N-Heterocyclic carbene-catalyzed domino hydroacylation/Stetter reactions of salicyl alkynylphosphonates and aromatic aldehydes

Zhen-Qiang Wang, Ying Wang, and De-Qing Shi *

Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430 079, P. R. China

E-mail: chshidq@mail.ccnu.edu.cn

DOI: http://dx.doi.org/10.3998/ark.5550190.p008.158

Abstract

1,4-Dicarbonyl compounds 2 carrying a phosphonate group were obtained by utilizing a dually N-heterocyclic carbene (NHC) catalyzed domino reaction involving the intramolecular hydroacylation of salicyl alkynylphosphonates 1 and a subsequent intermolecular Stetter reaction with aromatic aldehyde at room temperature. In addition, 2 can also be applied for the synthesis of benzopyranopyrrole carrying a phosphonate group 4 in one pot and in moderate yield.

Keywords: N-Heterocyclic carbene; domino reaction; hydroacylation; Stetter reaction; 1,4-dicarbonyl compound; phosphonate

Introduction

During the past decades, domino reactions, which can rapidly form complicated molecule skeletons from readily available substrates in a single operation without isolation of intermediates, have received more and more attention of organic chemists. So, considerable efforts have been made to develop organocatalytic domino transformations.\(^1\) 1,4-Dicarbonyl compounds are versatile intermediates in the synthesis of cyclopentenones\(^2\) and a variety of heterocycles such as furan,\(^3\) pyrrole,\(^4\) thiophene,\(^5\) and pyrrolidine.\(^6\) Recently, N-heterocyclic carbenes (NHCs) have been widely used, not only as ligands in organometallic chemistry, but also as efficient nucleophilic organocatalysts in a variety of organic reactions, such as benzoin condensation, Stetter reaction, a\(^3\) to d\(^3\) umpolung, and so on, so the development of NHCs in organic synthesis has attracted more and more attention.\(^7\) Glorius and coworkers have pioneered the development of a powerful NHC-catalyzed hydroacylation of unactivated alkynes led to the formation of \(\alpha,\beta\)-unsaturated chromanones,\(^8\) while intramolecular hydroacylation reactions of activated alkynes were reported recently.\(^9\)
Recently, an effective N-heterocyclic carbene catalyzed intramolecular hydroacylation reaction of salicyl alkynylphosphonates was reported in our group, in which both exocyclic and endocyclic tautomers can be obtained at different temperatures.\(^9\) Because α,β-unsaturated ketones (exocyclic tautomers) are the major products at lower temperatures (15-17 °C), this prompted us to investigate the possibility of developing a dually NHC-catalyzed domino reaction involving the intramolecular hydroacylation of salicyl alkynylphosphonates and a subsequent intermolecular Stetter reaction to prepare 1,4-dicarbonyl compounds 2 carrying a phosphonate group at room temperature (Scheme 2), which can be very important intermediates for the synthesis of biologically active phosphonyl heterocyclic compounds.\(^{10}\) Although Glorius and coworkers reported the NHC-catalyzed cascade hydroacylation/Stetter reactions of salicyl alkynes,\(^8\) the groups linking with alkynes are usually H or a Me group, other groups such as aromatic group, ester group linking with alkynes are not reported. As for activated alkynes, no domino hydroacylation/Stetter reaction is reported because in which endocyclic tautomers are the major product. In this paper, we report the first cascade hydroacylation/Stetter reaction of activated alkynes 1 containing a phosphonyle group derived from substituted salicylaldehydes (Scheme 1).

Scheme 1. Domino hydroacylation/Stetter reaction of activated alkynes containing a phosphonyl group.

