S. Helv. Chim. Acta 2008, 91, 2235-2239. http://onlinelibrary.wiley.com/doi/10.1002/hlca.200890242/pdf
9. Wang, H.; Shuhler, B. J. ; Xian, M. Synlett 2008, 2651-2654. https://www.thieme-connect.de/DOI/DOI?10.1055/s-0028-1083518
10. Kumaraswamy, G.; Ramakrishna, G. ; Naresh, P.; Jagadeesh, B.; Sridhar, B. J. Org. Chem. 2009, 74, 8468-8471.
http://pubs.acs.org/doi/full/10.1021/jo901739y
11. Lee, K.; Kim, H.; Hong, J. Org. Lett. 2009, 11, 5202-5205. http://pubs.acs.org/doi/full/10.1021/ol902125d
12. More, J. D. Synthesis 2010, 2419-2423. https://www.thieme-connect.de/DOI/DOI?10.1055/s-0029-1218784
13. Anada, M.; Washio, T. ; Watanabe, Y.; Takeda, K.; Hashimoto, S. Eur. J. Org. Chem. 2010, 6850-6854.
http://onlinelibrary.wiley.com/doi/10.1002/ejoc.201001125/pdf
14. Kumar, R. N. ; Meshram, H. M. Tetrahedron Lett. 2011, 52, 1003-1007. http://www.sciencedirect.com/science/article/pii/S0040403910022987
15. Karlubíkov, O.; Babjak, M.; Gracza, T. Tetrahedron 2011, 67, 4980-4987.
http://www.sciencedirect.com/science/article/pii/S0040402011005527
16. Reddy, C. R. ; Reddy, G. B. ; Srikanth, B. Tetrahedron: Asymmetry 2011, 22, 1725-1728. http://www.sciencedirect.com/science/article/pii/S095741661100543X
17. Raffier, L. ; Izquierdo, F. ; Piva, O. Synthesis 2011, 24, 4037-4044. https://www.thieme-connect.de/DOI/DOI?10.1055/s-0031-1289588
18. Stefan, E.; Nalin, A. P. ; Taylor, R. E. Tetrahedron 2013, 69, 7706-7712. http://www.sciencedirect.com/science/article/pii/S0040402013008351
19. Yao, H.; Ren, J.; Tong, R. Chem Commun. 2013, 49, 193-195. http://pubs.rsc.org/en/content/articlepdf/2013/CC/C2CC37772A
20. Kumaraswamy, G.; Rambabu, D. Tetrahedron: Asymmetry 2013, 24, 196-201. http://www.sciencedirect.com/science/article/pii/S0957416613000104
21. Pazos, G.; Pérez, M.; Gándara, Z.; Gómez, G.; Fall, Y. Tetrahedron Lett. 2009, 50, 52855287; http://www.sciencedirect.com/science/article/pii/S0040403909013896
22. Zúñiga, A.; Pérez, M.; Pazos, G.; Gómez, G.; Fall, Y. Synthesis 2010, 14, 2446-2450; https://www.thieme-connect.de/DOI/DOI?10.1055/s-0029-1218774
23. Zúñiga, A.; Pérez, M.; González, M.; Gómez, G.; Fall, Y. Synthesis 2011, 20, 3301-3306; https://www.thieme-connect.de/DOI/DOI?10.1055/s-0030-1260203
24. Pazos, G.; Pérez, M.; Gándara, Z.; Gómez, G.; Fall, Y. Tetrahedron 2012, 68, 8994-9003; http://www.sciencedirect.com/science/article/pii/S0040402012013646
25. González, M.; Gándara, Z.; Pazos, G.; Gómez, G.; Fall,Y. Synthesis 2013, 45, 625-632. https://www.thieme-connect.de/DOI/DOI?10.1055/s-0032-1318113
26. Mori, Y.; Hayashi, H. J .Org. Chem.. 2001, 66, 8666-8668. http://pubs.acs.org/doi/pdf/10.1021/jo0107103
27. Crystallographic data were collected on a Bruker Smart 1000 CCD diffractometer at CACTI (Universidade de Vigo) at $20^{\circ} \mathrm{C}$ using graphite monochromated Mo $\mathrm{K} \alpha$ radiation ($\lambda=$ $0.71073 \AA$), and were corrected for Lorentz and polarisation effects. The frames were integrated with the Bruker SAINT software package and the data were corrected for absorption using the program SADABS. The structures were solved by direct methods using the program SHELXS97. All non-hydrogen atoms were refined with anisotropic thermal parameters by full-matrix least-squares calculations on F2 using the program SHELXL97. Hydrogen atoms were inserted at calculated positions and constrained with isotropic thermal parameters.The structural data have been deposited with the Cambridge Crystallographic Data Centre (CCDC) with reference number CCDC 832477. Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB21EZ (FAX: (+44) 1223-336-033; E-mail: deposit@ccdc.cam.ac.uk)
28. Rajanbabu, T. V.; Fukunaga,T.; Reddy, G. S. J.Am. Chem. Soc. 1989, 111, 1759-1769. http://pubs.acs.org/doi/pdf/10.1021/ja00187a031?source=chemport
29. Marshall, J. A.; Crooks, S. L.; DeHoff, B. S. J .Org. Chem. 1988, 53, 1616-1623. http://pubs.acs.org/doi/abs/10.1021/jo00243a005
30. Kumara Swamy, K. C. ; Bhuvan Kumar, N. N.; Balaraman,E.; Pavan Kumar, K. V. P. Chem. Rev. 2009, 109, 2551-2651.
http://pubs.acs.org/doi/full/10.1021/cr800278z?source=chemport
