Synthesis of N-arylsubstituted pyrrolidines and piperidines by reaction of anilines with \(\alpha,\omega\)-diols catalyzed by FeCl\(_3\)·6H\(_2\)O in carbon tetrachloride

Ravil I. Khusnutdinov,* Alfiya R. Bayguzina, Rigina S. Asylbaeva, Rishat I. Aminov and Usein M. Dzhemilev

Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, 141 Prospekt Oktyabrya, Ufa 450075, Russia
E-mail: khusnutdinov@anrb.ru

DOI: http://dx.doi.org/10.3998/ark.5550190.p008.743

Abstract
N-Arylpyrrolidines and N-arylpiperidines were synthesized in 20-88% yields by the reaction of aniline and aniline derivatives with 1,4-butane- and 1,5-pentanediols in the presence of Fe-containing catalysts and carbon tetrachloride. 1,4-Butane- and 1,5-pentanediols are partially chlorinated under the reaction conditions to give chlorohydrins, which subsequently undergo N-heterocyclization with anilines to give N-arylpiperrolidines and N-arylpiperidines.

Keywords: N-heterocyclization, anilines, 1,4-butane- and 1,5-pentanediols, N-arylpiperrolidines, N-arylpiperidines, FeCl\(_3\)·6H\(_2\)O, chlorohydrin, catalysis, carbon tetrachloride

Introduction

Pyrrolidines and piperidines form a highly important class of secondary amines; they are present as structural parts in many pharmaceuticals, herbicides, fungicides, and dyes.\(^1\) A known method for the synthesis of cyclic amines of the pyrrolidine and piperidine series is based on aniline heterocyclization with \(\alpha,\omega\)-diols catalyzed by Ru metal complexes to give high yields of the target products.\(^2-6\) Presumably, the reaction mechanism includes dehydrogenation of one OH group of the diol to give the [Ru]-hydroxyaldehyde-H\(_2\) complex, which then condenses with aniline to give the Schiff base. The latter is hydrogenated affording amino alcohol, which undergoes intramolecular cyclization to yield N-substituted cyclic amine.\(^2\) Another publication\(^7\) describes the synthesis of N-phenylpyrrolidines by the reaction of anilines with 1,4-butanediol catalyzed by the iridium complex Ir[C\(_5\)(CH\(_3\))\(_5\)] in the presence of NaHCO\(_3\) as a base.
In this study, we ascertained that iron compounds and complexes serve as efficient catalysts for the synthesis of cyclic amines, N-arylpyrrolidines and N-arylpiperidines, by reactions of anilines with 1,4-butane- and 1,5-pentanediols. The reaction proceeds in carbon tetrachloride in the presence of the following iron compounds: FeCl$_3$, FeBr$_2$, FeCl$_3$·6H$_2$O, Fe(acac)$_3$, Fe$_2$(CO)$_9$, the catalyst of choice being FeCl$_3$·6H$_2$O.

Results and Discussion

It was found experimentally that the optimal catalyst and reactant molar ratios are as follows: [FeCl$_3$·6H$_2$O]:[RC$_6$H$_4$NH$_2$]:[diol]:[CCl$_4$] = 0.5:100:200:30. At 180 °C over a period of 6 h, the reactions give N-arylpyrrolidines 1-12 and N-arylpiperidines 13-24 in 5-88% yields. The highest yields of 88% and 85% were observed for unsubstituted aniline-derived products 1 and 13. Aniline derivatives were less active in this reaction irrespective of the electron-donating or electron-withdrawing properties of substituents. Therefore, our attempt to establish a correlation between the basicity (pK$_a$) and reactivity of substituted anilines was not a success. Most difficult was heterocyclization of 1,4-butane- and 1,5-pentanediols with p-anisidine (the yields were 18% for 12 and 5% for 24), the basicity of which (pK$_a$ = 5.29) differs little from the basicity of p-toluidine (pK$_a$ = 5.12), which forms cyclic amines 4 and 16 in 75 and 61% yields, respectively (Scheme 1).

![Scheme 1](image)

The abnormal behavior of p-anisidine may be due to the possibility of complex formation with the central atom of the catalyst involving the ether group or chelation by NH$_2$- and OMe-groups.

Note that in the absence of carbon tetrachloride, no reaction occurs. It is evident that CCl$_4$ is not only a solvent but also a reactant. Taking into account the probable participation of CCl$_4$,
three reaction pathways leading to N-phenylpyrrolidine can be conceived and are shown in the chart (Scheme 2).

