Supplementary Material Stereoselective synthesis and structure determination of a bicyclo[3.3.2]decapeptide

Marco Bartoloni, ${ }^{\text {a }}$ Sandro Waltersperger, ${ }^{\mathrm{b}}$ Mario Bumann, ${ }^{\text {a }}$ Achim Stocker, ${ }^{\text {a }}$ Tamis
Darbre, ${ }^{\mathrm{a}}$ and Jean-Louis Reymond ${ }^{\mathrm{a} *}$
${ }^{\text {a }}$ Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
${ }^{\mathrm{b}}$ Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
E-mail: jean-louis.reymond@ioc.unibe.ch

This paper is dedicated to Prof. Pierre Vogel, a master of bicyclic molecules, on the occasion of his $70^{\text {th }}$ Birthday

Contents

Fig S1 2
HPLC and MS characterization of $\mathbf{1 b}$ 3
NMR exp. details and ${ }^{1} \mathrm{H}-\mathrm{NMR}$ characterization of $\mathbf{1 b}$. 4
X-ray crystallography data 5

Figure S1. Comparison between 1b and 1b'. (a) Superimposition of RP-HPLC chromatogram of the second cyclization reactions, 2 h after start. The peak marked by a triangle corresponds to the phosphinoxide byproduct of PyBOP. (b) Amide proton regions of ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of $\mathbf{1 b}$ and $\mathbf{1 b}{ }^{\prime}$ $\left(\mathrm{CD}_{3} \mathrm{OD}\right) .1 \mathbf{b}$ displays a single set of amide protons, assigned according to labels (missing amide protons are concealed by the signals of the aromatic side chains, between 7.0 and 7.5 ppm , as revealed by COSY spectra), whereas 1b' exhibits a complex spectrum, probably derived from a conformational mixture.

NMR (experimental details) - NMR data were acquired in DMSO- d_{6} at 298 K using a Bruker AvanceII 400 MHz NMR spectrometer. 1D ${ }^{1} \mathrm{H}-\mathrm{NMR}$ data were acquired with 64 transients into 32 K data points over a ppm width of 12 ppm . A relaxation delay of 6 s was applied between transients. $2 \mathrm{D}{ }^{1} \mathrm{H}$-TOCSY NMR data were acquired over a frequency width of 12 ppm in both F_{2} and F_{1} into 2 K complex data points in F_{2} using $256 \mathrm{t}_{1}$ increments. A relaxation delay of 2 s between transients was used for all experiments. ${ }^{1} \mathrm{H}$-TOCSY data were recorded using 32 transients. The 2D TOCSY NMR data were acquired with a spin-lock time of 70 ms . Data were processed using standard apodizing functions prior to Fourier transformation.
$2 \mathrm{D}{ }^{1} \mathrm{H}^{-13} \mathrm{C}$ HSQC NMR data were acquired, with ${ }^{13} \mathrm{C}$ decoupling during the acquisition period, over an F 2 frequency width of 12 ppm into 2 K complex data points. 32 transients were accumulated for each of $128 t 1$ increments over an F1 frequency width of 180 ppm centered at 90 ppm . Phase-sensitive data were acquired in a sensitivity-improved manner using an echoantiecho acquisition mode.

${ }^{1} \mathrm{H}$-NMR characterization of 1 b (DMSO- \boldsymbol{d}_{6})

