Reduction of quinolines to 1,2,3,4-tetrahydroquinolines with hydrosilane/ethanol catalyzed by TiO₂-supported gold nanoparticles under solvent free conditions

Anastasia Louka, Charis Gryparis, and Manolis Stratakis*

Department of Chemistry, University of Crete, Voutes, 71003 Iraklion, Greece E-mail: <u>stratakis@chemistry.uoc.gr</u>

Dedicated to Professor Michael Orfanopoulos on the occasion of his 67th birthday and retirement, and for his remarkable contribution in physical organic chemistry

DOI: <u>http://dx.doi.org/10.3998/ark.5550190.p008.955</u>

Abstract

Gold nanoparticles supported on TiO_2 (1 mol%) catalyze the reduction of a series of functionalized quinolines into 1,2,3,4-tetrahydroquinolines using hydrosilanes/ethanol (hydride/proton) as the reductant system. A typical reaction requires 4 molar equivalents of phenyldimethylsilane (reductant of choice), 4 molar equivalents of ethanol as a reagent and heating to 70 °C under solvent free conditions. The isolated yields are moderate to excellent and in certain cases the reaction rate is exceedingly fast. Mechanistic analysis revealed the stereoselective addition of two hydrides (from hydrosilane) on positions C2 and C4 of the quinoline ring and two protons (from ethanol) on positions C3 and the nitrogen atom.

Keywords: Catalysis, gold nanoparticles, reduction, quinolines, hydrosilanes

Introduction

Heterogeneous reductive processes catalyzed by supported gold nanoparticles (Au NPs)¹⁻⁵ and nanoporous gold⁶ have received considerable attention especially over the past decade. The reductants employed are H₂ (direct hydrogenation) and CO/H₂, formates, alcohols, hydrosilanes or hydroborane (transfer hydrogenation). It is generally accepted that reduction takes place via the formation of gold hydride species. Owing to the relative instability and the difficulty for the formation of Au-hydrides, Au NPs-catalyzed reduction protocols are more controllable and selective relative to the analogous Pd or Pt-catalyzed processes; the facile accumulation of Pd or Pt-hydrides on the catalyst's surface often leads to side reactions (*e.g.*, dehalogenation or overeduction pathways).⁷ While much effort has been devoted to Au-catalyzed reduction of

carbonyl and nitro compounds, there are only a few examples regarding the reduction of π systems. Cao and co-workers have shown that Au NPs supported on high surface area titania (HAS-TiO₂) catalyze the chemoselective reduction of quinolines into 1,2,3,4-tetrahydroquinolines using H₂.⁸ At the same time, Yamamoto's group reported a nanoporous gold catalyst which employs hydrosilane/H₂O to semireduce alkynes into *cis*-alkenes.⁹ More recently, further progress has been achieved in the direct hydrogenation of terminal alkynes over supported Au NPs¹⁰ or Au nanoclusters.¹¹

The reports by Cao⁸ and Yamamoto⁹ urged us to examine the possible reduction of quinolines into 1,2,3,4-tetrahydroquinolines via supported Au NPs-catalyzed transfer hydrogenation using hydrosilanes, 1,2-disilanes or ammonia borane. These substances have been previously used in other Au NPs-catalyzed reductive applications.¹²⁻¹⁸ The endeavours for this specific reduction arise from the fact that 1,2,3,4-tetrahydroquinones constitute a very important class of heterocyclic compounds, since they appear as the core skeleton in a variety of bioactive naturally occurring substances or pharmaceutical products. Thus, the interest of organic chemists for their synthesis is continuous¹⁹ with a great body of publications focusing on the reduction of precursor quinolines. While our research efforts towards this goal using supported Au NPs were in progress and had reached a level of maturity, an efficient method for the reduction of quinolines by hydrosilanes catalyzed by an unsupported nanoporous gold catalyst was reported.²⁰

Herein, we present our results which employ hydrosilanes/ethanol as the reducing system under solvent free conditions and Au nanoparticles supported on TiO_2 as the most suitable catalyst. In addition, a stepwise pathway was established with an initially fast 1,2-reduction mode to form 1,2-dihydroquinolines, while the new C2 and C4 hydrogen atoms on reduction products arise from the hydrosilane as supported via labelling experiments. Alternative approaches using 1,2-disilanes or ammonia borane as reductants provided inferior results.

