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Abstract     
In this review we compile and update recent developments in the synthesis, chemical 
properties, and biological importance of organic selenocyanates. The diverse synthetic routes 
to organoselenocyanates are described in the first part, including direct and indirect 
cyanoselenation. In the second part, the chemical reactions of organoselenocyanate are 
discussed. These included oxidation-reduction reactions. Further reactions included addition 
to the selenocyanate carbonitrile group, and reactions accompanied with cyanide group loss. 
These compounds exhibit anticancer, antioxidative, antileishmanial, antimutagenic and 
chemopreventive properties. The reported biological properties of this group of compounds 
are summarized in the last part.  
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1. Introduction 

 
Organic compounds in which chalcogen atoms (oxygen, sulphur, selenium or tellurium) are 
connected on one side to a hydrocarbon substituent and on the other side to a carbonitrile 
group are called cyanate (OCN), thiocyanate (SCN), selenocyanate (SeCN), and 
tellurocyanate (TeCN), respectively. Organocyanates are relatively unstable, difficult to 
prepare and handle. On the other hand, organothiocyanates are being utilized as intermediates 
in organic chemistry because of their relative stability. The chemistry of organothiocyanates 
has been the subject of several outstanding monographs and reviews.1-5 They have recently 
received wide attention due to their cancer chemopreventive properties.6,7 These compounds 
play a leading role in organoselenium chemistry as they are stable and readily available. 
Indeed, they are efficiently metabolized to selenols and diselenides and therefore thought to 
be favorable selenide precursors.8 

Although preparative methods as well as the chemical properties of organic 
selenocyanates have been reviewed before, most of these reviewed citations are three decades 
old.9,10 Furthermore, several new studies providing extensive new knowledge have recently 
been published. Therefore, rather than dwell further on the triumphs of the past, this survey 
aims to compile and update recent developments in the synthesis, chemical properties and 
biological importance of organoselenocyanates. Our aim here is a comprehensive survey of 
recent literature reports on the current state of the art concerning the chemistry and biology of 
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these compounds. We have tried to avoid duplicating the content of previous reviews, 
although some work is discussed again when necessary to the discussion and to serve to 
illustrate a particular reaction category or strategy. 

 
 

2. Synthetic Aspects of Organoselenocyanates 

 
There are several known methods for the synthesis of organic selenocyanates. These methods 
can be classified into direct and indirect selenocyanation. 

2.1. Direct cyanoselenation 

This can be performed by direct reaction with a selenocyanating agent such as potassium 
selenocyanate, triselenium dicyanide (TSD), dicyanodiselenide or copper diselenocyanate 
(Cu(SeCN)2) in an appropriate solvent. 

 
2.1.1. Cyanoselenation using potassium selenocyanate. Nucleophilic cyanoselenation using 
potassium selenocyanate is the most common and preferred method used for the incorporation 
of selenocyanate group into organic compound backbones. This can be done either by the 
reaction with alkyl/aryl halides, sulfonyl/tosyl derivatives, diazonium salts, olefins or 
organosilanes. 

2.1.1.1. Reaction of potassium selenocyanate with alkyl and aryl halides. This reaction is 
applicable to diverse functionalities (e.g. alkyl, aryl, allylic, propargylic, and natural 
compounds). Indeed, the reaction is usually performed under mild conditions using ethanol, 
acetone, dimethylformamide or acetonitrile as solvent. It is found that the reaction can also be 
improved under irradiation (microwave or ultraviolet), using two-phase systems or by using a 
suitable catalyst (e.g. a Lewis acid). 

The reaction of potassium selenocyanate with the iodo derivative 1 in acetone afforded the 
corresponding selenocyanate 2 in 93 % yield. The reaction proceeded via nucleophilic 
substitution of the iodine by the selenocyanate anion at the selenium atom (Scheme 1).11 
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Treatment of ethanolic solutions of hydrazonoyl chloride 3 with potassium selenocyanate 
gave the corresponding non-isolable hydrazone selenocyanates which cyclized to give the 
selenadiazolimine derivatives 4 in good yields (72-78 %) (Scheme 2).12  
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Furthermore, selenocyanate 6 was obtained in 53% yield by refluxing potassium 
selenocyanate with iodohydrin 5 in acetone (Scheme 3).13 

 