residue	proton	δ (ppm)	J (Hz)
Ala 1	NH	8.03	${ }^{3} \mathrm{~J}(\mathrm{NH}-\alpha \mathrm{CH})=8.17$
	$\alpha \mathrm{CH}$	4.43	${ }^{3} \mathrm{~J}(\mathrm{\beta CH}-\alpha \mathrm{CH})=7.16$
	$\beta \mathrm{CH}_{3}$	1.04	
Phe2	$\alpha \mathrm{NH}$	8.92	${ }^{3} \mathrm{~J}(\mathrm{NH}-\alpha \mathrm{CH})=5.96$
	$\alpha \mathrm{CH}$	4.07	${ }^{3} \mathrm{~J}\left(\beta^{\prime \prime} \mathrm{CH}-\alpha \mathrm{CH}\right)=9.38$
	$\beta^{\prime} \mathrm{CH}$	3.15	${ }^{2} J\left(\beta^{\prime \prime} \mathrm{CH}-\beta^{\prime} \mathrm{CH}\right)=14.10$
	β "CH	2.87	
	2,6H	6.98	
	3,5H	7.12	
	4H	7.10	
Gly 3	NH	8.60	
	$\alpha^{\prime} \mathrm{CH}$	3.50	
	α "CH	3.79	
${ }^{\text {D }}$ Lys4	$\alpha \mathrm{NH}$	7.17	
	$\alpha \mathrm{CH}$	4.09	
	$\beta \mathrm{CH}_{2}$	1.48	
	$\gamma \mathrm{CH}_{2}$	1.12	
	$\delta^{\prime} \mathrm{CH}$	1.90	
	$\delta^{\prime \prime} \mathrm{CH}$	1.13	
	$\varepsilon \varepsilon^{\prime} \mathrm{CH}$	3.16	
	$\varepsilon \varepsilon^{\prime \prime} \mathrm{CH}$	2.81	
	$\varepsilon \mathrm{NH}$	7.17	
Val5	$\alpha \mathrm{NH}$	7.05	${ }^{3} \mathrm{~J}\left(\gamma^{\prime} \mathrm{CH}-\beta \mathrm{CH}\right)=6.80$
	$\alpha \mathrm{CH}$	3.49	${ }^{3} \mathrm{~J}\left(\gamma^{\prime \prime} \mathrm{CH}-\beta \mathrm{CH}\right)=7.07$
	$\beta \mathrm{CH}$	1.89	
	$\gamma^{\prime} \mathrm{CH}_{3}$	0.87	
	$\gamma^{\prime \prime} \mathrm{CH}_{3}$	0.58	

Phe6	$\alpha \mathrm{NH}$	7.23	${ }^{3} J(\mathrm{NH}-\alpha \mathrm{CH})=9.40$
	$\alpha \mathrm{CH}$	4.90	${ }^{3} J\left(\beta^{\prime} \mathrm{CH}-\alpha \mathrm{CH}\right)=5.81$
	$\beta^{\prime} \mathrm{CH}$	2.94	${ }^{3} J\left(\beta^{\prime \prime} \mathrm{CH}-\alpha \mathrm{CH}\right)=8.69$
	$\beta^{\prime \prime} \mathrm{CH}$	2.62	${ }^{2} J\left(\beta^{\prime} \mathrm{CH}-\beta^{\prime \prime} \mathrm{CH}\right)=14.10$
	$2,6 \mathrm{H}$	6.98	
	$3,5 \mathrm{H}$	7.12	
	4 H	7.10	
Pro7	$\alpha \mathrm{CH}$	4.14	
	$\beta^{\prime} \mathrm{CH}$	2.03	
	$\beta^{\prime \prime} \mathrm{CH}$	1.63	
	$\gamma^{\prime} \mathrm{CH}$	1.84	
	$\gamma^{\prime \prime} \mathrm{CH}$	1.77	
	$\delta^{\prime} \mathrm{CH} H_{2}$	3.65	
	$\delta^{\prime \prime} \mathrm{CH} \mathrm{H}_{2}$	3.22	
	NH	7.62	${ }^{3} J(\mathrm{NH}-\alpha \mathrm{CH})=6.26$
	$\alpha \mathrm{CH}$	4.41	
	$\beta^{\prime} \mathrm{CH}$	2.43	
	$\beta^{\prime \prime} \mathrm{CH}$	1.67	
	$\gamma^{\prime} \mathrm{CH}$	2.17	
	$\gamma^{\prime \prime} \mathrm{CH}$	1.88	
Ala9	NH	8.62	${ }^{3} J(\mathrm{NH}-\alpha \mathrm{CH})=2.33$
	$\alpha \mathrm{CH}$	3.97	${ }^{3} J(\beta \mathrm{CH}-\alpha \mathrm{CH})=7.02$
	$\beta \mathrm{CH}$	1.18	
	Nly 10	8.60	
	$\alpha^{\prime} \mathrm{CH}$	3.50	
	$\alpha^{\prime \prime} \mathrm{CH}$	3.79	

Table S1. Backbone and side-chain torsion angles of $\mathbf{1 b}$ (degrees). Residues marked with an asterisk belong to protomer 2.

