Synthesis of dipeptide mimics based on amino phosphinate backbones and cyclic derivatives

Florian Rüping, ${ }^{\text {a }}$ Christian-H. Küchenthal, ${ }^{\text {b }}$ and Wolfgang Maison ${ }^{\text {a, } *}$
${ }^{a}$ University of Hamburg, Pharmaceutical and Medicinal Chemistry, Bundesstr. 45, 20146 Hamburg, Germany
${ }^{b}$ Merck KGaA, Frankfurter Straße 250, 64293 Darmstadt, Germany
E-mail: maison@chemie.uni-hamburg.de

Dedicated to Prof. Dr. Jürgen Martens on the occasion of his 65th birthday

DOI: http://dx.doi.org/10.3998/ark.5550190.p009.067

Abstract

Dialkyl phosphinates are valuable peptide mimics for metallopeptidase targets. Despite their large pharmaceutical potential, the synthesis of many phosphinates remains challenging. An additional drawback for many applications is the high polarity of the phosphinate group. Herein we describe the synthesis of stereoisomerically pure GPI (1), a phosphinate with high binding affinity for the cancer specific zinc peptidase PSMA (prostate specific membrane antigen). In addition, analogous cyclic phosphinate esters 13, $\mathbf{1 6}$ and $\mathbf{2 3}$ are reported that might be useful as less polar ligands for metallo peptidase binding. The key step to these new 1,2-oxaphosphorinan-2-ones is an intramolecular cyclization of an intermediate H-phosphinate. The cyclizations work with modest diastereoselectivities of $\sim 2: 1$ in favor of the trans arrangement of substituents at 2- and 4-position of the 1,2-oxaphosphorinan-2-one scaffolds.

Keywords: Carboxypeptidase inhibitors, phosphinates, tumor targeting, amino phosphinic acids

Introduction

Zinc containing peptidases constitute an important class of enzymes involved in tumor progression, angiogenesis, embryogenesis, ovulation and differentiation. ${ }^{1-2}$ An altered level of expression is often associated with malignant neoplasy. A range of metallopeptidases have therefore been used as tumor markers and are valuable targets for the development of targeted cancer therapeutics and imaging reagents. In consequence, the design and synthesis of small molecules binding to zinc peptidases with high affinity and specificity is an attractive field of Medicinal Chemistry. ${ }^{3-5}$

The general structural requirements for small molecules in this context are a peptidomimetic backbone for recognition of the peptidase and a zinc binding moiety (Scheme 1). Suitable zinc binding groups are thiols, carboxylates, hydroxamates, phosphonates and phosphinates. In this context, thiols, hydroxamates and phosphinates belong to the strongest zinc binders and the introduction of these groups into peptidase ligands is often increasing the affinity of the ligand to the target peptidase by three to four orders of magnitude. ${ }^{6-10}$

Scheme 1. Tetrahedral intermediate upon peptide hydrolysis in an active site of a zinc peptidase and a phosphinate analogue. In addition, the PSMA-specific ligand GPI (1) is shown.

Despite their large pharmaceutical potential, the synthesis of many phosphinates remains challenging. ${ }^{11-16}$ An additional drawback for many applications is the high polarity of the phosphinate group.

Herein we describe the synthesis of stereoisomerically pure GPI (1), a phosphinate with high binding affinity to the cancer specific zinc peptidase PSMA (prostate specific membrane antigen). In addition, analogous cyclic phosphinates are reported that might be useful as less polar precursors for metallo peptidase binding.

Results and Discussion

GPI (1), a mimic of the native dipeptide NAAG (N-acetylaspartylglutamic acid), is a high affinity binder for the tumor marker PSMA and has been used for prostate cancer targeting (Scheme 2). ${ }^{17-}$
${ }^{19}$ It has been shown that the (S, S) diastereoisomer of GPI is the eutomer with significantly higher affinity to the target protein than the corresponding (S, R) isomer. ${ }^{20-21}$ However, the stereoselective synthesis of GPI proved to be difficult and only low diastereoselectivities have been realized so far. ${ }^{22}$ For a comparative study of stereoisomeric imaging reagents based on GPI as a targeting ligand, we needed both the (S, S) and the corresponding (S, R) isomer. Following a known protocol, we started our synthesis with enantiomerically pure Cbz- (S)-vinylglycine (3), which is readily available by a two-step synthesis from Cbz-(S)-methionine (2). ${ }^{23}$ In parallel, dibenzyl glutarate (5) was prepared from benzyl acrylate (4) via a Baylis-Hilman type reaction with (n-Bu) ${ }_{3} \mathrm{P} .{ }^{24}$ Addition of ammonium hypophosphite gave phosphinic acid 6 as a racemate. Following a protocol of

Vitharana et al., ${ }^{25}$ stepwise crystallization with first yohimbine and second (S)-methylbenzylamine gave $(S)-6$ and $(R)-6$ in 31 and 28% yield, respectively over two steps. Both enantiomers of $\mathbf{6}$ were then treated with vinylglycine (3) and BSA to the target compounds $(S, S)-7$ and $(S, R)-7$. Both diastereomers were obtained with a de >95 according to ${ }^{1} \mathrm{H}-\mathrm{NMR}$, proving indirectly the high enantiomeric purity of intermediate phosphinic acids $(S)-\mathbf{6}$ and $(R)-\mathbf{6}$ after crystallization.

Scheme 2. Synthesis of (S)-vinylglycine (3) and isomerically pure (S, S)-7 and (S, R)-7. BSA $=$ Bis(trimethylsilyl)acetamide.

The high polarity of the phosphinic acid group in peptidase inhibitors like GPI (1) is an inherent problem not only for the bioavailability of the compounds but also for workup of protected derivatives like 7. The affinity of phosphinates for silica often leads to significant loss of yield upon column chromatography. To decrease the polarity of the target compounds, we planned to introduce the dialkyl phosphinate part of the peptidase binders as a cyclic phosphinate ester (1,2-oxaphosphorinan-2-one), which upon hydrolysis would then release the phosphinic acid and an alcohol group. Our first attempt started with the conversion of allyl alcohol 8 to homoallyl alcohol $\mathbf{1 0}$ in a two-step procedure involving bromination and a subsequent In-mediated Barbier reaction of bromide $\mathbf{9}$ with formaldehyde (Scheme 3). The resulting homoallyl alcohol $\mathbf{1 0}$ was converted to the corresponding phosphinic acid ester 12. In our hands, the mixed-anhydride of
phosphinic acid 11 which was prepared with pivaloyl chloride gave the best yields for this esterification. Ester $\mathbf{1 2}$ was then treated with BSA to give the cyclic phosphinate $\mathbf{1 3}$ upon intramolecular cyclization in reasonable 46% yield for the two-step sequence. Similar cyclic phosphinates have only rarely been described in the literature so far. ${ }^{26-29}$

Scheme 3. Synthesis of the cyclic phosphinate 13 via intramolecular cyclization of ester 12. BSA $=\operatorname{Bis}($ trimethylsilyl)acetamide; $\mathrm{PivCl}=$ pivaloyl chloride; only one enantiomer of racemic compound trans-13 is shown.

The intramolecular cyclization of ester $\mathbf{1 2}$ to cyclic phosphinate $\mathbf{1 3}$ proceeds with a moderate diastereoselectivity of $2: 1$ in favor of trans-13. The preferred formation of trans- $\mathbf{1 3}$ may be rationalized with the mechanistic proposal depicted in Scheme 4.

Scheme 4. Mechanistic proposal for the intramolecular cyclization of ester $\mathbf{1 2}$ to the cyclic phosphinate trans-13. Only one enantiomer of racemic compound trans-13 is shown.

Using the same approach, we have treated homoallyl alcohol 10 with phosphinic acid 14, which is readily available from (S)-vinylglycine (3). Ester 15 was again formed via the mixed
anhydride of 14 with PivCl. Subsequent intramolecular cyclization gave the target cyclic phosphinate 16, which is a dipeptide mimic. Along with the methyl ester 16, we isolated a significant amount of the corresponding acid 17. Because we have used enantiomerically pure phosphonic acid 14 as a starting material, we expected the formation of all four possible stereoisomers in 16. To our surprise, we observed only two diastereoisomers in the ${ }^{31} \mathrm{P}-\mathrm{NMR}$ spectra of 16 (Scheme 5, A). However, this seems to be the consequence of a coincidental signal overlap of each two stereoisomers. In the corresponding acid derivative 17, which was formed as a deprotected side product, all four isomers are observable in the ${ }^{31} \mathrm{P}$-NMR spectra (Scheme 5, B).

Scheme 5. Synthesis of dipeptide mimic 16 via intramolecular cyclization of ester 15. Only one out of four stereoisomers for $\mathbf{1 6}$ and $\mathbf{1 7}$ is shown. A: stretch of the ${ }^{31} \mathrm{P}-\mathrm{NMR}$ spectra of $\mathbf{1 6} ; \mathbf{B}$: stretch of the ${ }^{31} \mathrm{P}-\mathrm{NMR}$ spectra of 17.

One of the reasons for synthesizing cyclic phosphinates like $\mathbf{1 3}$ and $\mathbf{1 6}$ was their decreased polarity compared to phosphinic acid analogues. In addition, we hoped that the intramolecular alkylation of the H-phosphinate intermediate might give better diastereoselectivities then acyclic variants. To introduce a chiral auxiliary in the vicinity of the newly formed stereogenic centers, we have prepared the chiral ester 20 by reaction of (-)-borneol (19) with acid $\mathbf{1 8}$ (Scheme 6).

Deprotection with TBAF gave alcohol 21, which was coupled to the mixed anhydride of phosphinic acid $\mathbf{1 4}$ to give ester 22. Intramolecular cyclization gave cyclic phosphinate $\mathbf{2 3}$ as a mixture of four stereoisomers. Finally, hydrolysis with aqueous HCl to $\mathbf{2 4}$ was performed to
decrease the number of possible stereoisomers and a 2:1-mixture of two diastereoisomers was observed in the ${ }^{13} \mathrm{C}$-NMR-spectra. Alternatively, the alkylation of H-phosphinate $\mathbf{1 4}$ with α -methylene- γ-butyrolactone (25) gave also dipeptide mimic 24, but with no diastereoselectivity at all.

Scheme 6. Auxiliary synthesis of dipeptide mimic 24 via intramolecular cyclization of ester 22 and an alternative approach from α-methylene- γ-butyrolactone (25). Only one major stereoisomer for 23 and 24 is shown.

Conclusions

We have described the synthesis of isomerically pure (S, S)- and (S, R)-7 via fractional crystallization of the intermediate H-phosphinate rac-6. The target compounds 7 are protected GPI (1) derivatives and thus ligands for the prostate cancer specific peptidase PSMA. To reduce the polarity of the targeted phosphinic acids, we synthesized cyclic phosphinate esters. The key step to these new 1,2-oxaphosphorinan-2-ones is an intramolecular cyclization of an intermediate H phosphinate. The cyclizations work with modest diastereoselectivities of $\sim 2: 1$ in favor of the trans
arrangement of substituents at 2- and 4-position of the 1,2-oxaphosphorinan-2-one. The resulting cyclic phosphinates are peptide mimetics of relatively low polarity compared to the corresponding acyclic phosphinic acids.