Results and Discussion

Optimization studies

As a model substrate we examined 8-methoxyquinoline (1), and in all experiments the loading of catalyst (Au/TiO₂, ~ 1 wt%) was kept at 1 mol% (Table 1). Although not shown, we have also tested other supported Au NPs catalysts (Au/Al₂O₃ and Au/ZnO) having identical gold content and size of nanoparticles (~2-3 nm on the average) to Au/TiO₂ but the results were inferior to those of Au/TiO₂. The first crucial observation in the reduction of the methoxyquinoline 1 was that apart from hydrosilane (hydride donor) a proton source was required (*e.g.*, ethanol) as also exemplified by labelling experiments presented in the accompanying mechanistic discussion. Thus, 8-methoxyquinoline is smoothly reduced into 8-methoxy-1,2,3,4-tetrahydroquinoline (1a) by hydrosilanes with the best results obtained using phenyldimethylsilane (PhMe₂SiH, 4 equiv) and equimolar amounts of ethanol as a proton source in the absence of any solvent and within a few minutes at 70 °C. Under these conditions, 100% consumption of the quinoline 1 was

observed, and the tetrahydroquinoline **1a** was isolated in 84% yield after column chromatography. It is important to stress that solvent free conditions in a given chemical process are highly desired. Triethylsilane exhibited inferior results, while 1,1,3,3-tetramethyldisiloxane (TMDS) which is an extremely reactive hydrosilane in other Au-catalyzed transformations^{15,18,22} did not show better activity to PhMe₂SiH. Hexamethyldisilane (Me₃Si-SiMe₃) exhibited a moderate activity arising from transient *in situ* generated trimethylsilane during its Au/TiO₂-catalyzed ethanolysis.¹⁶ Disappointingly, the use of ammonia borane (NH₃BH₃), a powerful and rapidly reductant of nitro compounds in the presence of Au/TiO₂,¹⁷ provided only traces of the reduction product.

Table 1. Reduction of 8-methoxyquinoline (1) in the presence of various reducing agents catalyzed by Au/TiO_2 .

	MeO 1	reductant (4 equiv) Au/TiO ₂ (1 mol%), 70 ℃ ►	MeO 1a	
Reductant	solvent	Additive (equiv)	time	1a $(\%)^{a}$
PhMe ₂ SiH	DCE	EtOH (4)	1 h	65
PhMe ₂ SiH	THF	EtOH (4)	30 min	95
PhMe ₂ SiH	EtOAc	EtOH (4)	1 h	25
PhMe ₂ SiH	EtOH	-	1.5 h	65
PhMe ₂ SiH	-	EtOH (4)	5 min	65
PhMe ₂ SiH	-	EtOH (4)	15 min	100
PhMe ₂ SiH	-	$H_2O(2)^b$	20 min	100
Et ₃ SiH	-	EtOH (4)	1 h	24
TMDS ^c	-	EtOH (4)	1 h	71
HMDS ^d	-	EtOH (4)	1 h	26
NH ₃ BH ₃	EtOH	-	6 h	<5

^{*a*} Conversion yields. ^{*b*} See ref. 21. ^{*c*} TMDS = 1,1,3,3-Tetramethyldisiloxane. ^{*d*} HMDS = Hexamethyl-1,2-disilane

Scope and limitations

Having identified the optimum experimental conditions for reducing the methoxyquinoline **1**, we then studied the scope and limitations of the reduction on a series of functionalized quinolines using 4 molar equivalents of the mixture PhMe₂SiH/EtOH and 1 mol% of catalyst (Au/TiO₂) under solvent free conditions (Table 2).

Table 2. Reduction of quinolines by $PhMe_2SiH/EtOH$ catalyzed by Au/TiO_2 under solvent free conditions.

$X \xrightarrow{Y} N$ $X \xrightarrow{Y} N$ Y $EtOH (4.0 equiv), 70 °C$ $X \xrightarrow{Y} N$ H Y $X \xrightarrow{Y} N$ H							
reactant	product		time	isolated yield (%)			
2 N		2a	5 h	33 ^{<i>a</i>}			
N Me	N Me	3 a	15 min	86			
Me N 4	Me N H	4 a	2 h	82			
Me 5 N Me	Me (<i>cis/tro</i> H	5a ans 10:1)	3 h	75			
Me 6 N Ph	Me (<i>cis/tro</i> H Ph	6a ans 10:1)	1 h	87			
CI N 7	CI N H	7a	3 h	62^b			

Table 2 (continued)

$PhMe_{2}SiH (4.0 equiv)$							
x	EtOH (4.0 equiv), 70						
reactant	product	time	isolated yield (%)				
Br 8	Br N H H Sa	3 h	84				
F N Me	F N H H Sa	20 min	82				
CI N Me	CI N H H Ne	1 h	84				
N 11 Br	Br H Me	1 h	81				
N 12	N N H H H H H	3 h	5 ^c				
Me N 13	Me N H H H J J J J A	6 h	0				
CI N 14	Cl N H H H H H H H H H H H H H H H H H H	6 h	0				

^{*a*} With 10 equiv PhMe₂SiH/EtOH (12 h) the isolated yield increases to 56%. ^{*b*} With 6 equiv PhMe₂SiH/EtOH (3 h) the isolated yield increases to 79%. ^{*c*} Conversion yield. With 10 equiv PhMe₂SiH/EtOH (12 h) the conversion is 14%.