Results and Discussion

First of all, we used substrate 1a and 4-chlorobenzaldehyde as a model in order to optimize the reaction condition. The initial screening was carried out at 15-17 °C with 5 mol% of catalyst and 10 mol% of K_2CO_3 in THF (Table 1, entries 1-6). When thiazolium salt 3a was used as the catalyst and K_2CO_3 as the base, 2a was obtained in 81% yield (Table 1, entry 1), and 3a is the most effective catalyst, however, the triazolium salt 3d is not so effective (Table 1, entry 4); Secondly, the effects of various bases (Table 1, entries 7-11) were explored using catalyst 3a as a control, the moderate base (K_2CO_3) afforded the products in higher yields than other bases. Subsequently, we turned our attention to the influence of different solvents on the reaction.
(Table 1, entries 12-17) and found THF to be the most effective, the more polar EtOH and DMF being less so. Different temperatures have some obvious effects on the reaction. The lower temperature (15-17 °C) is more beneficial to the reaction than the higher one (30-35 °C); when the reaction with 3a and K₂CO₃ in THF was tested at 30-35 °C, the yield of 2a is only 32%. Finally, the optimized conditions were established as following: thiazolium salt 3a as the pre-catalyst (5 mol%), K₂CO₃ (10 mol%) as the base, THF as the solvent, and stirring at 15-17 °C for 3 h.

Table 1 Optimization of the reaction conditions

<table>
<thead>
<tr>
<th>Entry</th>
<th>NHC-HX</th>
<th>Base</th>
<th>Solvent</th>
<th>Yield of 2a [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3a</td>
<td>K₂CO₃</td>
<td>THF</td>
<td>81</td>
</tr>
<tr>
<td>2</td>
<td>3b</td>
<td>K₂CO₃</td>
<td>THF</td>
<td>75</td>
</tr>
<tr>
<td>3</td>
<td>3c</td>
<td>K₂CO₃</td>
<td>THF</td>
<td>70</td>
</tr>
<tr>
<td>4</td>
<td>3d</td>
<td>K₂CO₃</td>
<td>THF</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>3e</td>
<td>K₂CO₃</td>
<td>THF</td>
<td>34</td>
</tr>
<tr>
<td>6</td>
<td>3f</td>
<td>K₂CO₃</td>
<td>THF</td>
<td>57</td>
</tr>
<tr>
<td>7</td>
<td>3a</td>
<td>Cs₂CO₃</td>
<td>THF</td>
<td>65</td>
</tr>
<tr>
<td>8</td>
<td>3a</td>
<td>DBU</td>
<td>THF</td>
<td>40</td>
</tr>
<tr>
<td>9</td>
<td>3a</td>
<td>DABCO</td>
<td>THF</td>
<td>38</td>
</tr>
<tr>
<td>10</td>
<td>3a</td>
<td>NaH</td>
<td>THF</td>
<td>71</td>
</tr>
<tr>
<td>11</td>
<td>3a</td>
<td>NaOH</td>
<td>THF</td>
<td>58</td>
</tr>
<tr>
<td>12</td>
<td>3a</td>
<td>K₂CO₃</td>
<td>Dioxane</td>
<td>72</td>
</tr>
<tr>
<td>13</td>
<td>3a</td>
<td>K₂CO₃</td>
<td>EtOH</td>
<td>40</td>
</tr>
<tr>
<td>14</td>
<td>3a</td>
<td>K₂CO₃</td>
<td>Toluene</td>
<td>65</td>
</tr>
<tr>
<td>15</td>
<td>3a</td>
<td>K₂CO₃</td>
<td>CH₃CN</td>
<td>68</td>
</tr>
<tr>
<td>16</td>
<td>3a</td>
<td>K₂CO₃</td>
<td>DMF</td>
<td>30</td>
</tr>
<tr>
<td>17</td>
<td>3a</td>
<td>K₂CO₃</td>
<td>DCM</td>
<td>76</td>
</tr>
</tbody>
</table>
General conditions: \(\text{1a (0.5 mmol), NHC-HX (5 mol%), base (10 mol%), solvent (2.0 ml), room temperature (15-17 °C), 3h; } \)

With the optimised conditions thus established, we tested different substrates to give good results in the NHC catalyzed cascade reaction of hydroacylation and Stetter reaction. For salicyl alkynylphosphonates with both electron-donating groups and electron-withdrawing ones on the phenyl ring, the reactions proceeded smoothly and gave the corresponding \(\text{2 in good yields at room temperature. However, when benzaldehyde was used, the yield was very low (Table 2, entry 7); the reason for this is not clear.} \)

Table 2 Scope of the domino hydroacylation/Stetter reactions. \(^a\)