OH

I

OH

NCSe
KSeCN, acetone

, 24 h

5 6  

 

Scheme 3 
 

Desai et al.14 reported the synthesis of N-phenyl-6-selenocyanatohexanamide 8, a histone 
deacetylase inhibitor, in 64 % yield via the reaction of 6-bromo-N-phenylhexanamide 7 with 
potassium selenocyanate in acetonitrile at ambient temperature (Scheme 4). 
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This reaction was also applied to the synthesis of mixed macrocyclic selenoethers 11 and 
12 via cyclization of the corresponding bis-selenocyanate precursor 10. The latter was 
prepared in 62% yield by careful addition of bis-(2-bromoethyl)ether 9 to an acetone solution 
containing potassium selenocyanate (Scheme 5).15 
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Masked phosphonioalkylselenoate ligands 14, used for the preparation of 
phosphonioalkylselenoate-functionalised gold nanoparticles, were prepared by the reaction of 
(bromoalkyl)triphenylphosphonium bromide 13 with potassium selenocyanate in aqueous 
ethanol (Scheme 6).16 
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15-Selenocyanochrysophanols 17 were prepared from the naturally occurring aloe-emodin 
15. The latter was brominated using carbon tetrabromide and triphenylphosphine in 
tetrahydrofuran to give the corresponding bromide 16 (82% yield), which in turn was used as 
the starting material for the introduction of selenocyanate group (65-86% yields) by the 
reaction with potassium selenocyanate. The cytotoxic effects of these compounds were 
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evaluated using HCT 116 and Hep G2 cancer cell lines and they were found to possess much 
more potent effects than the parent aloe-emodin 15 (Scheme 7).17 
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1-Phenyl-2-selenocyanatoethanone (19), known as useful building blocks for the synthesis 
of selenium heterocycles, was prepared in fair yields (33%) by the reaction of phenacyl 
bromides (18) with potassium selenocyanate  in acetone (Scheme 8).18 
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Sk et al.19 reported the synthesis of different organoselenocyanates possessing 1,8-
naphthalimide moiety 21 and evaluated their preventive potential for cadmium induced 
hepatic lipid peroxidation and oxidative stress. These compounds were able to prevent the 
oxidative stress in mice induced by cadmium and enhanced the mice ability to restore hepatic 
lipid peroxidation level and they showed also hepatoprotective activity. The target compounds 
were synthesized in good yields (68-89%) via nucleophilic substitution of the bromides 20 
with selenocyanate using potassium selenocyanate in acetone (Scheme 9).19 
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Once more, Sk and his group20 reported the synthesis of spiro[tetralin-1,3′-pyrrolidine] 
based organoselenocyanates 23 and evaluated their inhibitory activity against cadmium 
induced toxicity in Swiss albino mice. The preadministration of these compounds was 
accompanied by an improvement in the hepatotoxicity with exception that naphthalimide 
containing selenocyanates were more active. This was in agreement with Sk et al.19 previous 
report where these compounds were able to retain redox homeostasis and exhibited 
hepatoprotective activity.19 