Quinolines substituted at C2 or C3 are smoothly reduced providing the corresponding 1,2,3,4-tetrahydroquinolines in very good yields. 2,4-Disubstituted quinolines **5** and **6** provided mainly the thermodynamically favourable *cis*-2,4-disubstituted tetrahydroquinolines (*cis/trans* ~ 10:1). Parent quinoline (**2**) was rather unreactive compared to the substituted analogues, and a large excess (>10 equiv) of reducing agents was required to achieve a decent conversion yield. The same poor reactivity was also observed with quinoxaline (**12**) that gave under standard reaction conditions 1,2,3,4-tetrahydroquinoxaline (**12a**) in very low yield (5%); this can be improved to 14% in the presence of 10 molar excess of hydrosilane/ethanol. On the other hand, the C4 methyl-substituted quinolines (lepidine **13** and 6-chlorolepidine **14**) were surprisingly completely unreactive, which was difficult to explain given that disubstituted **5** and **6** bearing a methyl group at C4 are readily reduced. Fortunately, the halide-substituted quinolines **7-11** did not suffer any protodehalogenation upon reduction, which is a typical, often undesireable side-reaction seen under Pd, Pt or Ru catalysis conditions.⁸

By studying the reduction of the slowly reacting parent quinoline (2) with ¹H NMR we found that initially the N-C double bond was reduced to form intermediate 1,2-dihydroquinoline (2b) which then slowly gave 1,2,3,4-tetrahydroquinoline (2a) (Scheme 1). We were able to isolate the dihydroquinoline 2b by column chromatography as a mixture with final product 2a (see Supporting Information). The intermediate 1,2-dihydroquinoline 2b is known to gradually re-oxidized to quinoline 2 in atmospheric air.²³

Scheme 1. Reaction profile in the Au-catalyzed reduction of quinoline (2) to 1,2,3,4-tetrahydroquinoline (2a) via intermediate formation of 1,2-dihydroquinoline (2b).

Mechanistic studies

To study the mechanism of reduction we prepared deuterium labelled PhMe₂SiD (>98% D) by reaction of PhMe₂SiCl with LiAlD₄ in THF. The smoothly reacting 8-methoxyquinoline (1) was chosen as a model substrate (Scheme 2). In the reaction of the methoxyquinoline 1 with PhMe₂SiD/EtOH we found >95% and ~50% D incorporation at C2 and C4, respectively (see ¹H NMR spectrum in Supporting Information), while with PhMe₂SiH/CD₃OD, ~75% D incorporation was seen at C3 and ~10% on C2 (see Supporting Information).

Scheme 2. Deuterium labelling experiments in the Au/TiO_2 -catalyzed reduction of the methoxyquinoline 1 by hydrosilane/EtOH.

While it seems that the new C-H bonds on C2 and C4 arise from hydride Si-H functionality, and the new C-H bond on C3 from the proton of solvent (EtOH), the incomplete deuterium incorporation in both experiments on C3 and C4 was quite peculiar. To shed light on this, the reaction between the methoxyquinoline 1 and PhMe₂SiD/EtOH was monitored by GC-MS. To our surprise, during the initial stages of reaction, PhMe₂SiD gradually underwent isotopic exchange to PhMe₂SiH (Figure 1). This observation nicely explained the incomplete deuteration patterns appearing in Scheme 2. First, we consider that the quinolines were reduced quickly to intermediate 1,2-dihydroquinolines and then slowly to 1,2,3,4-tetrahydroquinolines (Scheme 1). PhMe₂SiD quickly reduces the methoxyquinoline **1** to the corresponding Thus, 1,2-dihydroquinoline before undergoing significant deuterium depletion (>95% deuteration at C2). Since the second reduction step (1,2-dihydroquinolines to 1,2,3,4-tetrahydroquinolines) was slow, and PhMe₂SiD had in the meantime undergone substantial D/H exchange, only 50% D incorporation was seen on C4. The same holds in the experiment using PhMe₂SiH/CD₃OD. Owing to isotopic scrabbling between the Si-H and O-D bonds, incomplete deuteration occurs on C3, while a small amount of deuterium appears on C2 which is attributed to the partial formation of PhMe₂SiD under the reaction conditions. The depletion of deuterium in PhMe₂SiD is not clearly understood and apparently is catalyzed by Au NPs. An analogous metal-catalyzed depletion of deuteride (NaBD₄) by a protic solvent (EtOH) is known in the literature.²⁴

Figure 1. MS spectra of PhMe₂SiH (MW = 136; top), PhMe₂SiD (MW = 137; middle), and the mixture of PhMe₂SiD/PhMe₂SiH (bottom) by the gradual depletion of PhMe₂SiD from EtOH during the progress of reaction.

The fast depletion of Si-D functionality under the reaction conditions did not allow the conclusive study of other slowly reacting quinolines such as the parent 2. For example, reduction of the slightly less reactive (compared to 1) fluoroquinoline 9 with PhMe₂SiD, led to 60% D incorporation on C2, ~20% on C4 and ~10% on one of the two distereotopic protons of C3 (see Supporting Information). The minor deuteration on C3 can be attributed to the *in situ* formation of EtOD under the reaction conditions.

