Synthesis of certain novel 4H-pyrano[3,2-h]quinoline derivatives

Ahmed M. El-Agrody * and Abdullah M. Al-Ghamdi
Chemistry Department, Faculty of Scinece, King Khalid University, 9004, Abha, Saudi Arabia E-mail: elagrody_am@yahoo.com

DOI: $\underline{\text { http://dx.doi.org/10.3998/ark.5550190.0012.b12 }}$

Abstract

Treatment of 8-hydroxyquinoline 1a and 8-hydroxy-2-methylquinoline $\mathbf{1 b}$ with α-cyano- p chloro/bromocinnamonitriles 2a,b provided $4 H$-pyrano[3,2-h]quinoline-3-carbonitrile derivatives $\mathbf{3 a - d}$, while treatment of $(E) 2$-(4-chlorostyryl)-8-hydroxyquinoline 7 with α-cyano- p chloro/bromocinnamonitriles 2a,b and ethyl α-cyano- p-chloro/bromocinnamates 2d,e provided $4 H$-pyrano[3,2-h]quinoline-3-carbonitrile derivatives 8a,b and ethyl 4 H -pyrano[3,2-h]quinoline3 -carboxylate derivatives $\mathbf{9 a , b}$ respectively. Interaction of 8 -hydroxyquinoline $\mathbf{1 a}$ and 8 -hydroxy-2-methylquinoline $\mathbf{1 b}$ with α-cyano- p-fluorocinnamonitrile 2c afforded 2-[4-(piperidin1 -yl)benzylidene]malononitrile 5 via a nucleophilic aromatic substitution reaction. The reactivity of 2-hydroxyquinoline and its 2 -substituted derivatives towards α-cyano- p-chloro/bromocinnamonitriles and ethyl α-cyano- p-chloro/bromocinnamates are discussed in this work. Structures of these compounds were established on the basis of IR, ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, ${ }^{13} \mathrm{C}$ NMR-DEPT and MS data.

Keywords: 8-Hydroxyquinoline, 8-hydroxy-2-methylquinoline, (E) 2-(4-chlorostyryl)-8hydroxyquinoline, α-cyano- p-halocinnamonitriles/ethyl α-cyano- p-halocinnamates, $4 H$-pyrano-[3,2-h]quinoline derivatives, 2-[4-(piperidin-1-yl)benzylidene]malononitrile

Introduction

Quinoline moiety is present in many classes of biologically active compounds ${ }^{1}$. The biological activity of these quinoline derivatives depends not only on the bicyclic hetero-aromatic pharmacophore but also on the nature of the peripheral substituent and their spatial relationship. They also exhibit antimalarial ${ }^{2}$, antitumor ${ }^{3}$, antioxidant ${ }^{4}$, antileishmanial ${ }^{5}$ and antiplatelet activities ${ }^{6}$. In addition they function as pharmacologically active synthetic compounds ${ }^{7}$ such as DNA binding capabilities ${ }^{8}$ and DNA-intercalating carrier ${ }^{9}$. A series of compounds derived from 8 -hydroxyquinoline as potential HIV-1 integrate inhibitors were synthesized recently ${ }^{10}$. In
addition styrylquinoline derivatives have gained strong attention recently due to their activities as perspective HIV integrase inhibitors ${ }^{11}$ and also, for their extensive biological activities. ${ }^{1 \mathrm{~b}-\mathrm{d}, 11 \mathrm{c}}$

In continuation of the previous works ${ }^{12-26}$, it seemed interesting to synthesize new $4 H$ -pyrano[3,2-h]quinoline derivatives by using α-cyano- p-halocinnamonitriles and ethyl α-cyano-p-halocinnamates and evaluatation of their antimicrobial and antitumor activities. The observation of the reactivity of 2-hydroxyquinoline and its 2 -substitued derivatives towards α -cyano- p-halocinnamonitriles and ethyl α-cyano- p-halocinnamates are discussed in this work.

