A simple synthesis of 4-aroyl-5-methyl-1 H -imidazol-2(3H)-one derivatives (Enoxymone analogues) from aryl methyl ketones via enaminones

Jure Bezenšek, Uroš Grošelj, Katarina Stare, Jurij Svete, and Branko Stanovnik*

Faculty of Chemistry and Chemical Technology, University of Ljubljana Aškerčeva 5, P. O. Box 537, 1000 Ljubljana
E-mail: Branko.Stanovnik@fkkt.uni-lj.si

Dedicated to Professor Rosa M. Claramunt on the occasion of her $65^{\text {th }}$ anniversary

DOI: http://dx.doi.org/10.3998/ark.5550190.p008.236

Abstract

Aryl methyl ketones 1a-e gave with N, N-dimethylacetamide dimethylacetal (DMADMA) (E)-1-aryl-3-(dimethylamino)-but-2-en-1-ones 2a-e. Substitution of the N, N-(dimethylamino) group in the reaction with ammonium acetate afforded the corresponding (Z)-3-amino-1-aryl-but-2-en-1ones 3a-e. In the reaction of 3a-e with diethyl azodicarboxylate intermediates 4a-e were formed, which were, in most cases without isolation, cyclized into ethyl (5-aroyl-4-methyl-2-oxo-2,3-dihydro-1H-imidazol-1-yl)carbamates 5a-e. Hydrolysis of the ester group, followed by the decarboxylation and deamination of intermediates 6a-c,e produced 4-aroyl-5-methyl-1 H -imidazol-2(3H)-ones 7a-c,e.

Keywords: Aryl methyl ketones, enaminoines, 3-amino-1-arylbut-2-en-1-ones, (2-oxo-2,3-dihydro- 1 H -imidazol-1-yl)carbamates, 1 H -imidazol-2(3H)-ones.

Introduction

Nitrogen containing heterocycles ${ }^{1}$ are of special interest in organic synthetic chemistry, since they occur in wide variety of natural products. The imidazolone motif appears in many natural products, ${ }^{2}$ which possess interesting biological activities. ${ }^{3}$ They are inhibitors of V-RAF murine sarcoma viral oncogene homologue B1. ${ }^{4}$ They are antagonists of many receptors including the neurokinin-1 receptor ${ }^{5}$ and the dopamine receptor. ${ }^{6}$ They were applied as intermediates in the synthesis of many natural products, such as biotin, ${ }^{7}$ slagenins, ${ }^{8}$ axinohydantoins, ${ }^{9}$ oroidin-derived alkaloids, ${ }^{10}$ aplysinopsins, ${ }^{11}$ Lancetta-derived alkaloid carcaridine A, ${ }^{12}$ and others. Due to their importance many methods have been developed for construction of imidazole ring. ${ }^{13,14}$ Recently,
there has been a great progress in copper-catalyzed N -arylation. ${ }^{15,16}$ 4-Aroyl-1,3-dihydro- 2 H -imidazol-2-ones, have been prepared by acylation of the appropriate 2 H -imidazol-2-ones and evaluated as a new class of cardiotonic agents. ${ }^{17}$ The most important compound in this series is 5-methyl-4-[4-(methylthio)benzoyl]-1 H -imidazol-2(3H)-one (Perfan or Enoximone) (Figure 1), a selective phosphodiesterase inhibitor, has a significant inotropic and vasodilating properties that have proved useful in the postoperative management of infants and children having cardiac surgery. ${ }^{18,19}$ Effects of phosphodiesterase (III/IV)-inhibitors and cytokines on mechanical properties of neutrophilic granulocytes in neonates and adults have been studied. ${ }^{20}$

Figure 1. 5-Methyl-4-[4-(methylthio)benzoyl]-1H-imidazol-2(3H)-one (Perfan or Enoximone).

The wide applicability of 3-(dimethylamino)-propenoates and related enaminones as versatile reagents in heterocyclic synthesis, ${ }^{21}$ parallel solution-phase and solid-phase synthesis of fused pyrimidinones, ${ }^{22}$ and stereochemical synthesis, ${ }^{23}$ including natural products and their analogues, e.g. the aplysinopsins, ${ }^{24}$ meridianines, ${ }^{25}$ dipodazines, ${ }^{26}$ and triprostatines ${ }^{27}$ has been demonstrated. Recently, a simple one-pot synthesis of ethyl 4-benzoyl-2-oxo-3-substituted-2,3-dihydro- $1 H$-imidazol-1-yl)carbamates has been described. ${ }^{28}$

In this communication we report a simple synthesis of ethyl (5-aroyl-4-methyl-2-oxo-2,3-dihydro- 1 H -imidazol-1-yl)carbamate followed by hydrolysis of the ester group, decarboxylation and deamination to give 4-aroyl-5-methyl-1 H -imidazol-2 $(3 \mathrm{H})$-ones.

Results and Discussion

In this paper we report the preparation of 5-methyl-4-(aroyl substituted)imidazol-2(1H)-ones starting from aryl methyl ketones 1a-e, which were transformed by treatment with N, N-dimethyl acetamide dimethylacetal (DMADMA) into (E)-3-(dimethylamino)-1-(4-substituted-phenyl)but-2-en-1-ones 2a-e. These were treated with ammonium acetate to form (Z)-3-amino-1-(4-substituted-phenyl)but-2-en-1-ones 3a-e. By further reaction with diethyl azodicarboxylate (DEAD) intermediates 4a-e were formed which cyclize after addition of sodium hydroxide under experimental conditions into ethyl [5-aroyl-4-methyl-2-oxo-2,3-dihydro-1 H -imidazol-1yl]carbamates 5a-e. After hydrolysis of the ester group, followed by decarboxylation and deamination, 4-aroyl-5-methyl-1H-imidazol-2(3H)-ones 7a-c,e were isolated.

In our first attempt to synthesize 5-methyl-4-[(4-methylthio)benzoyl]-1H-imidazol-2(1H)one (7a) (Enoximone or Perfan) we treated 1-[(4-methylthio)phenyl]ethanone (1a) with
dimethylacetamide dimethylacetal (DMADMA) in dry toluene to afford (E)-3(dimethylamino)-[(4-methylthio)phenyl]but-2-en-1-one (2a) as an yellow oil in $\sim 5 \%$ yield. By further treatment of this compound with ammonium acetate in MeOH for 18 h at room temperature the corresponding (Z)-3-amino-1-[(4-methylthio)phenyl]but-2-en-1-one (3a) was obtained practically quantitatively as a yellow solid. In the reaction of $\mathbf{3 a}$ with diethyl azodicarboxylate (DEAD) in EtOH for 2 h at room temperature, without the isolation of the intermediate $\mathbf{4 a}$, ethyl [4-methyl-5-(4-methylthio)benzoyl]-2-oxo-2,3-dihydro-1H-imidazol-1-yl]carbamate (5a) was isolated in 68% yield upon addition of NaOH to $\mathbf{4 a}$. At the end $\mathbf{5 a}$ was hydrolyzed and decarboxylated by heating at reflux temperature in an aqueous ethanolic KOH solution for 20 h to afford 1-amino-4-methyl--(4-methylthio)benzoyl)-1 H -imidazol-2(3H)-one ($\mathbf{6 a}$) which was directly deaminated to 5-methyl-4-(4-(methylthio)benzoyl)-1 H -imidazol-2(3H)-one (7a) in 93% overall yield. However, the overall yield starting from 1a was very low ($<3 \%$).