The spiro selenocyanato tetralin-1,3′-pyrrolidines 23 were obtained in 75-80% yields via 
nucleophilic substitution reaction of the corresponding bromide derivatives 22 with potassium 
selenocyanate in anhydrous tetrahydrofuran (Scheme 10).20 
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In a similar study, Roy et al.21 described the synthesis of a series of substituted 
naphthalimide-based organoselenocyanates and investigated their corresponding 
hepatotoxicity, nephrotoxicity and also their ability to modulate the levels of phase II 
detoxifying and antioxidant enzymes such as glutathione-S-transferase (GST), superoxide 
dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), thioredoxin reductase 
(TRxR) and nonenzymatic antioxidant like reduced glutathione (GSH) levels in liver. 
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Selenocyanato-isoquinolines 25 were prepared from bromoalkyl-naphthalimides 24 upon 
reaction with potassium selenocyanate in acetone (51-74% yields) (Scheme 11).21 
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Mamedov and his colleagues22 also reported the synthesis of 3-(3-phenyl-1-
selenocyanatopropyl)quinoxalin-2(1H)-ones 27 by the reaction of potassium selenocyanate 
with chlorophenylethylquinoxalinone 26. The reaction proceeded using excess of potassium 
selenocyanate in dimethylformamide at 40 °C and the yield was up to 81% (Scheme 12).22 
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Benzyl selenocyanates 30 were obtained from the reaction of the reaction of benzylic 
bromides 28 with potassium selenocyanate in acetonitrile.23 The products were pure enough 
and obtained in satisfactory yields (up to 70%). When acetone was used as the solvent, 31 
were obtained. This was interpreted as the formation of a second nucleophile 29 which further 
reacted with benzylic halides leading to the formation of 31. It was also postulated that long 
reaction time was the cause of this side reaction (Scheme 13).23 
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Very recently, Krishnegowda et al.24 described the synthesis of 5,7-dibromoisatin 
containing selenocyanate groups 34 and 36. The later were obtained in a good yield (67 and 
76 %, respectively) via the nucleophilic substitution of potassium selenocyanate with 5,7-
dibromo-N-chloroalkylisatin 33 and -N-(4-bromomethyl)benzylisatin 35, respectively 
(Scheme 14). These compounds were evaluated for their cytotoxicity against colon, breast, 
lung and melanoma cancer cells and were reported to display good in vitro activity against 
breast cancer cells (MCF-7) compared to their thiocyanate analogs. Furthermore, the 
compounds were found to inhibit tubulin polymerization as vinblastine sulfate 
(antimicrotubule drug used to treat certain kinds of cancer). This further support the 
hypothesis that a combination of indoles and selenocyanates might lead to a novel dual 
targeted inhibitors which may further developed as future drugs.24 
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Different aromatic selenocyanates 38 were obtained (15-81% yields) by refluxing 
haloarenes or haloalkylarenes 37 with potassium selenocyanate in acetone (Scheme 15).25 It is 
noteworthy that the substrate nature played an important role in determining the reaction 
progress and rate. Within this context, electron-withdrawing substituents facilitate the 
nucleophilic selenocyanate anion attack by stabilizing the formed negative charge via 
mesomeric and inductive effect.25 
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Scheme 15 
 

Allylic and propargylic selenocyanates (40) were also obtained in good yields (up to 80 
%) by the reactions of allylic and propargylic bromides 39 with potassium selenocyanate in 
acetonitrile and at room temperature.26-31 It is worth noting that the replacement of 
dimethylformamide by acetonitrile led to byproduct minimization (Scheme 16). Indeed, the 
rate of the reaction may be increased either by irradiation (ultraviolet) or by using Lewis acids 
(e.g. copper(I) iodide dissolved in warm hexamethylphosphoric triamide).32-35 On the other 
hand, alkenyl and alkynyl halides were basically unreactive toward cyanoselenation under 
these conditions.33 This may be attributed to the induced repulsion between the electrons of 
the double/triple bond and the selenocyanate anion.33 
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Besides, N-benzyl-ß-amino diselenides 43 were also synthesized from sulfamidates in a 
multistep one-pot reaction using potassium selenocyanate and benzyltriethylammonium 
tetrathiomolybdate in acetone. The non isolable selenocyanate key intermediate 42 was in situ 
formed via regioselective ring opening of sulfamidate 41 using potassium selenocyanate. The 
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corresponding N-benzyl-β-aminodiselenide derivative 43 was obtained upon reductive 
dimerization followed by hydrolysis by treatment with tetrathiomolybdate and hydrochloric 
acid in quantitative yield (up to 99 %) (Scheme 17).36   
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Naturally occurring furostanol derivatives 45 modified by the incorporation of a 
selenocyanate group at position 26 were synthesized in a multistep reaction of 43 and 
potassium selenocyanate in fair yield (24 %) (Scheme 18).37,38 The cytotoxic activity of this 
compound was evaluated against HCT 116 and Hep G2 cancer cells. Interestingly, 45showed 
higher effects than the parent natural compound on both HCT 116 and Hep G2 cells.37,38 
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Viñas-Bravo et al.39 reported the synthesis of selenocyanatofurostan 47 in high yields (90 
%) via treatment of sapogenins 46 with a mixture of acetic/trifluoroacetic mixed anhydride, 
borontrifloride ether and potassium selenocyanate at room temperature (Scheme 19).39 
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Another report by Desai et al.40