Experimental Section

General. TLC was performed on silica gel aluminium sheets (Macherey and Nagel). The reagent used for developing TLC plates was cerium stain (5 g ammonium molybdate, 0.1 g cerium sulfate tetrahydrate, 10 mL sulfuric acid and $90 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$) or 10% sulfuric acid in ethanol. Flash column chromatography was performed on silica gel (Macherey and Nagel, $60-200 \mu \mathrm{~m}$). ${ }^{1} \mathrm{H}$ chemical shifts are calibrated to residual non-deuterated solvent $\left(\mathrm{CDCl}_{3}, \delta_{\mathrm{H}} 7.26 \mathrm{ppm}\right.$; DMSO- $d_{6}, \delta_{\mathrm{H}} 2.50$ $\left.\mathrm{ppm} ; \mathrm{CD}_{3} \mathrm{OD}, \delta_{\mathrm{H}} 3.31 \mathrm{ppm}\right) .{ }^{13} \mathrm{C}$ chemical shifts are calibrated to the solvent signal $\left(\mathrm{CDCl}_{3}, \delta_{\mathrm{C}}\right.$ $\left.77.2 \mathrm{ppm} ; \mathrm{DMSO}-d_{6}, \delta_{\mathrm{C}} 39.5 \mathrm{ppm} ; \mathrm{CD}_{3} \mathrm{OD}, \delta_{\mathrm{H}} 49.0 \mathrm{ppm}\right)$. NMR spectra were recorded at 400 (100), or 600 (150) MHz on Bruker Avance instruments. NMR-signals have been assigned on the basis of 2D-NMR (HH-COSY, HMBC and HSQC) experiments. ESI mass spectra were recorded on a Bruker MicroTOF-Q instrument operating in positive or negative mode. Samples were dissolved in $\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}$ mixtures or pure MeOH and were injected directly via syringe. If indicated with abs, solvents were dried according to standard procedures prior to use. IR spectra were recorded on a Shimadzu FT-IR IR Affinity-1 instrument. The wavelengths of selected characteristic bands (vmax) are quoted in cm^{-1}.
The following compounds have been prepared according to literature procedures: $\mathbf{3},{ }^{23} \mathbf{8},{ }^{30} \mathbf{1 1},{ }^{31}$ $14{ }^{22}$

Dibenzyl 2-methylenglutarate (5): Tributylphosphine ($1.50 \mathrm{~mL}, 5.99 \mathrm{mmol}, 0.12 \mathrm{eq}$.$) was added$ to benzyl acrylate (4) ($7.50 \mathrm{~mL}, 49.9 \mathrm{mmol}, 1.00 \mathrm{eq}$.) at $0^{\circ} \mathrm{C}$ under inert atmosphere and the resulting mixture was stirred for 15 min at 0° and further 16 h at rt . Compressed air was bubbled through the solution for 2 h . The crude mixture was purified by flash chromatography on silica (PE/EtOAc, 1:1) to give the target compound $5(4.80 \mathrm{~g}, 14.8 \mathrm{mmol}, 59 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}] 7.29-7.38(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.23$ (s, $1 \mathrm{H}, 2$ '-H), $5.60(\mathrm{~s}, 1 \mathrm{H}$, 2'-H), 5.20 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}$), 5.11 (s, $2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}$), 2.69 (t, ${ }^{3} \mathrm{~J} 7.5 \mathrm{~Hz}, 2 \mathrm{H}, 3-\mathrm{H}$), 2.59 (t, ${ }^{3} \mathrm{~J} 7.5 \mathrm{~Hz}$, $2 \mathrm{H}, 4-\mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}] 172.5(\mathrm{C} 5), 166.4(\mathrm{C} 1), 138.8(\mathrm{C} 2), 135.9(\mathrm{Ar}-$ C), 135.90 ($\mathrm{Ar}-\mathrm{C}$), 128.6 ($\mathrm{Ar}-\mathrm{CH}$), 128.6 ($\mathrm{Ar}-\mathrm{CH}$), $128.3(\mathrm{Ar}-\mathrm{CH}), 128.2$ ($\mathrm{Ar}-\mathrm{CH}$), 128.2 ($\mathrm{Ar}-\mathrm{CH}$), 128.1 ($\mathrm{Ar}-\mathrm{CH}$), $66.5\left(\mathrm{CH}_{2}-\mathrm{Ph}\right), 66.3\left(\mathrm{CH}_{2}-\mathrm{Ph}\right), 33.1$ (C4), 27.4 (C3). MS (ESI): m/z (\%) 325.14 (50) $[\mathrm{M}+\mathrm{H}]^{+}, 347.13$ (100) $[\mathrm{M}+\mathrm{Na}]^{+}, 671.26$ (29) $[2 \mathrm{M}+\mathrm{Na}]^{+}$.
(5-(Benzyloxy)-2-((benzyloxy)carbonyl)-5-oxopentyl)phosphinic acid (rac-6): TMSCl ($5.17 \mathrm{~mL}, 40.7 \mathrm{mmol}, 13.2 \mathrm{eq}$.$) and \mathrm{NEt}_{3}(5.13 \mathrm{~mL}, 37.0 \mathrm{mmol}, 12.0 \mathrm{eq}$.) were added to a suspension of $\mathrm{NH}_{4} \mathrm{H}_{2} \mathrm{PO}_{4}\left(1.30 \mathrm{~g}, 15.4 \mathrm{mmol}, 5.00 \mathrm{eq}\right.$.) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The resulting mixture was stirred for 1 h at $0^{\circ} \mathrm{C}$ and a solution of $5(1.00 \mathrm{~g}, 3.10 \mathrm{mmol}, 1.00 \mathrm{eq}$.) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.1 \mathrm{~mL})$ was added. The reaction was allowed to warm to rt and stirring was continued for

20 h before quenching with 3 m aqueous hydrochloric acid (11 mL). The residue was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with 3 M aqueous hydrochloric acid $(4 \times 10 \mathrm{~mL})$ and water $(2 \times 10 \mathrm{~mL})$ and dried over sodium sulfate. Removal of the solvent in vacuo gave the target compound $6(0.90 \mathrm{~g}$, $2.31 \mathrm{mmol}, 75 \%$) as a colorless oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}] 8.34(\mathrm{sb}, 1 \mathrm{H}, \mathrm{OH})$, $7.29-7.40(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.55(\mathrm{~s}, 1 \mathrm{H}, \mathrm{P}-\mathrm{H}), 5.11\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}\right), 5.11\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}\right)$, $2.86-2.94(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 2.30-2.38(\mathrm{~m}, 2 \mathrm{H}, 4-\mathrm{H}), 2.13-2.21(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 1.97-2.04(\mathrm{~m}$, $2 \mathrm{H}, 1-\mathrm{H}, 3-\mathrm{H}), 1.81-1.88(\mathrm{~m}, 1 \mathrm{H}, 1-\mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}] 173.4$ (C5), 172.2 (C2'), 135.8 (Ar-C), 135.4 (Ar-C), 128.6 (Ar-CH), 128.6 (Ar-CH), 128.4 (Ar-CH), 128.3 $(\mathrm{Ar}-\mathrm{CH}), 128.3(\mathrm{Ar}-\mathrm{CH}), 128.2(\mathrm{Ar}-\mathrm{CH}), 127.7(\mathrm{Ar}-\mathrm{CH}), 127.0(\mathrm{Ar}-\mathrm{CH}), 67.0\left(\mathrm{CH}_{2}-\mathrm{Ph}\right), 66.4$ $\left(\mathrm{CH}_{2}-\mathrm{Ph}\right), 38.1$ (d, J $8.0 \mathrm{~Hz}, \mathrm{C} 2$), 31.3 (C4), 30.7 (C1), 28.1 (d, J $46.8 \mathrm{~Hz}, \mathrm{C} 3$). ${ }^{31} \mathrm{P}-\mathrm{NMR}$ ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]$ 34.9. MS (ESI): m / z (\%) 391.13 (18) $[\mathrm{M}+\mathrm{H}]^{+}, 413.11$ (100) $[\mathrm{M}+\mathrm{Na}]^{+}, 803.23$ (32) $[2 \mathrm{M}+\mathrm{Na}]^{+}$.
(R)-(5-(Benzyloxy)-2-((benzyloxy)carbonyl)-5-oxopentyl)phosphinic acid ((R)-6): NEt_{3} $(0.83 \mathrm{~mL}, 6.00 \mathrm{mmol}, 1.00 \mathrm{eq})$ was added to a solution of yohimbine $\cdot \mathrm{HCl}(2.30 \mathrm{~g}, 6.00 \mathrm{mmol}$, 1.00 eq .) in water (10 mL) and stirred for 3 h at rt . The mixture was filtered, and the filter cake was washed with water $(2 \times 10 \mathrm{~mL})$ and with $\mathrm{MeOH}(10 \mathrm{~mL})$. Removal of the solvent in vacuo gave yohimbine ($2.00 \mathrm{~g}, 5.64 \mathrm{mmol}, 94 \%$) as a white solid. Yohimbine ($2.00 \mathrm{~g}, 5.64 \mathrm{mmol}, 1.00 \mathrm{eq}$. was added to a solution of $\operatorname{rac}-6(2.20 \mathrm{~g}, 5.64 \mathrm{mmol}, 1.00 \mathrm{eq}$.) in acetone (11 mL) and heated to reflux for 3 h . Water (1.23 mL) was added and the mixture was cooled to $-20^{\circ} \mathrm{C}$, filtered and the collected solid was washed with cold acetone. The filtrate is kept for the synthesis of (S) - $\mathbf{6}$. The solid was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(13 \mathrm{~mL})$ and 10% sulfuric acid (2.35 mL) was added. The mixture was stirred for 30 min at rt and the phases were separated. The organic phase was washed with 10% sulfuric acid $(2 \times 10 \mathrm{~mL})$ and water $(2 \times 10 \mathrm{~mL})$. Removal of the solvent in vacuo gave the target molecule $(R)-6(0.62 \mathrm{~g}, 1.59 \mathrm{mmol}, 28 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta[\mathrm{ppm}] 7.32-7.37(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.42(\mathrm{~s}, 1 \mathrm{H}, \mathrm{P}-\mathrm{H}), 5.11\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}\right), 5.08\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}-\right.$ $\mathrm{Ph}), 2.87-2.96(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 2.34-2.39(\mathrm{~m}, 2 \mathrm{H}, 4-\mathrm{H}), 2.13-2.25(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 1.99-2.05$ (m, $2 \mathrm{H}, 1-\mathrm{H}, 3-\mathrm{H}), 1.81-1.90(\mathrm{~m}, 1 \mathrm{H}, 1-\mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}] 173.5$ (C5), 172.2 (C2'), 135.8 (Ar-C), 135.4 (Ar-C), 128.6 (Ar-C), 128.6 (Ar-CH), 128.4 (Ar-CH), 128.3 (Ar-CH), 128.3 (Ar-CH), 128.2 ($\mathrm{Ar}-\mathrm{CH})$, $67.1\left(\mathrm{CH}_{2}-\mathrm{Ph}\right), 66.4\left(\mathrm{CH}_{2}-\mathrm{Ph}\right), 38.1$ (d, J 8.0 Hz, C2), 31.3 (C4), 30.7 (C 1), 28.1 (d, J $46.8 \mathrm{~Hz}, \mathrm{C} 3$). ${ }^{31} \mathrm{P}-\mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}] 34.7 . \mathrm{MS}$ (ESI): $m / z(\%) 391.13(12)[\mathrm{M}+\mathrm{H}]^{+}, 413.11$ (100) $[\mathrm{M}+\mathrm{Na}]^{+}, 803.23$ (34) $[2 \mathrm{M}+\mathrm{Na}]^{+}$.
(S)-(5-(Benzyloxy)-2-((benzyloxy)carbonyl)-5-oxopentyl)phosphinic acid ((S)-6): (S)- α Methylbenzylamine ($2.20 \mathrm{~mL}, 17.1 \mathrm{mmol}, 1.00 \mathrm{eq}$.) was added to the filtrate of the procedure above and the resulting mixture was heated to reflux for 3 h . The reaction was cooled to $-20^{\circ} \mathrm{C}$, filtered and the collected solid was washed with cold acetone. The solid was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (20 mL) and 2 m aqueous hydrochloric acid (10 mL) was added. The solution was stirred for 30 min at rt and the phases were separated. The organic phase was washed with 2 m aqueous hydrochloric acid $(2 \times 20 \mathrm{~mL})$ and water $(2 \times 20 \mathrm{~mL})$. Removal of the solvent in vacuo gave the target molecule (S) $\mathbf{6}\left(0.74 \mathrm{~g}, 1.90 \mathrm{mmol}, 31 \%\right.$) as a colorless oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta[\mathrm{ppm}] 7.32-7.35(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 5.11\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}\right), 5.08\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}\right), 2.91(\mathrm{~s}, 1 \mathrm{H}$,