In order to avoid the extremely poor yield in the transformation of 1a into 2a, we extended the reaction to a number of aryl ketones $\mathbf{1 b} \mathbf{- f}$ and prepared the corresponding analogues of enoximone 7a. (Scheme 1, Table 1). We found that 1-(4-fluorophenyl)ethanone (1f) could be transformed with DMADMA into (E)-3-(dimethylamino)-1-1(4-fluorophenyl)but-2-en-1-one ($\mathbf{2 f}$) in 67% yield. The substitution of fluorine with MeSNa afforded (E)-3-(dimethylamino)-1-1-(4-(methylthio)phenyl)but-2-en-1-one (2a) in 80% yield. In this way, following the reaction sequence $\mathbf{1 f} \rightarrow \mathbf{2 f} \rightarrow \mathbf{2 a} \rightarrow \mathbf{3 a} \rightarrow \mathbf{4 a} \rightarrow \mathbf{5 a} \rightarrow \mathbf{6 a} \rightarrow \mathbf{7 a}$, the overall yield was 32% (Scheme 2).

Scheme 1.

Table 1. Yields of 4-aroyl-5-methyl-1 H -imidazol-2(3H)-ones (7)

Compounds $\mathbf{1 - 7}$	\mathbf{R}	Yield (\%)	Yield (\%)
\mathbf{a}	SMe	$\mathbf{1} \rightarrow \mathbf{7}(5)$	$\mathbf{2} \rightarrow \mathbf{7}, 48$
\mathbf{b}	H	$\mathbf{1} \rightarrow \mathbf{7}(23)$	
\mathbf{c}	Cl	$\mathbf{1} \rightarrow \mathbf{7}(31)$	
\mathbf{d}	$\mathrm{SO}_{2} \mathrm{Me}$	$/$	$\mathbf{1} \rightarrow \mathbf{5}, 16$
\mathbf{e}	Br	$\mathbf{1} \rightarrow \mathbf{7}(27)$	
\mathbf{f}	F	$\mathbf{1} \rightarrow \mathbf{2}(67)$	

Scheme 2

The structure of (E)-1-aryl-3-(dimethylamino)but-2-en-1-ones 2a-e is supported by X-ray analysis for compound 2d (Figure 2). The orientation around the double bond in compounds $\mathbf{2}$ and $\mathbf{3}$ was determined on the basis of chemical shifts. In compounds $\mathbf{2}$ the methyl group appear downfield ($\delta=2.50-2.67 \mathrm{ppm}$) in comparison to the chemical shift of methyl group in compounds 3 ($\delta=2.05-2.09 \mathrm{ppm}$). Furthermore, in (Z)-3-amino-1-aryl-but-2-en-1-ones (3) a large difference in chemical shifts ($\sim 5 \mathrm{ppm}$) for both protons attached to the amino group was observed, due to the strong intramolecular hydrogen bond of one proton to carbonyl group (Figure 2).

2

3

Figure 2. Characteristic ${ }^{1} \mathrm{H}$ chemical shifts for compounds 1 and 2.

Figure 3. ORTEP plot of (E)-3-(dimethylamino)-1-((4-methylsulfonyl)phenyl)but-2-en-one (2d) at the 50% probability level of ellipsoids.

Conclusions

In summary, a new synthetic method for the preparation of 4-aroyl-5-methyl- 1 H -imidazol$2(3 H)$-ones (7a-c,e) (Enoximone analogues) was developed. The synthesis started with commercially available methyl ketones 1a-f which were transformed with DMADMA into (E)-1-aryl-3-(dimethylamino)-but-2-en-1-ones 2a-e. Substitution of the N, N-(dimethylamino) group with $\mathrm{NH}_{4} \mathrm{OAc}$ afforded the corresponding (Z)-3-amino-1-aryl-but-2-en-1-ones 3a-e. In the reaction of 3a-e with diethyl azodicarboxylate intermediates 4a-e were formed, which were cyclized into ethyl 5-aroyl-4-methyl-2-oxo-2,3-dihydro-1H-imidazol-1-yl)carbamates 5a-e. Hydrolysis of the ester group, followed by the decarboxylation and deamination of 1-amino-5-aroyl-4-methyl- 1 H -imidazol-2(3H)-ones 6a-c, \mathbf{e} as intermediates produced 4-aroyl-5-methyl- 1 H -imidazol-2(3H)-ones 7a-c,e (Enoximone analogues).

Experimental Section

General. Melting points were determined on a Kofler micro hot stage and on a SRS OptiMelt MPA100-Automated Melting Point System. NMR spectra were obtained on a Bruker Avance DPX 300 at 300 MHz for ${ }^{1} \mathrm{H}$ and 75.5 MHz for ${ }^{13} \mathrm{C}$, and a Bruker UltraShield 500 plus at 500 MHz for ${ }^{1} \mathrm{H}$ and 126 MHz for ${ }^{13} \mathrm{C}$, using DMSO- d_{6} and CDCl_{3} with TMS as the internal standard, as solvents. Mass spectra were recorded on an AutoSpecQ spectrometer and Agilent 6224 Accurate Mass TOF LC/MS, IR spectra on a Perkin-Elmer Spectrum BX FTIR spectrophotometer. The microanalyses for C, H, and N were performed on a Perkin-Elmer CHN Analyser 2400 II. Column chromatography (CC) was performed on silica gel (Fluka, Silica gel 60, particle size: $0.035-0.070 \mathrm{~mm}$).

(E)-3-(Dimethylamino)-1-(4-(methylthio)phenyl)but-2-en-1-one (2a)

Method A. 1-(4-(Methylthio)phenyl)ethanone (1a) ($1.52 \mathrm{~g}, 9.1 \mathrm{mmol}$) was dissolved in dry PhMe (200 mL) and DMADMA ($1.3 \mathrm{~mL}, 9 \mathrm{mmol}$) was added. Reaction mixture was refluxed for 48 h . Volatile components were evaporated and the product isolated by column chromatography (EtOAc/petroleum ether). Yield: $110 \mathrm{mg}(5.1 \%)$, yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $500 \mathrm{MHz}): \delta 2.50(3 \mathrm{H}, \mathrm{s}, \mathrm{CH} 3) ; 2.66\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SCH}_{3}\right) ; 3.07(6 \mathrm{H}, \mathrm{s}, \mathrm{NMe})$; $5.65(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}) ; 7.22-$ $7.25(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; 7.79-7.81(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta 15.4,16.6,40.2,92.3$, 125.3, 127.8, 139.5, 141.5, 163.8, 187.3. EI-HRMS: $m / z=236.1105\left(\mathrm{MH}^{+}\right) ; \mathrm{C}_{13} \mathrm{H}_{18} \mathrm{NOS}$ calculated: $\mathrm{m} / \mathrm{z}=236.1104\left(\mathrm{MH}^{+}\right) ; v_{\text {max }}(\mathrm{KBr}) 3279,3143,1580,1548,1522,1485,1433,1400$, 1367, 1323, 1290, 1271, 1217, 1184, 1108, 1092, 1010, 951, $846 \mathrm{~cm}^{-1}$
Method B. (E)-3-(dimethylamino)-1-(4-fluorophenyl)but-2-en-1-one ($\mathbf{2 f}$) ($2 \mathrm{mmol}, 412 \mathrm{mg}$) was dissolved in dry DMF (3 mL) and MeSNa ($2 \mathrm{mmol}, 140 \mathrm{mg}$) was added. Reaction mixture was stirred for 24 h at $70{ }^{\circ} \mathrm{C}$. Volatile components were evaporated and the product isolated by column chromatography (EtOAC/petroleum ether $=1: 1$). Yield: $376 \mathrm{mg}(80 \%) .{ }^{1} \mathrm{H}$ NMR is in agreement with ${ }^{1} \mathrm{H}$ NMR spectra of the product prepared by the method A .