<table>
<thead>
<tr>
<th>Entry</th>
<th>R</th>
<th>Ar</th>
<th>Yield of 2 [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H (1a)</td>
<td>4-ClC(_6)H(_4)</td>
<td>81 (2a)</td>
</tr>
<tr>
<td>2</td>
<td>4-MeO (1b)</td>
<td>4-BrC(_6)H(_4)</td>
<td>84 (2b)</td>
</tr>
<tr>
<td>3</td>
<td>4-F (1c)</td>
<td>4-BrC(_6)H(_4)</td>
<td>83 (2c)</td>
</tr>
<tr>
<td>4</td>
<td>4-t-Bu (1d)</td>
<td>4-BrC(_6)H(_4)</td>
<td>71 (2d)</td>
</tr>
<tr>
<td>5</td>
<td>6-Me (1e)</td>
<td>4-BrC(_6)H(_4)</td>
<td>77 (2e)</td>
</tr>
<tr>
<td>6</td>
<td>4,6-di-t-Bu (1f)</td>
<td>4-BrC(_6)H(_4)</td>
<td>69 (2f)</td>
</tr>
<tr>
<td>7</td>
<td>H (1a)</td>
<td>C(_6)H(_5)</td>
<td><5</td>
</tr>
</tbody>
</table>

\(^a\) General conditions: \(\text{1 (0.5 mmol, 1.0 equiv), 3a (0.025 mmol, 5 mol%), K}_2\text{CO}_3 (0.05 mmol, 10 mol%), ArCHO (0.5 mmol, 1.0 equiv), THF (2.0 ml), 15-17 °C, 3h; } \)

In order to prepare novel heterocycles containing a phosphonyl group with potent biological activities, \(\text{2 can be applied to the synthesis of benzopyranopyrrolephosphonate 4 successfully via a one-pot reaction in 50% yield (Scheme 2).} \)
Scheme 2 Preparation of the benzopyranopyrrolephosphonate 4 by a one-pot reaction.

Conclusions

In conclusion, 1,4-dicarbonyl compounds 2 carrying a phosphonate group were obtained by utilizing a dually NHC-catalyzed domino reaction involving the intramolecular hydroacylation of salicyl alkynylphosphonates 1 and a subsequent intermolecular Stetter reaction with aromatic aldehyde in good yields at room temperature. In addition, 2 can be also applied successfully for the synthesis of benzopyranopyrrole containing a phosphonyl group 4 in one-pot reaction in moderate yield.

Experimental Section

General. All reagents and solvents for reactions were used as received with the following exceptions. THF, toluene and dioxane were distilled from Na/benzophenone. Dichloromethane, acetonitrile and N,N-dimethylformamide (DMF) were distilled from calcium hydride. Ethanol and n-butyl alcohol were distilled form Mg turnings. K$_2$CO$_3$ was dried by heating at 110 °C for 12 h and left to cool under Ar. N-Heterocyclic carbene (NHC) precursors 3 were prepared according to the literature. The substituted salicyl alkynylphosphonates 1 were synthesized according to the reported method. All other commercially available solvents and reagents were used without further purification. All reactions were performed in oven-dried apparatus under N$_2$ or Ar atmosphere. Reactions were monitored by thin layer chromatography (TLC) and visualized by UV light or KMnO$_4$ staining solution followed by heating. Melting points were determined with a WRS-1B digital melting point apparatus. 1H NMR, 13C NMR spectra and 31P NMR spectra were obtained with a Varian Mercury PLUS 600 spectrometer. Chemical shift in ppm, internal standard TMS or CHCl$_3$, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, and m = multiplet), coupling constants Hz. 13C NMR chemical shifts are reported in ppm from CDCl$_3$ (taken as 77.0 ppm). 31P NMR spectra were recorded with
85% H₃PO₄ as external standard. The mass spectra (ESI) were obtained using an Applied Biosystems API 2000 LC/MS/MS (ESI-MS) spectrometer. Elemental analyses were performed with an Elementar Vario ELIII CHNSO elemental analyzer.

Synthesis of 2-phosphonyl 1,4-diketones 2: general procedure. To an oven-dried round-bottomed flask equipped with a magnetic stirring bar was added diethyl 3-(2-formylphenoxy)prop-1-ynylphosphonate 1 (0.5 mmol, 1.0 equiv), pre-catalyst 3a (9 mg, 0.025 mmol, 0.05 equiv), substituted benzaldehyde (0.5 mmol, 1.0 equiv), dry THF (2 ml) and dry K₂CO₃ (6.9 mg, 0.05 mmol, 0.10 equiv) under a N₂ or Ar atmosphere at 15-17 °C. The resulting mixture was then stirred for 3h at the same temperature. The progress of the reaction was monitored by TLC. Upon completion, the mixture was pre-absorbed on silica gel and purified by flash column chromatography on silica gel (eluent: hexane/ AcOEt 1:1) to afford 2 as a white solid.