2-H), $2.34-2.39(\mathrm{~m}, 2 \mathrm{H}, 4-\mathrm{H}), 2.17-2.29(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 2.02-2.05(\mathrm{~m}, 2 \mathrm{H}, 1-\mathrm{H}, 3-\mathrm{H}), 1.83-$ $1.90(\mathrm{~m}, 1 \mathrm{H}, 1-\mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}] 173.4$ (C5), 172.2 (C2'), 135.8 (Ar-C), 135.4 ($\mathrm{Ar}-\mathrm{C}$), 128.6 ($\mathrm{Ar}-\mathrm{CH}$), 128.6 ($\mathrm{Ar}-\mathrm{CH}$), 128.4 ($\mathrm{Ar}-\mathrm{CH}$), 128.3 ($\mathrm{Ar}-\mathrm{CH}$), 128.3 ($\mathrm{Ar}-\mathrm{CH}$), $128.2(\mathrm{Ar}-\mathrm{CH}), 67.1\left(\mathrm{CH}_{2}-\mathrm{Ph}\right), 66.5\left(\mathrm{CH}_{2}-\mathrm{Ph}\right), 38.1(\mathrm{C} 2), 31.3(\mathrm{C} 4), 31.3(\mathrm{C} 1) .{ }^{31} \mathrm{P}-\mathrm{NMR}$ ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]$ 35.4. $\mathrm{MS}(\mathrm{ESI}): m / z(\%) 391.13$ (100) $[\mathrm{M}+\mathrm{H}]^{+}, 413.11$ (54) $[\mathrm{M}+\mathrm{Na}]^{+}, 781.25(80)[2 \mathrm{M}+\mathrm{H}]^{+}, 803.23(88)[2 \mathrm{M}+\mathrm{Na}]^{+}, 1171.37(12)[3 \mathrm{M}+\mathrm{Na}]^{+}, 1193.38$ (31) $[2 \mathrm{M}+\mathrm{Na}]^{+}$.
((R)-5-(Benzyloxy)-2-((benzyloxy)carbonyl)-5-oxopentyl)((S)-3-
(((benzyloxy)carbonyl)amino)-4-methoxy-4-oxobutyl)phosphinic acid ((S,R)-7): To a solution of $\quad(R)-6 \quad(0.31 \mathrm{~g}, \quad 0.79 \mathrm{mmol}, \quad 1.00 \quad$ eq. $) \quad$ in $\quad \mathrm{CH}_{2} \mathrm{Cl}_{2} \quad(5 \mathrm{~mL}) \quad$ was added N, O-Bis(trimethylsilyl)acetamide ($0.59 \mathrm{~mL}, 1.59 \mathrm{mmol}, 2.00 \mathrm{eq}$.) and the mixture was heated to reflux for 4 h . (S)-Vinylglycine (3) $(0.20 \mathrm{~g}, 0.79 \mathrm{mmol}, 1.00 \mathrm{eq}$.) was added and the reaction was heated to reflux for 72 h . The reaction was quenched with 2 m aqueous hydrochloric acid (3 mL) and the mixture was washed with 2 m aqueous hydrochloric acid $(2 \times 5 \mathrm{~mL})$. The solvent was removed in vacuo and the residue was purified by flash chromatography ($\mathrm{EtOAc} \rightarrow \mathrm{EtOH}$) to give the target compound $(S, R)-7(0.29 \mathrm{~g}, 0.45 \mathrm{mmol}, 56 \%)$ as a colorless solid. ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, MeOD): $\delta[\mathrm{ppm}] 7.20-7.23(\mathrm{~m}, 15 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 4.95-5.02\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}\right), 4.19\left(\mathrm{~d},{ }^{3} \mathrm{~J} 18.6 \mathrm{~Hz}\right.$, $\left.1 \mathrm{H}, 3{ }^{\prime}-\mathrm{H}\right), 3.58\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.72-2.79(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 2.17-2.25(\mathrm{~m}, 2 \mathrm{H}, 4-\mathrm{H}), 1.99-2.05$ (m, 2 H, 1-H, 2'-H), $1.76-1.97\left(\mathrm{~m}, 3 \mathrm{H}, 2^{\prime}-\mathrm{H}, 3-\mathrm{H}\right), 1.43-1.53(\mathrm{~m}, 1 \mathrm{H}, 1-\mathrm{H}), 1.20\left(\mathrm{t},{ }^{3} \mathrm{~J} 12.0 \mathrm{~Hz}\right.$, $\left.1 \mathrm{H}, 1^{\prime}-\mathrm{H}\right), 0.76-0.80(\mathrm{~m}, 1 \mathrm{H}, 1-\mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}, \mathrm{MeOD}): \delta$ [ppm] 174.4 (C2''), 174.3 (C5), 174.3 (C4'), 158.5 (Cbz-COOBn), 138.0 (Ar-C), 137.5 (Ar-C), 137.5 (Ar-C), 129.5 (Ar-CH), 129.5 (Ar-CH), 129.4 (Ar-CH), 129.4 (Ar-CH), 129.3 (Ar-CH), 129.3 (Ar-CH), 129.2 (Ar-CH), 129.2 ($\mathrm{Ar}-\mathrm{CH}$), 129.2 ($\mathrm{Ar}-\mathrm{CH}), 129.1$ ($\mathrm{Ar}-\mathrm{CH}), 129.1$ ($\mathrm{Ar}-\mathrm{CH}), 129.0(\mathrm{Ar}-\mathrm{CH}), 129.0(\mathrm{Ar}-\mathrm{CH})$, $\left.128,8(\mathrm{Ar}-\mathrm{CH}), 67.9\left(\mathrm{CH}_{2}-\mathrm{Ph}\right), 67.8\left(\mathrm{CH}_{2}-\mathrm{Ph}\right), 67.6\left(\mathrm{CH}_{2}-\mathrm{Ph}\right), 58.0(\mathrm{C} 3)\right), 52.8\left(\mathrm{OCH}_{3}\right), 40.5(\mathrm{C} 2)$, $32.5(\mathrm{C} 4), 32.4(\mathrm{C} 1), 32.4(\mathrm{C} 1), 30.0(\mathrm{C} 3), 29.9\left(\mathrm{C} 1\right.$ '). MS (ESI): $m / z(\%) 640.23$ (100) $[\mathrm{M}+\mathrm{H}]^{+}$, $662.21(43)[\mathrm{M}+\mathrm{Na}]^{+}, 678.18$ (27) $[\mathrm{M}+\mathrm{K}]^{+}$.
((S)-5-(Benzyloxy)-2-((benzyloxy)carbonyl)-5-oxopentyl)((S)-3-
(((benzyloxy)carbonyl)amino)-4-methoxy-4-oxobutyl)phosphinic acid ((S,S)-7): To a solution of $(S)-6 \quad(0.44 \mathrm{~g}, \quad 1.13 \mathrm{mmol}, \quad 1.00 \quad$ eq. $) \quad$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2} \quad(10 \mathrm{~mL})$ was added N, O-Bis(trimethylsilyl)acetamide ($1.11 \mathrm{~mL}, 4.52 \mathrm{mmol}, 4.00 \mathrm{eq}$.) and the mixture was heated to reflux for 4 h . (S)-Vinylglycine (3) ($0.28 \mathrm{~g}, 1.13 \mathrm{mmol}, 1.00 \mathrm{eq}$.) was added and the reaction was heated to reflux for 120 h . The reaction was quenched with 2 m aqueous hydrochloric acid (3 mL) and the organic phase was washed with 2 m aqueous hydrochloric acid $(2 \times 10 \mathrm{~mL})$. The solvent was removed in vacuo and the residue was purified by flash chromatography (EtOAc/PE, 1:1 \rightarrow $\mathrm{EtOH})$ to give the target compound $(S, S)-7(0.38 \mathrm{~g}, 0.59 \mathrm{mmol}, 53 \%)$ as a colorless solid. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}] 7.20-7.35$ (m, $15 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), $4.88-5.12$ (m, $6 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}$), 4.48 (s, $1 \mathrm{H}, 3$ '-H), $3.45-3.60\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.11(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 2.21-2.33(\mathrm{~m}, 2 \mathrm{H}, 4-\mathrm{H}), 2.06-2.15$ (m, $\left.1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 1.86-1.94(\mathrm{~m}, 1 \mathrm{H}, 1-\mathrm{H}), 1.74-1.85\left(\mathrm{~m}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right) 1.67-1.73(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H})$, $1.55-1.64(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 1.42-1.52(\mathrm{~m}, 1 \mathrm{H}, 1-\mathrm{H}), 1.19-1.25\left(\mathrm{~m}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}\right), 0.94-1.02(\mathrm{~m}$, $\left.1 \mathrm{H}, 1^{\prime}-\mathrm{H}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}, \mathrm{MeOD}): \delta[\mathrm{ppm}] 174.2$ (C2'`), 174.2 (C5), 172.2 (C4'), 136.2
(Ar-C), 136.11 (Ar-C), 128.4 (Ar-CH), 128.4 (Ar-CH), 128.4 (Ar-CH), 128.3 (Ar-CH), 128.0 (Ar$\mathrm{CH}), 128.0(\mathrm{Ar}-\mathrm{CH}), 127.9(\mathrm{Ar}-\mathrm{CH}), 127.8(\mathrm{Ar}-\mathrm{CH}), 69.8\left(\mathrm{CH}_{2}-\mathrm{Ph}\right), 65.6\left(\mathrm{CH}_{2}-\mathrm{Ph}\right), 65.4\left(\mathrm{CH}_{2}-\right.$ Ph), 40.1 (C 2), 31.1 (C4), 31.0 (C1), 31.0 (C1), 29.2 (C3), 29.1 (C1'). MS (ESI): m/z (\%) 640.22 (100) $[\mathrm{M}+\mathrm{H}]^{+}, 662.20(70)[\mathrm{M}+\mathrm{Na}]^{+}$.
tert-Butyl 2-(bromomethyl)acrylate (9). The title compound 9 was synthesized as a colorless liquid according to a literature procedure for the methyl ester analogue from alcohol $\mathbf{8}(3.92 \mathrm{~mL}$, $25.2 \mathrm{mmol}){ }^{32}$ Yield: $4.70 \mathrm{~g}(21.28 \mathrm{mmol}, 84 \%) . R_{\mathrm{f}}: 0.66\left(\mathrm{SiO}_{2}\right.$, EtOAc:Cyclohexan-1:2). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}] 6.22$ (dd, $\left.{ }^{2} J_{1 \mathrm{H}-1 \mathrm{H}}=0.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{~b}\right), 5.96\left(\mathrm{dd},{ }^{2} J_{1 \mathrm{H}-1 \mathrm{H}}=0.8 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{H}-3 \mathrm{a}), 4.14\left(\mathrm{~d},{ }^{4} J_{1 \mathrm{H}-1 \mathrm{H}}=0.7 \mathrm{~Hz}, 2 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 1.52\left(\mathrm{~s}, 9 \mathrm{H},{ }^{t} \mathrm{Bu}-\mathrm{H}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ [ppm] $164.1(\mathrm{C} 1), 139.0(\mathrm{C} 2), 128.1(\mathrm{C} 3), 81.9\left({ }^{(} \mathrm{Bu}-\mathrm{C}\right), 30.0\left(\mathrm{C} 2{ }^{\prime}\right), 28.1\left({ }^{(} \mathrm{Bu}^{2}-\mathrm{CH}_{3}\right) . \mathrm{CHN}$: found (calculated) [\%]: C 42.36 (43.46); H 5.80 (5.93).