(\boldsymbol{E})-3-(Dimethylamino)-1-(4-(methylsulfonyl)phenyl)but-2-en-1-one (2d)

1-(4-(Methylsulfonyl)phenyl)ethanone (1d) ($1.98 \mathrm{~g}, 10 \mathrm{mmol}$) was dissolved in dry $\mathrm{PhMe}(20$ mL) and DMADMA ($2.19 \mathrm{~mL}, 15 \mathrm{mmol}$) was added to reaction mixture. Reaction mixture was refluxed for 3 h . Upon cooling the product precipitated from reaction mixture and was filtered of. Recrystallization from EtOAc. Yield: $1.69 \mathrm{~g}(63 \%)$, yellow solid, mp 168.1-170.0 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 2.67\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ; 3.12\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ; 3.11(6 \mathrm{H}, \mathrm{s}, \mathrm{NMe})$; $5.60(1 \mathrm{H}, \mathrm{s}$, $\mathrm{CH}) ; 7.92-8.00(4 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75.5 \mathrm{MHz}\right): \delta 16.7,40.4,44.5,92.3,127.2$, 128.1, 141.3, 148.2, 165.4, 185.8. ($\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{3} \mathrm{~S}$ calculated: C, $58.40 ; \mathrm{H}, 6.41$; N, 5.24. found C, 58.41; H, 6.58; N, 5.20); EI-HRMS: $m / z=268.1003\left(\mathrm{MH}^{+}\right) ; \mathrm{C}_{13} \mathrm{H}_{18} \mathrm{NO}_{3} \mathrm{~S}$ calculated: $\mathrm{m} / \mathrm{z}=$ $268.1007\left(\mathrm{MH}^{+}\right) ; v_{\max }(\mathrm{KBr}) 3011,2997,2917,1608,1538,1477,1434,1385,1353,1306,1290$, $1223,1179,1153,1082,1026,973,918,863,851 \mathrm{~cm}^{-1}$.

(E)-1-(4-Bromophenyl)-3-(dimethylamino)but-2-en-1-one (2e) ${ }^{29}$

1-(4-Bromophenyl)ethanone (1e) $(4.00 \mathrm{~g}, 20 \mathrm{mmol})$ was dissolved in dry $\mathrm{PhMe}(50 \mathrm{~mL})$ and DMADMA ($3.8 \mathrm{~mL}, 26 \mathrm{mmol}$) was added. The reaction mixture was refluxed for 3 h and chilled. When petroleum ether was added the product precipitated from the reaction mixture and was recrystallized from EtOAc. Yield: $2.81 \mathrm{~g}(53 \%)$, yellow solid, mp 118.8-120.4 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 2.65\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ; 3.08\left(6 \mathrm{H}, \mathrm{s}, \mathrm{N} M e_{2}\right) ; 5.60(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}) ; 7.48-7.53(2 \mathrm{H}, \mathrm{m}$, $\mathrm{Ph}) ; 7.70-7.74(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75.5 \mathrm{MHz}\right): \delta 16.8,40.4,92.4,124.9,129.1$, 131.4, 142.1, 164.6, 187.0.

(\boldsymbol{E})-3-(Dimethylamino)-1-(4-fluorophenyl)but-2-en-1-one (2f) ${ }^{29}$

1-(4-Fluorophenyl)ethanone (1f) ($6.06 \mathrm{~mL}, 50 \mathrm{mmol}$) was dissolved in dry $\mathrm{PhMe}(100 \mathrm{~mL})$ and DMADMA ($11.00 \mathrm{~mL}, 75 \mathrm{mmol}$) was added to reaction mixture. Reractiom mixture was
refluxed for 48 h volatile components were evaporated and the product was isolated by column chromatography ($\mathrm{EtOAC} /$ petroleum ether $=1: 1$). Yield: $6.93 \mathrm{~g}(67 \%)$, yellow solid. ${ }^{1} \mathrm{H}$ NMR $\left.\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 2.65(3 \mathrm{H}, \mathrm{s}, \mathrm{CH})_{3}\right) ; 3.08\left(6 \mathrm{H}, \mathrm{s}, \mathrm{N} M e_{2}\right) ; 5.62(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}) ; 7.03-7.07(2 \mathrm{H}, \mathrm{m}$, Ph); 7.84-7.88 (2H, m, Ph).

(Z)-3-Amino-1-(4-(methylthio)phenyl)but-2-en-1-one (3a)

(E)-3-(Dimethylamino)-1-(4-(methylthio)phenyl)but-2-en-1-one (2a) ($108 \mathrm{mg}, 0.46 \mathrm{mmol}$) was dissolved in $\mathrm{MeOH}(3 \mathrm{~mL}) \mathrm{NH}_{4} \mathrm{OAc}(308 \mathrm{mg}, 4 \mathrm{mmol})$ was added and the reaction mixture stirred for 18 h at room temperature. Volatile components were evaporated and the product isolated by column chromatography ($\mathrm{EtOAc} /$ petroleum ether $=1: 1$). Recrystallization from MeOH . Yield: $95 \mathrm{mg}(99 \%)$, yellow solid, mp 154.0-156.2 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta$ $2.05\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ; 2.51\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SCH}_{3}\right) ; 5.20\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}\right.$ from $\left.\mathrm{NH}_{2}\right) ; 5.71(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}) ; 7.24-$ $7.26(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; 7.80-7.82(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; 10.20\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}\right.$ from $\left.\mathrm{NH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126\right.$ $\mathrm{MHz}): \delta 15.3,23.1,92.1,125.4,127.7,136.7,142.5,162.8,188.7$. $\left(\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NOS}\right.$ calculated: C , 63.74; H, 6.23; N, 6.76. found C, 63.53; H, 6.27; N, 6.70); EI-HRMS: $m / z=208.0790\left(\mathrm{MH}^{+}\right)$; $\mathrm{C}_{11} \mathrm{H}_{14}$ NOS calculated: $\mathrm{m} / \mathrm{z}=208.00791\left(\mathrm{MH}^{+}\right) ; v_{\text {max }}(\mathrm{KBr}) 3280,3140,1600,1583,1559,157$, $1477,1443,1396,1370,1314,1288,273,1171,1119,1104,1069,1007,845 \mathrm{~cm}^{-1}$.