On the basis of the labelling experiments, we propose a reasonable stepwise mechanism that involves the regioselective addition of *in situ* formed silylgold hydride species^{25,26} on C2 and C4 carbon atoms, accompanied by protonation with ethanol on C3 and nitrogen atoms, respectively (Scheme 3). Gold hydride PhMe₂SiAuH has been postulated to be formed by insertion of Au NP on the Si-H bond.²⁷ The side product of reaction (PhMe₂SiOEt) was isolated and characterized (see Supporting Information).

Scheme 3. Proposed mechanism for the reduction of quinolines to 1,2,3,4-tetrahydroquinolines by PhMe₂SiH/EtOH catalyzed by Au/TiO₂.

Conclusions

We have demonstrated a solvent-free reduction of quinolines to 1,2,3,4-tetrahydroquinolines using PhMe₂SiH/EtOH as the reductant system, and as catalyst gold nanoparticles supported on TiO₂. This method complements a recently presented reduction protocol that uses a nanoporous gold catalyst.²⁰ The hydrogen atoms in the reduction products arise from hydrosilane (2 C-H bonds on C2 and C4) and from EtOH (C-H bond at C3 and N-H bond). Furthermore, an unexpected exchange of Si-H hydride by protons from solvent can occur under the reaction conditions. The current reduction protocol expands the potential of supported Au nanoparticles in catalysis.¹⁻⁶

Experimental Section

General. Nuclear magnetic resonance spectra were recorded on 300 and 500 MHz spectrometers in CDCl₃. Isomeric purities were determined by ¹H NMR spectroscopy, by analytical gas chromatography and by GC-MS. 8-Methoxyquinoline (1)²⁸ was synthesized by treatment of commercially available 8-hydroxyquinoline with K₂CO₃ and CH₃I in DMF. Quinolines 5^{29} and 6^{30} were prepared by Friedlander condensation of 2'-aminoacetophenone with acetone or acetophenone, respectively, based on a literature procedure.³¹ 8-Bromo-2-methylquinoline (11)³² was synthesized via a Doebner–Miller condensation protocol³³ between 2-bromoaniline and crotonaldehyde. The rest of quinolines are commercially available substances.

Spectroscopic data of synthesized quinolines

8-Methoxyquinoline (1).²⁸ ¹H NMR (300 MHz, CDCl₃) 8.94-8.92 (m, 1H), 8.13 (dd, 1H, *J* 8.0, 1.5 Hz), 7.49-7.37 (m, 3H), 7.05 (dd, 1H, *J* 7.5, 1.5 Hz), 4.09 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) 155.3, 149.1, 140.0, 136.0, 129.4, 126.7, 121.6, 119.5, 107.6, 56.0.
2,4-Dimethylquinoline (5).²⁹ ¹H NMR (300 MHz, CDCl₃): 8.05 (d, 1H, *J* 8.5 Hz), 7.94 (dd, 1H, *J* 8.5, 1.5 Hz), 7.67 (dt, 1H, *J* 8.5, 1.5 Hz), 7.50 (dt, 1H, *J* 8.5, 1.5 Hz), 7.14 (d, 1H, *J* 1.0 Hz),

2.71 (s, 3H), 2.66 (d, 3H, *J* 1.0 Hz). ¹³C NMR (75 MHz, CDCl₃) 158.5, 147.4, 144.5, 129.2, 128.9, 126.5, 125.5, 123.6, 122.7, 25.0, 18.6.

4-Methyl-2-phenylquinoline (6).^{30 1}H NMR (300 MHz, CDCl₃) 8.22-8.15 (m, 3H), 8.02 (d, 1H, *J* 8.0 Hz), 7.75-7.69 (m, 2H), 7.58-7.43 (m, 4H), 2.78 (d, 3H, *J* 1.0 Hz). ¹³C NMR (75 MHz, CDCl₃) 157.0, 148.1, 144.8, 139.8, 130.3, 129.3, 129.2, 128.8, 127.5, 127.2, 126.0, 123.6, 119.7, 19.0.

8-Bromo-2-methylquinoline (**11**).³² ¹H NMR (300 MHz, CDCl₃) 8.04-7.98 (m, 2H), 7.72 (t, 1H, *J* 8.0 Hz), 7.35-7.26 (m, 2H), 2.80 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) 160.4, 144.8, 136.5, 133.0, 127.9, 127.4, 126.0, 124.1, 122.8, 25.7.