![Scheme 2](image)

Scheme 2

First, CCl_4 can be hydrolyzed under the reaction conditions to give HCl, which can subsequently catalyze the reaction (pathway I – acid catalysis) (Scheme 3).

$$CCl_4 + 2H_2O \rightarrow 4HCl + CO_2$$

Scheme 3

This assumption was verified by experiments with authentic hydrochloric acid taken in a concentration of 15% comparable with the concentration released upon the formation of N-phenylpyrrolidine 1 from 1,4-butanediol, aniline, and CCl_4 under the action of the catalyst. As shown by the experiment, in the presence of HCl without a catalyst in the reaction mixture, the yield of N-phenylpyrrolidine 1 was only 14%. Hence, this pathway is unlikely.

According to gas chromatography/mass spectrometry analysis data, the reaction mixture contained 4-chlorobutanol 25, 1,4-dichlorobutane 26, and 4,4'-di(chlorobutyl) ether 27, which may participate in the formation of N-phenylpyrrolidine 1 (pathways II and III) (Scheme 4).

![Scheme 4](image)

Scheme 4

In view of the presence of 4-chloro-1-butanol 25 and considering published data, the process starts, most likely, with partial chlorination of 1,4-butanediol with CCl_4 to give chlorohydrin 25. The evolution of CO$_2$ was detected by test reaction with a calcium hydroxide solution (Scheme 5).
Scheme 5

The next step is the reaction of chlorohydrin 25 with aniline under the action of FeCl₃·6H₂O to give 4-(N-phenylamino)-1-butanol 28, which then undergoes intramolecular dehydration with evolution of 1 mole of water to afford N-phenylpyrrolidine 1 (Scheme 6).

Scheme 6

A control experiment with authentic chlorohydrin 25 in the presence of the FeCl₃·6H₂O catalyst resulted in the formation of N-phenylpyrrolidine 1 in a quantitative yield.

Note that under the reaction conditions a part of the formed chlorohydrin 25 that has not reacted with aniline can subsequently react with carbon tetrachloride yielding 1,4-dichlorobutane 26 and giving off two moles of water (Scheme 7).

Scheme 7

The second pathway is supported by the results of control experiment with aniline and a mixture of 4-chlorobutanol, 1,4-dichlorobutane, and 4,4'-dichlorodibutyl ether (2:1:5) carried out in the presence of the FeCl₃·6H₂O catalyst at 180 °C within 4 h. It was found that only 4-chloro-1-butanol 25 was consumed for the formation of N-phenylpyrrolidine (Scheme 8).
Scheme 8.
Conclusions

We propose a readily available catalyst, FeCl$_3$·6H$_2$O, for N-heterocyclization of anilines with 1,4-butane- and 1,5-pentanediols in the presence of CCl$_4$ giving N-aryl-substituted pyrrolidines and piperidines.

Experimental Section

General. 1H, 13C and 19F NMR spectra were measured on a Bruker Avance-400 spectrometer (400.13, 100.62 and 376.5 MHz, respectively) in CDCl$_3$, the chemical shifts are referred to TMS. Mass spectra were run on a Shimadzu GCMS-QP2010Plus GC/MS spectrometer (an SPB-5 capillary column, 30 m × 0.25 mm, helium as a carrier gas, temperature programming from 40 to 300°C at 8 °C/min, evaporation temperature 280 °C, temperature of the ion source 200°C, ionization energy 70 eV). Chromatographic analysis was carried out on a Shimadzu GC-9A, GC-2014 instrument [2 m × 3 mm column, silicone SE-30 (5%) on Chromaton N-AW-HMDS as the stationary phase, temperature programming from 50 to 270 °C at 8 °C/min, helium as the carrier gas (47 mL/min)]. The elemental composition of the samples was determined on a Karlo Erba 1106 elemental analyzer.