(Z)-3-Amino-1-(4-(methylsulfonylphenyl)but-2-en-1-one (3d)

(E)-3-(dimethylamino)-1-(4-(methylsulfonylphenyl)but-2-en-1-one (2d) ($1.5 \mathrm{~g}, 5.65 \mathrm{mmol}$) was dissolved in $\mathrm{MeOH}(30 \mathrm{~mL}) \mathrm{NH}_{4} \mathrm{OAc}$ was added $(4.35 \mathrm{~g}, 50 \mathrm{mmol})$ and reaction mixture stirred for 14 h at room temperature. Volatile components were evaporated and the product was isolated by column chromatography (EtOAc). Recrystallization from EtOAc/petroleum ether. Yield: 1.33 $\mathrm{g}(99 \%)$, yellow solid, mp 150.2-151.3 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 2.09\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$; $3.08\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ; 5.71(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}) ; 5.76\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}\right.$ from $\left.\mathrm{NH}_{2}\right) ; 7.95-8.04(4 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; 10.32$ (1 H , br s, NH from NH_{2}). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75.5 \mathrm{MHz}\right): \delta 23.2,44.8,92.8,127.7,128.3,142.2$, 145.5, 165.3, 187.2. $\left(\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}_{3} \mathrm{~S}\right.$ calculated: C, 55.21 ; $\mathrm{H}, 5.48$; N, 5.85 . found C, $55.18 ; \mathrm{H}$, 5.33; N, 5.79); EI-HRMS: $m / z=240.0699\left(\mathrm{MH}^{+}\right) ; \mathrm{C}_{11} \mathrm{H}_{14} \mathrm{NO}_{3} \mathrm{~S}$ calculated: $\mathrm{m} / \mathrm{z}=240.0694$ $\left(\mathrm{MH}^{+}\right) ; v_{\text {max }}(\mathrm{KBr}) 3282,3142,1617,1560,1531,1398,1319,1307,1288,1214,1178,1151$, 1106, 1014, $962,846 \mathrm{~cm}^{-1}$.

(Z)-3-Amino-1-(4-bromophenyl)but-2-en-1-one (3e)

(Z)-1-(4-bromophenyl)-3-(dimethylamino)but-2-en-1-one (2e) (2.81 g, 10.5 mmol) was dissolved in $\mathrm{MeOH}(50 \mathrm{~mL}) \mathrm{NH}_{4} \mathrm{OAc}$ was added ($7.7 \mathrm{~g}, 100 \mathrm{mmol}$) and the reaction mixture was stirred for 2 h at room temperature. Volatile components were evaporated and the product was isolated by column chromatography ($\mathrm{EtOAc} /$ petroleum ether $=1: 1$). Recrystallization from EtOAc/petroleum ether. Yield: $2.47 \mathrm{~g}(99 \%)$, yellow solid, mp $129.6-131.2{ }^{\circ} \mathrm{C}\left(\mathrm{mp}^{30}=126-128\right.$ $\left.{ }^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 2.06\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ; 5.27\left(1 \mathrm{H}, \mathrm{br}\right.$ s, NH from $\left.\mathrm{NH}_{2}\right) ; 5.67(1 \mathrm{H}$, $\mathrm{s}, \mathrm{CH}) ; 7.51-7.55(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; 7.72-7.76(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; 10.22\left(1 \mathrm{H}, \mathrm{br}\right.$ s, NH from $\left.\mathrm{NH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75.5 \mathrm{MHz}\right): \delta 23.1,92.2,125.7,129.0,131.6,139.2,163.6,188.3$. $\left(\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{NOBr}\right.$
calculated: C, 50.02 ; H, 4.20; N, 5.83. found C, 50.00 ; H, 4.10; N, 5.82); EI-HRMS: $m / z=$ $240.0019\left(\mathrm{MH}^{+}\right) ; \mathrm{C}_{11} \mathrm{H}_{11} \mathrm{NOBr}$ calculated: $\mathrm{m} / \mathrm{z}=240.0019\left(\mathrm{MH}^{+}\right) ; v_{\text {max }}(\mathrm{KBr}) 3280,3140,1600$, 1583, 1559, 157, 1477, 1443, 1396, 1370, 1314, 1288, 273, 1171, 1119, 1104, 1069, 1007, 845 cm^{-1}.

Diethyl 1-(3-amino-1-(4-(methylsulfonylphenyl)-1-oxobut-2-en-2-yl)hydrazine-1,2dicarboxylate (4d)

(Z)-3-amino-1-(4-(methylsulfonylphenyl)but-2-en-1-one (3d) (570 mg, 2.38 mmol) was dissolved in $\mathrm{MeCN}(10 \mathrm{~mL})$ DEAD was added $(408 \mu \mathrm{~L}, 2.6 \mathrm{mmol})$ and reaction mixture stirred for 12 h at room temperature Volatile components were evaporated and the product was isolated by column chromatography ($\mathrm{EtOAc} /$ petroleum ether $=1: 1$). Yield: $450 \mathrm{mg}(46 \%)$, yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left.\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 1.17-1.27(6 \mathrm{H}, \mathrm{m} 2 \mathrm{xCH})_{3}\right) ; 2.39\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ; 3.06\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$; 4.02-4.27 ($4 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{2}$); $5.66(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{N} H) ; 5.72-5.88(1 \mathrm{H}, \mathrm{m}, \mathrm{N} H) ; 7.49-7.54(1 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$; 7.57-7.62 ($1 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$); 7.94-8.00 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$); 10.42-10.59 ($1 \mathrm{H}, \mathrm{m}, \mathrm{NH}$). EI-HRMS: $m / z=$ $414.1329\left(\mathrm{MH}^{+}\right) ; \mathrm{C}_{17} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{~S}$ calculated: $\mathrm{m} / \mathrm{z}=414.1329\left(\mathrm{MH}^{+}\right) ; v_{\max }(\mathrm{NaCl}) 3382$, 2982, $2919,2357,1716,1610,1478,1393,1375,1341,1284,1236,1155,1135,1069,1088,958,908$, $841 \mathrm{~cm}^{-1}$.

Diethyl 1-(3-amino-1-(4-bromophenyl)-1-oxobut-2-en-2-yl)hydrazine-1,2-dicarboxylate (4e)

 (Z)-3-amino-1-(4-bromophenyl)but-2-en-1-one (3e) ($670 \mathrm{mg}, 2.80 \mathrm{mmol}$) was dissolved in $\mathrm{MeCN}(10 \mathrm{~mL}) \mathrm{DEAD}$ was added $(486 \mu \mathrm{~L}, 3.1 \mathrm{mmol})$ and the reaction mixture was stirred 14 h at room temperature. Volatile components were evaporated and the product was isolated by column chromatography ($\mathrm{EtOAc} /$ petroleum ether $=1: 1$). Yield: $1.00 \mathrm{mg}(87 \%)$, yellow oil. ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 1.18-1.26\left(6 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{3}\right) ; 2.33-2.40\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ; 4.05-4.30(4 \mathrm{H}$, $\left.\mathrm{m}, 2 \mathrm{xCH}_{2}\right) ; 5.53(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{N} H) ; 5.81-5.86(1 \mathrm{H}, \mathrm{m}, \mathrm{N} H) ; 7.17-7.21(1 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; 7.26-7.63(1 \mathrm{H}$, $\mathrm{m}, \mathrm{Ph}) ; 7.48-7.53(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; 10.35-10.56(1 \mathrm{H}, \mathrm{m}, \mathrm{N} H)$. EI-HRMS: $m / z=412.0505\left(\mathrm{M}^{-} \mathrm{H}^{-}\right) ;$ $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{Br}$ calculated: $\mathrm{m} / \mathrm{z}=412.0514\left(\mathrm{M}_{-} \mathrm{H}^{-}\right) ; v_{\text {max }}(\mathrm{NaCl}) 3354,2981,2925,2358,1713$, $1608,1584,1480,1374,1320,1286,1228,1140,1093,1070,1012,861,837 \mathrm{~cm}^{-1}$.
Ethyl [4-methyl-5-(4-(methylthiobenzoyl)-2-oxo-2,3-dihydro-1H-imidazol-1-yl]carbamate