Typical procedure for the reduction of quinolines

To a dry vial containing 8-methoxyquinoline, **1** (0.048 g, 0.3 mmol), Me₂PhSiH (185 μ L, 1.2 mmol) and ethanol (70 μ L, 1.2 mmol), Au/TiO₂ (60 mg, 1.0 mol%) was added. The Au content in catalyst was ~1 wt%. The mixture was heated to 70 °C and the progress of reaction was monitored by TLC and GC. After 15 min (100% conversion), ethanol (1 mL) was added and the resulting slurry was filtered under reduced pressure through a short pad of silica gel with the aid of ethanol (2-3 mL) to withhold the supported catalyst. The filtrate was evaporated under vacuum and the residue was chromatographed (*n*-hexane/ethyl acetate, 10:1) to afford 8-methoxy-1,2,3,4-tetrahydroquinoline (**1a**) (41 mg, 84% yield).

Spectroscopic data of reduction products

8-Methoxy-1,2,3,4-tetrahydroquinoline (1a).²⁸ ¹H NMR (300 MHz, CDCl₃) 6.65-6.55 (m, 3H), 3.83 (s, 3H), 3.36-3.32 (m, 2H), 2.78 (t, 2H, *J* 6.5 Hz), 2.00-1.92 (m, 2H). ¹³C NMR (75 MHz, CDCl₃) 146.4, 134.3, 121.7, 121.6, 115.9, 107.4, 55.4, 41.5, 26.6, 22.0.

1,2,3,4-Tetrahydroquinoline (2a). ¹H NMR (300 MHz, CDCl₃) 7.01-6.95 (m, 2H), 6.63 (t, 1H, *J* 8.0 Hz), 6.49 (d, 1H, *J* 8.0 Hz), 3.33-3.29 (m, 2H), 2.78 (t, 1H, *J* 6.5 Hz), 2.00-1.92 (m, 2H). ¹³C NMR (75 MHz, CDCl₃) 144.6, 129.5, 126.7, 121.5, 117.0, 114.2, 42.0, 26.9, 22.1.

2-Methyl-1,2,3,4-tetrahydroquinoline (3a).³⁴ ¹H NMR (300 MHz, CDCl₃) 7.01-6.95 (m, 2H), 6.62 (t, 1H, *J* 7.5 Hz), 6.49 (d, 1H, *J* 7.5 Hz), 3.47-3.36 (m, 1H), 2.91-2.69 (m, 2H), 1.98-1.90 (m, 1H), 1.67-1.54 (m, 1H), 1.22 (d, 3H, *J* 6.5 Hz). ¹³C NMR (75 MHz, CDCl₃) 144.2, 129.3, 126.7, 121.4, 117.4, 114.4, 47.3, 30.0, 26.5, 22.4.

3-Methyl-1,2,3,4-tetrahydroquinoline (**4a**).³⁴ ¹H NMR (300 MHz, CDCl₃) 7.02-6.95 (m, 2H), 6.65 (t, 1H, *J* 8.0 Hz), 6.55 (d, 1H, *J* 8.0 Hz), 3.29 (dd, 1H, *J* 11.0, 3.5 Hz), 2.90 (dd, 1H, *J* 11.0, 10.0 Hz), 2.79 (dd, 1H, *J* 16.0, 4.0 Hz), 2.44 (dd, 1H, *J* 16.0, 10.5 Hz), 2.18-2.02 (m, 1H), 1.07 (d, 3H, *J* 6.5 Hz). ¹³C NMR (75 MHz, CDCl₃) 144.0, 129.5, 126.7, 121.2, 117.1, 114.0, 48.8, 35.4, 27.1, 19.0.

cis-2,4-Dimethyl-1,2,3,4-tetrahydroquinoline (5a-*cis*).³⁵ ¹H NMR (300 MHz, CDCl₃) 7.14 (d, 1H, *J* 7.5 Hz), 6.97 (t, 1H, *J* 7.5 Hz), 6.68 (t, 1H, *J* 7.5 Hz), 6.48 (d, 1H, *J* 7.5 Hz), 3.53-3.42 (m, 1H), 3.04-2.91 (m, 1H), 1.98-1.91 (m, 1H), 1.42-1.23 (m, 1H), 1.33 (d, 3H, *J* 6.5 Hz), 1.20 (d, 3H, *J* 6.5 Hz). ¹³C NMR (75 MHz, CDCl₃) 144.7, 126.8, 126.7, 126.3, 117.3, 113.9, 47.4, 40.6, 30.8, 22.7, 20.3.

trans-2,4-Dimethyl-1,2,3,4-tetrahydroquinoline (5a-*trans*).³⁵ ¹H NMR (300 MHz, CDCl₃) 7.14 (d, 1H, *J* 7.5 Hz), 7.00 (t, 1H, *J* 7.5 Hz), 6.66 (t, 1H, *J* 7.5 Hz), 6.49 (d, 1H, *J* 7.5 Hz), 3.53-3.42 (m, 1H), 3.05-2.92 (m, 1H), 1.70-1.63 (m, 1H), 1.42-1.23 (m, 1H), 1.28 (d, 3H, *J* 6.5 Hz), 1.21 (d, 3H, *J* 6.5 Hz). ¹³C NMR (75 MHz, CDCl₃) 144.1, 129.1, 126.7, 126.3, 116.9, 114.0, 42.4, 37.1, 30.1, 24.7, 22.6.