tert-Butyl 4-hydroxy-2-methylenebutanoate 10. The title compound was prepared following a procedure of O'Leary et al from bromide 9 (1.63 g 5.4 mmol). Title compound $\mathbf{1 0}$ was obtained as a colorless liquid in 60% yield. $R_{\mathrm{f}}: 0.29\left(\mathrm{SiO}_{2}, \mathrm{EtOAc}:\right.$ hexanes- $\left.1: 2\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta[\mathrm{ppm}] 6.13$ (m, $\left.1 \mathrm{H}, \mathrm{H}-2{ }^{\prime} \mathrm{b}\right), 5.58\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2{ }^{\prime} \mathrm{a}\right), 3.74$ (t, ${ }^{3} \mathrm{~J}_{1 \mathrm{H}-1 \mathrm{H}} 6.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-4$), 2.53 (td, $\left.{ }^{3} \mathrm{~J}_{1 \mathrm{H}-1 \mathrm{H}} 6.0 \mathrm{~Hz},{ }^{4} J_{1 \mathrm{H}-1 \mathrm{H}}=0.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3\right), 2.27(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 1.49\left(\mathrm{~s}, 9 \mathrm{H},{ }^{t} \mathrm{Bu}-\mathrm{H}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}] 167.0(\mathrm{C} 1), 139.3(\mathrm{C} 2), 126.4\left(\mathrm{C} 2\right.$ '), 81.2 ($\left.{ }^{(} \mathrm{Bu}-\mathrm{C}\right), 62.0(\mathrm{C} 4), 35.8(\mathrm{C} 3)$, 28.2 (${ }^{(} \mathrm{Bu}-\mathrm{CH}_{3}$). CHN: found (calcd) [\%]: C 61.89 (62.77); H 9.34 (9.36). HRMS (ESI) [$\left.\mathrm{m} / \mathrm{z}\right]$: calcd for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{3}\left[\mathrm{M}+\mathrm{Na}^{+}: 195.0992\right.$, found: 195.0991. IR (film): v [$\left.\mathrm{cm}^{-1}\right] 3413.8(\mathrm{~m}), 2978.4$ (m), 2934.4 (m), 2884.1 (w), 1711.3 (s$), 1631.6$ (m), 1478.5 (w), 1458.2 (w), 1393.3 (m), 1369.1 (s), 1341.2 (m), 1314.4 (m), 1254.8 (m), 1214.6 (m), 1150.3 (s), 1049.7 (m), 946.4 (w), 852.1 (w), 818.8 (w), 759.5 (w), 683.6 (w).
($\mathbf{2 R}, \mathbf{4 S}$)-tert-Butyl 2-(3-(tert-butoxy)-3-oxopropyl)-1,2-oxaphosphinane-4-carboxylate 2-oxide 13. H-Phosphinate 11 ($47 \mathrm{mg}, 0.24 \mathrm{mmol}$; 1 eq .) was dissolved in 3 mL dry MeCN and 1 mL dry pyridine. Pivaloyl chloride ($60 \mu \mathrm{~L}, 0.48 \mathrm{mmol} ; 2 \mathrm{eq}$.) and ester $10(41 \mathrm{mg}, 0.24 \mathrm{mmol} ; 1 \mathrm{eq}$.) were added and the solution was stirred at rt under nitrogen atmosphere for 1 h . The solvent was removed in vacuo to give the crude phosphinate 12, which was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (4 mL). N, O Bis(trimethylsilyl)acetamid (BSA) ($0.24 \mathrm{~mL}, 0.95 \mathrm{mmol} ; 6 \mathrm{eq}$.) was added and the solution was stirred for 96 h at rt under nitrogen atmosphere. The solution was treated with aqueous $1 \mathrm{~N} \mathrm{HCl}(2$ mL), phases were separated and the organic phase was evaporated to dryness in vacuo. The residue was purified by column chromatography on silica ($\mathrm{EtOAc}: \mathrm{MeOH}, 50: 3$) to give the title compound $\mathbf{1 3}$ ($38 \mathrm{mg}, 46 \%$) as a 2.2:1-mixture of two diastereoisomers. Analytical data for $\mathbf{1 2}$: ${ }^{1} \mathrm{H}-\mathrm{NMR}(400$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}] 7.86+6.49\left(\mathrm{dt},{ }^{1} J_{31 \mathrm{P}-1 \mathrm{H}} 547.3 \mathrm{~Hz},{ }^{3} J_{1 \mathrm{H}-1 \mathrm{H}} 1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{P}-\mathrm{H}\right), 6.16\left(\mathrm{~d},{ }^{2}{ }^{2} 1.2\right.$ $\left.\mathrm{Hz}, 1 \mathrm{H}, 2{ }^{\prime} \mathrm{b}-\mathrm{H}\right), 5.58\left(\mathrm{~d},{ }^{2} J 1.2 \mathrm{~Hz}, 1 \mathrm{H}, 2 ’ \mathrm{a}-\mathrm{H}\right), 4.25-4.07(\mathrm{~m}, 2 \mathrm{H}, 4-\mathrm{H}), 2.64\left(\mathrm{t},{ }^{3} J_{1 \mathrm{H}-1 \mathrm{H}} 6.5 \mathrm{~Hz}, 2\right.$ H, 3-H), 2.62-2.44 (m, 2 H, 6-H), 2.01 (dtd, J $15.2 \mathrm{~Hz}, J 7.3 \mathrm{~Hz}, J 2.0 \mathrm{~Hz}, 2 \mathrm{H}, 5-\mathrm{H}), 1.47$ (s, 9 H , $\left.{ }^{t} \mathrm{Bu}-\mathrm{H}\right), 1.42\left(\mathrm{~s}, 9 \mathrm{H},{ }^{\dagger} \mathrm{Bu}-\mathrm{H}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}] 137.4$ (C2), 127.1 (C2'), 81.6 ($\left.{ }^{t} \mathrm{Bu}-\mathrm{C}\right), 81.2\left({ }^{t} \mathrm{Bu}-\mathrm{C}\right), 65.0\left(\mathrm{C} 4,{ }^{2} \mathrm{~J}_{31 \mathrm{P}-13 \mathrm{C}} 6.8 \mathrm{~Hz}\right), 33.4\left(\mathrm{C} 3,{ }^{3} \mathrm{~J}_{31 \mathrm{P}-13 \mathrm{C}} 6.2 \mathrm{~Hz}\right), 28.1\left({ }^{t} \mathrm{Bu}^{2}-\mathrm{CH}_{3}\right), 27.2$ (C6, ${ }^{2} J_{31 \mathrm{P}-13 \mathrm{C}} 2.7 \mathrm{~Hz}$), $24.6+23.7\left(\mathrm{C} 5,{ }^{1} J_{31 \mathrm{P}-13 \mathrm{C}} 95.6 \mathrm{~Hz}\right.$), C1 and C7 not observed. ${ }^{31} \mathrm{P}-\mathrm{NMR}$ (162 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]$ 38.07. HRMS (ESI) $[\mathrm{m} / \mathrm{z}]:$ calcd for $\mathrm{C}_{16} \mathrm{H}_{29} \mathrm{O}_{6} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}: 349.1775$, found: 349.1771; [M + Na] ${ }^{+}$: 371.1594, found: 371.1594. Analytical data for 13: $R_{\mathrm{f}}: 0.43+0.47$
(SiO_{2}, EtOAc:MeOH-10:1). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}] 4.41(\mathrm{~m}, 1 \mathrm{H}, 1 \mathrm{a}-\mathrm{H}), 4.14$ (m, 1 H, 1b-H), $4.05(\mathrm{~m}, 1 \mathrm{H}, 1 \mathrm{~b}-\mathrm{H}), 3.06(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 2.73(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 2.56(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{a}-\mathrm{H}$, $\left.3^{\prime} \mathrm{a}-\mathrm{H}\right), 2.20\left(\mathrm{~m}, 1 \mathrm{H}, 2{ }^{\prime} \mathrm{b}-\mathrm{H}\right), 2.04(\mathrm{~m}, 3 \mathrm{H}, 1$ '-H, $2 \mathrm{a}-\mathrm{H}), 1.82(\mathrm{~m}, 1 \mathrm{H}, 2 \mathrm{~b}-\mathrm{H}), 1.71(\mathrm{~m}, 1 \mathrm{H}$, $\left.3^{\prime}{ }^{\prime} \mathrm{b}-\mathrm{H}\right), 1.44+1.43+1.42+1.42\left(\mathrm{~s}, 18 \mathrm{H},{ }^{\mathrm{t}} \mathrm{Bu}-\mathrm{H}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}] 172.4$ $\left(\mathrm{C} 4,{ }^{3} J_{31 \mathrm{P}-13 \mathrm{C}} 16.2 \mathrm{~Hz}\right), 171.6\left(\mathrm{C} 4,{ }^{3} J_{31 \mathrm{P}-13 \mathrm{C}} 12.7 \mathrm{~Hz}\right), 171.5\left(\mathrm{C} 3\right.$, $\left.{ }^{3} J_{31 \mathrm{P}-13 \mathrm{C}} 15.6 \mathrm{~Hz}\right), 171.1(\mathrm{C} 3$, ${ }^{3} J_{31 \mathrm{P}-13 \mathrm{C}} 14.8 \mathrm{~Hz}$), 81.8 ($\left.{ }^{t} \mathrm{Bu}-\mathrm{C}\right), 81.4$ ($\left.{ }^{t} \mathrm{Bu}-\mathrm{C}\right), 81.2$ ($\left.{ }^{t} \mathrm{Bu}-\mathrm{C}\right), 81.2$ ($\left.{ }^{t} \mathrm{Bu}-\mathrm{C}\right), 66.7\left(\mathrm{C} 1,{ }^{2} J_{31 \mathrm{P}-13 \mathrm{C}} 5.9\right.$ $\mathrm{Hz}), 64.6\left(\mathrm{C} 1,{ }^{2} J_{31 \mathrm{P}-13 \mathrm{C}} 6.2 \mathrm{~Hz}\right), 39.3\left(\mathrm{C} 3,{ }^{2} J_{31 \mathrm{P}-13 \mathrm{C}} 4.4 \mathrm{~Hz}\right), 37.3\left(\mathrm{C} 3,{ }^{2} J_{31 \mathrm{P}-13 \mathrm{C}} 5.9 \mathrm{~Hz}\right), 29.3(\mathrm{C} 2$, $\left.{ }^{3} J_{31 \mathrm{P}-13 \mathrm{C}} 4.4 \mathrm{~Hz}\right), 28.0\left({ }^{+} \mathrm{Bu}-\mathrm{CH}_{3}\right), 27.9\left({ }^{(} \mathrm{Bu}-\mathrm{CH}_{3}\right), 27.3\left(\mathrm{C} 2{ }^{\prime},{ }^{2} J_{31 \mathrm{P}-13 \mathrm{C}} 2.9 \mathrm{~Hz}\right), 27.7+26.9\left(\mathrm{C} 3{ }^{\prime}{ }^{\prime}\right.$, $\left.{ }^{1} J_{31 \mathrm{P}-13 \mathrm{C}} 83.0 \mathrm{~Hz}\right), 26.7\left(\mathrm{C} 2{ }^{\prime},{ }^{2} J_{31 \mathrm{P}-13 \mathrm{C}} 3.1 \mathrm{~Hz}\right), 24.6+23.6\left(\mathrm{C} 1,{ }^{\prime},{ }^{1} J_{31 \mathrm{P}-13 \mathrm{C}} 98.6 \mathrm{~Hz}\right), 21.4+20.5$ (C1', ${ }^{1} J_{31 \mathrm{P}-13 \mathrm{C}} 91.0 \mathrm{~Hz}$). ${ }^{31} \mathrm{P}-\mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}] 49.88$ (diastereomer A) +47.51 (diastereomer B) (integration: 2.2 : 1.0). HRMS (ESI) $[\mathrm{m} / \mathrm{z}]$: calcd for $\mathrm{C}_{16} \mathrm{H}_{29} \mathrm{O}_{6} \mathrm{P}[\mathrm{M}+\mathrm{Na}]^{+}$: 371.1594, found: 371.1603. IR (film): $v\left[\mathrm{~cm}^{-1}\right] 3434.1(\mathrm{w}), 2977.0(\mathrm{~m}), 2931.6(\mathrm{~m}), 1726.6(\mathrm{~s})$, 1477.4 (w), 1457.4 (w), 1393.4 (m), 1367.8 (s), 1250.6 (s), 1158.2 (s), 1056.1 (m), 1025.5 (m), $983.3(\mathrm{~m}), 957.4(\mathrm{~m}), 906.7(\mathrm{~m}), 873.8(\mathrm{w}), 841.0(\mathrm{~m}), 752.7(\mathrm{~m}), 664.6(\mathrm{w}), 544.7(\mathrm{w})$.
tert-Butyl