 (5a)(Z)-3-amino-1-(4-(methylthiophenyl)but-2-en-1-one (3a) ($93 \mathrm{~g}, 0.45 \mathrm{mmol}$) was dissolved in (2 $\mathrm{mL})$ DEAD ($80 \mu \mathrm{~L}, 0.5 \mathrm{mmol}$) was added and reaction mixture stirred for 2 h at room temperature. Intermediate diethyl 1-(3-amino-1-(4-(methylthio)phenyl)-1-oxobut-2-en-2$\mathrm{yl})$ hydrazine-1,2-dicarboxylate ($\mathbf{4 a}$) was used directly in the cyclisation step without purification. $\mathrm{NaOH}(60 \mathrm{mg}, 1.5 \mathrm{mmol})$ was added to the reaction mixture and it was stirred for 48 h at room temperature. Volatile components were evaporated and the product isolated by column chromatography $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}=15: 1\right)$. Yield: $103 \mathrm{mg}(68 \%)$, white solid, $\mathrm{mp} 234.3-237.4^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 500 \mathrm{MHz}$): $\delta 1.15\left(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right) ; 1.85\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ; 2.53(3 \mathrm{H}, \mathrm{s}$, SCH_{3}); $4.02\left(2 \mathrm{H}, \mathrm{s}, \mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{CH}_{2}\right) ; 7.33-7.35(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; 7.56-7.58(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; 9.85(1 \mathrm{H}, \mathrm{s}$,
$\mathrm{N} H) ; 11.12(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{N} H) .{ }^{13} \mathrm{C}$ NMR (DMSO- $\left.d_{6}, 126 \mathrm{MHz}\right): \delta 12.2,14.0,14.4,61.0,119.7$, 124.8, 128.8, 129.3, 134.9, 144.4, 151.8, 155.4, 182.5. EI-HRMS: $m / z=336.1008\left(\mathrm{MH}^{+}\right)$; $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}$ calculated: $\mathrm{m} / \mathrm{z}=336.1013\left(\mathrm{MH}^{+}\right) ; v_{\max }(\mathrm{KBr}) 3185,2991,1740,1723,1686$, 1625, 1585, 1542, 1431, 1368, 1350, 1272, 1243, 1201, 1180, 1111, 1086, 1064, 1019, 978, 957, $914,864,829 \mathrm{~cm}^{-1}$.

Ethyl [5-(4-chlorobenzoyl)-4-methyl-2-oxo-2,3-dihydro-1H-imidazol-1-yl]carbamate (5c)

 (Z)-3-amino-1-(4-chlorophenyl)but-2-en-1-one ${ }^{30}$ ($\mathbf{3 c}$) ($3.74 \mathrm{~g}, 19.2 \mathrm{mmol}$) was dissolved in EtOH (50 mL) DEAD ($3.57 \mathrm{~mL}, 22 \mathrm{mmol}$) was added and the reaction mixture was stirred for 4 h at room temperature. Intermediate diethyl 1-(3-amino-1-(4-chlorophenyl)-1-oxobut-2-en-2-yl)hydrazine-1,2-dicarboxylate (4c) was directly used in next step without isolation. To $\mathbf{4 c}$ was added $\mathrm{NaOH}(1.6 \mathrm{~g}, 40 \mathrm{mmol})$ and reaction mixture was stirred for 15 h at room temperature. Product $\mathbf{5 c}$ was isolated by column chromatography $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}=8: 1\right)$. Yield: $4.73 \mathrm{~g}(76 \%)$, white solid, mp 238.3-240.0 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 500 \mathrm{MHz}$): $\delta 1.15\left(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$; $1.85\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ; 4.02\left(2 \mathrm{H}, \mathrm{s}, \mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{CH}_{2}\right) ; 7.55-7.59(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; 7.61-7.66(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$; $9.87(1 \mathrm{H}, \mathrm{s}, \mathrm{N} H) ; 11.25(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{N} H) .{ }^{13} \mathrm{C}$ NMR (DMSO- $\left.d_{6}, 126 \mathrm{MHz}\right): \delta 12.2,14.4,61.0$, $119.5,128.7,130.3,130.4,137.0,137.7,151.7,155.4,182.2$. $\left(\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{Cl}\right.$ calculated: C, 51.94; H, 4.36; N, 12.98. found C, 51.93; H, 4.14; N, 12.98); EI-HRMS: $m / z=324.0748\left(\mathrm{MH}^{+}\right)$; $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{Cl}$ calculated: $\mathrm{m} / \mathrm{z}=324.0746\left(\mathrm{MH}^{+}\right) ; v_{\max }(\mathrm{KBr}) 3193,3067,3005,2982,1738$, 1722 , 1687, 1619, 1585, 1536, 1474, 1435, 1412, 1369, 1344, 1279, 1261, 1197, 1177, 1109, $1065,1011,980,956,914,870,833 \mathrm{~cm}^{-1}$.
Ethyl [4-methyl-5-(4-(methylsulfonyl)benzoyl)-2-oxo-2,3-dihydro-1H-imidazol-1yl]carbamate (5d)

Diethyl 1-(3-amino-1-(4-(methylsulfonyl)phenyl)-1-oxobut-2-en-2-yl)hydrazine-1,2-dicarboxylate $(\mathbf{4 d})(450 \mathrm{mg}, 1.09 \mathrm{mmol})$ was dissolved in $\mathrm{EtOH}(5 \mathrm{~mL})$ and NaOH was added $(110 \mathrm{mg}$, $2.18 \mathrm{mmol})$. Reaction mixture was stirred for 15 h at room temperature and product isolated by column chromatography $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}=10: 1\right)$. Yield: $220 \mathrm{mg}(55 \%)$, yellow solid, mp 196.5$201.1{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 500 \mathrm{MHz}\right): \delta 1.14\left(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right) ; 1.85\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$; $3.28\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ; 3.97-4.04\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right) ; 7.81(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{Ph}) ; 8.03(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}$, $\mathrm{Ph}) ; 9.88(1 \mathrm{H}, \mathrm{s}, \mathrm{N} H) ; 11.36(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{N} H) .{ }^{13} \mathrm{C}$ NMR (DMSO- $\left.d_{6}, 126 \mathrm{MHz}\right): \delta 12.4,14.4,43.3$, 61.1, 119.3, 127.3, 129.1, 131.7, 143.2, 151.6, 155.4, 182.1. ($\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{6}$ calculated: C, 49.04; H, 4.66; N, 11.44. found C, 49.08; H, 4.59; N, 11.20); EI-HRMS: $m / z=368.0900\left(\mathrm{MH}^{+}\right)$; $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{~S}$ calculated: $\mathrm{m} / \mathrm{z}=368.0911\left(\mathrm{MH}^{+}\right) ; v_{\max }(\mathrm{KBr}) 3412,1742,1713,1626,1430$, $1315,1266,1198,1153,1117,1089,1064,1013,967,907,870,768,756,694 \mathrm{~cm}^{-1}$.