cis-4-Methyl-2-phenyl-1,2,3,4-tetrahydroquinoline (6a-*cis*).³⁶ ¹H NMR (500 MHz, CDCl₃) 7.47-7.29 (m, 5H), 7.20 (d, 1H, *J* 7.5 Hz), 7.02 (t, 1H, *J* 7.5 Hz), 6.73 (t, 1H, *J* 7.5 Hz), 6.54 (d, 1H, *J* 7.5 Hz), 4.49 (dd, 1H, *J* 11.5, 2.5 Hz), 3.18-3.11 (m, 1H), 2.14-2.09 (m, 1H), 1.81-1.73 (m, 1H), 1.39 (d, 3H, *J* 6.5 Hz). ¹³C NMR (125 MHz, CDCl₃) 144.7, 144.5, 128.6, 127.6, 126.9, 126.8, 126.6, 126.0, 117.5, 114.1, 57.0, 41.6, 31.3, 20.1.

trans-4-Methyl-2-phenyl-1,2,3,4-tetrahydroquinoline (6a-*trans*).³⁷ ¹H NMR (500 MHz, CDCl₃) 7.41-7.28 (m, 5H), 7.10 (d, 1H, *J* 7.5 Hz), 7.03 (t, 1H, *J* 7.5 Hz), 6.70 (t, 1H, *J* 7.5 Hz), 6.57 (d, 1H, *J* 7.5 Hz), 4.48 (dd, 1H, *J* 11.5, 2.5 Hz), 2.97-2.91 (m, 1H), 2.08-2.02 (m, 1H), 1.89-1.83 (m, 1H), 1.38 (d, 3H, *J* 6.5 Hz). ¹³C NMR (125 MHz, CDCl₃) 144.8, 144.0, 128.8, 128.6, 127.4, 126.9, 126.6, 126.0, 117.1, 114.1, 52.1, 38.2, 29.9, 24.1.

6-Chloro-1,2,3,4-tetrahydroquinoline (7a).⁸ ¹H NMR (300 MHz, CDCl₃) 6.92-6.88 (m, 2H), 6.41 (d, 1H, *J* 8.0 Hz), 3.31-3.27 (m, 2H), 2.73 (t, 1H, *J* 6.5 Hz), 1.96-1.88 (m, 2H). ¹³C NMR (75 MHz, CDCl₃) 142.8, 129.1, 126.5, 123.2, 121.6, 115.4, 41.9, 26.8, 21.7.

6-Bromo-1,2,3,4-tetrahydroquinoline (8a).³⁸ ¹H NMR (300 MHz, CDCl₃) 7.05-7.01 (m, 2H), 6.34 (d, 1H, *J* 8.0 Hz), 3.30-3.26 (m, 2H), 2.73 (t, 2H, *J* 6.5 Hz), 1.95-1.87 (m, 2H). ¹³C NMR (75 MHz, CDCl₃) 143.1, 131.9, 129.4, 123.8, 115.9, 108.8, 41.8, 26.7, 21.6.

6-Fluoro-2-methyl-1,2,3,4-tetrahydroquinoline (**9a**).³⁴ ¹H NMR (300 MHz, CDCl₃) 6.71-6.65 (m, 2H), 6.44-6.39 (m, 1H), 3.39-3.33 (m, 1H), 2.89-2.66 (m, 2H), 1.97-1.88 (m, 1H), 1.64-1.51 (m, 1H), 1.21 (d, 3H, *J* 6.5 Hz). ¹³C NMR (75 MHz, CDCl₃) 155.6 (d, J_{CF} 233.5 Hz), 140.7 (d, J_{CF} 2.0 Hz), 122.6 (d, J_{CF} 6.5 Hz), 115.4 (d, J_{CF} 21.5 Hz), 114.9 (d, J_{CF} 7.5 Hz), 113.2 (d, J_{CF} 22.0 Hz), 47.4, 29.8, 26.6 (d, J_{CF} 1.5 Hz), 22.4.

6-Chloro-2-methyl-1,2,3,4-tetrahydroquinoline (**10a**).³⁴ ¹H NMR (300 MHz, CDCl₃) 6.93-6.88 (m, 2H), 6.39 (d, 1H, *J* 8.5 Hz), 3.44-3.33 (m, 1H), 2.86-2.65 (m, 2H), 1.96-1.89 (m, 1H), 1.62-1.49 (m, 1H), 1.21 (d, 3H, *J* 6.5 Hz). ¹³C NMR (75 MHz, CDCl₃) 143.2, 128.8, 126.5, 122.6, 121.3, 115.0, 47.2, 29.7, 26.4, 22.4.