Diethyl 2-(4-chlorophenyl)-1-(4-oxochroman-3-yl)-2-oxoethylphosphonate (2a). Prepared according to the general procedure. The product was obtained as a white solid (81% yield), mp 102-104 °C. ¹H NMR (600 MHz, CDCl₃): δ 8.01 (d, J 8.4 Hz, 2H), δ 7.75 (d, J 7.8 Hz, 1H), δ 7.49 (d, J 7.8 Hz, 3H), δ 6.98 (d, J 8.4 Hz, 2H), δ 5.17 (dd, J 15.0 Hz, J 5.4 Hz, 1H), δ 4.38-4.43 (m, 2H), δ 4.01-4.16 (m, 5H), δ 1.28 (t, J 7.2 Hz, 3H), δ 1.17 (t, J 7.2 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃): δ 193.3, 192.2, 161.5, 139.4, 136.3, 135.6, 130.3 (d, J 130.4 Hz), 119.4, 112.2 (d, J 156.3 Hz), 117.6, 69.6, 63.2, 46.9, 44.3 (d, J 128.4 Hz), 16.1. ³¹P NMR (243 MHz, CDCl₃): δ 18.8. ESI-MS: m/z 437 [M+H]⁺, 459 [M+Na]⁺, 475 [M+K]. Anal. calcd for C₂₁H₂₂ClO₄P: C, 57.74; H, 5.08. Found: C, 56.83; H, 5.01 %.

Diethyl 2-(4-bromophenyl)-1-(6-methoxy-4-oxochroman-3-yl)-2-oxoethylphosphonate (2b). Prepared according to the general procedure. The product was obtained as white solid (84%), mp 126-127 °C. ¹H NMR (600 MHz, CDCl₃): δ 7.93 (d, J 8.4 Hz, 2H), δ 7.64 (d, J 8.4 Hz, 2H), δ 7.16 (s, 1H), δ 7.08 (d, J 9.6 Hz, 1H), δ 6.93 (d, J 9.6 Hz, 1H), δ 5.13 (dd, J 11.4 Hz, J 4.8 Hz, 1H), δ 4.34-4.39 (m, 2H), δ 4.03-4.16 (m, 5H), δ 3.71 (s, 3H), δ 1.28 (t, J 6.6 Hz, 3H), δ 1.18 (t, J 6.6 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃): δ 193.4, 192.3, 165.5, 136.3, 135.6, 130.2, 128.8, 127.3, 121.5, 119.8, 117.6, 69.6, 63.2, 46.9, 44.3 (d, J 128.4 Hz), 16.1. ³¹P NMR (243 MHz, CDCl₃): δ 16.4. ESI-MS: m/z 512 [M+H]⁺, 434 [M+Na]⁺, 550 [M+K]. Anal. calcd for C₂₂H₂₄BrO₄P: C, 51.68; H, 4.73. Found: C, 51.86; H, 4.84 %.

Diethyl 2-(4-bromophenyl)-1-(6-fluoro-4-oxochroman-3-yl)-2-oxoethylphosphonate (2c). Prepared according to the general procedure. The product was obtained as white solid (83%), mp 97-99 °C. ¹H NMR (600 MHz, CDCl₃): δ 7.92 (d, J 8.4 Hz, 2H), δ 7.64 (d, J 8.4 Hz, 2H), δ 7.39 (dd, J 8.4 Hz, J 3.0 Hz, 1H), δ 7.20 (t, J 3.0 Hz, 1H), δ 6.98 (dd, J 4.2 Hz, J 9.0 Hz, 1H), δ 5.17 (dd, J 11.4 Hz, J 5.4 Hz, 1H), δ 4.40 (m, 2H), δ 4.03-4.14 (m, 5H), δ 1.27 (t, J 7.2 Hz, 3H), δ 1.18 (t, J 7.2 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃): δ 193.3, 191.3, 161.4, 157.8, 135.9, 131.9, 131.6 (d, J 32 Hz), 130.3 (d, J 30 Hz), 128.4, 123.9 (d, J 25 Hz), 119.4, 112.2 (d, J 23 Hz), 69.8, 63.3 (t, J 41.2 Hz), 46.8, 43.8 (d, J 129 Hz), 16.2 (d, J 16 Hz). ³¹P NMR (243 MHz,
Diethyl 2-(4-bromophenyl)-1-(6-tert-butyl-4-oxochroman-3-yl)-2-oxoethylphosphonate (2d).

