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Abstract     

The asymmetric Mannich reaction is one of the most useful carbon-carbon bond forming 

reactions for the synthesis of chiral molecules containing nitrogen. The resulting β-amino 

carbonyl compounds are valuable synthons in the preparation of many natural products with 

useful biological properties. This review provides an overview of asymmetric Mannich reactions 

in recent years under different organocatalytic systems, including: chiral amines, chiral 

bifunctional thiourea, chiral Brønsted acids and other chiral organocatalytic systems.     
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Introduction 

 

The asymmetric Mannich reaction1-7 is one of the most powerful carbon–carbon bond-forming 

reactions for the construction of nitrogen-containing compounds. The utilization of this reaction 

allows for the preparation of optically enriched β-amino carbonyl compounds and their 
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derivatives. In some instances these reactions have proven effective for the generation of 

biologically significant and synthetically useful β-amino acids that contain a quaternary 

stereocenter substituted with a nitrogen atom adjacent to the carbonyl group.8-10 Traditionally, 

asymmetric Mannich reactions are catalyzed by chiral transition-metal complexes.11-17 In 2000, 

List described firstly the L-proline catalysed Mannich reaction.18-19 This landmark discovery 

stimulated the rapid development of many asymmetric organocatalytic Mannich reactions. The 

typical organocatalytic approach to asymmetric Mannich reaction is based on enamine activation 

of carbonyl compounds using secondary amine organocatalysts.20 Other types of organocatalysts 

have also been successfully used for Mannich-type reactions. This review provides an overview 

of asymmetric Mannich reactions covering from 2007 to now under different organocatalytic 

systems in recent years. Several organocatalytic approaches will be reviewed, which can be 

divided in catalysis by (i) chiral amines, (ii) chiral bifunctional thioureas (iii) chiral Brønsted 

acids, and (iv) other chiral organocatalysis. 

 

 

1. Catalysed by Chiral Amines 

 

Organocatalytic Mannich reactions can be carried out either as three-component, one-pot 

reactions or as reactions of preformed imines with aldol donors. Chiral amines resulting in chiral 

enamines can attack a Mannich acceptor, usually a prochiral aldimine, thereby introducing one 

or two stereocenters in the Mannich product. The catalytic cycle is completed by regeneration of 

the amine catalyst through hydrolysis. The products are β-aminoaldehydes or β-aminoketones, 

which are optionally substituted at the α-position.5 

 

1.1  L-Proline and its derivatives         

Among a wide variety of organocatalysts that have been used in the asymmetric Mannich 

reaction, the most widely used is proline. L-proline-catalysed Mannich reactions gives easy 

access to syn-products. Mechanistically, the stereochemical outcome of all of the reactions can 

be explained by invoking a transition state as depicted in Scheme 1. The stereochemical 

repulsion between the PMP-group and the proline moiety, in combination with protonation of the 

imine by the acid-functionality of proline, accounts for a si-face attack of the (E)-aldimine (from 

p-anisidine and acceptor aldehyde) by the si-face of the (E)-enamine formed by the ketone and 

proline.21 This model explains the stereochemical outcome of many similar reactions that have 

appeared in literature.  
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Scheme 1 

In 2008, Xu and coworkers22 reported an enantioselective synthetic method for 

substituted tetrahydropyridines via a proline-mediated cascade Mannich-type/intramolecular 

cyclization (Scheme 2). The advantage of the organocatalyst was that the Mannich-type reaction 

proceeded efficiently with excellent diastereo- and enantioselectivity in the presence of water. 

This strategy would easily provide access to structurally diverse N-PMP piperidines. In the same 

year, Glorius et al.23 developed the proline-catalyzed Mannich reaction of unactivated ketones, 

and demonstrated that the use of cyclic acceptors enabled the highly stereoselective synthesis of 

chiral 3-substituted morpholin-2-ones (Scheme 3). These products corresponded to α-D-amino 

acids that were protected at the N and O terminus by the diphenylethylene group. This protecting 

group for α-amino acids could be cleaved readily by hydrogenolysis in aqueous ethanol to 

furnish the free amino acid. 
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 List19 introduced the one-pot catalytic asymmetric synthesis of pseudo-C2 -symmetric 