 described the synthesis of Selenocoxib-1 (49), a 
selenocyanate analogue of the sulfonamide nonsteroidal anti-inflammatory drug Celecoxib 
(Scheme 20). The reaction of chloro-derivative 48 with potassium selenocyanate in acetone 
afforded the corresponding selenocyanate 49 in 57 % yields. Interestingly, Selenocoxib-1 was 
more efficient than Celecoxib itself in controlling the tumor growth in the short-term PAIII 
transplantable LW model and provided greater inhibition of invasive prostate cancer growth 
at lower dose.40 
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2.1.1.2. Reaction of potassium selenocyanate with sulfonate/tosylates sulfonyl/tosyl 
derivatives. 1,1′-Di-(2-selenocyanatoethyl)cyclohexane (51) was obtained in 87% yield from 
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the reaction of (1,1′-di-(2-methane-sulfonyloxyethyl)cyclohexane) (50) with excess potassium 
selenocyanate  in anhydrous acetone and at 56 °C (Scheme 21).41 
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Similarly, heating equimolar amounts of 3-butyn-1-yl-p-toluenesulfonate (52) and 
potassium selenocyanate in acetonitrile for 3 h afforded 53 in 83% yields (Scheme 22).42 
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Tosylates could also be used instead of sulfonates for the preparation selenocyanates. In 
this context, allenyl selenocyanates 55 were synthesized (in 60-80 % yields) by the reaction of 
their corresponding tosylates 54 with potassium selenocyanate in acetonitrile (Scheme 23).43 
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Furthermore, Jacob et al. also reported the synthesis of benzyl selenocyanates 57 from 
benzyl tosylates 56 using the same reaction conditions. Nevertheless, the yield was low and 
accompanied by formation of colloidal red selenium (Scheme 24).23 
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Mesylation of 58 followed by introduction of the crucial selenocyanate moiety via SN2, 
afforded the corresponding selenocyanate 59 in fair yield (29%) (Scheme 25).44 
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2.1.1.3. Reaction of potassium selenocyanate with diazonium salts. Primary aromatic amines 
are convenient starting building blocks for the synthesis of organoselenocyanates.45,46 For 
instance, diazotized anilines 61 reacted with potassium selenocyanate to give the 
corresponding aromatic selenocyanates 62. These compounds were mostly obtained in low 
yields due to the decomposition of potassium selenocyanate by the acid traces remaining from 
the diazotization step. The reaction was accordingly performed in a buffered solution (sodium 
acetate; pH = 5.5) and the yield was moderately improved (38-46%) (Scheme 26).45, 46 
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2.1.1.4. Reaction of potassium selenocyanate with indoles and olefins.  Nair et al.47 reported 
that indoles 63 may undergo cyanoselenation in a good yield (72 %) using cerium(IV) 
ammonium nitrate (CAN) and potassium selenocyanate in methanol (Scheme 27).  
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Scheme 27 
 

The same result was obtained with 1-methylpyrrole (65); however, the yield was lower 
(25 % yield) (Scheme 28).47 
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Selenocyanation of styrenes and vinyl naphthalenes 67 in the presence of CAN using 
potassium selenocyanates afforded the corresponding selenocyanates 68 in a moderate yields 
(46-67 %) (Scheme 29).47 
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2.1.1.5. Reaction of potassium selenocyanate with organosilanes.  Regioselective α-
substitution of allylic silanes 69 and 71 with a selenocyanate group using potassium 
selenocyanate took place in methanol to give the corresponding allylic selenocyanates 70 and 
72 in moderate yields (up to 72%) (Scheme 30).48 It is worth noting that readily available 
allylic halides are favorably preferred than allylic silanes as the selenocyanates are obtained 
from allylic halides in higher yields.26-31 
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2.1.1.6. Reaction of potassium selenocyanate with metal-based complexes. The Meggers, 
Murray and Klingele goups49-55 exploited the substitutionally inert metal complexes as 
sophisticated scaffolds for the design of enzyme, protein and lipid kinase inhibitors via 
targeting their active sites. They demonstrated that octahedral metal coordination geometries 
provide novel scope to implement specific molecular scaffolds that can fit into protein 
pockets. Furthermore, linear gold complex 78 was used as a model for theoretical studies and 
for determining the electronic characteristics of metal–ligand bonding through structural 
studies. The selenocyanate group was introduced in order to increase the inhibition activity. 
This was performed by heating the metal based complex with potassium selenocyanate in 
dimethylformamide, acetonitrile or methanol at 95 ºC for 12 h (Scheme 31).49-57 

 



Reviews and Accounts   ARKIVOC 2014 (i) 470-505 

Page 486 ©ARKAT-USA, Inc. 