N-Arylpyrrolidines and N-arylpiperidines. General procedure. The reactions were carried out in a glass ampoule (V = 10 mL), placed in a stainless-steel micro autoclaves (V = 17 mL) under constant stirring and controlled heating. The ampoule was charged with FeCl$_3$·6H$_2$O (2.9 mg, 0.01 mmol), aniline (0.2 mL, 2.15 mmol), diol (1,4-butandiol 0.38 mL and 1,5-pentanediol 0.45 mL, 4.30 mmol) and carbon tetrachloride (0.06 mL, 0.65 mmol) in an argon flow. The sealed ampoule was placed in an autoclave. The autoclave was air-tightly closed and heated at 160-180 °C for 6-12 h under continuous stirring. After completion of the reaction, the autoclave was cooled to room temperature, the ampoule was opened, and the reaction mixture was treated with diluted (10%) hydrochloric acid. The water layer was separated, neutralized with 10% solution of sodium hydroxide, and extracted with dichloromethane. The organic layer was filtered and the solvent was distilled off. The residue was distilled in a vacuum or recrystallized from hexane.

N-Phenylpyrrolidine (1). 3Yield 88%; colorless, oily liquid; bp 89-90 °C/1 mm (lit.3 86 °C/1 mm). 1H NMR (400.13 MHz, CDCl$_3$): δ 7.34 (m, 2H, C$_{3,5}$H), 6.78 (m, 1H, C$_4$H), 6.69 (d, J 8 Hz, 2H, C$_{2,6}$H), 3.38 (m, 4H, C$_{2,5}'$H$_2$), 2.09 (m, 4H, C$_{3,4}'$H$_2$); 13C NMR (100.62 MHz, CDCl$_3$): δ 148.06 (C$_1$), 129.22 (C$_{3,5}$), 115.53 (C$_4$), 111.81 (C$_{2,6}$), 47.72 (C$_{3,5}'$), 25.56 (C$_{3,4}'$); MS (EI, 70 eV): m/z (%) 147 (94) [M$^+$], 146 (100), 119 (9), 104 (25), 91 (72), 77 (46), 65 (7), 51 (19).

N-(2-Methylphenyl)pyrrolidine (2). 9Yield 50%; light yellow oily liquid; bp 121-123 °C/10 mm (lit.10 55 °C/0.38 mm). 1H NMR (400.13 MHz, CDCl$_3$): δ 7.20 (m, 1H, C$_1$H), 7.05 (m, 1H, C$_5$H), 6.93 (m, 1H, C$_6$H), 6.70 (m, 1H, C$_4$H), 3.32 (m, 4H, C$_{2,5}$H$_2$), 2.44 (s, 3H, C$_3$H$_3$), 2.04 (m,
$4H, C^{3,4}H_2$; ^{13}C NMR (100.62 MHz, CDCl$_3$): δ 148.14 (C1), 131.92 (C3), 129.20 (C5), 126.56 (C6), 121.68 (C2), 116.59 (C6), 49.74 (C2,5), 24.52 (C3,4), 20.35 (C7).

N-(3-Methylphenyl)pyrrolidine (3).9 Yield 63%; colorless, oily liquid; bp 85-86 °C/1 mm (lit.10 70 °C/0.64 mm). 1H NMR (400.13 MHz, CDCl$_3$): δ 7.24 (m, 1H, C3H), 6.63 (d, J 8 Hz, 1H, C4H), 6.53 (s, 1H, C5H), 6.52 (d, J 8 Hz, 1H, C6H), 3.39 (m, 4H, C2,5H$_2$), 2.45 (s, 3H, C7H$_3$), 2.09 (m, 4H, C3,4H$_2$); 13C NMR (100.62 MHz, CDCl$_3$): δ 148.15 (C1), 138.83 (C3), 129.11 (C5), 116.61 (C6), 112.53 (C2), 109.14 (C6), 47.79 (C2,5), 25.55 (C3,4), 21.98 (C7); MS (EI, 70 eV): m/z (%) 161 (72) [M+], 160 (100), 118 (22), 105 (69), 91 (56), 77 (14), 65 (34), 51 (11).

N-(4-Methylphenyl)pyrrolidine (4).11 Yield 75%; yellow solid; mp 38-40 °C (lit.12 40–42 °C). 1H NMR (400.13 MHz, CDCl$_3$): δ 7.07 (d, J 8 Hz, 2H, C3,5H), 6.56 (d, J 8 Hz, 2H, C2,6H), 3.27 (m, 4H, C2,5H$_2$), 2.28 (s, 3H, C7H$_3$), 2.02 (m, 4H, C3,4H$_2$); 13C NMR (100.62 MHz, CDCl$_3$): δ 145.85 (C1), 129.68 (C2,5), 124.98 (C4), 112.19 (C2,6), 48.26 (C2,5), 25.39 (C3,4), 20.36 (C7); MS (EI, 70 eV): m/z (%) 161 (76) [M+], 160 (100), 118 (31), 105 (79), 91 (64), 89 (16), 77 (18), 65 (38), 51 (13).