β,β’-diaminoaldehydes with extremely high stereoselectivities, starting from acetaldehyde and 

either aromatic or aliphatic N-Boc imines (Scheme 4). The method was effectively extended to 

cross-Mannich reactions, furnishing β,β’-diamino aldehydes containing three adjacent 

stereogenic centers. 
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In 2010, Zhao and coworkers24 reported the one-pot organocatalytic reactions between α-

amido sulfones and unmodified aldehydes proceeded with high chemo- and enantioselectivities 

to furnish β-amino aldehydes in high yields with up to 95:5 dr and up to 99% ee (Scheme 5). In 

the same year, Li et al.25 developed that 2-Aryl-3H-indol-3-ones reacted with aldehydes or 

ketones to afford the corresponding aza-quaternary carbon addition product in good yield with 

moderate to excellent regioselectivity and enantioselectivity, showed L-proline was an effective 

catalyst in the reaction. The system was applied to the reaction of 2-(2-bromo-phenyl)-3H- indol-

3-one and acetaldehyde to produce 2-[2-(2-bromophenyl)-3-oxoindolin-2-yl] acetaldehyde, 

which was a precursor for the synthesis of some alkaloids such as hinckdentine A (Scheme 6). 
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In 2009, Carter and Yang26 developed an organocatalyzed method for accessing nitrogen-

containing [2.2.2]-bicyclic scaffolds in a highly enantioselective and diastereoselective manner 

(Scheme 7). The p-dodecylphenylsulfonamide catalyst (1) allowed for the scope of this formal 

aza-Diels-Alder process to be expanded to include aryl imines. Additionally, alkyl imines 

proceeded with a divergent and novel reaction pathway, further demonstrating the utility of this 

technology. Next year, Sebesta et al.27 showed L-proline-derived sulfonamides (2) was effective 
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catalysts in the Mannich reaction of cyclohexanone with N-PMP-protected α-imino 

ethylglyoxylate with practical advantages in comparison with L-proline in different solvents and 

ionic liquids (Scheme 8). Ionic liquids could be used as solvents as well, although in this case, 

proline sulfonamides were less diastereo- and enantioselective than common organic solvents. 

Owing to larger differences in ionic liquids than in molecular solvents, a broader range of ionic 

liquids seemed to be necessary to gain deeper insight into the reactivity of these catalysts in the 

Mannich reaction. 

 

O

+

N

Ar

PG
N
H HN

O

S

C12H25

O

O (30 mol%)

neat, r.t.

N

Ar

H

PG

O

O

+

N
PG (30 mol%)

neat, r.t.

H

NHPG

R

O

R'
R'

R

up to 63% yield

>99:1 exo:endo

up to 99% ee

up to 78% yield

>99:1 exo:endo

up to 91% ee

1

1

 
 

Scheme 7 

 

 

N
H HN

O

S

Bu

O

O

O

( )n

n = 1~4

N

H CO2Et

PMP

+
(20 mol%)

solvent, 24 h, r.t.

O

( )n CO2Et

NHPMP

H

2

 
 

Scheme 8 

 

In 2011, Lu et al.28 found the direct Mannich protocol with highly enantioselectivity 

employing fluoroacetone, p-anisidine, and aldehydes catalyzed by 4-siloxyproline (3), the 

approach allowed efficient access for pharmaceutically important fluorinated β-amino ketones 

(Scheme 9). Recently, An et al.29 developed the asymmetric three-component Mannich reactions 

of cyclohexanone and anilines with aromatic aldehydes in the presence of H2O mediated by 

Isosteviol–proline (4) as highly efficient amphiphilic organocatalysts, and afforded syn-Mannich 

products with excellent diastereoselectivities (syn/anti up to 98 :2) and enantioselectivities (up to 

>99% ee) (Scheme 10). 
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Scheme 10 

 

1.2  Pyrrolidine derivatives 

Nowadays, a series of enamine forming amines are available that give rise to the anti-products in 

good selectivity. The stereoselectivity observed when catalysts are used can be rationalized 

through the proposed transition state in the well-established enamine catalysis mechanism 

