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Abstract     

The counteranion exchange of quaternary 1,2,3-triazolium salts was examined using a simple 

method that permitted halide ions to be swap for a variety of anions using an anion exchange 

resin (A¯ form). The method was applied to 1,2,3-triazolium-based ionic liquids and the iodide-

to-anion exchange proceeded in excellent to quantitative yields, concomitantly removing halide 

impurities. Additionally, an anion exchange resin (N3¯ form) was used to obtain the benzyl azide 

from benzyl halide under mild reaction. Likewise, following a similar protocol, 

bis(azidomethyl)arenes were also synthesized in excellent yields. The results of a proton NMR 

spectroscopic study of simple azolium-based ion pairs are discussed, with attention focused on 

the significance of the charged-assisted (C–H)+···anion hydrogen bonds of simple azolium 

systems such as 1-butyl-3-methylimidazolium and 1-benzyl-3-methyl-1,2,3-triazolium salts.     
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Introduction    

 

Azolium systems have gained a place among the anion-binding functional groups, ranging from 

anion receptors and sensors to transporters,2-9 and as ionic liquids (ILs) their utility has expanded 

into domains beyond chemistry.10-14 The greenness of the most established IL syntheses and 

purification procedures has been analyzed and evaluated.13 Thus, the chemical aspects of 

imidazolium-based ILs, including their synthesis, counteranion exchange and purity, have been 

the subject of numerous studies with the aim of obtaining pure IL salts, especially halide-free ion 
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pairs. However, little attention has been paid to the use of an anion exchange resin (AER).1,12-14 

Examples of anion exchange resin application to ILs reported in the open literature use either the 

AER (OH¯ form) or the AER (A¯ form) method.1,14 We have recently examined the preparation 

of an AER (A¯ form) conveniently loaded with a selected anion after treatment with either acids 

or ammonium salts in water, or hydroalcoholic media, or organic solvents. The halide-to-anion 

exchange of quaternary imidazolium salts 1·X and their transformation to the corresponding ion 

pairs 1·A was carried out in methanol or organic solvents providing a pure ionic liquid in 

excellent to quantitative yields (Figure 1). Moreover, the transformation of both lipophylic 

quaternary heteroaromatic cations and low hydrophilic anions also proceeded in excellent to 

quantitative yields.1 This simple procedure offers a convenient way to replace halide anions by a 

broad range of anions in and also eliminates halide impurities and minimizes the formation of 

toxic by-products with consequential environmental benefits. 

   

 
 

Figure 1. Application of the anion exchange resin (A¯ form) method in non-aqueous media to 

representative imidazolium-based ionic liquids 1·X.1 

 

A logical extension of our previous studies on imidazolium-based systems was to examine 

1,3-dialkyl-1,2,3-triazolium 2·X, which have been described as stable and recyclable 

solvents.15-18 The present study is focused on the application of the AER (A¯ form) method for 

the iodide-to-anion exchange of the selected triazolium ion pairs. The reported synthesis of 1-

benzyl-3-methyl-1,2,3-triazolium iodide 2b·I ([BnmTr]I) requires benzyl azide 4 for the 

preparation of the click-derived 1,2,3-triazole 3,15 as shown in the retrosyntetic Scheme 1. Thus, 

an AER (N3¯ form) was prepared and used to obtain azide 4 and bis(azidomethyl)arenes 5 and 6. 

It should be noted that in the last years theoretical calculations have confronted the question of 

what is responsible for the anion−cation non-covalent interactions in pure imidazolium-based ILs 
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and have challenged the role of (C−H)+ hydrogen bonds in explaining IL properties.19,20 A 

relevant part of the present study is focused on the significance of the noncovalent interactions 

involved between the azolium motifs and a variety of anions, with special attention given to 

nonclassical charged-assisted (C–H)+···anion hydrogen bonds. Thus, the ion pairs prepared 

provided the opportunity to learn about the hydrogen-bonding interactions of simple azolium 

systems such as 1-butyl-3-methylimidazolium 1a·A ([bmim]A) and 1-benzyl-1-methyl-1,2,3-

triazolium 2b·A ([BnmTr]A) salts in solution-phase by proton NMR spectroscopy. 

 

 
Scheme 1. 1,2,3-Triazolium-based ionic liquids 2·X. (a) Halide-to-anion exchange: the anion 

exchange resin (A¯ form) method. (b) Retrosynthetic pathway to the ion pair 2b·I and to 

benzylic azides 4, 5 and 6. 