N-(2-Ethylphenyl)pyrrolidine (5). Yield 47%; yellow oily liquid; bp 88-90 °C/0.8 mm. 1H NMR (400.13 MHz, CDCl$_3$): δ 7.22 (m, 1H, C3H), 7.16 (m, 1H, C3H), 6.99 (m, 1H, C6H), 6.95 (m, 1H, C4H), 3.20 (br s, 4H, C2,5H$_2$), 2.75 (q, J 7.2 Hz, 2H, C7H$_2$), 1.97 (br s, 4H, C3,4H$_2$), 1.29 (t, J 7.2 Hz, 3H, C5H$_3$); 13C NMR (100.62 MHz, CDCl$_3$): δ 135.50 (C1), 129.39 (C3), 128.35 (C6), 126.18 (C4), 120.97 (C2), 116.66 (C6), 51.62 (C2,5), 25.33 (C3,4), 24.93 (C7), 14.39 (C8); MS (EI, 70 eV): m/z (%) 175 (80) [M+], 174 (100), 160 (7), 146 (12), 134 (15), 119 (35), 91 (37), 65 (16); Anal. Calcd. for C$_{12}$H$_{11}$N: C, 82.23; H, 9.78; N, 7.99%. Found: C, 82.11; H, 9.83; N, 8.06%.

N-(2-Chlorophenyl)pyrrolidine (6).10 Yield 51%; colorless, oily liquid; bp 78-80 °C/1 mm (lit.10 54 °C/0.20 mm). 1H NMR (400.13 MHz, CDCl$_3$): δ 7.29 (m, 1H, C3H), 7.17 (m, 1H, C3H), 7.00 (m, 1H, C4H), 6.82 (m, 1H, C6H), 3.41 (br s, 4H, C2,5H$_2$), 1.97 (br s, 4H, C3,4H$_2$); 13C NMR (100.62 MHz, CDCl$_3$): δ 146.98 (C1), 131.29 (C3), 127.29 (C5), 126.44 (C4), 123.59 (C2), 120.91 (C6), 51.26 (C2,5), 25.20 (C3,4); MS (EI, 70 eV): m/z (%) 181 (85) [M+], 183 (23), 182 (42), 180 (100), 140 (24), 138 (64), 125 (69), 111 (49), 91 (27).

N-(3-Chlorophenyl)pyrrolidine (7).9 Yield 50%; yellow oily liquid; bp 92-93 °C/0.8 mm. 1H NMR (400.13 MHz, CDCl$_3$): δ 7.06 (m, 1H, C3H), 6.55 (d, J 8 Hz, 1H, C4H), 6.46 (s, 1H, C2H), 6.37 (d, J 8 Hz, 1H, C6H), 3.19 (br s, 4H, C2,5H$_2$), 1.96 (br s, 4H, C3,4H$_2$); 13C NMR (100.62 MHz, CDCl$_3$): δ 148.83 (C1), 134.78 (C3), 129.98 (C5), 114.95 (C4), 111.27 (C2), 109.89 (C6), 47.57 (C2,5), 25.41 (C3,4).

N-(4-Chlorophenyl)pyrrolidine (8).10 Yield 60%; white solid; mp 83-85 °C (lit.13 84–85 °C). 1H NMR (400.13 MHz, CDCl$_3$): δ 7.14 (d, J 8 Hz, 2H, C3,5H), 6.46 (d, J 8 Hz, 2H, C2,6H), 3.25 (m, 4H, C2,5H$_2$), 2.02 (m, 4H, C3,4H$_2$); 13C NMR (100.62 MHz, CDCl$_3$): δ 146.51 (C1), 128.90 (C2,5), 120.04 (C4), 112.73 (C2,6), 47.78 (C2,5), 25.56 (C3,4); MS (EI, 70 eV): m/z (%) 181 (88) [M+], 183 (23), 182 (30), 180 (100), 138 (37), 127 (17), 125 (66), 110 (46), 91 (16), 89 (19), 75 (20).
N-(4-Fluorophenyl)pyrrolidine (9). Yield 45%; yellow oily liquid; bp 82-84 °C/1mm (lit. 14 130-132 °C/13 mm). 1H NMR (400.13 MHz, CDCl3): δ 6.96 (m, 2H, C3,5-H), 6.50 (m, 2H, C2,6-H), 3.25 (m, 4H, C2,5-H2), 2.02 (m, 2H, C3,4-H2); 13C NMR (100.62 MHz, CDCl3): δ 154.83 (d, C4, 72 Hz), 144.83 (C1), 115.43 (d, C2,6, J 8 Hz), 112.14 (d, C3,5, J 2 Hz), 48.18 (C2,5), 25.53 (C3,4); 19F NMR (376.5 MHz, CDCl3): δ -130.73; MS (EI, 70 eV): m/z (%) 165 (94) [M+], 164 (73), 136 (11), 122 (63), 109 (100), 95 (10).