2-((S)-3-(((benzyloxy)carbonyl)amino)-4-methoxy-4-oxobutyl)-1,2-

 oxaphosphinane-4-carboxylate 2-oxide 16. H-Phosphinate $\mathbf{1 4}$ ($50 \mathrm{mg}, 0.16 \mathrm{mmol} ; 1 \mathrm{eq}$.) was dissolved in 3 mL dry MeCN and 1 mL dry pyridine. Pivaloyl chloride ($60 \mu \mathrm{~L}, 0.48 \mathrm{mmol}$; 3 eq .) and ester 10 ($28 \mathrm{mg}, 0.16 \mathrm{mmol} ; 1 \mathrm{eq}$.) were added and the solution was stirred at rt under nitrogen atmosphere for 48 h . The solvent was removed in vacuo to give the crude phosphinate 15, which was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$. N, O-Bis(trimethylsilyl)acetamid (BSA) ($0.24 \mathrm{~mL}, 0.95$ mmol; 6 eq.) was added and the solution was stirred for 96 h at rt under nitrogen atmosphere. The solution was treated with aqueous $1 \mathrm{~N} \mathrm{HCl}(2 \mathrm{~mL})$, phases were separated and the organic phase was evaporated to dryness in vacuo. The residue was purified by column chromatography on silica (EtOAc:MeOH, 25:1) to give the title compound 16 ($22 \mathrm{mg}, 31 \%$) as a mixture of diastereoisomers. Analytical data for 15: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}] 7.71+6.36(\mathrm{~d}$, $\left.{ }^{1} J_{31 \mathrm{P}-1 \mathrm{H}} 540.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{P}-\mathrm{H}\right), 7.31-7.22(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.11\left(\mathrm{~s}, \mathrm{H}, 3\right.$ '’b-H), $5.53\left(\mathrm{~s}, 1 \mathrm{H}, 3{ }^{\prime} \mathrm{a}-\mathrm{H}\right)$, $5.63\left(\mathrm{~d},{ }^{3} \mathrm{~J} 7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{N}-\mathrm{H}\right), 5.04\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}\right), 4.35(\mathrm{~m}, 1 \mathrm{H}, 3$ '-H), 4.21-4.02(m, 2 H, 1-H), $3.69\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.59\left(\mathrm{t},{ }^{3} \mathrm{~J}_{1 \mathrm{H}-1 \mathrm{H}} 6.4 \mathrm{~Hz}, 2 \mathrm{H}, 2-\mathrm{H}\right), 2.20-2.06(\mathrm{~m}, 1 \mathrm{H}, 2 \mathrm{a}-\mathrm{H}), 1.99-1.85(\mathrm{~m}, 1$ $\left.\mathrm{H}, 2^{\prime} \mathrm{b}-\mathrm{H}\right), 1.85-1.70\left(\mathrm{~m}, 2 \mathrm{H}, 1^{\prime}-\mathrm{H}\right), 1.42\left(\mathrm{~s}, 9 \mathrm{H},{ }^{t} \mathrm{Bu} \mathrm{H}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]$ 171.9 (C4'), 165.6 (C4), 155.8 (Cbz-COO), 137.2 (C3), $128.6+128.3+128.1$ (Ar-C), 127.0 (C3'’), 81.1 (${ }^{\text {'Bu}-C), ~} 67.2\left(\mathrm{CH}_{2}-\mathrm{Ph}\right), 65.0(\mathrm{C} 1), 54.0\left(\mathrm{C} 3\right.$ '), $52.7\left(\mathrm{OCH}_{3}\right), 33.3\left(\mathrm{C} 2,{ }^{3} J_{31 \mathrm{P}-13 \mathrm{C}} 6.1\right.$ $\mathrm{Hz}), 28.0\left({ }^{\mathrm{t}} \mathrm{Bu}^{\left(\mathrm{CH}_{3}\right)}\right.$, $24.0\left(\mathrm{C} 2{ }^{\prime}\right), \mathrm{C} 1$ ' not observed. ${ }^{31} \mathrm{P}-\mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}] 37.64$. HRMS (ESI) $[\mathrm{m} / \mathrm{z}]$: calcd for $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{NO}_{8} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}: 470.192$, found: 470.202. Analytical data for 15: $R_{\mathrm{f}}: 0.38+0.44\left(\mathrm{SiO}_{2}, \mathrm{EtOAc}: \mathrm{MeOH}-10: 1\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}] 7.33-7.25$ (m, 5 H, Ar-H), 6.07 (m, $1 \mathrm{H}, \mathrm{N}-\mathrm{H}), 5.06\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}\right), 4.33(\mathrm{~m}, 2 \mathrm{H}, 3$ '-H, H-1a), $4.08(\mathrm{~m}, 1$ $\mathrm{H}, 1 \mathrm{~b}-\mathrm{H}), 3.87(\mathrm{~m}, 1 \mathrm{H}, 1 \mathrm{~b}-\mathrm{H}), 3.69\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.98(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 2.59(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 2.24-$ 2.02 (m, 2 H, 2'a-H, $\left.3^{\prime} ’ \mathrm{a}-\mathrm{H}\right), 2.02-1.86\left(\mathrm{~m}, 2 \mathrm{H}, 2^{\prime} \mathrm{b}-\mathrm{H}, 2 \mathrm{a}-\mathrm{H}\right), 1.86-1.70\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-2 \mathrm{~b}, 1^{\prime}-\mathrm{H}\right)$, 1.70-1.53 (m, $\left.1 \mathrm{H}, 3^{\prime} ’ \mathrm{~b}-\mathrm{H}\right), 1.48-1.35\left(\mathrm{~m}, 9 \mathrm{H},{ }^{〔} \mathrm{Bu}-\mathrm{H}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]$ $172.5\left(\mathrm{C} 4,{ }^{3} \mathrm{~J}_{31 \mathrm{P}-13 \mathrm{C}} 16.1 \mathrm{~Hz}\right), 172.0(\mathrm{C} 4$ '), 156.1 ($\mathrm{Cbz}-\mathrm{COO}$), 136.2 ($\mathrm{Ar}-\mathrm{C}$), $128.7+128.4+128.3$ (Ar-CH), 81.7 ($\left.{ }^{(} \mathrm{Bu}-\mathrm{C}\right), 67.3\left(\mathrm{CH}_{2}-\mathrm{Ph}\right), 66.7\left(\mathrm{C} 1,{ }^{2} J_{31 \mathrm{P}-13 \mathrm{C}} 7.4 \mathrm{~Hz}\right), 64.7\left(\mathrm{C} 1,{ }^{2} J_{31 \mathrm{P}-13 \mathrm{C}} 6.0 \mathrm{~Hz}\right), 54.1$$\left(\mathrm{C} 3{ }^{\prime},{ }^{3} J_{31 \mathrm{P}-13 \mathrm{C}} 16.9 \mathrm{~Hz}\right), 52.9\left(\mathrm{OCH}_{3}\right), 52.8\left(\mathrm{OCH}_{3}\right), 39.5\left(\mathrm{C} 3,{ }^{2} J_{31 \mathrm{P}-13 \mathrm{C}} 4.0 \mathrm{~Hz}\right), 37.6\left(\mathrm{C} 3,{ }^{2} J_{31 \mathrm{P}-13 \mathrm{C}}\right.$ $5.8 \mathrm{~Hz}), 29.5\left(\mathrm{C} 2,{ }^{3} J_{31 \mathrm{P}-13 \mathrm{C}} 4.0 \mathrm{~Hz}\right), 28.6\left(\mathrm{C} 2,{ }^{3} J_{31 \mathrm{P}-13 \mathrm{C}} 6.5 \mathrm{~Hz}\right), 28.1\left({ }^{\mathrm{t}} \mathrm{Bu}^{2} \mathrm{CH}_{3}\right), 28.5+27.7\left(\mathrm{C} 3{ }^{\prime}\right.$, $\left.{ }^{1} J_{31 \mathrm{P}-13 \mathrm{C}} 81.0 \mathrm{~Hz}\right), 27.9+27.0\left(\mathrm{C} 3 ',{ }^{1} J_{31 \mathrm{P}-13 \mathrm{C}} 85.8 \mathrm{~Hz}\right), 25.7+24.8\left(\mathrm{C} 1{ }^{\prime},{ }^{1} J_{31 \mathrm{P}-13 \mathrm{C}} 92.4 \mathrm{~Hz}\right), 24.8$ (C2'), 24.4 (C2'). ${ }^{31} \mathrm{P}-\mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}] 48.87$ (diastereomer A) +46.47 (diastereomer B) (integration: 2.3 : 1.0). HRMS (ESI) [$\mathrm{m} / \mathrm{z}]:$ calcd for $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{NO}_{8} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}$: 470.1938, found: 470.1944; [M + Na] ${ }^{+}$: 492.1758, found: 492.1745. IR (Film): v [$\left.\mathrm{cm}^{-1}\right] 3228.8$ (w), 3033.1 (w), 2974.8 (m), 1720.7 (s), 1535.2 (m), 1454.1 (m), 1392.8 (w), 1368.1 (m), 1251.4 (m), 1156.1 (m), 1103.3 (w), 1055.6 (m), 1028.4 (m), 983.3 (w), 958.2 (w), 906.4 (w), 872.5 (w), 831.5 (w), 740.6 (w), 698.7 (w).