 

 

Results and Discussion    

 

Preparation of benzylic azides using an anion exchange resin (N3¯ form) 

Applications of ion-exchange resins to a variety of chemical reactions have proven to be 

extremely useful in different chemical fields such as organic synthesis, catalysis and industrial 

applications21,22 as well as chemistry in flow systems.23 The anion exchange resin (N3¯ form) can 

be used both for the halide exchange like for nucleophilic substitution reactions.24,25 Thus, the 

benzyl azide component 4 was prepared in excellent yield using a polymeric azide reagent 

protocol that consists of mixing benzyl bromide or chloride with 12 equivalents of the AER 

Amberlite IRA-400 (N3¯ form) at room temperature in dichloromethane,24 and also under 
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standard reaction conditions between sodium azide and benzyl iodide or bromide at room 

temperature in a dipolar aprotic solvent, e.g. dimethyl sulfoxide or dimethylformamide, in  91% 

yield,26,27 since benzylic halides readily undergo nucleophilic substitution reactions.28  

 Following a modified experimental procedure previously reported by Hassner et al.,21 benzyl 

azide 4 was obtained in 93% yield from both benzyl bromide and chloride using a strong basic 

AER (N3¯ form) in CH3CN/CH3OH (1:1) (Scheme 2). Applying our protocol, 

bis(azidomethyl)arenes 5 and 6 were prepared by stirring the reaction mixture of the 

corresponding benzylic halides 7 and 8 and the azide-loaded strong basic AER (N3¯ form) in 

organic solvents under mild and safe conditions with a direct work-up.  After examining various 

nucleophilic substitution reaction conditions, the best results were observed when using a solvent 

mixture of CH3CN/CH3OH (1:1) or CH3CN/CH2Cl2 (1:1) to give the diazides 5 and 6, 

respectively, in 95% yield (Scheme 2 and Supplementary Material). 

 

 
 

Scheme 2. Preparation of benzyl azide 4 and bis(azidomethyl)arenes 5, 6 using an azide-loaded 

strong basic AER (N3¯ form) in organic solvents. 

 

Halide-to-anion exchange: AER (A¯ form) method 

The anion sources used to load the selected anions were mainly via I from acids or via II from 

the corresponding ammonium salt (Scheme 3 and Table 1). Thus, the AER (OH¯ form) was 
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packed in a column and treated with a hydromethanolic solution of the acid or ammonium salt. 

Following via I, the loading was performed with the hydromethanolic solution of AcOH or 

MeSO3H and the aqueous inorganic acids HPF6 or HBF4. In via II, anions such as CF3SO3¯, 

PF6¯ and BF4¯ were loaded in the resin using aqueous solutions of their ammonium salts, while 

the lipophilic BPh4¯ anion required CH3CN/H2O (9:1) solvent mixture. When the anions were 

loaded in the AER, we examined the efficiency of the counteranion exchange using 1,2,3-

triazolium ionic liquids, due to their recent interest as stable and recyclable solvents.15-18 A recent 

study has shown that the key physicochemical aspects of 1,2,3-triazolium-based ILs are their 

high electrochemical stability and ionic conductivity, which are comparable to their imidazolium 

counterparts, yet with the advantage that the 1,2,3-triazolium nucleus seems to be more robust 

under alkaline reaction conditions.29 

 
 

Scheme 3. AER (A¯ form) method applied to 1,2,3-triazolium ionic liquids 2·I. (a) Anion 

loading and anion source. (b) Iodide-to-anion exchange of 2a·I and 2b·I. 

 

 The AER (A¯ form) method was then applied to both 1,2,3-triazolium compounds, 1-buthyl-

3-methyltriazolium iodide 2a·I and 1-benzyl-3-methyltriazolium iodide 2b·I, and the halide 

exchange for representative anions proceeded in 90% to quantitative yields when methanol was 

used (Table 1), improving the results obtained using classical methods.15 However, when the 

recovery of the new ion pairs 2a·A or 2b·A was around 90%, further studies to increase the yield 

using a less polar solvent, for example acetonitrile, were not carried out. 
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Table 1. Iodide-to-anion exchange of 1,2,3-triazolium-based ionic liquids in methanol 

  2a+  2b+  

Anion Loadinga Yield (%)b I¯ (ppm)c Yield (%)b I¯(ppm)c 

AcO¯ via Id 100 <20 100 <20 

MeSO3¯ via Id 92 <20 94 <20 

PF6¯  via Ie or via IIe 90 20-40 97 <20 

BF4¯ via Ie or via IIe 94 20-40 90 20-40 

CF3SO3¯ via IId 93 20-40 92 <20 

BPh4¯ via IIf 92 <20 ―  

aAnion source: via I and/or via II (Scheme 3). bIsolated yield. cHalide contents after anion 

exchange determined by the silver chromate test. dSolvent loading: CH3OH:H2O. eSolvent 

loading: H2O. fSolvent loading: CH3CN:H2O (9:1). 

 

 The prepared ion pairs were dried in a vacuum oven at 60 ºC in the presence of desiccant 

agents and their characterization was confirmed by spectroscopic and spectrometric methods, 

especially 1H NMR, and when necessary unambiguous assignments were made by NOESY 

experiments at 400 MHz. Moreover, the amount of halide content was determined by a silver 

chromate test following a similar protocol to that described by Sheldon and co-workers.30 

Additionally, it should also be considered that the AER used in the exchange can be recycled by 

treatment with 10% NaOH aqueous solution, and the recovered AER (OH¯ form) can be re-

utilized for a new anion loading. The chosen strong AER was Amberlyst® A-26 but other 

similar AERs such Aberlite® IRA-400, which allow the use of aqueous mixtures and non-

aqueous solvents, can be used instead. 