N-(3-Hydroxyphenyl)pyrrolidine (10). Yield 42%; white solid; mp 134-135 °C (lit. 16 134 °C). 1H NMR (400.13 MHz, CDCl3): δ 7.07 (m, 1H, C5-H), 6.19 (m, 1H, C4-H), 6.18 (s, 1H, C2-H), 6.08 (m, 1H, C6-H), 3.25 (m, 4H, C2,5-H2), 1.99 (m, 4H, C3,4-H2); 13C NMR (100.62 MHz, CDCl3): δ 156.84 (C3), 149.52 (C1), 130.02 (C5), 104.61 (C4), 102.77 (C6), 98.90 (C2), 47.70 (C2,5), 25.40 (C3,4); MS (EI, 70 eV): m/z (%) 163 (93) [M+], 162 (100), 134 (17), 120 (17), 107 (55), 93 (21), 77 (10), 65 (30).

N-(3-Methoxyphenyl)pyrrolidine (11). Yield 24%; colorless, oily liquid; bp 109-110 °C/1 mm. 1H NMR (400.13 MHz, CDCl3): δ 7.18 (m, 1H, C5-H), 6.30 (m, 1H, C4-H), 6.18 (s, 1H, C2-H), 6.11 (m, 1H, C6-H), 3.85 (s, 3H, C3,5-H3), 3.32 (m, 4H, C2,5-H2), 2.03 (m, 4H, C3,4-H2); 13C NMR (100.62 MHz, CDCl3): δ 160.74 (C3), 149.50 (C1), 129.97 (C5), 105.08 (C4), 100.60 (C6), 98.02 (C2), 55.14 (C7), 47.72 (C2,5), 25.46 (C3,4); MS (EI, 70 eV): m/z (%) 177 (82) [M+], 176 (100), 121 (99), 107 (35), 92 (45), 77 (78), 64 (57), 41 (80), 39 (62).

N-(4-Methoxyphenyl)pyrrolidine (12). Yield 18%; white solid; mp 44-46 °C. 1H NMR (400.13 MHz, CDCl3): δ 6.87 (d, J 8 Hz, 2H, C3,5-H), 6.57 (d, J 8 Hz, 2H, C4,6-H), 3.77 (s, 3H, C3,5-H3), 3.23 (m, 4H, C2,5-H2), 2.01 (m, 4H, C3,4-H2); 13C NMR (100.62 MHz, CDCl3): δ 150.81 (C4), 143.24 (C1), 115.04 (C2,6), 112.70 (C3,5), 56.02 (C7), 48.31 (C2,5), 25.36 (C3,4); MS (EI, 70 eV): m/z (%) 177 (75) [M+], 162 (100), 134 (10), 120 (15), 92 (6), 77 (8), 65 (5), 57 (5).

N-Phenylpiperidine (13). Yield 85%; colorless oil; bp 73-74 °C/0.4 mm (lit. 3 86 °C/1 mm). 1H NMR (400.13 MHz, CDCl3): δ 7.30 (m, 2H, C4,5-H), 7.00 (d, J 8 Hz, 2H, C4,6-H), 6.88 (m, 1H, C4-H), 3.21 (m, 4H, C2,6-H2), 1.76 (m, 4H, C3,5-H2), 1.64 (m, 2H, C3,4-H2); 13C NMR (100.62 MHz, CDCl3): δ 152.22 (C1), 129.04 (C3,5), 119.36 (C4), 116.66 (C2,6), 50.81 (C2,5), 25.88 (C3,5), 24.34 (C4).