Results and Discussion

Treatment of 8-hydroxyquinoline 1a and 8-hydroxy-2-methylquinoline $\mathbf{1 b}$ with α-cyano- p chloro/bromocinnamonitrile $\mathbf{2 a , b}$ in ethanolic piperidine under reflux afforded 2-amino-4-(4-chloro/bromophenyl)-4H-pyrano[3,2-h]quinoline-3-carbonitrile 3a,b and 2-amino-4-(4-chloro-/bromophenyl)-9-methyl-4H-pyrano[3,2-h]quinoline-3-carbonitrile 3c,d, while treatment of 1a,b with ethyl α-cyano- p-chloro/bromo/fluorocinnamate $\mathbf{2 d}$-f in ethanolic piperidine under reflux were unsuccessful, ethyl 2-amino-4-(4-halophenyl)-4H-pyrano[3,2-h]quinoline-3-carboxylate 4a-c and 2-amino-4-(4-halophenyl)-9-methyl-4 H -pyrano[3,2-h]quinoline-3-carboxylate 4d-f were not formed ${ }^{27}$ (Scheme 1).

Scheme 1. Synthesis of 4H-pyrano[3,2-h]quinoline derivatives 3a-d.

The formation of $\mathbf{3}$ indicates that the phenolate anion (C-7) of $\mathbf{1 a}$ and $\mathbf{1 b}$ attacks at the β carbon of 2 to yield an acyclic Michael adduct, which underwent cyclization as shown in (Scheme 2) to give 3.

Scheme 2. Mechanism formation of compounds 3.

Furthermore, reaction of $\mathbf{1 a , b}$ with α-cyano- p-fluorocinnamonitrile $\mathbf{2 c}$ afforded 2-[4-(piperidin-1-yl)benzylidene]malononitrile 5 instead of the formation of 2-amino-4-(4-fluorophenyl)-4H-pyrano[3,2-h]quinoline-3-carbonitrile $\mathbf{3 e}$ and the 2-amino-4-(4-fluorophenyl)9 -methyl-4H-pyrano[3,2-h]quinoline-3-carbonitrile 3f. In the case of compound 5 the fluorine atom of 2c had simply been displaced by piperidine ${ }^{28-31}$ via a nucleophilic aromatic substitution reaction (Scheme 3). Attempts to react 1a,b with 5 was unsuccessful, 2-amino-4-(4-piperidin-1-ylphenyl)-4H-pyrano[3,2-h]quinoline-3-carbonitrile $\mathbf{3 g}$ and 2-amino-4-(4-piperidin-1-ylphenyl)-9-methyl-4H-pyrano[3,2-h]quinoline-3-carbonitrile $\mathbf{3 h}$ were not formed ${ }^{28}$ (Scheme 3).

Scheme 3. Synthesis of 2-[4-(piperidin-1-yl)-benzylidene]malononitrile.

Structure of 5 was also supported by an independent synthesis of the same compound by nucleophilic substitution of the fluorine atom of $\mathbf{2 c}$ with piperidine ${ }^{28}$ in ethanol under reflux (m.p. and mixed m.p.) (Scheme 3).

Structure $\mathbf{3}$ was established on the basis of spectral data. The IR spectra of $\mathbf{3 a} \mathbf{- d}$ showed the presence of a NH_{2} stretch at $\mathrm{v} 3464-3395,3344-3310 \mathrm{~cm}^{-1}$ and a CN stretch at $\mathrm{v} 2196-2188 \mathrm{~cm}^{-1}$. NMR spectra of 3a-d showed characteristic signals for $4 H$-pyran: singlets at $\delta 4.98-4.82 \mathrm{ppm}$ in the ${ }^{1} \mathrm{H}$ NMR and $41.51-40.46 \mathrm{ppm}$ in the ${ }^{13} \mathrm{C}$ NMR. The mass spectra of compounds $\mathbf{3 a}$-d gave additional evidences for the proposed structures.

Condensation of 8-hydroxy-2-methylquinoline 1b with p-chlorobenzaldehyde in acetic anhydride under reflux give (E) 2-(4-chlorostyryl)-8-hydroxyquinoline 7 via the intermediate (E) 8 -acetoxy-2-(4-chlorostyryl)quinoline 6, while condensation of $\mathbf{1 b}$ with p-chlorobenzaldehyde under Microwave irradiation furnished $7{ }^{1 f, g}$ (Scheme 4).

The relative (E) configuration of compounds 6 and 7 were established from the coupling constant values ($J=17 \mathrm{~Hz}$) for $\mathbf{6}$ and $(J=16 \mathrm{~Hz})$ for 7 .

Scheme 4. Preparation of (E) 8-acetoxy-2-(4-chlorostyryl)quinoline 6 and (E) 8-hydroxy-2-(4chlorostyryl)quinoline 7.

