Supplementary Material

Synthesis and characterization of a substituted indolizine and investigation of its photoluminescence quenching via electron deficient nitroaromatics

Mustafa K. Bayazit*^{†‡} and Karl S. Coleman[†]

[†] Department of Chemistry, University of Durham, Durham DH1 3LE, UK [‡] Department of Chemistry, Imperial College London, London SW7 2AZ, UK (Present address) *E-mail: <u>m.bayazit@imperial.ac.uk</u>*

Table of Contents

Figure S1. ¹ H NMR spectrum of 2d (in CDCl ₃)	S 2
Figure S2. ¹ H NMR spectrum of 1 (in CDCl ₃)	S 3
Figure S3. ¹³ C NMR spectrum of 1 (in $CDCl_3$)	S 3
Figure S4. Mass spectrum of 1	S4
Figure S5. ¹ H NMR spectrum of 5 (in CDCl ₃)	S4
Figure S6. ¹³ C NMR spectrum of 5 (in CDCl ₃)	S5
Figure S7. Mass spectrum of 5	S 5
Figure S8. ¹ H NMR spectrum of 1:2d complex (in CDCl ₃) Inset:Expanded ¹ H NMR region	
showing the broad NH protons	S 6
Figure S9. ¹³ C NMR spectrum of 1:2d complex (in CDCl ₃)	S 6
Figure S10. Mass spectrum of 4	S 7
Figure S11. Emission spectrum of dimethyl 3-(4-aminophenyl)indolizine-1,2- dicarboxylate (1)	
$(\lambda_{exc}=330 \text{ nm})$ in CH ₃ CN	S 7
Figure S12. Emission spectra of guest compounds (2a-f) (λ_{exc} = 330 nm) in CH ₃ CN	S 8
Figure S13. Fluorescence spectra (excitation at 330 nm) of (1) (0.209 μ M) in CH ₃ CN	
in the presence of 0.066, 0.133, 0.199, 0.265, 0.332, 0.497, 0.662, 0.826,	
1.639, 2.439, 3.225 and 6.250 μM of (2a) pre-dissolved in CH ₃ CN	S 8
Figure S14. Fluorescence spectra (excitation at 330 nm) of (1) (0.209 μ M) in CH ₃ CN	
in the presence of 0.066, 0.133, 0.199, 0.265, 0.332, 0.497, 0.662, 0.826,	
1.639, 2.439, 3.225 and 6.250 μM of (2b) pre-dissolved in CH ₃ CN	S 9
Figure S15. Fluorescence spectra (excitation at 330 nm) of (1) (0.209 μ M) in CH ₃ CN	
in the presence of 0.066, 0.133, 0.199, 0.265, 0.332, 0.497, 0.662, 0.826,	
1.639, 2.439, 3.225 and 6.250 µM of (2c) pre-dissolved in CH ₃ CN	S 9
Figure S16. Fluorescence spectra (excitation at 330 nm) of (1) (0.209 μ M) in CH ₃ CN	
in the presence of 0.066, 0.133, 0.199, 0.265, 0.332, 0.497, 0.662, 0.826,	

1.639, 2.439, 3.225 and 6.250
$$\mu$$
M of (2e) pre-dissolved in CH3CNS10Figure S17. Fluorescence spectra (excitation at 330 nm) of (1) (0.209 μ M) in CH3CN
in the presence of 0.066, 0.133, 0.199, 0.265, 0.332, 0.497, 0.662, 0.826,
1.639, 2.439, 3.225 and 6.250 μ M of (2f) pre-dissolved in CH3CNS10

Figure S1. ¹H NMR spectrum of **2d** (in CDCl₃).

Figure S2. ¹H NMR spectrum of 1 (in CDCl₃).

Figure S3. ¹³C NMR spectrum of **1** (in CDCl₃).

Figure S4. Mass spectrum of 1.

Figure S5. ¹H NMR spectrum of 5 (in CDCl₃).

Figure S6. ¹³C NMR spectrum of **5** (in CDCl₃).

Figure S7. Mass spectrum of 5.

Figure S8. ¹H NMR spectrum of **1:2d** complex (in CDCl₃) Inset: Expanded ¹H NMR region showing the broad NH protons.

Figure S9. ¹³C NMR spectrum of 1:2d complex (in CDCl₃).

Figure S10. Mass spectrum of 4.

Figure S11. Emission spectrum of dimethyl 3-(4-aminophenyl)indolizine-1,2- dicarboxylate (1) $(\lambda_{exc}=330 \text{ nm})$ in CH₃CN.

Figure S12. Emission spectra of guest compounds (**2a-f**) (λ_{exc} = 330 nm) in CH₃CN.

Figure S13. Fluorescence spectra (excitation at 330 nm) of (1) (0.209 μ M) in CH₃CN in the presence of 0.066, 0.133, 0.199, 0.265, 0.332, 0.497, 0.662, 0.826, 1.639, 2.439, 3.225 and 6.250 μ M of (**2a**) pre-dissolved in CH₃CN.

Figure S14. Fluorescence spectra (excitation at 330 nm) of (1) (0.209 μ M) in CH₃CN in the presence of 0.066, 0.133, 0.199, 0.265, 0.332, 0.497, 0.662, 0.826, 1.639, 2.439, 3.225 and 6.250 μ M of (**2b**) pre-dissolved in CH₃CN.

Figure S15. Fluorescence spectra (excitation at 330 nm) of (1) (0.209 μ M) in CH₃CN in the presence of 0.066, 0.133, 0.199, 0.265, 0.332, 0.497, 0.662, 0.826, 1.639, 2.439, 3.225 and 6.250 μ M of (**2c**) pre-dissolved in CH₃CN.

Figure S16. Fluorescence spectra (excitation at 330 nm) of (1) (0.209 μ M) in CH₃CN in the presence of 0.066, 0.133, 0.199, 0.265, 0.332, 0.497, 0.662, 0.826, 1.639, 2.439, 3.225 and 6.250 μ M of (**2e**) pre-dissolved in CH₃CN.

Figure S17. Fluorescence spectra (excitation at 330 nm) of (1) (0.209 μ M) in CH₃CN in the presence of 0.066, 0.133, 0.199, 0.265, 0.332, 0.497, 0.662, 0.826, 1.639, 2.439, 3.225 and 6.250 μ M of (**2f**) pre-dissolved in CH₃CN.