N

NN

OO

CH3

IrH3C SeCN

73

H
N OO

N Ru

S

S

SeCN

S

74

HN
O

O

N

Ru SeCN

SS

S

75

N

CH3

NN

OO

Ir

76

H3C SeCN

NN N

NN

H3C CH3

CH3H3C

Cd

SeCN
SeCNH2O

77

N

N
But

But

Au SeCN

78  

 

Scheme 31 
 

2.1.2. Cyanoselenation using triselenium dicyanide. The TSD reagent (Se(SeCN)2) was 
used to insert the selenocyanate group directly into the scaffold of some active methylene 
compounds, arenes with free para positions and indoles with a free 3-position and dimedone 
to give the corresponding selenocyanates 79-81 (Scheme 32).58 The most convenient method 
for the preparation of TSD is by oxidative coupling of malononitrile with selenium dioxide. 
Dimethylsulfoxide or dimethylformamide is the usual solvent used.25,59 TSD could also be 
prepared via the oxidation of potassium selenocyanates using suitable oxidizing agents (e.g. 
dinitrogen tetroxide, iodine pentafluoride, chlorine, bromine or iodine).60 
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Scheme 32 
 

2.1.3. Cyanoselenation using dicyanodiselenide. Selenocyanogen, (SeCN)2, prepared from 
the reaction of silver selenocyanate with iodine,61 was used for the synthesis of various 
selenocyanates which could not be prepared by any of the previously mentioned approaches. 
Thus, allenyl selenocyanate 83 was prepared by the reaction of selenocyanogen with 
propargyl tri-n-butylstannane 82 via a propargyl-allenyl rearrangement in a 55 % yield 
(Scheme 33).43  
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2.1.4. Cyanoselenation using copper diselenocyanate.  Disubstituted azulenes 84 reacted 
with copper diselenocyanate to furnish the corresponding selenocyanate 85.62 It was found 
that the second substituent plays a determining role in the rate of the reaction (Scheme 34). 
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Scheme 34 
 

2.2. Indirect cyanoselenation 

Selenocyanates could also be prepared in situ, without the use of a selenocyanating agent. 
This includes rearrangement of isoselenocyanates and reaction of alkyl magnesium halides 
with selenium powder and cyanogen bromide. Selenocyanates could also synthesized by other 
methods (e.g. electrolysis of selenocyanic acid salts, reaction of diselenides with mercury(II) 
cyanide and reaction of phenylselenenyl chloride with trimethylsilyl cyanide). 63-67 These 
methods are quite old, were seldom used in the past (more than thirty years ago) and will not 
be discussed here. Their relevant references are cited in case the reader needs more details. 
2.2.1. Cyanoselenation via rearrangement of isoselenocyanates. Reversible hetero-Cope 
rearrangements ([3,3]-sigmatropic shifts) of isoselenocyanate to isomeric selenocyanate 
usually take place thermally e.g. on flash vacuum thermolysis.68,69 For example, [3,3]-
sigmatropic rearrangements of allylic (86) and propargylic (90) isoselenocyanates occurred 
upon heating to give the corresponding allylic (87, 88), cyclopropyl (89) and allenyl (91) 
selenocyanates (Scheme 35).31,70-72 
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Pentaphenylcyclopentadienyl isoselenocyanate (92) underwent isomerization to give the 
corresponding selenocyanate (93) via 1,5-sigmatropic rearrangement of the selenocyanate 
group around the cyclopentadiene ring (Scheme 36).68,73,74 
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Scheme 36 
 

2.2.2. Cyanoselenation via the reaction of alkyl magnesium halides, selenium powder 
and cyanogen bromide. Guillemin et al.43 reported the synthesis of 1-propynylselenocyanate 
95 from reaction of the corresponding alkyl magnesium salt with selenium powder followed 
by the addition of cyanogen bromide (Scheme 37).43 

 

R H
 n-C5H11MgBr, Se powder

BrCN
R SeCN
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9594

 

 

Scheme 37 
 
 