N-(2-Methylphenyl)piperidine (14). Yield 42%; light yellow oily liquid; bp 60-61 °C/0.6 mm (lit. 18 44 °C/0.2 mm). 1H NMR (400.13 MHz, CDCl3): δ 7.19 (m, 1H, C4-H), 7.14 (m, 1H, C5-H), 6.98 (m, 1H, C6-H), 6.87 (m, 1H, C4-H), 2.99 (br s, 4H, C2,5-H2), 2.31 (s, 3H, C3,5-H3), 1.86 (br s, 4H, C2,5-H2), 1.60 (m, 2H, C3,4-H2); 13C NMR (100.62 MHz, CDCl3): δ 149.87 (C1), 132.41 (C4), 131.56 (C5), 126.74 (C6), 124.31 (C2), 119.32 (C6), 54.08 (C2,6), 25.74 (C3,5), 23.76 (C4), 18.31 (C7); MS (EI, 70 eV): m/z (%) 175 (86) [M+], 174 (100), 146 (28), 132 (18), 118 (86), 91 (38).

N-(3-Methylphenyl)piperidine (15). Yield 47%; light yellow oily liquid; bp 95-97 °C/0.5 mm. 1H NMR (400.13 MHz, CDCl3): δ 7.17 (m, 1H, C5-H), 6.88 (d, J 8 Hz, 1H, C4-H), 6.53 (s, 1H, C4-H), 6.51 (m, 1H, C6-H), 3.25 (m, 4H, C2,5-H2), 2.33 (s, 3H, C3-H3), 2.22 (m, 4H, C3,5-H2), 1.63 (m, 2H, C3,4-H2); 13C NMR (100.62 MHz, CDCl3): δ 148.34 (C1), 139.45 (C4), 129.32 (C5), 124.56 (C6), 119.90 (C2), 115.62 (C6), 53.49 (C2,6), 24.69 (C3,5), 23.18 (C4), 21.64 (C7); MS (EI, 70 eV): m/z (%) 175 (81) [M+], 174 (100), 160 (7), 146 (12), 134 (15), 119 (36), 91 (38), 65 (16).
N-(4-Methylphenyl)piperidine (16). Yield 61%; light yellow solid; mp 264-266 °C (lit. 265-267 °C). 1H NMR (400.13 MHz, CDCl3): δ 7.56 (d, J = 8 Hz, 1H, C\(^2\)-H), 7.11 (d, J = 8 Hz, 1H, C\(^4\)-H), 3.20 (m, 4H, C\(^2,6\)-H), 2.24 (s, 3H, C\(^3\)-H), 2.07 (m, 4H, C\(^5,5\)-H); 13C NMR (100.62 MHz, CDCl3): δ 142.18 (C\(^1\)), 137.94 (C\(^3\)), 129.92 (C\(^4\)), 120.42 (C\(^6\)), 56.15 (C\(^2,6\)), 23.17 (C\(^3,5\)), 21.94 (C\(^1\)), 20.86 (C\(^3\)); MS (EI, 70 eV): m/z (%): 175 (98) [M+], 174 (100), 160 (12), 146 (9), 134 (13), 119 (32), 91 (29), 64 (10).

N-(2-Ethylphenyl)piperidine (17). Yield 38%; yellow oily liquid; bp 75-77 °C/1mm. 1H NMR (400.13 MHz, CDCl3): δ 7.27 (m, 1H, C\(^2\)-H), 7.19 (m, 1H, C\(^5\)-H), 7.11 (m, 1H, C\(^3\)-H), 7.06 (m, 1H, C\(^4\)-H), 2.77 (m, 4H, C\(^2,6\)-H), 2.57 (m, 2H, C\(^3\)-H), 1.80 (m, 4H, C\(^5,5\)-H), 1.61 (m, 2H, C\(^6\)-H), 1.30 (m, 3H, C\(^8\)-H); 13C NMR (100.62 MHz, CDCl3): δ 152.29 (C\(^1\)), 139.29 (C\(^3\)), 128.87 (C\(^5\)), 126.36 (C\(^6\)), 123.62 (C\(^2\)), 119.85 (C\(\delta\)), 54.36 (C\(^2,6\)), 26.61 (C\(^{3,5}\)), 24.66 (C\(\gamma\)), 24.36 (C\(\gamma\)), 14.89 (C\(\delta\)); Anal. Calcd. for C\(\text{H}_{11}\)N: C: 68.48; H: 10.12; N: 7.40%. Found: C: 82.61; H: 10.04; N: 7.35%.