8-Bromo-2-methyl-1,2,3,4-tetrahydroquinoline (**11a**). ¹H NMR (300 MHz, CDCl₃) 7.23 (d, 1H, *J* 8.0 Hz), 6.91 (d, 1H, *J* 8.0 Hz), 6.46 (t, 1H, *J* 8.0 Hz), 3.53-3.43 (m, 1H), 2.91-2.70 (m, 2H), 1.98-1.90 (m, 1H), 1.65-1.52 (m, 1H), 1.29 (d, 3H, *J* 6.5 Hz). ¹³C NMR (75 MHz, CDCl₃) 141.7, 129.9, 128.1, 122.6, 116.9, 108.5, 47.4, 29.6, 26.9, 22.5. HRMS (ESI-Orbit trap) *m/z*: [M+H]⁺ calcd for C₁₀H₁₂BrN+H, 226.0231; found 226.0227.

References

- 1. Corma, A.; Garcia, H. *Chem. Soc. Rev.* **2008**, 2096. <u>http://dx.doi.org/10.1039/b707314n</u>
- 2. Zhang, Y.; Cui, X.; Shi, F.; Deng, Y. *Chem. Rev.* **2012**, *112*, 2467. <u>http://dx.doi.org/10.1021/cr200260m</u>
- 3. Stratakis, M.; Garcia, H. *Chem. Rev.* **2012**, *112*, 4469. <u>http://dx.doi.org/10.1021/cr3000785</u>
- 4. Mitsudome, T.; Kaneda, K. *Green Chem.* **2013**, *15*, 2636. <u>http://dx.doi.org/10.1039/c3gc41360h</u>
- 5. Liu, X.; He, L.; Liu, Y.-M.; Cao, Y. Acc. Chem. Res. 2014, 47, 793. http://dx.doi.org/10.1021/ar400165j
- 6. Takale, B. S.; Bao, M.; Yamamoto, Y. *Org. Biomol. Chem.* **2014**, *12*, 2005. <u>http://dx.doi.org/10.1039/c3ob42207k</u>
- Boronat, M.; Concepcion, P.; Corma, A.; Gonzalez, S.; Illas F.; Serna, P. J. Am. Chem. Soc. 2007, 129, 16230. http://dx.doi.org/10.1021/ja076721g
- Ren, D.; He, L.; Yu, L.; Ding, R.-S.; Liu, Y.-M.; Cao, Y.; He, H.-Y.; Fan, K.-N. J. Am. Chem. Soc. 2012, 134, 17592. <u>http://dx.doi.org/10.1021/ja3066978</u>
- Yan, M.; Jin, T.; Ishikawa, Y.; Minato, T.; Fujita, T.; Chen, L.-Y.; Bao, M.; Asao, N.; Chen, M.-W.; Yamamoto, Y. J. Am. Chem. Soc. 2012, 134, 17536. <u>http://dx.doi.org/10.1021/ja3087592</u>
- 10. Shao, L.; Huang, X.; Teschner, D.; Zhang, W. ACS Catal. **2014**, 4, 2369. <u>http://dx.doi.org/10.1021/cs5002724</u>
- 11. Li, G.; Jin, R. J. Am. Chem. Soc. **2014**, *136*, 11347. http://dx.doi.org/10.1021/ja503724j
- 12. Corma, A.; Gonzalez-Arellano, C.; Iglesias, M.; Sanchez, F. *Angew. Chem. Int. Ed.* **2007**, *46*, 7820.

http://dx.doi.org/10.1002/anie.200702032

13. Taniguchi, K.; Itagaki, S.; Yamaguchi, K.; Mizuno, N. Angew. Chem. Int. Ed. 2013, 52, 8420.

http://dx.doi.org/10.1002/anie.201303132

- 14. Mikami, Y.; Noujima, A.; Mitsudome, T.; Mizugaki, T.; Jitsukawa, K.; Kaneda, K. *Chem. Eur. J.* 2011, *17*, 1768.
 http://dx.doi.org/10.1002/chem.201003109
- 15. Park, S.; Lee, I. S.; Park, J. Org. Biomol. Chem. **2013**, *11*, 395. <u>http://dx.doi.org/10.1039/c2ob27025k</u>
- 16. Gryparis, C.; Stratakis, M. *Chem. Commun.* **2012**, *48*, 10751. <u>http://dx.doi.org/10.1039/c2cc35116a</u>