3. Reactions of Organic Selenocyanates 

 
Organoselenocyanates are characterized by their distasteful odors. They are colorless stable 
compounds and in most cases present as oil at room temperature. The spectrophotometric 
properties (e.g. infrared, NMR, photoelectron and microwave studies) were described in 
previous reports.9,10 

Recently, numerous organoselenium compounds have been synthesized employing 
organoselenocyanates. The latter can also be transformed into various selenoorganic 
derivatives including selenols, functionalized selenides (both symmetric and asymmetric) and 
diselenides.75,76 Indeed, alkenes, alkynes, alcohols, aldehydes and carboxylic acids could be 
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also synthesized from organic selenocyanates.77-80 Nevertheless, some of these reactions were 
reported decades ago and are no longer used. These include the reaction with halogens, thiols, 
acids or selenols.81-84 Other obsolete reactions include the addition reaction of 
organoselenocyanates to alkenes, alkyne or enamines.85-89 These reactions will not be 
discussed here and the reader is directed to other reviews or monographs.9,10 

In the interest of clarity, recent organoselenocyanate reactions presented here have been 
subdivided into four sections: (i) reduction reactions; (ii) oxidation reactions; (iii) addition 
reactions to the carbonitrile group; and (iv) reactions accompanied with cyanide group loss. 

3.1 Reduction of organic selenocyanates 

Alkali metal hydrides such as sodium borohydride, lithium aluminum hydride, lithium 
hydride, dichloroaluminum hydride and sodium hydride have been used for the reduction of 
organoselenocyanates. The corresponding diselenides were obtained in quantitative yields, in 
case if insufficient reductant was used. The former could be further reduced in the presence of 
excess reductant to yield the corresponding selenol in acidic medium as shown in the case of 
ferrocenylalkyl-selenols (Scheme 38).43, 75, 76, 90 
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Scheme 38 
 

The chemoselective reduction of unsaturated the allenylselenocyanate 99 was performed 
by dichloroaluminum hydride (AlHCl2). This allowed the synthesis of allenylselenol 100 
(Scheme 39).42 
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Scheme 39 
 

3.2. Oxidation of organic selenocyanates 

On the other hand, oxidation of selenocyanates gives the corresponding seleninic acid which 
in turn is very reactive and unstable. Classical hydrogen peroxide (H2O2) oxidation synthetic 
method has been used for the synthesis of seleninic acid; however, this method is not always 
applicable for simple seleninic acids.  

In 2014, Du et al.93 reported the oxidation of phenyl selenocyanates 101 to the 
corresponding amphiphilic seleninic acids 102 with in overall yields of 55% (Scheme 40). 93  
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Scheme 40 
 

Dimethyldioxirane (DMDO) was also used for the synthesis of seleninic acid 104 in 70 % 
yields via oxidation of the corresponding selenocyanates 103 in dichloromethane (Scheme 
41).11 
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3.3. Addition reactions to the carbonitrile group 

The reaction of aniline hydrochloride salts 106 with α-(selenocyanato)acetophenones 105 
under acidic conditions afforded selenazolimine 107 in fair yields (up to 27%). This was 
explained via the acid-catalyzed addition of the aniline amino group to the selenocyanate 
group and further cyclization with subsequent elimination of water (Scheme 42).18 
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Scheme 42 
 

Interestingly, the reaction of α-(selenocyanato)acetophenones 108 with diazonium salts 
afforded (4,5-dihydro-5-imino-4-aryl-1,3,4-selenadiazol-2-yl)(aryl)methanones 109. This was 
explained by the addition of the hydrazone anilino residue onto the selenocyanate group 
(Scheme 43).12 
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Compounds containing both selenium and tetrazole ring were synthesized in high yields 
(75–92%) via the reactions of selenocyanates 110 with sodium azide under conditions of 
phase transfer catalysis in the presence of triethylammonium chloride in toluene (Scheme 
44).46 
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Scheme 44 
 