Ethyl [5-(4-bromobenzoyl)-4-methyl-2-oxo-2,3-dihydro-1H-imidazol-1-yl]carbamate (5e)

Diethyl 1-(3-amino-1-(4-bromophenyl)-1-oxobut-2-en-2-yl)hydrazine-1,2-dicarboxylate ($1.00 \mathrm{~g}, 2.44 \mathrm{mmol}$) was dissolved in $\mathrm{EtOH}(10 \mathrm{~mL})$ and NaOH was added ($260 \mathrm{mg}, 6.5 \mathrm{mmol}$). Reaction mixture was stirred for 14 h at room temperature and product isolated by column
chromatography $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}=10: 1\right)$. Yield: $610 \mathrm{mg}(68 \%)$, white solid, $\mathrm{mp} 247.7-249.9^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 500 \mathrm{MHz}$): $\delta 1.14\left(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right) ; 1.84\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C} H_{3}\right) ; 4.01(2 \mathrm{H}, \mathrm{q}$, $\left.J=7.1 \mathrm{~Hz}, \mathrm{CH}_{2}\right) ; 7.54(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{Ph}) ; 7.70(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{Ph}) ; 9.85(1 \mathrm{H}, \mathrm{s}, \mathrm{N} H) ;$ 11.24 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{N} H$). ${ }^{13} \mathrm{C}$ NMR (DMSO- $d_{6}, 126 \mathrm{MHz}$): $\delta 12.3,14.4,61.0,119.4,126.0,130.4$, 130.5, 131.7, 138.0, 151.6, 155.4, 182.3. $\left(\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{Br}\right.$ calculated: C, 45.67; H, 3.83; N, 11.41. found C, 45.91; H, 3.61; N, 11.26); EI-HRMS: $m / z=368.0236\left(\mathrm{MH}^{+}\right) ; \mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{Br}$ calculated: $\mathrm{m} / \mathrm{z}=368.0240\left(\mathrm{MH}^{+}\right) ; v_{\max }(\mathrm{KBr}) 3414,3240,1744,1692,1637,1584,1540,1418$, $1283,1196,1179,1068,1010,981,914,869 \mathrm{~cm}^{-1}$.

5-Methyl-4-(4-(methylthio)benzoyl)-1H-imidazol-2(3H)-one or Enoxymone (7a)

Ethyl (4-methyl-5-(4-(methylthio)benzoyl)-2-oxo-2,3-dihydro-1H-imidazol-1-yl)carbamate (5a) $(95 \mathrm{mg}, 0.28 \mathrm{mmol})$ was dissolved in $\mathrm{EtOH}(5 \mathrm{~mL}) \mathrm{KOH}$ was added $(220 \mathrm{mg}, 3.4 \mathrm{mmol})$ and the reaction mixture was reflxed for 20 h . Volatile components were evaporated the solid residue dissolved in $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$ and concentrated solution of $\mathrm{HCl}_{(\mathrm{aq})}(3 \mathrm{~mL})$ was added. Reaction mixture was than chilled to $0{ }^{\circ} \mathrm{C}$ and $2 \mathrm{~m} \mathrm{NaNO}{ }_{2 \text { (aq) }}(5 \mathrm{~mL})$ was slowly added during 20 min . When all $\mathrm{NaNO}_{2(\text { aq) }}$ was added the reaction mixture was stirred further for 20 min at room temperature. White solid precipitated which was filtered and washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$. Yield: 65 mg (93 \%), white solid, mp 251.0-254.3 ${ }^{\circ} \mathrm{C}\left(\mathrm{mp}^{17} 255-258{ }^{\circ} \mathrm{C}\right.$). ${ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 500$ $\mathrm{MHz}): \delta 1.89\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ; 2.53\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SCH}_{3}\right) ; 7.32-7.34(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; 7.55-7.57(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$; $10.27(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{N} H) ; 10.85(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{N} H) .{ }^{13} \mathrm{C}$ NMR (DMSO- $\left.d_{6}, 126 \mathrm{MHz}\right): \delta 12.2,14.0$, 119.0, 124.8, 128.9, 131.5, 135.1, 143.3, 152.8, 182.8. EI-HRMS: $m / z=249.0690\left(\mathrm{MH}^{+}\right)$; $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$ calculated: $\mathrm{m} / \mathrm{z}=249.0692\left(\mathrm{MH}^{+}\right) ; v_{\text {max }}(\mathrm{KBr}) 3156,6023,2917,2854,1744$, $1694,1610,1588,1547,1488,1465,1434,1372,1328,1368,1201,1180,1114,1087,1067$, $1026,994,971,952,935,865,813 \mathrm{~cm}^{-1}$.

4-Benzoyl-5-methyl-1H-imidazol-2(3H)-one (7b)

(E)-3-(dimethylamino)-1-phenylbut-2-en-1-one ${ }^{29}$ ($\mathbf{2 b}$) ($3.78 \mathrm{~g}, 20 \mathrm{mmol}$) was disolved in MeOH $(50 \mathrm{~mL}) \mathrm{NH}_{4} \mathrm{OAc}$ was added $(15.4 \mathrm{~g}, 200 \mathrm{mmol})$ and the reaction mixture was stirred for 3 h at room temperature. Volatile components were evaporated and the product, (Z)-3-amino-1-phenylbut-2-en-1-one, ${ }^{30}$ was isolated by column chromatography (EtOAc /petroleum ether $=1: 1$) and used directly in the next step. EtOH (50 mL) and DEAD was added ($2.98 \mathrm{~mL}, 19.0 \mathrm{mmol}$) and the reaction mixture was stirred 14 h at room temperature when $\mathrm{NaOH}(1.90 \mathrm{~g}, 47.5 \mathrm{mmol})$ was added. The reaction mixture was stirred further for 24 h . Precipitated product was used directly in the next step. Ethyl (5-benzoyl-4-methyl-2-oxo-2,3-dihydro-1H-imidazol-1yl)carbamate ($\mathbf{5 b}$) ($662 \mathrm{mg}, 2.3 \mathrm{mmol}$) was dissolved in the mixture of $\mathrm{H}_{2} \mathrm{O} / \mathrm{THF}=1: 1(20 \mathrm{~mL})$ and KOH was added to solution ($560 \mathrm{mg}, 10 \mathrm{mmol}$). The reaction mixture was refluxed for 24 h , volatile components were evaporated and intermediate 1-amino-5-benzoyl-4-methyl-1H-imidazol-2(3H)-one (6b) was isolated by column chromatography $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}=7: 1\right)$. Intermediate 6a was suspended in $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and $\mathrm{HCl}_{(\mathrm{aq})}(2 \mathrm{~mL})$ was added to a suspension. Reaction mixture was chilled to $0{ }^{\circ} \mathrm{C}$ and 1.5 m solution of $\mathrm{NaNO}_{2(\mathrm{aq})}(8 \mathrm{~mL})$ was added during

30 minutes. Reaction mixture was than stirred for 2 h at room temperature. Volatile components were evaporated and the product was isolated using Soxhlet's extraction (EtOAc). Yield: 353 mg (76%), yellow solid, $\mathrm{mp} 243-246^{\circ} \mathrm{C}\left(\mathrm{mp}^{17} 253-255^{\circ} \mathrm{C}\right.$). ${ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 300 \mathrm{MHz}$): $\delta 1.81$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}$); 7.45-7.52 (2H, m, Ph); 7.54-7.61 (3H, m, Ph); 10.27 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}$); 10.84 (1 H , br $\mathrm{s}, \mathrm{N} H)$.