 
1H NMR spectroscopy 

Imidazolium-based systems form a bridge between the chemistry of ionic liquids (ILs) and anion 

recognition, notable noncovalent driving forces being a combination of electrostatics and 

hydrogen bond interactions.6,31 Particularly significant is the role of the non-classical               

(C–H)+···anion hydrogen bonds in imidazolium-based anion receptors, sensors and carriers, as 

well as in ILs, which has sparked a flurry of interest and debate in the last few years. Evidence 

for hydrogen bonding in the solid phase of the simple 1-ethyl-3-methylimidazolium salt [emim]I 

was first reported by Seddon and co-workers in 1986,32 and later in [emim]A using single-crystal 

X-ray diffraction analysis,33-35 and confirmed in the solution-phase by multinuclear NMR 

spectroscopy.36 Moreover, Ludwig and co-workers reported direct spectroscopic evidence for an 

enhanced cation-anion interaction driven by (C–H)+···anion hydrogen bonds in pure ILs, which 

gave a stronger the role to hydrogen bonds in imidazolium ILs.19-20 

 Depending on the structure of the imidazolium-based frameworks, other noncovalent 

intermolecular interactions can also take place between cations and counteranions, a case in point 

being the usually weaker CH/ noncovalent interactions that can be rather significant for anions 
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bearing aromatic units, e.g. tetraphenylborate.6 Thus, the structural study of 1a·BPh4 

([bmim][BPh4]) reported by Dupont et al. revealed the presence of (C–H)+··· hydrogen bonds 

both in solution phase and solid state.37,38 The anion effect has also been examined by Lungwitz 

and Spange using the representative 1a·A ([bmim]A) ion pairs in dichloromethane as the 

solvent, which in fact should lower solvation of the ion pairing in favor of contact ion pairs. A 

hydrogen-bond accepting (HBA) ability scale was then established for varied anions of the 

(bmim+) cation by means of 1H NMR spectroscopy, at concentrations of 0.02 or 1.8 M, in 

CD2Cl2, and the HBA capacity of anions directly affected chemical shift values in the 

imidazolium moiety, especially the C(2)-H of the imidazolium ring.38 As already mentioned, the 

use of CD2Cl2 as a solvent implies minimizing solute-solvent interactions.37,40  

 The 1H NMR data obtained from the routine checking of the quaternary heteroaromatic salts 

[ILs]A provide useful information about the noncovalent interactions between the cations and 

the counteranions. Following with our work, the 1H NMR spectral data of 1a·A ([bmim]A) in a 

selected 0.02 M concentration were registered in CDCl3 and CD3CN and the chemical shift 

values of C(2)-H of the imidazolium ring were compared, as shown in Figure 2. Standard 

reference values were obtained from samples whose purity had been confirmed by other 

techniques. As expected, chemical shift values of C(2)-H varied according to the anion, with 

higher deshielding when a strong hydrogen bond anion binding interaction was established. 

Excluding 1a·BPh4 ([bmim][BPh4]), the proton chemical shift differences were greater in 

CDCl3, reaching more than 2 ppm when comparing e.g. AcO¯ and  PF6¯, while the differences 

decreased when using a solvent that enhances the solvation effect such as the nonhydroxylic 

dipolar CD3CN (see figure 2). 

 In contrast, the observed proton NMR chemical shift of 1a·BPh4 ([bmim][BPh4]) showed a 

greater shielding in CDCl3 for C(2)-H (δH = 4.54 ppm) due to the CH/ interactions with the 

aromatic units of the anion, while in a dipolar-aprotic solvent such as CD3CN, this interaction 

was weakened by solvation (δH = 8.19 ppm). These results are in accordance with the 

abovementioned in-depth structural study of 1a·BPh4 ([bmim][BPh4]) reported by Dupont et 

al.37  

 The data obtained allowed us to establish a pattern of proton chemical shift values, which 

was then used to check the effectiveness of halide-for-anion exchange, especially useful for 

inorganic anions.  

 In addition, it is well established that the chemical shifts of the acidic C(2)–H protons in the 

imidazolium motifs are the most sensitive to the nature of the counteranion, solvent polarity and 

structural factors of imidazolium-based systems such as anion receptors and sensors6 as well as 

ILs.38,41 In order to compare imidazolium and triazolium cation behaviour, ionic liquids 1a·A  

and 2b·A were further examined by 1H NMR in CDCl3 and CD3CN at concentrations of 0.002 

and 0.02 M to ascertain the influence of the counteranion and the solvent polarity on the 

heteroaromatic proton chemical shifts of imidazolium and 1,2,3-triazolium cations (see Figure 3 

and Table 2). As the counteranion, the basic oxoanion AcO¯, the halide Cl¯ and the weakly-
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coordinating and charge diffuse PF6¯ anion were selected as representative examples,42,43 the 

results being summarized in Table 2. 