- 17. Vasilikogiannaki, E.; Gryparis, C.; Kotzabasaki, V.; Lykakis, I. N.; Stratakis, M. Adv. Synth. Catal. 2013, 355, 907. <u>http://dx.doi.org/10.1002/adsc.201200983</u>
- 18. Vasilikogiannaki, E.; Titilas, I.; Gryparis, C.; Louka, N.; Lykakis, I. N.; Stratakis, M. *Tetrahedron* 2014, 70, 6106. <u>http://dx.doi.org/10.1016/j.tet.2014.03.094</u>
- 19. Sridharan, V.; Suryavanshi, P.; Menendez, J. C. *Chem. Rev.* **2011**, *111*, 7157. <u>http://dx.doi.org/10.1021/cr100307m</u>
- 20. Yan, M.; Jin, T.; Chen, Q.; Ho, H. E.; Fujita, T.; Chen, L.-Y.; Bao, M.; Chen, M.-W.; Asao, N.; Yamamoto, Y. Org. Lett. 2013, 15, 1484. <u>http://dx.doi.org/10.1021/ol400229z</u>
- 21. Replacement of EtOH (4 equiv) with H_2O^{20} (2 equiv) resulted in a similar outcome. The same holds with some of the quinolines appearing in Table 2, including the unreactive parent 2. Thus, there is no significant advance in the process using ethanol or water.
- 22. Lykakis, I. N.; Psyllaki, A.; Stratakis, M. J. Am. Chem. Soc. **2011**, 133, 10426. <u>http://dx.doi.org/10.1021/ja2045502</u>
- 23. Symeonidis, T. S.; Lykakis, I. N.; Litinas, K. E. *Tetrahedron* **2013**, *69*, 4612. <u>http://dx.doi.org/10.1016/j.tet.2013.04.026</u>
- 24. MacNair, A. J.; Tran, M.-M.; Nelson, J. E.; Sloan, G. U.; Ironmonger, A.; Thomas, S. P. Org. Biomol. Chem. 2014, 12, 5082. <u>http://dx.doi.org/10.1039/c4ob00945b</u>
- 25. Fountoulaki, S.; Daikopoulou, V.; Gkizis, P. L.; Tamiolakis, I.; Armatas, G. S., Lykakis, I. N. ACS Catal. 2014, 4, 3504. http://dx.doi.org/10.1021/cs500379u
- 26. Takale, B. S.; Tao, S. M.; Yu, X. Q.; Feng, X. J.; Jin, T.; Bao, M.; Yamamoto, Y. Org. Lett. 2014, 16, 2558. http://dx.doi.org/10.1021/ol500958p
- 27. Psyllaki, A.; Lykakis, I. N.; Stratakis, M. *Tetrahedron* **2012**, *68*, 8724. <u>http://dx.doi.org/10.1016/j.tet.2012.08.021</u>
- 28. Rauckman, B. S.; Tidwell, M. Y.; Johnson, J. V.; Roth, B. J. Med. Chem. **1989**, *32*, 1927. <u>http://dx.doi.org/10.1021/jm00128a040</u>
- 29. Portela-Cubillo, F.; Scott, J. S.; Walton, J. C. J. Org. Chem. 2009, 74, 4934. http://dx.doi.org/10.1021/jo900629g
- Martinez-Estibalez, U.; Garcia-Calvo, O.; Ortiz-de-Elguea, V.; Sotomayor, N.; Lete, E. *Eur. J. Org. Chem.* 2013, 3013. DOI: 10.1002/ejoc.201300048
- 31. Jia, C.-S.; Zhang, Z.; Tu, S.-J.; Wang, G.-W. Org. Biomol. Chem. 2006, 4, 104. http://dx.doi.org/10.1039/b513721g
- 32. Zhang, Y.; Gao, J.; Li, W.; Lee, H.; Lu, B. Z.; Senanayake, C. H. J. Org. Chem. 2011, 76, 6394.

http://dx.doi.org/10.1021/jo200904g

- 33. Matsugi, M.; Tabusa, F.; Minamikawa, J. *Tetrahedron Lett.* **2000**, *41*, 8523. <u>http://dx.doi.org/10.1016/S0040-4039(00)01542-2</u>
- 34. Wu, J.; Wang, C.; Tang, W.; Pettman, A.; Xiao, J. *Chem.-Eur. J.* **2012**, *18*, 9525. <u>http://dx.doi.org/10.1002/chem.201201517</u>
- 35. Murahashi, S.-I.; Imada, Y.; Hirai, Y. *Bull. Chem. Soc. Jpn.* **1989**, *62*, 2968. <u>http://dx.doi.org/10.1246/bcsj.62.2968</u>
- 36. Soderberg, B. C. G.; Shriver, J. A.; Cooper, S. H; Shrout, T. L.; Helton, E. S.; Austin, L. R.; Odens, H. H.; Hearn, B. R.; Jones, P. C.; Kouadio, T. N.; Ngi, T. H.; Baswell, R.; Caprara, H. J.; Meritt, M. D.; Mai, T. T. *Tetrahedron* **2003**, *59*, 8775. <u>doi:10.1016/j.tet.2003.09.028</u>
- 37. Ueda, M.; Kawai, S.; Hayashi, M.; Naito, T.; Miyata, O. J. Org. Chem. 2010, 75, 914. http://dx.doi.org/10.1021/jo902540x
- Wu, J.; Barnard, J. H.; Zhang, Y.; Talwar, D.; Robertson, C. M.; Xiao, J. *Chem. Commun.* 2013, 49, 7052. http://dx.doi.org/10.1039/c3cc44567d