4-(4-Chlorobenzoyl)-5-methyl-1H-imidazol-2(3H)-one (7c)

Ethyl (5-(4-chlorobenzoyl)-4-methyl-2-oxo-2,3-dihydro-1H-imidazol-1-yl)carbamate (5c) (1.62 $\mathrm{g}, 5 \mathrm{mmol}$) was dissolved in $\mathrm{EtOH}(20 \mathrm{~mL}) \mathrm{KOH}$ was added ($3.00 \mathrm{~g}, 53.5 \mathrm{mmol}$) and the reaction mixture was refluxed for 15 h . Volatile components were evaporated, solid residue dissolved in $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ and concentrated $\mathrm{HCl}_{(\mathrm{aq})}(3 \mathrm{~mL})$ was added. Reaction mixture was than chilled to $0{ }^{\circ} \mathrm{C}$ and $6 \mathrm{M} \mathrm{NaNO}_{2(\mathrm{aq})}(5 \mathrm{~mL})$ was slowly added during 20 min . When all $\mathrm{NaNO}_{2(\mathrm{aq})}$ was added the reaction mixture was stirred further for 20 min at room temperature. White solid precipitated which was filtered and washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$. Recrystallization from EtOH . Yield: $944 \mathrm{mg}(80 \%)$, white solid, $\mathrm{mp} 284.3-286.9^{\circ} \mathrm{C}\left(\mathrm{mp}^{17} 291-293{ }^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}, $500 \mathrm{MHz}): \delta 1.86\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ; 7.55(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{Ph}) ; 7.63(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{Ph}) ; 10.34$ ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{N} H$) ; $10.94(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{N} H) .{ }^{13} \mathrm{C}$ NMR (DMSO- $d_{6}, 126 \mathrm{MHz}$): $\delta 12.1,118.9$, 128.6, 130.0, 132.7, 136.2, 137.9, 152.7, 182.2. $\left(\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Cl}\right.$ calculated: C , 55.83; H, 3.83; N, 11.84. found C, 55.63; H, 3.62; N, 11.70); EI-HRMS: $m / z=237.0430\left(\mathrm{MH}^{+}\right) ; \mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Cl}$ calculated: $\mathrm{m} / \mathrm{z}=237.0425\left(\mathrm{MH}^{+}\right) ; v_{\max }(\mathrm{KBr}) 2967,1661,1614,1592,1488,1437,1437,1394,1373,1316$, 1267, 1182, 1127, 1086, 1013, 949, 936, $836 \mathrm{~cm}^{-1}$.

4-(4-Bromobenzoyl)-5-methyl-1H-imidazol-2(3H)-one (7e)

Ethyl (5-(4-bromobenzoyl)-4-methyl-2-oxo-2,3-dihydro-1H-imidazol-1-yl)carbamate (5e) (421.5 $\mathrm{mg}, 1.5 \mathrm{mmol}$) was dissolver in $\mathrm{EtOH}(5 \mathrm{~mL}) \mathrm{KOH}$ was added ($1.00 \mathrm{~g}, 17.85 \mathrm{mmol}$) and reaction mixture refluxed for 12 h . Volatile components were evaporated the solid residue dissolved in $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ and concentrated solution of $\mathrm{HCl}_{(\mathrm{aq})}(2 \mathrm{~mL})$ was added. Reaction mixture was than chilled to $0{ }^{\circ} \mathrm{C}$ and $6 \mathrm{M} \mathrm{NaNO}_{2(\text { aq })}(5 \mathrm{~mL})$ was slowly added during 20 min . When all $\mathrm{NaNO}_{2(\text { aq })}$ was added the reaction mixture was stirred further for 20 min at room temperature. White solid precipitated which was filtered and washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$. Recrystallization from $\mathrm{H}_{2} \mathrm{O}$. Yield: 279 mg (87 \%), white solid, mp 246.7-249.9 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 300 \mathrm{MHz}\right): \delta 1.86\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ; 7.54(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{Ph}) ; 7.69(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}$, $\mathrm{Ph}) ; 10.30(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{N} H) ; 10.91\left(1 \mathrm{H}, \mathrm{br}\right.$ s, NH). ${ }^{13} \mathrm{C}$ NMR (DMSO- $\left.d_{6}, 75.5 \mathrm{MHz}\right): \delta 12.1,118.8$, 125.0, 130.1, 131.4, 132.6, 138.2, 152.7, 182.3. $\left(\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Brx1} / 4 \mathrm{H}_{2} \mathrm{O}\right.$ calculated: C, 46.26; H, 3.35; N, 9.81. found $\mathrm{C}, 4.32 ; \mathrm{H}, 3.06 ; \mathrm{N}, 9.75)$; EI-HRMS: $m / z=280.9916\left(\mathrm{MH}^{+}\right)$; $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Br}$ calculated: $\mathrm{m} / \mathrm{z}=280.9920\left(\mathrm{MH}^{+}\right)$; $v_{\text {max }}(\mathrm{KBr}) 3413,1702,1617,1465,1438$, $1393,1329,1269,1170,1124,1067,1044,1011,936,836 \mathrm{~cm}^{-1}$.

X-ray structure analysis for compound 2d

The reflection data were collected on a Nonius Kappa CCD diffractometer using monochromated Mo Ka radiation at room temperature by using Nonius Collect software. ${ }^{32}$ Data reduction and integration were performed with the software package DENZO-SMN. ${ }^{33}$ The coordinates of all of the nonhydrogen atoms were found via direct methods using the SIR97 structure solution program. ${ }^{34}$ A full-matrix least-squares refinement on F^{2} magnitudes with anisotropic displacement parameters for all non-hydrogen atoms using SHELXL-97 was employed. ${ }^{35}$ All H atoms were initially located in difference Fourier maps and subsequently treated as riding atoms in geometrically idealized positions with bond lengths $\mathrm{C}-\mathrm{H} 0.96 \AA$ for methyl and $0.93 \AA$ for aromatic hydrogens with $\operatorname{Uiso}(\mathrm{H})=1.5 \mathrm{Ueq}(\mathrm{C}$, methyl) and $\operatorname{Uiso}(\mathrm{H})=1.2 \mathrm{Ueq}(\mathrm{C}$,aromatic $)$, respectively. Figures depicting the structures were prepared by ORTEP3. ${ }^{36}$ CCDC-939062 contains the supplementary crystallographic data for structure 2d. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Acknowledgements

Financial support from the Slovenian Research Agency through grants P0-0502-0103, P1-0179 and J1-6689-0103-04 and grant Packet X-2000 and PS-511-102 for the purchase of Kappa CCD Nonius diffractometer are gratefully acknowledged. We also thank the Krka d.d. (Novo mesto, Slovenia) and Lek d.d., a Sandoz Company (Ljubljana, Slovenia) for financial support.