(Scheme 11).30 Thus, nucleophilic attack on the imine preferentially occurs from the (Si,Si) lk 

face to afford the corresponding anti-β-amino aldehydes as major products. The asymmetric 

induction caused by the bulky pyrrolidine substituent is the opposite of that induced by 

hydrogen-bonding when proline is used as catalyst. 
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In 2008, Melchiorre group31 discribed the the Hayashi-Jørgensen catalyst (5) catalyzed anti-

selective Mannich reaction of aldehydes with N-Cbz- and N-Boc-protected imines generated in 

situ from stable amido sulfones (Scheme 12). Besides the high level of efficiency and 

stereocontrol achieved, this approach introduced important synthetic advantages by avoiding the 

requirement to preform the N-carbamoyl imines. The following year, Fustero et al.32 reported 

that α,α-diarylprolinol trimethylsilyl ether (5 or 6) catalyzed the asymmetric Mannich reaction 

between fluoroalkyl aldimines and aldehydes. The corresponding Mannich adducts were reduced 

and afforded anti-β-alkyl-γ-fluoroalkyl-γ-amino alcohols in highly diastereo- and 

enantioselectivities (Scheme 13).  
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Melchiorre et al.33 developed a highly efficient system for the asymmetric amino catalytic 

Mannich reaction of unmodified aldehydes with in situ generated N-carbamoyl imines in 2010,  

(Scheme 14). The main feature of this method lay in the operational simplicity: the highly 

reactive N-carbamate-protected imines were generated in situ from stable, easily handled α-

amido sulfones. The judicious selection of commercially available chiral amine catalysts 6 and 7 

allowed full control of the stereochemistry of the Mannich process; either the syn- or anti-β-

amino aldehydes were accessible with very high stereocontrol. In 2011, Hayashi group34 also 

showed a highly diastereo- and enantioselectives asymmetric Mannich reaction of imines derived 

from aliphatic and aromatic aldehydes catalyzed by diarylprolinol silyl ether 5 (Scheme 15). 

Later, They still developed a one-pot synthesis of chiral aziridine derivatives with excellent 
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diastereo- and enantioselectivities through uninterrupted sequential reactions, including 

desulfonylative formation of the N-Ts imine derived from chloroacetaldehyde, a diarylprolinol 

silyl ether mediated asymmetric Mannich reaction, reduction, and aziridine formation (Scheme 

16).35 Because the generated product possesses several functional groups, with excellent 

diastereoselectivity and enantioselectivity and the synthetic procedure is simple, this method 

offers an efficient route for the preparation of chiral aziridine derivatives. 
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In 2010, Palomo group36 reported an anti-selective Mannich reaction of aldehydes with N-

sulfonyl imines had been developed by using a 4-hydroxypyrrolidine in combination with an 

external Brønsted acid (Scheme 17). This catalyst system combined an amino group to activate 

the aldehyde donor substrate, and a hydroxy group together with an external Bronsted acid to 
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activate the imine acceptor component, while controlling the stereochemistry of the process. The 

Mannich adducts could be easily reduced or oxidized and then deprotected to give the 

corresponding β-amino acids and β-amino alcohols with good yields. The reaction results also 

showed that this ternary catalytic system was practical in other enamine-based reactions. In 2012, 

The group37 still reported anti-selective and highly enantioselective Mannich reaction of 

aldehydes and unactivated imines mediated by the combined use of a Brønsted acid with an α,α-

dialkylprolinol ether catalyst (9) with good yields (typically 70~75%), anti : syn ratios greater 

than 90 : 10, and ee values usually above 95% (Scheme 18). The method worked particularly 

well with propargylic imines and, unlike previous catalytic routes to optically active 

propargylamines, provided adducts featuring two contiguous stereocenters and a functionalized 

side chain amenable for ulterior synthetic applications. 
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Blanchet and coworkers38 reported an anti-selective direct and three-component Mannich 

reaction catalysed by 3-trifluoromethanesulfonamido-pyrrolidine (10) which achieved high 

yields and selectivities for various substrates ranging from linear and branched aldehydes to 

ketones (Scheme 19). The research disclosed that the acidity of the trifluoromethylsulfonamide 

group was critical to achieve high stereoselectivity, and C-2 symmetry of catalyst was not a key 

structural feature for a high stereoselectivity. Similar work for the enantioselective anti-selective 

Mannich-type reactions of aldehydes and ketones with imines catalyzed by 3-

pyrrolidinecarboxylic acid and related pyrrolidine derivatives was also reported by Tanaka at 

al.39 in 2008. Hayashi group40 developed an asymmetric Mannich reaction mediated by the 
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siloxytetrazole hybrid organocatalyst (11) in the presence of water without using organic 

solvents (Scheme 20). 
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1.3 Cinchona alkaloids or theirs derivatives 