 

 
Figure 2. 1-butyl-1-methylimidazolium salts 1a·A ([bmim]A): 1H NMR C(2)-H chemical shift 

at 300MHz of a 0.02 M solution in CDCl3 (●) or CD3CN (■). 

 

Table 2. Selected 1H NMR (300 MHz) chemical shift values of 1a·A ([bmim]A) and 2b·A 

([BnmTr]A) in CDCl3 and CD3CN at concentrations of 0.02 M and 0.002 M 

[bmim]+           0.002 M          0.02 M [BnmTr]+  0.002 M 0.02 M 

A¯ Solvent H-2  H-4 H-5  H-2 H-4 H-5 A¯ Solvent H-4 H-5 H-4 H-5 

AcO¯ CDCl3 11.81 7.08 7.07 11.35 7.09 7.08 AcO¯ CDCl3 9.91 9.60 9.60a 9.44a 

 CD3CN 8.93 7.34 7.31 9.25 7.35 7.32  CD3CN 8.61 8.43 8.89 8.61 

Cl¯ CDCl3 11.19 7.16 7.16 10.99 7.31 7.24 Cl¯ CDCl3 9.37 9.24 9.41 9.33 

 CD3CN 8.70 7.36 7.33 9.04 7.39 7.36  CD3CN 8.33 8.28 8.40 8.32 

PF6¯ CDCl3 8.97 7.23 7.21 9.07 7.26 7.23 PF6¯ CDCl3 8.71 8.59 8.84 8.74 

 CD3CN 8.38 7.34 7.31 8.42 7.35 7.31  CD3CN 8.31 8.26 8.32 8.27 

aUnambiguous assignments were made by NOESY-1D (400 MHz). 
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 The tendency of the imidazolium molecular motif in current 1a·A ([bmim]A) ion pairs to 

form non-classical (C–H)+···anion hydrogen bonds was then qualitatively examined by 1H NMR 

and the greatest deshielding effect corresponded to the acidic C(2)-H when comparing 1a·AcO 

or 1a·Cl with 1a·PF6, in both CDCl3 (Δδ ≥ 2 ppm ) and CD3CN (Δδ ≥ 0.3 ppm), while 

differences in proton chemical shifts of C(4)-H and C(5)-H were negligible. In contrast, in 

quaternary 1,2,3-triazolium salts 2b·A ([BnmTr]A) a significant deshielding of C(4)-H and 

C(5)-H was observed, although the Δδ (H-4 or H-5) was lower than  Δδ (H-2) in the imidazolium 

cation (see Figure 3 and Table 2). 

 

 
Figure 3. Differences in heterocyclic proton chemical shifts between AcO¯ or Cl¯ and PF6¯ salts 

at concentrations of 0.02 and 0.002 M in (a) CDCl3 or (b) CD3CN. 

 

 In relation to the solvent and concentration, in CDCl3 we verified that by increasing the 

dilution the cation-anion interaction was enhanced and consequently higher chemical shift values 

were obtained at 0.002M than 0.02M, whereas the contrary was observed in CD3CN due to the 

competitive solvating effect (see Figure 3 and Table 2).   
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 Regarding the anion, both quaternary azolium salts displayed hydrogen-bonding interaction 

with AcO¯, but in CD3CN the triazolium cation showed poor Cl¯ binding affinity (see Figure 3). 

It should be noted that the basicity of the AcO¯ anion could result in the formation of carbene 

species,44,45 although this was not observed in the experiments carried out. 

 The results of the present work are in concordance with the anion affinity profile of the 

azolium units as recognition moieties in abiotic anion receptors. They also confirm that the 

hydrogen bonding ability and acidity of azolium based ILs should be considered when they are 

used as solvents, since the interactions with reactants and intermediates could affect the course of 

the reaction.   

 

 

Conclusions    

 

Against a pool of quaternary heteroaromatic ionic liquids, the azolium salts 2a·I and 2b·I were 

chosen to validate the utility of the AER (A¯ form) method in non-aqueous media for a halide 

exchanged by assorted anions. It was then confirmed that this simple method is efficient with 

1,2,3-triazolium-based ionic liquids 2·X, improving the currently operative procedures of 

classical counteranion exchange, e.g. 2a·BF4, 2a·PF6 and 2a·CF3SO3 prepared from 2a·I. 

Recapping the results, the anion loading of the AER (OH¯ form) with acids, ammonium salts 

and sodium azide was carried out in water or a hydromethanolic or CH3CN/H2O (9:1) solvent 

mixture according to the lipophilic nature of the anion source. Then, the anion exchange using 

the AER (A¯ form) method in organic solvents was easily applied to the1,2,3-triazolium salts 

and the halide-to-anion exchange progressed in excellent to quantitative yields.  