4-((tert-Butyldiphenylsilyl)oxy)-2-methylenebutanoic acid 18. 4-Hydroxy-2-methylenbutanoic acid ($1.0 \mathrm{~g}, 8.6 \mathrm{mmol} ; 1 \mathrm{eq}$.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was treated with imidazole ($1.18 \mathrm{~g}, 17.2 \mathrm{mmol} ; 2$ eq.) and cooled to $0{ }^{\circ} \mathrm{C}$ under nitrogen atmosphere. $\operatorname{TBDPSCl}(4.73 \mathrm{~g}, 17.2 \mathrm{mmol}$; 2eq.) were added and the mixture was stirred at rt for 12 h . Water (10 mL) was added and the phases were separated. The aqueous phase was extracted three times with each $10 \mathrm{mLCH}_{2} \mathrm{Cl}_{2}$. The combined organics were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent was removed in vacuo. The crude product was dissolved in THF (25 mL) and cooled to $0^{\circ} \mathrm{C}$. An aqueous 2.9 N KOH solution (8.9 $\mathrm{mL}, 25.8 \mathrm{mmol}$) was added dropwise and the solution was stirred for 2 h at rt . The pH was adjusted with 1 N HCl to ~ 2 and $40 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ were added. The phases were separated and the aqueous phase was extracted three times with each $20 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organics were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent was removed in vacuo. The residue was purified by column chromatography on silica $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}-10: 1\right)$ to give the title compound $\mathbf{1 8}$ as a colorless solid ($2.54 \mathrm{~g}, 83 \%$). mp $63{ }^{\circ} \mathrm{C} . R_{\mathrm{f}}: 0.19\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}-30: 1\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, DMSO- d_{6}): $\delta[\mathrm{ppm}] 12.46$ (breites s, $1 \mathrm{H}, \mathrm{COOH}$), $7.60(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.49-7.38(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, $6.11\left(\mathrm{~d},{ }^{2} J_{\text {geminal }} 1.7 \mathrm{~Hz}, 1 \mathrm{H}, 2{ }^{\prime} \mathrm{b}-\mathrm{H}\right), 5.65\left(\mathrm{~m}, 1 \mathrm{H}, 2{ }^{\prime} \mathrm{a}-\mathrm{H}\right), 3.74\left(\mathrm{t}{ }^{3} J_{1 \mathrm{H}-1 \mathrm{H}} 6.5 \mathrm{~Hz}, 2 \mathrm{H}, 4-\mathrm{H}\right), 2.50$ (m, $2 \mathrm{H}, 3-\mathrm{H}$), 0.97 (s, $\left.9 \mathrm{H},{ }^{t} \mathrm{Bu}-\mathrm{H}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta[\mathrm{ppm}] 167.9$ (C1), 137.8 (C2), 135.0 (Ar-CH), 133.2 (Ar-C), 129.8 (Ar-CH), 127.5 (Ar-CH), 126.4 (C2'), 62.4 (C4), 34.8 (C3), 26.6 (${ }^{t} \mathrm{Bu}^{-} \mathrm{CH}_{3}$), 18.8 (${ }^{\mathrm{t}} \mathrm{Bu}-\mathrm{C}$). CHN : found (calcd) [\%]: C 70.91 (71.15); H 7.40 (7.39). HRMS (ESI) $[\mathrm{m} / \mathrm{z}]$: calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 355.1724$, found: 355.1734; $[\mathrm{M}+\mathrm{Na}]^{+}$: 377.1543, gef.: 377.1554. IR (KBr): $v\left[\mathrm{~cm}^{-1}\right] 3074.0(\mathrm{~m}), 3054.9(\mathrm{~m}), 3017.4$ (m), $2958.3(\mathrm{~m})$, 2928.8 (s), 2883.0 (m), 2854.9 (s$), 2617.3$ (w), 1684.0 (s), 1623.6 (s), 1589.1 (w), 1471.9 (m), 1429.7 (s), 1381.98 w), 1336.8 (w), 1314.4 (m), 1262.0 (m), 1231.5 (m), 1167.9 (m), 1106.7 (s), 1094.4 (s), 1045.0 (w), 1007.7 (w), 997.9 (w), 960.7 (m), 935.4 (m), 822.5 (m), 793.4 (w), 752.1 (m), 737.4 (m), 701.8 (s), $684.0(\mathrm{~m}), 614.0(\mathrm{~s}), 595.9(\mathrm{w}), 551.7$ (w), 506.3 (s$), 489.0(\mathrm{~m})$.
(1R,2R,4S)-1,7,7-Trimethylbicyclo[2.2.1]heptan-2-yl 4-((tert-butyldiphenylsilyl)oxy)-2methylenebutanoate 20. Carboxylic acid 18 ($600 \mathrm{mg}, 1.69 \mathrm{mmol}$; 1 eq), (-)-borneol (19) (782 $\mathrm{mg}, 5.07 \mathrm{mmol} ; 3 \mathrm{eq}$.) and DMAP ($248 \mathrm{mg}, 2.03 \mathrm{mmol}, 1.2 \mathrm{eq}$.) were dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10$ mL). The mixture was cooled to $0^{\circ} \mathrm{C}$ and a solution of 419 mg DCC (2.0 mmol ; 1.2 eq .) in 8 mL in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added drop wise. The solution was stirred for 12 h at rt , filtered over celite and the solvent was removed in vacuo. The residue was purified by column chromatography on silica $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to give the title compound $\mathbf{2 0}$ as a colorless oil ($696 \mathrm{mg}, 84 \%$). $R_{\mathrm{f}}: 0.72\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}] 7.66(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.44-7.34$ (m, $\left.6 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right), 6.25(\mathrm{~d}, J$ $\left.1.6 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime} ’ \mathrm{~b}-\mathrm{H}\right), 5.62\left(\mathrm{~d}, J 1.2 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime} ’ \mathrm{a}-\mathrm{H}\right), 4.89\left(\mathrm{~m}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 3.81(\mathrm{t}, J 6.4 \mathrm{~Hz}, 2 \mathrm{H}$, 4-H), 2.60 (t, J $6.3 \mathrm{~Hz}, 2 \mathrm{H}, 3-\mathrm{H}), 2.37\left(\mathrm{~m}, 1 \mathrm{H}, 3{ }^{\prime} \mathrm{a}-\mathrm{H}\right), 1.92\left(\mathrm{~m}, 1 \mathrm{H}, 6{ }^{\prime} \mathrm{a}-\mathrm{H}\right), 1.74\left(\mathrm{~m}, 1 \mathrm{H}, 5{ }^{\prime} \mathrm{a}-\mathrm{H}\right)$, $1.68\left(\mathrm{t}, J 4.5 \mathrm{~Hz}, 1 \mathrm{H}, 4^{\prime}-\mathrm{H}\right), 1.30\left(\mathrm{~m}, 1 \mathrm{H}, 6^{\prime} \mathrm{b}-\mathrm{H}\right), 1.19\left(\mathrm{~m}, 1 \mathrm{H}, 5^{\prime} \mathrm{b}-\mathrm{H}\right), 1.04\left(\mathrm{~s}, 9 \mathrm{H},{ }^{t} \mathrm{Bu}^{\prime} \mathrm{CH}_{3}\right)$, 0.95 (dd, J $13.8 \mathrm{H}, J 3.5 \mathrm{~Hz}, 1 \mathrm{H}, 3 \mathrm{~b}-\mathrm{H}), 0.92(\mathrm{~s}, 3 \mathrm{H}, 8-\mathrm{H}), 0.88$ (s, $3 \mathrm{H}, 8-\mathrm{H}), 0.81$ (s, $3 \mathrm{H}, 1$ ’’-H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}] 167.4$ (C1), 138.0 (C2), 135.7 ($\mathrm{Ar}-\mathrm{CH}$), 134.0 ($\mathrm{Ar}-\mathrm{C}$), 129.7 (C9 Ar-CH 127.8 (Ar-CH), 126.8 (C2), 80.3 (C2'), 62.6 (C4), 49.0 (C1'), 47.9 (C7'), 45.0
 13.7 (C1''). CHN: found (calcd) [\%]: C 75.45 (75.87); H 8.63 (8.63). HRMS (ESI) [m / z]: calcd for $\mathrm{C}_{31} \mathrm{H}_{42} \mathrm{O}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 491.2976$, found: 491.2985; [M + Na] ${ }^{+}$: 513.2795, found: 513.2802. IR (Film): $v\left[\mathrm{~cm}^{-1}\right] 3071.3(\mathrm{~m}), 3049.4(\mathrm{w}), 2956.6(\mathrm{~s}), 2879.4(\mathrm{~s}), 2858.0(\mathrm{~s}), 2119.6(\mathrm{w}), 1715.3(\mathrm{~s})$, 1632.0 (w), 1589.6 (w), 1472.7 (m), 1454.0 (m), 1428.1 (s), 1390.3 (m), 1361.7 (m), 1337.9 (m), 1305.9 (m), $1265.0(\mathrm{~m}), 1215.5(\mathrm{~m}), 1157.1$ (s), 1112.5 (s), $1048.0(\mathrm{~m}), 1020.0(\mathrm{~m}), 993.4(\mathrm{~m})$, 981.2 (w), 932.5 (m), 888.7 (w), 823.5 (m), 777.9 (w), 738.1 (s), 702.2 (s$), 621.9$ (w), $613.9(\mathrm{~m})$, 505.3 (s), 490.1 (m).
(1R,2R,4S)-1,7,7-Trimethylbicyclo[2.2.1]heptan-2-yl 4-hydroxy-2-methylenebutanoate 21: The TBDPS-protected ester 20 ($500 \mathrm{mg}, 1.02 \mathrm{mmol}$; 1 eq .) was dissolved in abs THF (10 mL) and cooled to $0{ }^{\circ} \mathrm{C}$. TBAF $\cdot 3 \mathrm{H}_{2} \mathrm{O}$ ($644 \mathrm{mg}, 2.04 \mathrm{mmol} ; 2 \mathrm{eq}$.) was coevaporated three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, dissolved in THF (5 mL) and added to the reaction mixture drop wise. The solution was stirred for 5 h at $0{ }^{\circ} \mathrm{C}$ und nitrogen atmosphere. Aqueous saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (10 mL) was added and the mixture was extracted three times with each 20 mL EtOAc. The combined organics were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent was removed in vacuo. The residue was purified by column chromatography on silica $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}-20: 1\right)$ to give the title compound 21 as a colorless oil ($207 \mathrm{mg}, 80 \%$). $R_{\mathrm{f}}: 0.08\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}] 6.26$ (d, J $1.2 \mathrm{~Hz}, 1 \mathrm{H}, 2$ '’b-H), $5.65\left(\mathrm{~d}, J 0.9 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}{ }^{\prime} \mathrm{a}-\mathrm{H}\right), 4.92(\mathrm{~m}, 1 \mathrm{H}, 2 ’-\mathrm{H}), 3.77(\mathrm{t}, J 6.1 \mathrm{~Hz}, 2$ H, 4-H), 2.59 (t, J 6.1 Hz, $2 \mathrm{H}, 3-\mathrm{H}), 2.39\left(\mathrm{~m}, 1 \mathrm{H}, 3{ }^{\prime} \mathrm{a}-\mathrm{H}\right), 2.01\left(\mathrm{~s}_{\mathrm{sb}}, 1 \mathrm{H}, \mathrm{OH}\right), 1.95(\mathrm{~m}, 1 \mathrm{H}$, $\left.6^{\prime} \mathrm{a}-\mathrm{H}\right), 1.76\left(\mathrm{~m}, 1 \mathrm{H}, 5{ }^{\prime} \mathrm{a}-\mathrm{H}\right), 1.70\left(\mathrm{t}, J 4.5 \mathrm{~Hz}, 1 \mathrm{H}, 4^{\prime}-\mathrm{H}\right), 1.34(\mathrm{~m}, 1 \mathrm{H}, 6 ’ \mathrm{~b}-\mathrm{H}), 1.24(\mathrm{~m}, 1 \mathrm{H}$, 4’b-H), 1.00 (dd, J $13.8 \mathrm{~Hz}, J 5.7 \mathrm{~Hz}, 1 \mathrm{H}, 3 \mathrm{~b}-\mathrm{H}), 0.92\left(\mathrm{~s}, 3 \mathrm{H}, 8^{\prime}-\mathrm{H}\right), 0.88$ (s, $3 \mathrm{H}, 8^{\prime}-\mathrm{H}$), 0.85 (s, 3 $\left.\mathrm{H}, 1^{\prime}{ }^{\prime}-\mathrm{H}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}] 167.8$ (C1), 138.1 (C2), 127.0 (C2'’), 80.8 (C2'),
 19.0 (C8'), 13.7 (C1’’). CHN: found (calcd) [\%]: C 71.12 (71.39); H 9.66 (9.59). HRMS (ESI) $[\mathrm{m} / \mathrm{z}]$: calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 253.1798$, found: 253.1798. IR (film): $v\left[\mathrm{~cm}^{-1}\right] 3330.0(\mathrm{br} \mathrm{s})$, 2954.1 (s , 2880.5 (m), 2361.5 (w), 2336.5 (w), 1714.9 (s), 1652.8 (w), 1629.2 (m), 1472.6 (w), 1455.8 (m), 1390.6 (w), 1307.4 (m), 1199.1 (m), 1152.0 (m), 1113.9 (w), 1046.0 (m), 992.2 (w), 943.3 (w), 867.4 (w), 816.9 (w).