3.4. Reactions accompanied with cyanide group loss 

In 2012, Brondani et al.94 reported the reaction of phenyl selenocyanate with phenylethanol 
derivatives 115 and tributylphosphine in toluene. In this case, reaction proceeds with the loss 
of the cyanide group and phenylseleno derivatives 116 were obtained in good yields (79 %- 
87 %) (Scheme 45).94 
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Similarly, phenyl selenocyanate reacted with primary alcohol 117 and tributylphosphine 
in tetrahydrofuran to give the corresponding phenylselane 118 in 97 % yields (Scheme 46). 95  
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Yamashita et al. reported that the cyanide group could be also removed from phenyl 
selenocyanate when reacted with primary alcohols in the presence of tributylphosphine in 
tetrahydrofuran (Scheme 47).96 
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Treatment of aldehyde 121 with Bu3SnLi and phenyl selenocyanate afforded the 
corresponding selenides 122 in modest yield (61%) (Scheme 48).95 
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4. Biological Activities 

 
Organoselenium compounds exhibited diverse biological properties and have been used as 
antihypertensive, anti-bacterial, or chemopreventive anticancer agents.6-8 Among the synthetic 
selenium derivatives, organoselenocyanates have received wide attention for their better 
cancer chemopreventive properties as well as antioxidative and antimutagenic properties.97-99 
In view of this, organic selenocyanates have recently been used in synthetic organic and metal 
complexes chemistry, metal extraction and in pharmaceutical and biomedical industry.50-57 
Indeed, they have also shown antiparasitic (e.g. antileishmanial) and antiviral activity by 
improving the immune response of hosts against the parasite and the viral species.25,77 

The biological activities of organoselenocyanates depend on their structural backbone and 
the nature of substituents on it. Extensive studies have shown that selenocyanate incorporation 
into the scaffold of organic compounds has enhanced the pharmacological potentials of these 
drugs by supplying them with new inhibitory properties.99 Furthermore, exchange of selenium 
by sulphur (i.e. selenocyanate to thiocyanate) in some compounds diminished the therapeutic 
potential of the compounds. These compounds showed multiple mode(s) of protection against 
cancer. These include inhibition of the Akt signaling pathway, reducing the levels of ALT and 
AST, upregulation of reduced glutathione levels and antioxidant enzymes, modulation of 
serum aspartate transaminase, alanine transaminase levels and also normalizing the 
hematological parameters.7,19-21,98 Organoselenocyanates are known to be metabolized to the 
corresponding selenols. The later are very active and can further for example bind with 
different metals and thus ameliorating the metal-induced hepatotoxicity.76-78, 98 In this context, 
organoselenocyanates were considered as an efficient therapy to protect human health from 
metal toxicity and hazards of environmental toxicants. On the other hand, several reports have 
attributed the anticancer activity of these compounds to apoptosis induction via generation of 
reactive oxygen species induction in a prooxidant fashion.93 

Besides their antitumor properties, organoselenocyanates have latterly shown an in vitro 
antiparasitic activity against Leishmania infantum.25,77 Interestingly, some of them possess a 
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better activity more than the prescribed oral drugs Impavido and edelfosine.77 Their mode of 
action is attributed to their ability to interfere the parasites redox system.25,77 

Among the most studied selenocyanates used in cancer chemotherapy, selenocoxib-1, 1,4-
phenylenebis(methylene)selenocyanate, diphenylmethyl selenocyanate and diphenylmethyl 
selenocyanate have shown to be the most efficient compounds. 

1,4-Phenylenebis(methylene)selenocyanate was found to be less toxic and more effective 
than selenomethionin.103,104 It was found that this compound reduces the expression of 
cyclooxygenase-2, phospholipase A, and cyclin D1 regulated by NF-КB such as in non–small 
cell lung cancer cells.102-105 Furthermore, Selenocoxib-1 provides the advantage in inhibition 
and controlling prostate cancer growth.99-101 As another example, oral administration of 
diphenylmethyl selenocyanate lead to reduction of the reactive oxygen species levels which in 
turn reduced the chemically induced skin papilloma without causing any toxic effects.101,105-

109 Moreover, diphenylmethyl selenocyanate was reported to prevent chemically induced 
oxidative stress and to enhance serum ALT and AST level in mice.107-109 

 
Conclusions 

 
We have summarized the recent progress in the synthesis, chemical properties, and biological 
importance of organoselenocyanates. The synthetic preparation methods of 
organoselenocyanates and their corresponding chemical properties and reactions were also 
described. The biological properties of this group of compounds were also issued. This 
knowledge will be useful in developing novel organoselenocyanates that might be of 
enhanced biological properties that may be developed as future drugs. 
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