 On the whole, the AER (A¯ form) method in organic solvents is a method of choice for 

exchanging halide anions for a variety of anions in quaternary heteroaromatic salts, 

simultaneously removing halide impurities, which is often a troublesome task, and minimizing 

the formation of toxic by-products. In addition, the preparation of a few benzylic azides and 

diazides was carried out using an AER (N3¯ form) in organic solvent mixtures such as 

CH3CN/CH3OH (1:1) and CH3CN/CH2Cl2 (1:1), resulting in a clean and mild protocol with easy 

work-up. The results of the 1H NMR spectroscopic analysis focus attention on the significance of 

the charged-assisted (C–H)+···anion hydrogen bonds. Thus, a qualitative 1H NMR comparison 

between 1-butyl-3-methylimidazolium salts and 1-benzyl-3-methyl-1,2,3-triazolium salts has 

shown that the nature of the azolium motifs modulated their 1H NMR response. 

 

  

Experimental Section     

 

General. Ion exchanger resin Amberlyst A-26 (Aldrich, OH¯ form), benzylbromide and 

benzylchloride together with all acids, ammonium salts, reagents and solvents were purchased 

from commercial suppliers, unless mentioned otherwise, and used without further purification. 
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All solvents were reagent grade and methanol and THF were distilled prior to use. 1-buthyl-3-

methylimidazolium salts 1a·A,1 1-buthyl-3-methyltriazolium iodide 2a·I,15 1-benzyl-3-

methyltriazolium iodide 2b·I,15 1,3-bis(bromomethyl)-4-tert-butylbenzene 7,46  and 9,10-

bis(chloromethyl)antracene 847 were prepared according with the literature. 1H NMR spectra 

were recorded on a Varian Gemini 300 (300 MHz) or Mercury 400 (400 MHz) spectrometers at 

298 K. Chemical shifts were referenced and expressed in ppm (δ) relative to the central peak of 

DMSO-d6 (2.49 ppm), CD3CN (1.94 ppm) and TMS for CDCl3. 
13C NMR spectra were recorded 

on a Varian Gemini 300 (75.4 MHz) or Mercury 400 (100.6 MHz) spectrometer at 298 K. IR 

spectra were recorded on a Thermo Nicolet Avatar 320 FTIR apparatus. Mass spectrometric 

analyses were performed by using EI at 70 eV in a Hewlett-Packard spectrometer (HP-5989A 

model) or by using CI at 120 eV in a Thermo Finnigan TRACE DSQ spectrometer. ESI(+)-MS 

and ESI(-)-MS mass spectra were obtained on a LC/MSD-TOF (2006) mass spectrometer with a 

pumping system HPLC Agilent 1100 from Agilent Technologies at Serveis Científico-Tècnics of 

universitat de Barcelona. Melting points was measured in a Gallenkamp Melting Point Apparatus 

MPD350.BM2.5 with digital thermoter and are uncorrected. The pH was measured with 

benchmeter pH1100 (Eutech Instrunments), using Hamilton Flushtrode pH electrode for 

hydroalcoholic solutions. 

The amount of halide contents was determined by a silver chromate test following a similar 

protocol to that described by Sheldon and co-workers.30 An aqueous solution (5 mL) of 

potassium chromate (5 % p/v in Milli-Q water, 0.257 M) was added to the sample (5-10 mg). To 

1 mL of the resulting dark yellow solution was added a minimum amount of silver nitrate 

aqueous solution (0.24 % p/v in Milli-Q water, 0.014 M). A persistent red suspension of silver 

chromate would be observed if the sample was free of halide. The minimum measurable amount 

of silver nitrate aqueous solution was 0.011 mL; consequently, the detection limit is approx. 6 

ppm for Cl¯, 13 ppm for Br¯ or 20 ppm for I¯. The halide content was determined at least twice 

for each sample. 

 Additionally, the use of alumina and silica columns can leave a low level of residual 

particulate contamination in ILs1,14 and then, nano-particulates may also be an issue when using 

strongly basic anion exchange resins (A¯ form). However, the analysis of possible particulate 

contamination was beyond the scope of the present study. 

 

Preparation of the AER (N3¯ form). 12 g of wet Amberlyst® A-26 (OH¯ form) were packed in 

a glass column and washed with H2O (100 mL). A 10% NaN3 aqueous solution (160 mL, 246 

mmol) was passed slowly through the AER (OH¯ form) until the pH of eluates reached the same 

value than the original solution (pH~10.25). Then, AER (N3¯ form) was washed with H2O (50 

mL), H2O:CH3OH progressive mixtures (9:1, 7:3, 5:5, 3:7, 1:9; 50 mL of each mixture) and 

CH3OH:CH3CN progressive mixtures (9:1, 7:3, 5:5; 50 mL of each mixture). The calculated 

amount of N3¯ loaded in the resin is 5.8 mmol/g.1 

Benzylazide (4). (a) From benzylchloride. The AER (N3¯ form) (12 g , 69.4 mmol of  N3¯) was 

added to a solution of  benzylchloride (1.099 g, 1 mL, 8.68 mmol) in 30 mL of  CH3CN: CH3OH 
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(1:1) solvent mixture, and the suspension was heated under stirring at 40 ºC for 2.5 h. The AER 

was filtered and the solvent was eliminated under vacuum providing the oily pure benzylazide 4 

(1.069 g, 93% yield). As a caution the product was stored in the freezer until further use. 