Schaus et al.41 were first to describe the cinchona alkaloid-catalyzed Mannich reaction of 

dicarbonyl compounds with α-amido sulfones as acyl imine precursors in good yields and high 

enantioselectivities, and in diastereoselectivities that range from 1:1 to > 95:5 (Scheme 21). The 

reaction required 10 mol % of the cinchona alkaloid catalyst (12), which served as a general base 

to generate acyl imines in situ, and aqueous Na2CO3 to maintain the concentration of free 

alkaloid catalyst. The cinchonine catalyzed reactions gave practical access to highly 

functionalized building blocks which had been employed in the synthesis of chiral 

dihydropyrimidones, a class of compounds rich in diverse biological activity. 
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Last year, Wang et al.42 showed the aza-Mannich addition of 2-(ethylthio)- thiazolones and 

N-tosyl aldimines were catalysed by cinchona alkaloid catalyst system (13) (Scheme 22). A 

series of masked chiral 2-(ethylthio)-thiazolone derivatives by establishing a carbon- and 

nitrogen-substituted quaternary carbon stereocenter, were synthesized with high levels of 

diastereo- (up to >98:2) and enantioselectivities (up to >99%). Several new potential anticancer 

active derivatives were obtained. 
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Scheme 22 

 

Shibata and Toru et al.43 described the catalytic enantioselective fluorobisphenylsulfonyl 

methylation of in situ generated imines from α-amido sulfones under the combination of 

Mannich type conditions with fluorobis(phenylsulfonyl)methane chemistry (Scheme 23). The α-

fluorobisphenylsulfonylmethylated amines could be converted to α-mono- fluoromethyl amines 

by reductive desulfonylation. 
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1.4 Other chiral amines 

In 2009, the Maruoka group44 developed a highly anti- and enantioselective direct asymmetric 

Mannich reaction catalysed by axially chiral amino sulfonamide (16) (Scheme 24). For instance, 
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in the presence of a catalytic amount of 16, the reactions between aldehydes and α-imino esters 

proceeded smoothly to produce a higher anti/syn ratio as well as higher enantioselectivity 

Mannich products than previously possible for Mannich products. The axially chiral amino 

sulfonamide 16 was also successfully applied to asymmetric direct cross-aldol reaction between 

two different aldehydes. The advantage of catalyst 16 was giving mainly syn products, whereas 

proline showed the opposite anti selectivity. The same year, they still reported that a highly 

stereoselective direct asymmetric Mannich reaction between acetaldehyde and N-Boc-protected 

imines, as well as an anti-selective direct asymmetric Mannich reaction of N-Boc-protected 

imines by using the less nucleophilic chiral amino sulfonamide 16 to suppress the undesired side 

reactions.45 Recently, this group46 introduced both syn- and anti-selective asymmetric direct 

Mannich reactions of N-protected aminoacetaldehydes with N-Boc-protected imines catalyzed 

by proline and the axially chiral amino sulfonamide 16 (Scheme 25). This organocatalytic 

process represented the first example of a Mannich reaction using Z- or Boc-protected 

aminoacetaldehyde as a new entry of α-nitrogen functionalized aldehyde nucleophile in enamine 

catalysis. The obtained optically active vicinal diamines were useful chiral synthons as 

exemplified by the formal synthesis of (-)-agelastatin A. 
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In 2011, a highly efficient bisguanidine organocatalyst (17) for the Mannich-type reaction of 

isothiocyanato imide with N-Ts-protected imines was developed by Feng group (Scheme 26).47 

Significant progress had been made with an extremely broad substrate scope, giving optically 
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active α,β-diamino acid derivatives in excellent yields with high diastereoselectivities (up to > 

95:5 d.r.) and excellent enantioselectivities (up to 99% ee) under mild conditions. Tan et al.48 

reported the highly enantio- and diastereoselective Mannich reaction catalyzed by guanidine (18) 

with α-fluoro-β-keto acyloxazolidinone as the fluorocarbon nucleophile. Fluoro-β-amino acid 

derivatives with chiral fluorinated carbon were obtained through selective deacylation or 

decarboxylation reactions. Besides, the employment of N-tosylimines could result in remarkably 

efficient enantioselective anti-Mannich reactions (Scheme 27).49 The involvement of both 

oxygen atoms of sulfone in hydrogen bonding network to stablize the transition state was 

unprecedented, and might have implications for the design of novel organocatalytic systems. 
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In 2012, Moteki et al.50 introduced to a practical synthesis of both enantiomeric Mannich 

products in asymmetric Mannich reactions catalyzed by catalyst (19) with or without an acid 

additive, and the reaction gave anti-selective Mannich reaction of a cyclic imino ester (Scheme 