Prepared according to the general procedure. The product was obtained as white solid (71%), m p 99-101 °C. 1H NMR (600 MHz, CDCl$_3$): δ 7.95 (d, J 7.8 Hz, 2H), 7.74 (s, 1H), δ 7.65 (d, J 7.8 Hz, 2H), δ 7.54 (d, J 7.2 Hz, 1H), δ 6.93 (d, J 9.0 Hz, 1H), δ 5.13 (dd, J 12.0 Hz, J 6.0 Hz, 1H), δ 4.32-4.38 (m, 2H), δ 4.03-4.15 (m, 5H), δ 1.29 (t, J 7.2 Hz, 3H), δ 1.25 (t, J 7.2 Hz, 3H).

13C NMR (150 MHz, CDCl$_3$): δ 193.5, 192.7, 159.5, 144.5, 136.1, 134.2, 130.5, 128.8, 128.2, 123.4, 119.0, 117.3, 69.6, 63.2, 47.2, 43.5, 34.3, 31.2 (d, J 142.6 Hz), 16.3. 31P NMR (243 MHz, CDCl$_3$): δ 13.2. ESI-MS: m/z 537 [M+H]$^+$, 559 [M+Na]$^+$, 575 [M+K]. Anal. calcd for C$_{25}$H$_{30}$BrO$_6$P: C, 55.88; H, 5.63. Found: C, 55.71; H, 5.57 %.

Diethyl 2-(4-bromophenyl)-1-(8-methyl-4-oxochroman-3-yl)-2-oxoethylphosphonate (2e).

Prepared according to the general procedure. The product was obtained as white solid (77%), m p 109-110 °C. 1H NMR (600 MHz, CDCl$_3$): δ 7.93 (d, J 8.4 Hz, 2H), δ 7.65 (d, J 8.4 Hz, 2H), δ 7.59 (d, J 8.4 Hz, 1H), δ 7.34 (d, J 7.2 Hz, 1H), δ 6.88 (t, J 7.8 Hz, 1H), δ 5.20 (dd, J 11.4 Hz, J 5.4 Hz, 1H), δ 4.36-4.41 (m, 2H), δ 4.04-4.17 (m, 5H), δ 1.29 (t, J 7.2 Hz, 3H), δ 1.19 (t, J 7.2 Hz, 3H).

13C NMR (150 MHz, CDCl$_3$): δ 193.5, 192.4, 159.8, 137.2, 136.1, 131.8, 130.3, 128.2, 127.0, 124.9, 120.9, 119.4, 63.2, 46.9, 44.3, 43.5, 16.2, 15.5. 31P NMR (243 MHz, CDCl$_3$): δ 151.1. ESI-MS: m/z 495 [M+H]$^+$, 517 [M+Na]$^+$, 533 [M+K]. Anal. calcd for C$_{22}$H$_{24}$BrO$_6$P: C, 53.35; H, 4.88. Found: C, 53.19; H, 4.64 %.

Diethyl 2-(4-bromophenyl)-1-(6,8-di-tert-butyl-4-oxochroman-3-yl)-2-oxoethylphosphonate (2f).

Prepared according to the general procedure. The product was obtained as white solid (69%), mp 114-116 °C. 1H NMR (600 MHz, CDCl$_3$): δ 7.93 (d, J 8.4 Hz, 2H), δ 7.65 (d, J 8.4 Hz, 2H), δ 7.63 (s, 1H), δ 7.53 (s, 1H), δ 5.19 (dd, J 11.4 Hz, J 5.4 Hz, 1H), δ 4.31-4.35 (m, 2H), δ 4.04-4.16 (m, 5H), δ 1.40 (s, 9H), δ 1.26 (t, J 7.2 Hz, 3H), δ 1.23 (s, 9H), δ 1.17 (t, J 7.2 Hz, 3H).