 (b) From benzylbromide. The AER (N3¯ form) (8.7 g , 50.3 mmol of  N3¯) was added to a 

solution of  benzylbromide (1.438 g, 1 mL, 8.40 mmol) in 30 mL of  CH3CN:CH3OH (1:1) 

solvent mixture, and the suspension was stirred at room temperature for 1.5 h. The AER was 

filtered and the solvent was eliminated under vacuum, providing the oily pure benzylazide 4 

(1.040 g, 93% yield). As a caution, the product was stored in the freezer until further use. IR 

(NaCl): 3031, 2096 (N3), 1454, 1227, 695 cm-1. 1H NMR (300 MHz, CDCl3): δ 4.35 (s, 2H), 

7.34-7.40 (m, 5H). 13C NMR (CDCl3, 75.4 MHz): δ 54.85, 128.1, 128.2, 128.8, 135.4. 

1,3-bis(Azidomethyl)-4-tert-butylbenzene (5). The AER (N3¯ form) (3.45 g , 20 mmol of  N3¯) 

was added to a solution of 1,3-bis(bromomethyl)-4-tert-butylbenzene 7 (0.400 g, 1.250 mmol) in 

25 mL of CH3CN:CH3OH (1:1) solvent mixture and the suspension was stirred at room 

temperature for 2 h. Then, the AER was filtered, washed with CH3CN:CH3OH (1:1) (25 mL) and 

the solvent was removed under vacuum, to afford the pure diazide 5 (0.290 g, 95%) as orange 

oil. As a caution, the product was stored in the freezer until further use. IR (NaCl): 2967, 2111 

(N3), 1600, 1323, 1269, 690 cm-1. 1H NMR (300 MHz, CDCl3): δ 1.35 (s, 9H), 4.37 (s, 4H), 7.10 

(s, 1H), 7.30 (s, 2H). 13C NMR (CDCl3, 75.4 MHz): δ 31.2, 34.8, 54.9, 125.0, 125.1, 135.8, 

152.7. CIMS m/z (%): 263 (75) [M+NH4], 217 (100) [M+H − N2]; 189 (74) [M+H − 2N2]. 

9,10-bis(Azidomethyl)antracene (6). The AER (N3¯ form) (3.14 g , 18.18 mmol of  N3¯) was 

added to a solution of 9,10-bis(chloromethyl)antracene 8  (0.250 g, 0.909 mmol) in 40 mL of 

CH3CN:CH2Cl2 (1:1) solvent mixture and the suspension was heated under stirring at 40 ºC for 

7.5 h. The AER was filtered, washed with CH3CN: CH2Cl2 (1:1) (25 mL) and the solvent was 

removed under vacuum, to afford the pure diazide 6 (0.290 g, 95%) as orange solid. As a 

caution, the product was stored in the freezer until further use. mp 107–108 °C. IR (KBr): 3065, 

2922, 2075 (N3), 1445, 1088, 750 cm-1. 1H NMR (300 MHz, CDCl3): δ 5.36 (s, 4H), 7.65 (m, 

4H), 8.37 (m, 8H). 13C NMR (CDCl3, 75.4 MHz): δ 46.4, 124.5, 126.6, 128.1, 130.4. 

Anion loading in the AER (OH¯ form) 

(via I) Acids as anion source. 2.5 g (~ 3 cm3) of commercial wet strongly basic anion exchange 

Amberlyst A-26 (OH– form) was packed in a glass column (1 cm diameter ) and  washed  with 

water, and the column bed was equilibrated progressively with water-methanol mixtures until 

reaching the selected solvent media used afterwards for anion loading (~ 25 mL of each solvent 

mixture). A 1% acid solution in the appropriate solvent was passed slowly through the resin until 

the eluates had the same pH value as the original selected acid solution, and then the resin was 

washed with solvent until constant pH. The process was carried out at room temperature, using 

gravity as the driving force. 

(via II) Ammonium salts as anion source. 2.5 g (~ 3 cm3) of commercial wet strongly basic anion 

exchange Amberlyst A-26 (OH– form) was packed in a glass column (1 cm diameter) and 

washed with water (~ 25 mL). A 1% ammonium salt aqueous solution was passed slowly 

through the resin until the eluates had the same pH value as the original selected acid solution, 
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and then the resin was washed with water until constant pH. The process was carried out at room 

temperature, using gravity as the driving force. In order to load BPh4¯ anion, a CH3CN:H2O 

(9:1) solvent mixture was used and the process involves to wash the AER (OH¯ form) with the 

same solvent mixture previously to pass the ammonium salt solution. 