N-(2-Chlorophenyl)piperidine (18). Yield 33%; light yellow oily liquid; bp 89-90 °C/0.6 mm. 1H NMR (400.13 MHz, CDCl3): δ 7.39 (m, 1H, C\(^2\)-H), 7.26 (m, 1H, C\(^5\)-H), 7.08 (m, 1H, C\(^3\)-H), 7.00 (m, 1H, C\(^4\)-H), 3.02 (m, 4H, C\(^2,6\)-H), 1.79 (m, 4H, C\(^5,5\)-H), 1.63 (m, 2H, C\(^6\)-H); 13C NMR (100.62 MHz, CDCl3): δ 150.66 (C\(^1\)), 130.53 (C\(^3\)), 128.00 (C\(^5\)), 127.45 (C\(^5\)), 123.15 (C\(^4\)), 120.49 (C\(^6\)), 52.92 (C\(^2,6\)), 26.31 (C\(^{3,5}\)), 24.32 (C\(\gamma\)); Anal. Calcd. for C\(\text{H}_{11}\)ClN: C: 67.51; H: 7.21; N: 7.16%. Found: C: 67.62; H: 7.39; N: 7.03%.

N-(3-Chlorophenyl)piperidine (19). Yield 35%; light yellow oily liquid; bp 82-83 °C/0.5 mm. 1H NMR (400.13 MHz, CDCl3): δ 7.15 (m, 1H, C\(^2\)-H), 7.04 (d, J = 8 Hz, 1H, C\(^4\)-H), 6.92 (s, 1H, C\(^3\)-H), 6.79 (d, J = 8 Hz, 1H, C\(^4\)-H), 3.18 (m, 4H, C\(^2,6\)-H), 1.71 (m, 4H, C\(^5,5\)-H), 1.60 (m, 2H, C\(^6\)-H); 13C NMR (100.62 MHz, CDCl3): δ 152.80 (C\(^1\)), 134.85 (C\(^3\)), 130.26 (C\(^5\)), 119.95 (C\(^4\)), 116.16 (C\(^2\)), 114.49 (C\(\delta\)), 50.34 (C\(^2,6\)), 25.52 (C\(^{3,5}\)), 24.14 (C\(\gamma\)).

N-(4-Chlorophenyl)piperidine (20). Yield 40%; light yellow solid; mp 45-47 °C. 1H NMR (400.13 MHz, CDCl3): δ 7.21 (d, J = 8 Hz, 2H, C\(^3,5\)-H), 6.60 (d, J = 8 Hz, 2H, C\(^6\))-H), 3.14 (m, 4H, C\(^2,6\)-H), 1.75 (m, 4H, C\(^5,5\)-H), 1.60 (m, 2H, C\(^6\)-H); 13C NMR (100.62 MHz, CDCl3): δ 144.90 (C\(^1\)), 128.95 (C\(^3,5\)), 123.07 (C\(^4\)), 118.11 (C\(^2,6\)), 51.19 (C\(^2,6\)), 25.46 (C\(^{3,5}\)), 23.94 (C\(\gamma\)); MS (EI, 70 eV): m/z (%): 195 (91) [M+], 192 (36), 196 (41), 194 (100), 154 (25), 139 (42), 125 (14), 111 (50); Anal. Calcd. for C\(\text{H}_{14}\)ClN: C: 67.51; H: 7.21; N: 7.16%. Found: C: 67.38; H: 7.46; N: 7.23%.

N-(4-Fluorophenyl)piperidine (21). Yield 35%; yellow oily liquid; bp 65-67 °C/1.5 mm (lit. 110-112 °C/16 mm). 1H NMR (400.13 MHz, CDCl3): δ 7.46 (br s, 2H, C\(^3,5\)-H), 6.95 (br s, 2H, C\(^6\)-H), 3.22 (br s, 4H, C\(^2,6\)-H), 1.93 (br s, 4H, C\(^5,5\)-H), 1.59 (br s, 2H, C\(^6\)-H); 13C NMR (100.62 MHz, CDCl3): δ 160.09 (d, C\(^2\), J = 244 Hz), 143.02 (C\(^1\)), 121.47 (d, C\(^2,6\), J = 21 Hz), 116.28 (d, C\(^3,5\), J = 22 Hz), 55.00 (C\(^2,6\)), 24.20 (C\(^{3,5}\)), 22.35 (C\(\gamma\)); 19F NMR (376.5 MHz, CDCl3): δ -116.13.