(2R,4S)-(1R,2R,4S)-1,7,7-Trimethylbicyclo[2.2.1]heptan-2-yl 2-((S)-3-(((benzyloxy)carbonyl)amino)-4-methoxy-4-oxobutyl)-1,2-oxaphosphinane-4-carboxylate 2oxide 23. H-Phosphinate 14 ($50 \mathrm{mg}, 0.16 \mathrm{mmol} ; 1 \mathrm{eq}$.) was dissolved in 3 mL dry MeCN and 1 mL dry pyridine. Pivaloyl chloride ($60 \mu \mathrm{~L}, 0.48 \mathrm{mmol} ; 3 \mathrm{eq}$.) and ester 21 ($40 \mathrm{mg}, 0.16 \mathrm{mmol} ; 1$ eq.) were added and the solution was stirred at rt under nitrogen atmosphere for 1 h . The solvent
was removed in vacuo to give the crude phosphinate 22, which was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$. N, O-Bis(trimethylsilyl)acetamid (BSA) $(0.24 \mathrm{~mL}, 0.95 \mathrm{mmol} ; 6$ eq.) was added and the solution was stirred for 96 h at rt under nitrogen atmosphere. The solution was treated with aqueous 1 N $\mathrm{HCl}(2 \mathrm{~mL})$, phases were separated and the organic phase was evaporated to dryness in vacuo. The residue was purified by column chromatography on silica ($\mathrm{EtOAc}: \mathrm{MeOH}, 25: 1$) to give the title compound 23 ($18 \mathrm{mg}, 20 \%$) as a mixture of diastereoisomers. Analytical data for 22: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}] 7.78+6.43\left(\mathrm{~d},{ }^{1}{ }^{3} 1 \mathrm{P}-1 \mathrm{H} 540.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{P}-\mathrm{H}\right), 7.42-7.22(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}-$ H), $6.29\left(\mathrm{~m}, 1 \mathrm{H}, 2\right.$ ' 'b-H), $5.67\left(\mathrm{~m}, 1 \mathrm{H}, 2\right.$ '’a-H), $5.61(\mathrm{~m}, 1 \mathrm{H}, \mathrm{N}-\mathrm{H}), 5.11\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}\right), 4.93$ $\left(\mathrm{m}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 4.42-4.28(\mathrm{~m}, 1 \mathrm{H}, 7-\mathrm{H}), 4.20(\mathrm{~m}, 2 \mathrm{H}, 4-\mathrm{H}), 3.76\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.72(\mathrm{~m}, 2 \mathrm{H}$, $3-\mathrm{H}), 2.39(\mathrm{~m}, 1 \mathrm{H}, 3 \mathrm{a}-\mathrm{H}), 2.20(\mathrm{~m}, 1 \mathrm{H}, 6 \mathrm{a}-\mathrm{H}), 2.00-1.70(\mathrm{~m}, 3 \mathrm{H}, 6 \mathrm{~b}-\mathrm{H}, 5-\mathrm{H}), 1.92(\mathrm{~m}, 1 \mathrm{H}$, 6'a-H), 1.77 (m, $\left.1 \mathrm{H}, 5^{\prime} \mathrm{a}-\mathrm{H}\right), 1,70\left(\mathrm{~m}, 1 \mathrm{H}, 4^{\prime}-\mathrm{H}\right), 1.34\left(\mathrm{~m}, 1 \mathrm{H}, 6^{\prime} \mathrm{b}-\mathrm{H}\right), 1.25\left(\mathrm{~m}, 1 \mathrm{H}, 5^{\prime} \mathrm{b}-\mathrm{H}\right), 1.00$ (m, $1 \mathrm{H}, 3$ 'b-H), 0.92 ($\left.\mathrm{s}, 3 \mathrm{H}, 8^{\prime}-\mathrm{H}\right), 0.88\left(\mathrm{~s}, 3 \mathrm{H}, 8^{\prime}-\mathrm{H}\right), 0.85\left(\mathrm{~s}, 3 \mathrm{H}, 1\right.$ ''-H). ${ }^{31} \mathrm{P}-\mathrm{NMR}$ (162 MHz , CDCl_{3}): δ [ppm] 37.65. MS (ESI) [m / z]: calcd for $\mathrm{C}_{28} \mathrm{H}_{40} \mathrm{NO}_{8} \mathrm{P}[\mathrm{M}+\mathrm{Na}]^{+}: 572.023$, found: 572.238. Analytical data for 23: $R_{\mathrm{f}}: 0.33+0.37\left(\mathrm{SiO}_{2}, \mathrm{EtOAc}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ [ppm] 7.41-7.28 (m, 5 H, Ar-H), $5.66(\mathrm{~m}, 1 \mathrm{H}, \mathrm{N}-\mathrm{H}), 5.11\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}\right), 4.91(\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{H})$, $4.42(\mathrm{~m}, 2 \mathrm{H}, 3 \mathrm{\prime}-\mathrm{H}, 1 \mathrm{a}-\mathrm{H}), 4.17(\mathrm{~m}, 1 \mathrm{H}, 1 \mathrm{~b}-\mathrm{H}), 3.95(\mathrm{~m}, 1 \mathrm{H}, 1 \mathrm{~b}-\mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}, 8-\mathrm{H}), 3.18(\mathrm{~m}, 1$ H, 3-H), 2.76 (m, 1 H, 3-H), 2.41-2.11 (m, 3 H, 6a-H, 2’a-H, 3'’a-H), 2.11-1.66 (m, 9 H, 2’b-H, $3^{\prime} ’ \mathrm{~b}-\mathrm{H}, 2 \mathrm{a}-\mathrm{H}, 2 \mathrm{~b}-\mathrm{H}, 1$ 'a-H, $1^{\prime} \mathrm{b}-\mathrm{H}, 9^{\prime} \mathrm{a}-\mathrm{H}, 8^{\prime} \mathrm{a}-\mathrm{H}, 7^{\prime}-\mathrm{H}$), 1.37-1.17 (m, 2 H, $9^{\prime} \mathrm{b}-\mathrm{H}, 8^{\prime} \mathrm{b}-\mathrm{H}$), 0.99 (dd, $\left.J 13.8 \mathrm{~Hz}, J 3.4 \mathrm{~Hz}, 1 \mathrm{H}, 6^{\prime} \mathrm{b}-\mathrm{H}\right), 0.95\left(\mathrm{dd}, J 13.9 \mathrm{~Hz}, J 3.5 \mathrm{~Hz}, 1 \mathrm{H}, 6^{\prime} \mathrm{b}-\mathrm{H}\right), 0.90\left(\mathrm{~s}, 3 \mathrm{H}, 12^{\prime}-\mathrm{H}\right)$, 0.87 ($\mathrm{s}, 3 \mathrm{H}, 12^{\prime}-\mathrm{H}$), $0.82\left(\mathrm{~s}, 3 \mathrm{H}, 1^{\prime}{ }^{\prime}-\mathrm{H}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}] 172.4\left(\mathrm{C} 4,{ }^{3} \mathrm{~J}_{31 \mathrm{P}-}\right.$ ${ }_{13 \mathrm{C}} 14.9 \mathrm{~Hz}$), 172.0 (C4'), 156.2 (Cbz-COO), 136.3 (Ar-C), $128.7+128.4+128.3$ (Ar-CH), $81.4+$ $81.3+81.0(5), 67.3\left(\mathrm{CH}_{2}-\mathrm{Ph}\right), 66.7(\mathrm{C} 1), 64.6(\mathrm{C} 1), 54.1(\mathrm{C} 3 '), 52.9+52.9+52.8\left(\mathrm{OCH}_{3}\right), 49.1$ (C10), 49.0 (C10), 48.1 (C11), 45.0 (C7), $38.9+38.8$ (C3), 36.9 (C3), 36.9 (C6), 36.8 (C6), 29.7 $\left(\mathrm{C} 2,{ }^{3} J_{31 \mathrm{P}-13 \mathrm{C}} 3.7 \mathrm{~Hz}\right), 29.5\left(\mathrm{C} 2,{ }^{3} J_{31 \mathrm{P}-13 \mathrm{C}} 3.9 \mathrm{~Hz}\right), 28.6\left(\mathrm{C} 2,{ }^{3} J_{31 \mathrm{P}-13 \mathrm{C}} 6.4 \mathrm{~Hz}\right), 28.5\left(\mathrm{C} 11,{ }^{3} J_{31 \mathrm{P}-13 \mathrm{C}}\right.$ $6.4 \mathrm{~Hz}), 28.3+27.7\left(\mathrm{C} 3^{\prime},{ }^{1} J_{31 \mathrm{P}-13 \mathrm{C}} 81.6 \mathrm{~Hz}\right), 28.2+27.7\left(\mathrm{C} 3{ }^{\prime}\right.$, $\left.{ }^{1} J_{31 \mathrm{P}-13 \mathrm{C}} 81.5 \mathrm{~Hz}\right), 28.3(\mathrm{C} 8), 28.1$ (C8), $27.7+27.1$ (C3',, ${ }^{1} J_{31 \mathrm{P}-13 \mathrm{C}} 82.6 \mathrm{~Hz}$), 27.3 (C9), 27.3 (C9), $25.5+24.9$ (C1', ${ }^{1} J_{31 \mathrm{P}-13 \mathrm{C}} 94.2$ $\mathrm{Hz}), 24.7+24.3\left(\mathrm{C} 2\right.$ ') , $19.8+18.9$ (C12), $13.7+13.7+13.6$ (C10') ${ }^{31}{ }^{31} \mathrm{P}-\mathrm{NMR}(243 \mathrm{MHz}$, CDCl_{3}): $\delta[\mathrm{ppm}] 49.09,48.96,46.40$ (integration $1.0: 1.0: 4.4$). MS (EI) $[\mathrm{m} / \mathrm{z}]: 549\left(12 \%,[\mathrm{M}]^{+}\right)$, $490\left(27 \%,[\mathrm{M}-\mathrm{COOMe}]^{+}\right), 442\left(8 \%,[\mathrm{M}-\mathrm{OBenzyl}]^{+}\right), 414\left(21 \%,[\mathrm{M}-\mathrm{Cbz}]^{+}\right), 396$ (22 \%, [MOBorneyl] ${ }^{+}$), $370\left(15 \%,\left[\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{NO}_{6} \mathrm{P}\right]^{+}\right), 306\left(54 \%\right.$, $\left[\mathrm{M}-\right.$ Benzyl-OBorneyl+H] $\left.{ }^{+}\right), 146(29 \%$, $\left[\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{3} \mathrm{P}\right]^{+}$), $91\left(100 \%\right.$, $\left.[\text { Benzyl }]^{+}\right)$. HRMS (EI) [$\left.\mathrm{m} / \mathrm{z}\right]$: calcd for $\mathrm{C}_{28} \mathrm{H}_{40} \mathrm{NO}_{8} \mathrm{P}[\mathrm{M}]^{+}: 549.2492$, found: 549.2470. IR (film): $v\left[\mathrm{~cm}^{-1}\right] 3240.1$ (w), 3033.9 (w), 2954.3 (s), 1725.8 (s), 1537.3 (m), $1454.0(\mathrm{~m}), 1366.4$ (w), 1249.7 (s), 1145.4 (m), 1113.6 (m), 1057.6 (s), 964.4 (m), 904.7 (w), 868.1 (w), 812.3 (w), 741.5 (w), 698.7 (w), 530.5 (w).
(2S)-2-amino-4-(hydroxy $(((\boldsymbol{R})$-2-oxotetrahydrofuran-3-yl)methyl)phosphoryl)butanoic acid hydrochloride 24. Cyclic phosphinate $23(87 \mathrm{mg}, 0.16 \mathrm{mmol})$ was treated with aqueous 6 N HCl (5 mL) and heated to reflux for 12 h . The resulting mixture was washed with $\mathrm{Et}_{2} \mathrm{O}$ three times (each 20 mL). The aqueous solution was evaporated to dryness to give the target compound 24 (50 mg , quant). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right): \delta[\mathrm{ppm}] 4.60(\mathrm{~m}, 1 \mathrm{H}, 8 \mathrm{a}-\mathrm{H}), 4.44(\mathrm{~m}, 1 \mathrm{H}, 8 \mathrm{~b}-\mathrm{H}), 4.30(\mathrm{~m}$, $1 \mathrm{H}, 2-\mathrm{H}), 3.15(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H}), 2.72(\mathrm{~m}, 1 \mathrm{H}, 9 \mathrm{a}-\mathrm{H}), 2.47(\mathrm{~m}, 1 \mathrm{H}, 5 \mathrm{a}-\mathrm{H}), 2.35(\mathrm{~m}, 2 \mathrm{H}, 3-\mathrm{H}), 2.29$
(m, $1 \mathrm{H}, 9 \mathrm{~b}-\mathrm{H}), 2.16(\mathrm{~m}, 1 \mathrm{H}, 4 \mathrm{a}-\mathrm{H}), 2.10(\mathrm{~m}, 1 \mathrm{H}, 5 \mathrm{~b}-\mathrm{H}), 2.05(\mathrm{~m}, 1 \mathrm{H}, 4 \mathrm{~b}-\mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(151$ $\mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$, Inverse gated coupling): $\delta[\mathrm{ppm}] 181.9\left(\mathrm{C} 7,{ }^{3} \mathrm{~J}_{31 \mathrm{P}-13 \mathrm{C}} 16.4 \mathrm{~Hz}\right), 170.9(\mathrm{C} 1), 68.1$ (C8), 52.7 (C2, ${ }^{3} J_{31 \mathrm{P}-13 \mathrm{C}} 15.4 \mathrm{~Hz}$), $52.7\left(\mathrm{C} 2,{ }^{3} J_{31 \mathrm{P}-13 \mathrm{C}} 15.4 \mathrm{~Hz}\right), 34.0\left(\mathrm{C} 6,{ }^{2} J_{31 \mathrm{P}-13 \mathrm{C}} 3.8 \mathrm{~Hz}\right), 28.9(\mathrm{C} 9$, $\left.{ }^{3} J_{31 \mathrm{P}-13 \mathrm{C}} 2.8 \mathrm{~Hz}\right), 28.9\left(\mathrm{C} 9,{ }^{3} J_{31 \mathrm{P}-13 \mathrm{C}} 2.6 \mathrm{~Hz}\right), 28.8+28.2\left(\mathrm{C} 5,{ }^{1} J_{31 \mathrm{P}-13 \mathrm{C}} 93.6 \mathrm{~Hz}\right), 24.9+24.2(\mathrm{C} 4$, $\left.{ }^{1} J_{31 \mathrm{P}-13 \mathrm{C}} 91.6 \mathrm{~Hz}\right), 24.8+24.2\left(\mathrm{C} 4,{ }^{1} J_{31 \mathrm{P}-13 \mathrm{C}} 91.8 \mathrm{~Hz}\right), 22.3\left(\mathrm{C} 3,{ }^{2} J_{31 \mathrm{P}-13 \mathrm{C}} 2.3 \mathrm{~Hz}\right), 22.3\left(\mathrm{C} 3,{ }^{2} J_{31 \mathrm{P}-13 \mathrm{C}}\right.$ $2.7 \mathrm{~Hz}) .{ }^{31} \mathrm{P}-\mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right): \delta[\mathrm{ppm}] 51.74$. HRMS (ESI) [$\left.\mathrm{m} / \mathrm{z}\right]$: calcd for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{NO}_{6} \mathrm{P}[\mathrm{M}-$ $\mathrm{H}]^{-}: 264.0642$, found: 264.0631.