The structures of $\mathbf{6}$ and 7 were established on the basis of spectral data. The IR spectra of $\mathbf{6}$ showed the presence of a CO stretch at $v 1760 \mathrm{~cm},{ }^{-1}$ while for 7 showed the appearance of a OH stretch at $v 3349 \mathrm{~cm} .{ }^{-1}$ The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 6 revealed the presence of signals at δ $7.63(\mathrm{~d}, J=17 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}), 7.47(\mathrm{~d}, J=17 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}), 2.60 \mathrm{ppm}\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right)$ and $134.42(=\mathrm{CH}), 129.35(=\mathrm{CH}), 21.06 \mathrm{ppm}\left(\mathrm{CH}_{3}\right)$. The ${ }^{13} \mathrm{C}$ NMR-DEPT spectrum at $45^{\circ}, 90^{\circ}$ and 135° of $\mathbf{6}$ provided additional evidence in support of the proposed structure. The ${ }^{13} \mathrm{C}$ NMRDEPT spectrum of 6 at $\delta 135^{\circ} \mathrm{CH}, \mathrm{CH}_{3}$ [positive (up)], CH_{2} [negative (down)], revealed the following signals at $\delta 134.42(=\mathrm{CH} \uparrow), 129.35(=\mathrm{CH} \uparrow), 21.06\left(\mathrm{CH}_{3} \uparrow\right)$, while at 90° only CH signals are positive (up) and showed at $\delta 134.42(=\mathrm{CH} \uparrow), 129.35(=\mathrm{CH} \uparrow)$ and at $45^{\circ}\left(\mathrm{CH}, \mathrm{CH}_{2}\right.$ and CH_{3} positive) revealed signals at $\delta 134.42(=\mathrm{CH} \uparrow), 129.35(=\mathrm{CH} \uparrow), 21.06\left(\mathrm{CH}_{3} \uparrow\right)$. Characteristic resonances were observed at $\delta 9.85(\mathrm{bs}, 1 \mathrm{H}, \mathrm{OH}), 8.14(\mathrm{~d}, J=16 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH})$,
$7.51 \mathrm{ppm}(\mathrm{d}, J=16 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH})$ and $135.15(=\mathrm{CH}), 131.62 \mathrm{ppm}(=\mathrm{CH})$ for 7. The mass spectra of compounds 6 and 7 gave additional evidences for the proposed structures.

Treatment of (E) 2-(4-chlorostyryl)-8-hydroxyquinoline 7 with 2a,b,d,e in ethanolic piperidine under reflux afforded (E) 2-amino-4-(4-chloro/bromophenyl)-9-(4-chlorostyryl)-4H-pyrano[3,2-h]quinoline-3-carbonitrile 8a,b and ethyl (E) 2-amino-4-(4-chloro/bromophenyl)-9-(4-chlorostyryl)-4H-pyrano[3,2-h]quinoline-3-carboxylate 9a,b respectively (Scheme 5).

The relative (E) configuration of compounds $\mathbf{8}$ and 9 were established from the coupling constant values ($J=16.5 \mathrm{~Hz}$) for $\mathbf{8 a}, 9 \mathbf{9}$ and $(J=16 \mathrm{~Hz})$ for $\mathbf{8 b}, \mathbf{9 b}$.

Scheme 5. Synthesis of 9-(4-chlorostyryl)-4H-pyrano[3,2-h]quinoline derivatives 8a,b and 9a,b.

The structures $\mathbf{8}$ and $\mathbf{9}$ were established on the basis of spectral data. The IR spectra of $\mathbf{8 a , b}$ showed the appearance of the a NH_{2} stretch at $v 3417-3384,3315-3310,3199-3182 \mathrm{~cm},{ }^{-1}$ a CN stretch at v 2198-2189 cm, ${ }^{-1}$ while a NH_{2} stretch at v 3409-3380, 3349-3296 cm^{-1} and a CO stretch at v 1677-1643 cm^{-1} for $\mathbf{9 a , b}$. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{8 a , b}$ and $\mathbf{9 a , b}$ revealed the presence of $4 H$ signals at $\delta 5.09-5.00(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4)$ and $40.71-40.09 \mathrm{ppm}(\mathrm{C}-4)$. In compounds 9a,b the ester group gave ${ }^{1} \mathrm{H}$ signals at $4.13-4.01\left(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.22-1.10(\mathrm{t}, J=7 \mathrm{~Hz}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right)$ with the corresponding signals in the ${ }^{13} \mathrm{C}$ spectra at $\delta 59.59-58.75\left(\mathrm{CH}_{2}\right)$ and $14.39-$ $14.27 \mathrm{ppm}\left(\mathrm{CH}_{3}\right)$ respectively. The ${ }^{13} \mathrm{C}$ NMR-DEPT spectra at $45^{\circ}, 90^{\circ}$ and 135° of compounds $\mathbf{8 a}, \mathbf{b}$ provided additional evidence in support of the proposed structures. Also,t he mass spectra of compounds $\mathbf{8}$ and 9 gave additional evidences for the proposed structures.