13C NMR (150 MHz, CDCl$_3$): δ 193.5, 183.8, 158.7, 143.4, 138.2, 136.2, 131.8, 131.1, 130.3, 128.1, 121.4, 119.7, 63.2 (d, J 30 Hz), 47.0, 44.4, 43.5, 35.0, 34.4, 31.2, 29.6, 16.2. 31P NMR (243 MHz, CDCl$_3$): δ 12.6. ESI-MS: m/z 593 [M+H]$^+$, 615 [M+Na]$^+$, 631 [M+K]. Anal. calcd for C$_{25}$H$_{38}$BrO$_6$P: C, 58.69; H, 6.45. Found: C, 58.82; H, 6.51 %.

Synthesis of diethyl [2-(4-chlorophenyl)-1,4-dihydro-chromeno[4,3-b]pyrrole-3- phosphonate (4): To an oven-dried round-bottom flask equipped with a magnetic bar was added 1a (296 mg, 1.0 mmol, 1.0 equiv), pre-catalyst 3a (18 mg, 0.05 mmol, 0.05 equiv), 4-chlorobenzaldehyde (140 mg, 1.0 mmol, 1.0 equiv), anhydrous THF (2 ml), and dry K$_2$CO$_3$ (14 mg, 0.1 mmol, 0.10 equiv.) under a N$_2$ or Ar atmosphere at r.t. The resulting mixture was then stirred for 3 h at 15-17 °C. The progress of the reaction was monitored by TLC. NH$_2$OAc (231 mg, 3 mmol) and gacial AcOH (3 ml) were added under N$_2$ atmosphere, the mixture was allowed to be stirred under reflux for 12 h. Upon completion, the mixture was cooled to r.t. The workup involved addition of ice water (20 ml) and extraction of the product mixture into CHCl$_3$ (3 × 20 ml), washing with sat. aq. NaHCO$_3$ and sat. brine. After phase separation, drying over Na$_2$SO$_4$, filtration and evaporation, the crude product was purified by chromatography on silica using a
mixture of petroleum ether and AcOEt (2:1) as an eluent to give 4 as white solid (208.5 mg, 50%). Mp 106-107 °C. 1H NMR (600 MHz, CDCl$_3$): δ 10.33 (s, 1H), δ 7.50 (d, J 7.8 Hz, 2H), δ 7.39 (d, J 7.2 Hz, 1H), δ 7.18 (d, J 7.2 Hz, 2H), δ 7.07 (t, J 7.8 Hz, 1H), δ 6.85-6.89 (m, 2H), δ 5.43 (s, 2H), δ 3.85-3.92 (m, 4H), δ 1.13 (t, J 7.2 Hz, 6H). 13C NMR (150 MHz, CDCl$_3$): δ 158.4, 156.5, 149.3, 138.4, 136.5, 135.7, 134.1, 131.7, 129.8, 128.5, 126.2, 122.7, 122.2, 116.7, 66.5, 62.6, 16.4. 31P NMR (243 MHz, CDCl$_3$): δ 15.57. ESI-MS: m/z 418 [M+H]$^+$, 440 [M+Na]$^+$, 456 [M+K]. Anal. calcd for C$_{21}$H$_{21}$ClNO$_4$P: C, 60.37; H, 5.07; N, 3.35. Found: C, 60.24; H, 5.15; N 3.21 %.

Acknowledgements

This work was supported by the Natural Science Foundation of China (No. 20872046) and the Fundamental Research Funds for the Central Universities (No. CCNU09A02013).

References

 PMid:11848746
 PMid:16287187
 PMid:17225236

7. For recent reviews on NHC catalysis, see:
 PMID:15311952.
 PMID:17956132.
 PMID:17348057.
 PMID:22121084

 PMID:20384303

 http://dx.doi.org/10.1002/0470034351
PMid:9012996
PMid:11851452
(g) Gupta, H. C. L. Insecticides: Toxicology and Uses; Agrotech Publishing Academy Press: Udaipur (India), 1999, p 51211;
11. For the synthetic routes of NHC precursors, see:
 (c) Kerr, M. S.; Read de Alaniz, J.; Rovis, T. J. Org. Chem. 2005, 70, 5725-5728; http://dx.doi.org/10.1021/jo050645n
PMid:15989360 PMCid:2527449.
PMid:19543436 PMCid:2699275.