28). 
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2. Catalysed by Chiral Bifunctional Thioureas 

 

Thiourea-catalysed reactions were already earlier reported by Jacobsen group in 2002. The group 

firstly developed the thiourea-catalysed Mannich reaction that an efficient route to N-Boc-

protected β-amino acids via the enantioselective addition of silyl ketene acetals to N-Boc 

aldimines in 2002.51 Later, this group reported again a highly enantioselective thiourea-catalyzed 

nitro-Mannich reactions in 2005.52 

In 2008, a novel bifunctional chiral thiourea organocatalyst (20) bearing a glycosyl scaffold 

and a tertiary amino group starting from readily available alpha-D-glucose was synthesized by 

the Zhou group (Scheme 29).53 This thiourea was an effective organocatalyst for the asymmetric 

aza-Henry reaction between N-Boc imines and nitromethane. The corresponding adducts were 

obtained in good to excellent yields with highly anti-selective (93:7~99:1) and enantioselective 

(96~99% ee). 
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The asymmetric Mannich reaction of 3-substituted oxindoles and N-Boc imines employing 

bifunctional thiourea-tertiary amine organocatalysts (21) based on diphenylethylene-diamine 

(DPEN) scaffold exhibited high diastereoselectivities.54 The corresponding Mannich adducts 

bearing adjacent quaternary and tertiary chiral centers were generally obtained in good to 

excellent enantioselectivities (up to 95% ee) (Scheme 30). 
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Scheme 30 

 

Wang et al.55 developed the highly anti-selective (93:7-99:1) and excellent enantioselective 

(96-99% ee) nitro-Mannich reactions catalyzed by chiral bifunctional thiourea catalyst (22) 

bearing multiple hydrogen-bonding donors that perform well over a broad scope of substrates 

(Scheme 31). This methodology was a nice complement the highly syn-selective version using a 

herterobimetallic Cu-Sm-Shiff base complex. 
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Scheme 31 

 

Huang group56 considered a novel tryptophan based bifunctional thiourea catalyst (23) that 

was remarkably effective in promoting the asymmetric Mannich reaction of α-fluoro-β-

ketoesters (Scheme 32). The resulting compounds with fluorinated quaternary and tertiary 

stereocenters could be converted readily into α-fluoro-β-amino acids and α-fluoro-β-lactams. 

Preliminary computational studies suggested that the indole moiety of the catalyst played a 

crucial role in substrate binding. They disclosed that tertiary amine-thiourea bifunctional 

catalysts could be derived readily from natural amino acids, a strategy which may eventually 

lead to the discovery of various novel multifunctional organic catalysts. 
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Scheme 32 

 

In 2010, Coltart et al.57 developed the organocatalytic Mannich reaction based on proximity-

assisted intracomplex soft enolization of thioesters using simple derivatives of cinchona alkaloid-

based catalysts (24) (Scheme 33). This approach to enolization was based on the cooperative 

action of a carbonyl activating hydrogen bonding (thio)urea moiety and an amine base contained 

within a single catalytic entity to facilitate intracomplex deprotonation. Significantly, this 

allowed thioesters over a range of acidity to react efficiently, thereby opening the door to the 

development of a general mode of enolization-based organocatalysis of monocarboxylic acid 

derivatives. 
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Lee et al.58 described the highly enantioselective Mannich reaction of diethyl fluoromalonate 

with N-Boc-aldimines promoted by chiral bifunctional organocatalysts (25), and the 

corresponding products β-amino-β-fluoromalonates were obtained with excellent 

enantioselectivity (93~97% ee) under mild reaction conditions (Scheme 34). 
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In 2010, Enders et al.59 researched an efficient domino Mannich/aza-Michael reaction 

between carbamate-protected aryl aldimines and γ-malonate-substituted α,β-unsaturated methyl 

esters promoted using the cinchona alkaloid catalyst 12 and the bifunctional thiourea catalysts 