	φ	ψ	ω	χ^{1}	χ^{2}	χ^{3}	χ^{4}	χ^{5}
Ala 1	-137.680	151.906	-178.925					
Phe2	54.754	41.230	177.412	-73.879	$\begin{array}{r} -3.209 \\ 177.135 \end{array}$			
Gly3	74.234	0.905	-173.982					
${ }^{\text {D }}$ Lys4	129.027	-3.758	$\begin{gathered} 178.928 \\ 178.624^{a} \end{gathered}$	70.440	-156.291	-169.981	-175.802	$120.957^{\text {b }}$
Val5	-54.018	-43.314	176.462	$\begin{aligned} & -64.786 \\ & 171.637 \end{aligned}$				
Phe6	-110.888	113.610	177.658	-53.842	$\begin{array}{r} -63.971 \\ 115.734 \end{array}$			
Pro7	-54.582	142.281	-178.011	-12.439	12.212	6.679	-1.825	8.772
Glu8	-169.161	160.898	-170.123	60.269	-170.314	$\begin{array}{r} -79.722(\mathrm{O}) \\ 95.062(\mathrm{~N}) \end{array}$		
Ala9	-58.078	140.164	171.154					
Gly 10	83.183	5.088	178.675					
Ala ${ }^{*}$	-158.358	162.982	174.373					
Phe2*	62.285	53.289	165.219	-58.872	$\begin{array}{r} -53.387 \\ 125.177 \end{array}$			
Gly3*	62.981	30.024	175.758					
${ }^{\text {D }}$ Lys4*	81.243	2.576	$\begin{array}{r} 179.556 \\ 174.247^{a} \end{array}$	68.465	-171.354	-176.800	178.987	$141.519^{\text {b }}$
Val5*	-68.092	-31.277	179.650	$\begin{aligned} & -69.773 \\ & 168.060 \end{aligned}$				
Phe6*	-100.506	123.590	168.668	-78.257	$\begin{array}{r} -166.875 \\ 11.874 \end{array}$			
Pro7*	-68.395	138.776	178.615	29.836	-36.902	29.055	-10.565	-11.916
Glu8*	-171.305	144.972	-168.510	56.979	-174.915	$\begin{aligned} & -67.717(\mathrm{O}) \\ & 114.943(\mathrm{~N}) \end{aligned}$		
Ala9*	-54.500	133.288	166.307					
Gly10*	95.968	-5.592	175.215					
${ }^{a} \mathrm{C}^{\boldsymbol{C}}\left({ }^{\mathrm{D}} \mathrm{Lys} 4\right.$	$-\mathrm{N}^{\varepsilon}\left({ }^{(} \text {Lys } 4\right)-($ $-C^{\varepsilon}\left({ }^{(D} \text { Lys } 4\right)-I$	$\mathrm{C}^{2}(\mathrm{Gly} 10)-$	$\begin{aligned} & { }^{\alpha}(\text { Gly } 10) ~ \\ & \hline(\text { Gly10 } \end{aligned}$					

Table S2. Intramolecular hydrogen bonds for $\mathbf{1 b}$. Residues marked with an asterisk belong to protomer 2.

donor	acceptor	distance (\AA)	angle $\mathrm{N} \cdots \mathrm{O}=\mathrm{C}\left({ }^{\circ} \mathrm{O}\right.$
Ala1 N	Phe6 O	2.92	157.727
${ }^{\text {D }}$ Lys4 N	Alal O	3.03	123.505
Phe6 N	Alal O	3.23	139.421
${ }^{\mathrm{p}}$ Lys $4 \mathrm{~N}^{\varepsilon}$	Glu8 O	3.19	137.340
Val5 N	Phe2 O	3.44	104.163
Ala ${ }^{*} \mathrm{~N}$	Phe6* O	3.00	139.175
${ }^{\text {D }}$ Lys4* N	Ala1* O	3.27	114.338
Phe6* N	Ala1* O	3.02	147.075
${ }^{\text {D }}$ Lys4* $\mathrm{N}^{\text {¢ }}$	Glu8* O	3.21	138.455
Val5* N	Phe2* O	3.12	112.703