References

1. Chebanov, A. V.; Desenko, S. M.; Gurley, T. W. Azaheterocycles Based on α, β-Unsaturated Carbonyl, Springer, Berlin 2008.
2. Jin, Z. Nat. Prod. Rep. 2009, 26, 382-445. http://dx.doi.org/10.1039/b718045b
3. De Luca, L. Curr. Med. Chem. 2006, 13, 1-23.
4. Suijkerbuijk, B. M. J. M.; Niculescu-Duvaz, I.; Gaulon, C.; Dijkstra, H. P.; Niculescu-Duvaz, D.; Menard, D.; Zambon, A.; Nourry, A.; Davies, L.; Manne, H. A.; Friedlos, F.; Ogilvie, L. M.; Hedley, D.; Lopes, F.; Preece, N. P. U.; Moreno-Farre, J.; Raynaud, F. I.; Kirk, R.; Whittaker, S.; Marais, R.; Springer, C. J. J. Med. Chem. 2010, 53, 2741-2756. http://dx.doi.org/10.1021/jm900607f
5. Finke, P. E.; Meurer, L. C.; Levorse, D. A.; Mills, S. G.; MacCoss, M.; Sadowski, S.; Cascieri, M. A.; Tsao, K.-L.; Chicchi, G. G.; Metzger, J. M.; MacIntyre, D.E. Bioorg. Med. Chem. Lett. 2006, 16, 4497-4503. http://dx.doi.org/10.1016/j.bmcl.2006.06.035
6. Carling, R. W.; Moore, K. W.; Moyes, C. R.; Jones, E. A.; Bonner, K.; Emms, F.; Marwood, R.; Patel, Sh.; Patel, S.; Fletcher, A. E.; Beer, M.; Sohal, b.; Pike, A.; Leeson, P. D. J. Med. Chem. 1999, 42, 2706-2715. http://dx.doi.org/10.1021/jm991029k
7. De Clercq, J. P. Chem. Rev. 1997, 97, 1755-1792. http://dx.doi.org/10.1021/cr9704671
8. Sosa, A. C. B.; Yakushijin, K.; Horne, D. A. Org. Lett. 2000, 2, 3443-3444.
http://dx.doi.org/10.1021/ol000233v
9. Sosa, A. C. B.; Yakushijin, K.; Horne, D. A. J. Org. Chem. 2002, 67, 4498-4500. http://dx.doi.org/10.1021/jo020063v
10. Dransfield, P. J.; Dilley, A. S.; Wang, S.; Romo, D. Tetrahedron 2006, 62, 5223-5247. http://dx.doi.org/10.1016/j.tet.2005.12.068
11. Selič, L.; Jakše, R.; Lampič, K.; Golič, L.; Golič-Grdadolnik, S.; Stanovnik, B. Helv. Chim. Acta 2000, 83, 2802-2811.
http://dx.doi.org/10.1002/1522-2675(20001004)83:10<2802::AID-HLCA2802>3.0.CO;2-9
12. Koswatta, P. B.; Sivappa, R.; Dias, H. V. R.; Lovely, C. J. Synthesis 2009, 2970-2982. http://dx.doi.org/10.1055/s-0029-1216929
13. Grimmet. M. R. Product Class 3: Imidazoles in Science of Synthesis, Georg Thieme Verlag, Stuttgart 2006; Vol 12, pp. 325-528.
14. Dabdab, M; Renault, S.; Eid, S.; Lozach, O.; Meijer, L.; Carreaux, F.; Bazureau, J. P. Heterocycles 2009, 78, 1191-1203.
http://dx.doi.org/10.3987/COM-08-11594
15. Evano, G.; Blanchard, N.; Toumi, M. Chem. Rev. 2008, 108, 3054-3131. http://dx.doi.org/10.1021/cr8002505
16. Gong, X.; Yang, H.; Liu, H.; Jiang, Y.; Zhao, Y.; Fu, H. Org. Lett. 2010, 12, 3128-3131. http://dx.doi.org/10.1021/ol1008813
17. Schnettler, R.; Dage, R. C.; Grisar, J. M. J. Med. Chem. 1982, 25, 1477-1481. http://dx.doi.org/10.1021/jm00354a017
18. Innes, P. A.; Fraser, R. S.; Booker, P. D.; , Allsop, E.; Kirton, C.; Lockie, J.; Franks, R. Br. J. Anaesth. 1994, 72, 77-81.
http://dx.doi.org/10.1093/bja/72.1.77
19. Booker, P. D.; Gibbons, S.; Stewart, J. I. M.; Selby, A.; Wilson-Smith, E.; Pozzi, M. Br. J. Anaesth. 2000, 85, 205-210. http://dx.doi.org/10.1093/bja/85.2.205
20. Ruef, P.; Craciun, E.; Altfelder, F.; Simon, C.; Frommhold, D.; Koch, L.; Poeschel, J. Clin. Hemorheol. Micro. 2010, 45, 301-310.
21. Stanovnik, B.; Svete, J. Chem. Rev., 2004, 104, 2433-2480.
http://dx.doi.org/10.1021/cr020093y
22. Čebašek, P.; Wagger, J.; Bevk, D.; Jakše, R.; Svete, J.; Stanovnik, B. J. Comb. Chem. 2004, 6, 356-362.
http://dx.doi.org/10.1021/cc034066c
23. Grošelj. U.; Rečnik, S.; Svete, J.; Meden, A.; Stanovnik, B. Tetrahedron: Asymmetry 2002, 13, 821-833.
http://dx.doi.org/10.1016/S0957-4166(02)00208-2
24. Selič, L.; Stanovnik, B. Tetrahedron 2001, 57, 3159-3164.
http://dx.doi.org/10.1016/S0040-4020(01)00174-0
25. Časar, Z.; Bevk, D.; Svete, J.; Stanovnik, B. Tetrahedron 2005, 61, 7508-7519. http://dx.doi.org/10.1016/j.tet.2005.05.075
26. Wagger, J; Grošelj, U.; Meden, A.; Svete, J.; Stanovnik, B. Tetrahedron 2008, 64, 28012815. http://dx.doi.org/10.1016/j.tet.2008.01.045
27. Wagger, J.; Svete, J.; Stanovnik, B. Synthesis 2008, 1436-1442. http://dx.doi.org/10.1055/s-2008-1072515
28. Bezenšek, J.; Grošelj, U.; Stare, K.; Svete, J.; Stanovnik B. Tetrahedron 2012, 68, 516-522. http://dx.doi.org/10.1016/j.tet.2011.11.013
29. Mukhanova, T. I.; Granik, V. G.; Denosov, A. V.; Trubitsina, T. K.; Shvarts, G. Y.; Mashkovsky, M. D. Khim. Farm. Zh. 1994, 28, 23-26.
30. Singh, B.; Lesher, G. V. J. Heterocycl. Chem. 1990, 27, 2085-2091. http://dx.doi.org/10.1002/jhet. 5570270743
31. Lin Y.-I.; Lang, S. A. Jr. J. Org. Chem., 1980, 45, 4857-4860. http://dx.doi.org/10.1021/jo01312a011
32. Collect Software; Nonius, BV: Delft, The Netherlands, 2000.
33. Otwinowski, Z.; Minor, W. Methods Enzymol. 1997, 276, 307-326. http://dx.doi.org/10.1016/S0076-6879(97)76066-X
34. Altomare, A.; Burla, M. C.; Camalli, M.; Cascarano, G. L.; Giacovazzo, C.; Guagliardi, A.; Moliterni, A. G. G.; Polidori, G.; Spagna, R. J. Appl. Crystallogr. 1999, 32, 115-119. http://dx.doi:10.1107/S0021889898007717
35. Sheldrick, G. M. Acta Crystallogr. 2008, A64, 112-122. http://dx.doi.org/10.1107/S0108767307043930
36. Farrugia, L. J. J. Appl. Crystallogr. 1997, 30, 565. http://dx.doi:10.1107/S0021889897003117