Anion exchange: general procedure. A solution of the triazolium salt (0.5-0.6 mmol) in 10 mL 

of methanol was passed slowly through a column packed with ~ 3 cm3 of AER (A– form), and 

then washed with 25 mL of solvent. The combined eluates were evaporated, and the residue 

obtained was dried in a vacuum oven at 60 ºC with P2O5 and KOH pellets. 

1-Buthyl-3-methyltriazolium acetate (2a·AcO). Iodide exchange of 2a·I (0.110 g, 0.412 

mmol) was carried out with AER (AcO¯ form) following the general procedure described above, 

and using CH3OH as solvent. Brown oil (82 g, quantitative yield). 1H NMR (300 MHz, CDCl3): 

δ 0.96 (t, 3H), 1.38 (m, 2H), 1.94 (s, 3H, AcO), 1,98 (m, 2H), 4.42 (s, 3H), 4.64 (t, 2H), 9.66 (s, 

1H), 9.92 (s, 1H). 13C NMR (CDCl3, 75.4 MHz):  δ 13.3, 19.3, 31.1, 40.1, 53.4, 53.6, 131.0, 

132.0, 133.5. Iodide content < 20 ppm according silver chromate test. 

1-Buthyl-3-methyltriazolium methylsulphonate (2a·MeSO3). Iodide exchange of 2a·I (0.100 

g, 0.374 mmol) was carried out with AER (MeSO3¯ form) following the general procedure 

described above, and using CH3OH as solvent. Yelow oil (0.081 g, 92% yield). 1H NMR (300 

MHz, CDCl3): δ 0.97 (t, 3H), 1.40 (m, 2H), 1,99 (m, 2H), 2.76 (s, 3H, MeSO3), 4.45 (s, 3H), 

4.68 (t, 2H), 9.22 (s, 1H), 9.32 (s, 1H). 13C NMR (CDCl3, 75.4 MHz):  δ 13.2, 19.3, 31.2, 39.4, 

40.1, 53.5, 131.5, 132.4. Iodide content < 20 ppm according silver chromate test. 

1-Buthyl-3-methyltriazolium tetrephenylborate (2a·BPh4). Iodide exchange of 2a·I (0.110 g, 

0.412 mmol) was carried out with AER (BPh4¯ form) following the general procedure described 

above, and using CH3OH as solvent. Light brown solid (0.175 g, 92% yield). mp 149-50 ºC.  1H 

NMR (300 MHz, CDCl3): δ 0.89 (t, 3H), 1.13 (m, 2H), 1,50 (m, 2H), 3.00 (s, 3H), 3.49 (t, 2H), 

5.48 (s, 1H), 5.50 (s, 1H), 6.78 (d, 8H), 6.95 (t, 4H), 7.51 (t, 8H). 13C NMR (CDCl3, 100.6 

MHz):  δ 13.2, 19.2, 30.8, 38.9, 52.9, 122.0, 125.9, 129.3, 130.3, 135.9, 164.1 (m, C-B). Iodide 

content < 20 ppm according silver chromate test. 

1-Buthyl-3-methyltriazolium hexafluorophosphate (2a·PF6). Iodide exchange of 2a·I (0.100 

g, 0.374 mmol) was carried out with AER (PF6¯ form) following the general procedure described 

above, and using CH3OH as solvent. Yelow oil (0.96 g, 90% yield). 1H NMR (300 MHz, 

CDCl3): δ 0.98 (t, 3H), 1.40 (m, 2H), 2.00 (m, 2H), 4.38 (s, 3H), 4.60 (t, 2H), 8.59 (s, 1H), 8.63 

(s, 1H). 13C NMR (CDCl3, 75.4 MHz):  δ 13.2, 19.3, 31.1, 40.0, 53.8, 130.4, 131.5. NMR 

spectral data were according with those reported in the literature.15 Iodide content < 20 ppm 

according silver chromate test. 

1-Buthyl-3-methyltriazolium triflate (2a·CF3SO3). Iodide exchange of 2a·I (0.100 g, 0.374 

mmol) was carried out with AER (CF3SO3¯ form) following the general procedure described 

above, and using CH3OH as solvent. Yelow oil (0.100 g, 93% yield). 1H NMR (300 MHz, 

CDCl3): δ 0.94 (t, 3H), 1.37 (m, 2H), 1.96 (m, 2H), 4.36 (s, 3H), 4.59 (t, 2H), 8.74 (s, 1H), 8.76 

(s, 1H). 13C NMR (CDCl3, 75.4 MHz):  δ 13.2, 19.2, 31.2, 40.5, 53.9, 130.9, 131.9, 120.6 (m, C-
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F). NMR spectral data were according with those reported in the literature.15  Iodide content < 20 

ppm according silver chromate test. 