Acknowledgements

FR acknowledges a PhD-fellowship from the University of Hamburg. CHK acknowledges a PhDfellowship from JLU-Giessen.

References

1. Massova, I.; Kotra, L. P.; Fridman, R.; Mobashery, S., FASEB J. 1998, 12, 1075-1095.
2. Taylor, A., FASEB J. 1993, 7, 290-298.
3. Skiles, J. W.; Gonnella, N. C.; Jeng, A. Y., Curr. Med. Chem. 2004, 11, 2911-2977. http://dx.doi.org/10.2174/0929867043364018
4. Hagmann, W. K.; Lark, M. W.; Becker, J. W., Ann. Rep. Med. Chem. 1996, 31, 231-240. http://dx.doi.org/10.1016/S0065-7743(08)60463-7
5. Matter, H.; Schudok, M., Curr. Opin. Drug Discovery Dev. 2004, 7, 513-535.
6. Devel, L.; Rogakos, V.; David, A.; Makaritis, A.; Beau, F.; Cuniasse, P.; Yiotakis, A.; Dive, V., J. Biol. Chem. 2006, 281, 11152-11160. http://dx.doi.org/10.1074/jbc.M600222200
7. Alexandre, F. R.; Amador, A.; Bot, S.; Caillet, C.; Convard, T.; Jakubik, J.; Musiu, C.;

Poddesu, B.; Vargiu, L.; Liuzzi, M.; Roland, A.; Seifer, M.; Standring, D.; Storer, R.;
Dousson, C. B., J. Med. Chem. 2011, 54, 392-395. http://dx.doi.org/10.1021/jm101142k
8. Soulier, E.; Clement, J. C.; Yaouanc, J. J.; des Abbayes, H., Tetrahedron Lett. 1998, 39, 42914294.
http://dx.doi.org/10.1016/S0040-4039(98)00758-8
9. Berlicki, L.; Kafarski, P., Curr. Org. Chem. 2005, 9, 1829-1850.
10. Yiotakis, A.; Georgiadis, D.; Matziari, M.; Makaritis, A.; Dive, V., Curr. Org. Chem. 2004, 8, 1135-1158.
http://dx.doi.org/10.2174/1385272043370177
11. Mucha, A., Molecules 2012, 17, 13530-13568.
12. Guenin, E.; Meziane, D., Curr. Org. Chem. 2011, 15, 3465-3485.
13. Coudray, L.; Montchamp, J. L., Eur. J. Org. Chem. 2008, 3601-3613.
14. Schwan, A. L., Chem. Soc. Rev. 2004, 33, 218-224.
15. Collinsova, M.; Jiracek, J., Curr. Med. Chem. 2000, 7, 629-647.
16. Kosolapoff, G. M., Organic Reactions 1951, 6, 273-338.
17. Misra, P.; Humblet, V.; Pannier, N.; Maison, W.; Frangioni, J. V., J. Nucl. Med. 2007, 48, 1379-1389.
http://dx.doi.org/10.2174/1385272043370177
18. Humblet, V.; Misra, P.; Bhushan, K. R.; Nasr, K.; Ko, Y. S.; Tsukamoto, T.; Pannier, N.; Frangioni, J. V.; Maison, W., J. Med. Chem. 2009, 52, 544-550. http://dx.doi.org/10.1021/jm801033c
19. Foss, C. A.; Mease, R. C.; Fan, H.; Wang, Y. C.; Ravert, H. T.; Dannals, R. F.; Olszewski, R. T.; Heston, W. D.; Kozikowski, A. P.; Pomper, M. G., Clinical Cancer Research 2005, 11, 4022-4028. http://dx.doi.org/10.1158/1078-0432.CCR-04-2690
20. Zhou, J.; Neale, J. H.; Pomper, M. G.; Kozikowski, A. P., Nat. Rev. Drug Discov. 2005, 4, 1015-1026.
http://dx.doi.org/10.1038/nrd1903
21. Ferraris, D. V.; Shukla, K.; Tsukamoto, T., Curr. Med. Chem. 2012, 19, 1282-1294.
22. Bartley, D. M.; Coward, J. K., J. Org. Chem. 2005, 70, 6757-6774. http://dx.doi.org/10.1021/jo0507439
23. Kuchenthal, C. H.; Migenda, J.; Polednia, M.; Maison, W., Amino Acids 2010, 39, 443-448.
24. Feng, Y.; Coward, J. K., J. Med. Chem. 2006, 49, 770-788.
25. Vitharana, D.; France, J. E.; Scarpetti, D.; Bonneville, G. W.; Majer, P.; Tsukamoto, T., Tetrahedron-Asymmetry 2002, 13, 1609-1614. http://dx.doi.org/10.1016/S0957-4166(02)00412-3
26. Virieux, D.; Volle, J. N.; Pirat, J. L., Arkivoc 2012, 264-277.
27. Berger, O.; Montchamp, J. L., Beilstein J. Org. Chem. 2014, 10, 732-740.
28. Hum, G.; Wooler, K.; Lee, J.; Taylor, S. D., Can. J. Chem. 2000, 78, 642-655. http://dx.doi.org/10.1139/v00-068
29. Xu, Y. Y.; Li, Z., Tetrahedron Lett. 1986, 27, 3017-3020. http://dx.doi.org/10.1016/S0040-4039(00)84705-X
30. Yu, C. Z.; Liu, B.; Hu, L. Q., J. Org. Chem. 2001, 66, 5413-5418. http://dx.doi.org/10.1021/jo015628m
31. Matziari, M.; Yiotakis, A., Org. Lett. 2005, 7, 4049-4052.
32. O'Leary, B. M.; Szabo, T.; Svenstrup, N.; Schalley, C. A.; Lutzen, A.; Schafer, M.; Rebek, J., J. Am. Chem. Soc. 2001, 123, 11519-11533. http://dx.doi.org/10.1021/ja011651d