N-(3-Hydroxyphenyl)piperidine (22). Yield 24%; white solid; mp 122-123 °C. 1H NMR (400.13 MHz, CDCl3): δ 7.10 (m, 1H, C\(^3\)-H), 6.54 (d, J = 8 Hz, 1H, C\(^4\)-H), 6.44 (s, 1H, C\(^2\)-H), 6.33 (m, 1H, C\(^6\)-H), 3.14 (m, 4H, C\(^2,6\)-H), 1.71 (m, 2H, C\(^6\)-H), 1.60 (m, 4H, C\(^5,5\)-H); 13C NMR (100.62 MHz, CDCl3): δ 156.77 (C\(^3\)), 153.40 (C\(^1\)), 129.88 (C\(^5\)), 108.99 (C\(^4\)), 106.64 (C\(\delta\)), 103.84
(С²), 50.71 (С²,6), 25.58 (С³,5), 24.25 (С′); MS (EI, 70 eV): m/z (%) 177 (61) [М+], 176 (86), 121 (99), 93 (55), 65 (87), 55 (54), 41 (73), 39 (100).

N-(3-Methoxyphenyl)piperidine (23). Yield 7%; light yellow oily liquid; 103-104 °C/0.4 mm. ¹H NMR (400.13 MHz, CDCl₃): δ 7.08 (m, 1H, С³), 6.52 (d, J 8 Hz, 1H, С′), 6.45 (s, 1H, С²), 6.33 (м, 1H, С⁵), 3.81 (s, 3H, С⁷), 3.15 (м, 4H, С₂,6⁴), 1.70 (m, 4H, С³,5⁵), 1.59 (m, 2H, С⁶); ¹³C NMR (100.62 MHz, CDCl₃): δ 160.45 (С⁴), 153.51 (С′), 130.01 (С⁵), 108.86 (С⁶), 106.44 (С⁴), 103.69 (С²), 55.16 (С⁷), 50.58 (С²,6⁴), 25.64 (С³,5⁵), 24.29 (С⁶); MS (EI, 70 eV): m/z (%) 191 (68) [М+], 190 (100), 135 (62), 92 (44), 77 (58), 65 (39), 55 (38), 41 (66), 39 (54).

N-(4-Methoxyphenyl)piperidine (24). Yield 5%; white solid; mp 64-65 °C. ¹H NMR (400.13 MHz, CDCl₃): δ 6.95 (d, J 8 Hz, 1H, С³,5), 6.83 (d, J 8 Hz, 1H, С²,6), 3.78 (s, 3H, С⁷), 3.03 (m, 4H, С₂,6⁴), 1.74 (m, 4H, С³,5⁵), 1.56 (m, 2H, С⁶); ¹³C NMR (100.62 MHz, CDCl₃): δ 153.90 (С⁴), 147.63 (С′), 115.35 (С³,5), 113.74 (С²,6), 57.82 (С⁵), 50.87 (С²,6⁴), 26.93 (С³,5⁵), 24.14 (С⁶); MS (EI, 70 eV): m/z (%) 191 (57) [М+], 190 (34), 176 (74), 135 (44), 120 (100), 92 (48), 77 (46), 65 (43), 55 (36), 41 (90), 39 (54).

Acknowledgements

This work was financially supported by the Russian Foundation for Basic Research (Grant No. 12-03-00183) and a Grant of the RF President (Sci. Sch.–2136.2014.3).

References

 http://dx.doi.org/10.1080/00397911.2011.561944

 http://dx.doi.org/10.1016/S0040-4020(01)87426-3

 http://dx.doi.org/10.1016/j.tet.2011.05.057

 http://dx.doi.org/10.1002/adsc.201000048

 http://dx.doi.org/10.1021/jo0504464

 http://dx.doi.org/10.1016/S0022-1139(01)00401-8

 http://dx.doi.org/10.1016/j.dyepig.2008.01.001

 http://dx.doi.org/10.1055/s-1982-29841

 http://dx.doi.org/10.1016/S0040-4020(01)83473-6

 http://dx.doi.org/10.1246/bcsj.49.2302

 http://www.ark.chem.ufl.edu/published_papers/pdf/080-mass.pdf

 http://dx.doi.org/10.1002/ejoc.2011000274

 http://dx.doi.org/10.1002/adsc.200404005

 http://dx.doi.org/10.1016/j.jelechem.2005.02.027