1-Buthyl-3-methyltriazolium tetrafluoroborate (2a·BF4). Iodide exchange of 2a·I (0.110 g, 

0.412 mmol) was carried out with AER (BF4¯ form) following the general procedure described 

above, and using CH3OH as solvent. Yelow oil (0.088 g, 94% yield). 1H NMR (300 MHz, 

CDCl3): δ 0.98 (t, 3H), 1.40 (m, 2H), 2.00 (m, 2H), 4.39 (s, 3H), 4.14 (t, 2H), 8.66 (s, 1H), 8.73 

(s, 1H). 13C NMR (CDCl3, 75.4 MHz):  δ 13.2, 19.3, 31.1, 40.0, 53.7, 130.7, 131.8. NMR 

spectral data were according with those reported in the literature.15  Iodide content < 20 ppm 

according silver chromate test. 

1-Benzyl-3-methyltriazolium acetate (2b·AcO). Iodide exchange of 2b·I (0.100 g, 0.332 

mmol) was carried out with AER (AcO¯ form) following the general procedure described above, 

and using CH3OH as solvent. Colorless oil (0.077 g, quantitative yield). 1H NMR (300 MHz, 

CDCl3): δ 1.98 (s, 3H, AcO), 4.40 (s, 3H), 5.82 (s, 2H), 7.42 (m, 3H), 7.47 (m, 2H), 9.44 (s, 1H), 

9.60 (s, 1H). 13C NMR (CDCl3, 75.4 MHz):  δ 39.9, 56.6, 57.3, 129.0, 129.1, 129.5, 130.9, 

132.0, 132.5, 133.5. Iodide content < 20 ppm according silver chromate test. 

1-Benzyl-3-methyltriazolium methylsulphonate (2b·MeSO3). Iodide exchange of 2b·I (0.100 

g, 0.332 mmol) was carried out with AER (MeSO3¯ form) following the general procedure 

described above, and using CH3OH as solvent. Colorless oil (0.084 g, 94% yield). 1H NMR (300 

MHz, CDCl3): δ 2.78 (s, 3H, MeSO3), 4.43 (s, 3H), 5.87 (s, 2H), 7.40 (m, 3H), 7.52 (m, 2H), 

9.25 (s, 1H), 9.29 (s, 1H). 13C NMR (CDCl3, 75.4 MHz):  δ 39.5, 40.2, 57.1, 129.2, 129.3, 129.7, 

131.4, 131.8, 132.6, Iodide content < 20 ppm according silver chromate test. 

1-Benzyl-3-methyltriazolium hexafluorophosphate (2b·PF6). Iodide exchange of 2b·I (0.100 

g, 0.332 mmol) was carried out with AER (PF6¯ form) following the general procedure described 

above, and using CH3OH as solvent. White solid (0.103 g, 97% yield). mp 89-90 ºC. 1H NMR 

(300 MHz, CDCl3): δ 4.37 (s, 3H), 5.75 (s, 2H), 7.44 (m, 5H), 8.74 (s, 1H), 8.84 (s, 1H). 13C 

NMR (CDCl3, 75.4 MHz):  δ 40.1, 57.2, 129.3, 129.4, 129.7, 130.5, 131.4, 131.8.  Iodide content 

< 20 ppm according silver chromate test. 

1-Benzyl-3-methyltriazolium triflate (2b·CF3SO3). Iodide exchange of 2b·I (0.100 g, 0.332 

mmol) was carried out with AER (CF3SO3¯ form) following the general procedure described 

above, and using CH3OH as solvent. Colorless oil (0.099 g, 92% yield). 1H NMR (300 MHz, 

CDCl3): δ 4.37 (s, 3H), 5.75 (s, 2H), 7.43 (m, 3H), 7.48 (m, 2H), 8.71 (s, 1H), 8.78 (s, 1H). 13C 

NMR (CDCl3, 75.4 MHz):  δ 40.5, 57.5, 129.4, 129.5, 130.0, 130.8, 131.2, 132.2, 120.5 (m, C-

F). NMR spectral data were according with those reported in the literature.15 Iodide content < 20 

ppm according silver chromate test. 

1-Benzyl-3-methyltriazolium tetrafluoroborate (2b·BF4). Iodide exchange of 2b·I (0.100 g, 

0.332 mmol) was carried out with AER (BF4¯ form) following the general procedure described 

above, and using CH3OH as solvent. White solid (0.078 g, 90% yield). mp 74-5 ºC. 1H NMR 

(300 MHz, CDCl3): δ 4.33 (s, 3H), 5.72 (s, 2H), 7.40 (m, 3H), 7.46 (m, 2H), 8.51 (s, 1H), 8.55 

(s, 1H). 13C NMR (CDCl3, 75.4 MHz):  δ 40.1, 57.3, 129.3, 129.4, 129.8, 130.7, 131.5, 132.0. 
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NMR spectral data were according with those reported in the literature.15  Iodide content < 20 

ppm according silver chromate test. 
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