(23, 25, 26) (Scheme 35). The reaction furnished 2,5-cis-configured polysubstituted pyrrolidines 

in good to excellent yields (76~99%), enantioselectivities (75~94%) and excellent 

diastereoselectivities (de >95%). 
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Scheme 35 

 

Lee and Kim60 described the catalytic enantioselective electrophilic Mannich-type reaction of 

α-cyano ketones with N-Boc-aldimines promoted by chiral bifunctional organocatalysts (27), and 

afforded the corresponding β-amino-α-cyano ketones with excellent diastereoselectivities (up to 

syn/anti = 100/0), and excellent enantioselectivities (up to 99% ee) under mild reaction 

conditions (Scheme 36). 
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In 2011, Peng et al.61 identified an efficient catalytic system for the direct anti-Mannich 

reaction of simple aldehydes with preformed N-Boc and N-Cbz imines (Scheme 37). Only 5 

mol% catalyst (28) loading was needed to give the corresponding products in excellent yields (up 

to 95%), diastereoselectivities (up to 96:4 dr) and enantioselectivities (up to >99% ee). 
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Scheme 37 

 

Recently, Luo et al.62 reported the synthesis of 3,3-disubstituted phthalide derivatives using a 

quinidine-based multifunctional catalyst (29) in excellent yields, with good diastereo- and 

enantioselectivities (Scheme 38). The method led to convenient synthesis of chiral 

isoquinolinones and isoquinolines had also been demonstrated. 
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Scheme 38 

 

In 2011, Peng et al.63 achieved the asymmetric nitro-Mannich reactions of nitroalkanes and 

in situ generated N-Boc-imines using a new type of thiourea-guanidine bifunctional 

organocatalyst (30). The novel transformations exhibited good diastereoselectivities, and the 

adducts bearing adjacent chiral centers were generally obtained in moderate to high 

enantioselectivities (up to 94% ee). This reaction provided a concise and alternative route 

converting readily accessible and stable N-carbamate amido sulfones into optically active 1,2-

diamino compounds (Scheme 39). 
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Scheme 39 

 

 

3. Catalysed by Chiral Brønsted Acids 

 

It was an important pathway for enantioselective organocatalysed Mannich reactions proceeds 

via enantiopure Brønsted acids. As an early example, Akiyama et al.64,65 reported 

enantioselective Mannich-type reaction of aldimines with silyl enolates, and β-aminoesters 

catalysed by a series of chiral phosphate catalysts, of which phosphoric acid proved to give the 

best results. 

Schneider and co-workers66 developed that vinylketene silyl N,O-acetals readily participate 

vinylogous Mukaiyama-Mannich reactions catalyzed by Brønsted acid (31) with aromatic and 

heteroaromatic aldimines, and afforded δ-amino-α,β-unsaturated amides in good yields and 

enantioselectivities (Scheme 40). Direct three-component vinylogous Mannich reactions 

produced the products with almost identical yield and enantioselectivity, thus avoiding the 

synthesis of the imines in a separate step. The utility of the vinylogous Mannich products was 

demonstrated through conversion into various functional building blocks including a short 

synthesis of the enantiomerically highly enriched 2-phenylpiperidine. In 2010, Magnus and Lin67 

developed the enantioselective domino Mannich-ketalization reaction of o-hydroxy 

benzaldimines with electron-rich alkenes promoted by Brønsted acid (32) afforded an effective 

and direct access to optically pure 4-aminobenzopyrans in good yields with excellent 

enantiomeric ratios (up to 98:2 er) (Scheme 41). 
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BINSA (33) were a highly effective chiral Brønsted acid that could be combined with an 

achiral Brønsted base. In 2008, Ishihara et al.68 reported a direct Mannich-type reactions of a 

variety of 1,3-diketones and a 1,3-ketoester equivalent with arylaldimines proceeded smoothly 

with high enantioselectivities in the presence of 1 mol % of BINSA and 2 mol % of 2,6-

biarylpyridine (Scheme 42). They thank that BINSA should be a powerful chiral auxiliary like 

BINOL, BINAP (2,2′-bis(diphenylphosphino)-1,1′-binaphthalene), BINAM (2,2′-diamino-1,1′-

binaphthalene), etc., and could trigger a new frontier in acid-base chemistry in asymmetric 

catalyses. 
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In 2012, Chen et al.69 reported an efficient and highly sterically hindered Brønsted acid 

catalyst (34) in asymmetric three-component Mannich reactions, and optically active syn-β-
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amino ketones were obtained in high yields (up to 99%) with excellent diastereoselectivity (99:1) 

and enantioselectivity (up to 99% ee) (Scheme 43). A gram-scale reaction was also performed to 

prove the synthetic application value of this reaction. 
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4. Catalysed by Other Chiral Organocatalytic Systems 

 

Hajra et al.70 found that imidazole-based zwitterionic-type molten salts (35) were new class of 

catalysts for the aza-Henry reaction in excellent yields and with highly selectivity (Scheme 44). 

Most significantly, the syn-β-nitroamine was obtained predominantly under the present reaction 

conditions. 
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Scheme 44 

 

 In 2010, Wang et al.71 reported the employment of CIL [EMIm][Pro] (36) as a catalyst 

for the one-pot three-component asymmetric Mannich reaction with excellent chemo-, regio-, 

and enantioselectivities either under mild conditions or at a low temperature (Scheme 45). The 

desired products were isolated in up to 99% yield and with up to > 99 dr and > 99% ee. 

Additionally, this catalyst was readily prepared from rather inexpensive starting materials and 

the reactions could be conducted in wet solvent without an inert atmosphere. The proposed 

mechanism and transition state had been discussed on the basis of the stereochemistry of the 

corresponding Mannich products. 
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 Bernardi and Ricci group72 reported the asymmetric Mannich-type reaction of different 

malonates and β-ketoesters could react with N-tert-butoxycarbonyl-(N-Boc) and N-

benzyloxycarbonyl-(N-Cbz) protected α-amido sulfones was promoted using phase-transfer 

catalyst (37) under very mild and user-friendly conditions (Scheme 46). The optimised protocol 

avoided the preparation and the isolation of the relatively unstable N-Boc and N-Cbz imines that 

were generated in situ from the bench-stable α-amido sulfones. The corresponding Mannich 

bases were generally obtained in good yields and enantioselectivities, and could be readily 

transformed into key compounds, such as optically active β-amino acids in one simple step. 
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Scheme 46 

 

 Recently, Pitchumani et al.73 developed a highly efficient diastereoselective Mannich 

reaction has been carried out in water using a catalytic amount of β-cyclodextrin (38) as a chiral 

host in the presence of acetic acid to give the corresponding β-aminoketones (Mannich bases) 

with good yield (up to 98%) and excellent diastereomeric excess (up to >99%) (Scheme 47). 

This Brønsted acid-chiral cyclodextrin composite catalyzed reaction proceeds in a syn-selective 

manner with 98:2 syn/anti selectivity when propiophenone was used as the ketone moiety and in 

an anti-selective manner with 100:0 (anti/syn) selectivity when cyclohexanone was used. 
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Discussion        

 

This review demonstrates clearly the diversity and power of organocatalysed asymmetric 

Mannich reactions. The use of proline and derivatives as the catalyst affords easy access to syn-

products in good yields with high regio-, diastereo- and enantioselectivity, but pyrrolidine 

derivatives as the catalyst mainly gives to the anti-products. Chiral cinchona alkaloids, 

bifunctional thioureas and their derivatives have also been successfully employed in combination 

with electron-poor imines and active methylene compounds with high diastereo- and 

enantioselectivity. Chiral Brønsted acids (mostly phosphoric acids) have been employed to 

include the iminium ion in a chiral ion pair, which also results in enantioselective addition onto 

the iminium species. Besides, other chiral organocatalytic systems have been used and exhibited 

the exciting results in organocatalysed asymmetric Mannich reactions in recent years, For 

example, the using of chiral ion and chiral phase-transfer catalyst consulting in good yields as 

well as highly regio-, and enantioselectivities. Transition-metal-catalysed enantioselective 

reactions will certainly continue to play a central role in the future; however, metal-free catalysts 

appear to be an emerging trend over the past few years in asymmetric Mannich reactions. In past 

few years, enantioselective organocatalytic asymmetric Mannich reactions have obtained rapid 

development, regarding the applications of this type of reactions, but efforts must be directed to 

research highly enantioselective and new type of chiral organocatalysts, in particular, and 

develop some procedures could be valuable to practical application in asymmetric Mannich 

reactions.       
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