From the experimental observations (reaction time and yield), the authors pointed out that, the tendency of the 8 -hydroxyquinoline $\mathbf{1 a}$ and 2 -substituted- 8 -hydroxyquinoline $\mathbf{1 b}, \mathbf{7}$ towards
the electrophilic β-carbon of α-cyano- p-chloro/bromocinnamonitriles $\mathbf{2 a}, \mathbf{b}$ and ethyl α-cyano- p chloro/bromocinnamates $\mathbf{2 d}, \mathbf{e}$ follows the following sequence:

8-Hydroxy-2-styrylquinoline > 8-hydroxyquinoline > 8-hydroxy-2-methylquinoline

Thus, the reactivity was enhanced with the presence of the styryl group in the 2-position and deactivated with the methyl group in the 2-position and this was explained through the mesomeric effect between the quinoline- N and the hydroxyl group in the 8-position as shown in (Scheme 6).

$$
\begin{array}{ll}
\mathrm{a}, \mathrm{Ar}=p-\mathrm{ClC}_{6} \mathrm{H}_{4} & \mathrm{X}=\mathrm{CN} \\
\mathrm{~b}, \mathrm{Ar}=p-\mathrm{BrC}_{6} \mathrm{H}_{4} & \mathrm{X}=\mathrm{CN} \\
\mathrm{~d}, \mathrm{Ar}=p-\mathrm{ClC}_{6} \mathrm{H}_{4} & \mathrm{X}=\mathrm{CO}_{2} \mathrm{Et} \\
\mathrm{e}, \mathrm{Ar}=p-\mathrm{BrC}_{6} \mathrm{H}_{4} & \mathrm{X}=\mathrm{CO}_{2} \mathrm{Et}
\end{array}
$$

Scheme 6. The reactivity of (E) 2-(4-chlorostyryl)-8-hydroxyquinoline 7.

Also, this observation was supported by the easy attacks of phenolate anion (C-7) of 7 at the β-carbon of ethyl α-cyano- p-chloro/bromocinnamates 2d,e rather than $\mathbf{1 a}$ and $\mathbf{1 b}$ to yield an acyclic Michael adduct, which underwent cyclization to give 9 .

Conclusions

In this paper we report the synthesis of some $4 H$-pyrano[3,2-h]quinoline derivatives $\mathbf{3 a - d}, \mathbf{8 a}, \mathbf{b}$ and $\mathbf{9 a}, \mathbf{b}$ via interaction of 8 -hydroxyquinoline $\mathbf{1 a}$ and 2 -substituted-8-hydroxyquinoline $\mathbf{1 b}, 7$ with α-cyano- p-chloro/bromocinnamonitriles $\mathbf{2 a , b}$ and ethyl α-cyano- p-chloro/bromocinnamates 2d,e. The tendency of the 8 -hydroxyquinoline and 2 -substituted- 8 -hydroxyquinoline towards the electrophilic β-carbon of α-cyano- p-chloro/bromocinnamonitriles and ethyl α-cyano-p-chloro/bromocinnamates illustrated that the order of reactivity of 8-hydroxyquinoline 1a and 2-substituted-8-hydroxyquinoline $\mathbf{1 b}, \mathbf{7}$ follows the following sequence:

8-Hydroxy-2-styrylquinoline > 8-hydroxyquinoline > 8-hydroxy-2-methylquinoline

This is can be explained through the mesomeric effect between the quinoline- N and the hydroxyl group in the 8-position.

Experimental Section

General. Melting points were determined with a Stuart Scientific Co. Ltd apparatus. IR spectra were determined as KBr pellets on a Jasco FT/IR 460 plus spectrophotometer. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on using a Bruker AV 500 MHz spectrometer using tetramethylsilane (TMS) as an internal reference and results are expressed as $\delta(\mathrm{ppm})$ values. ${ }^{13} \mathrm{C}$ NMR spectra were obtained using distortionless enhancement by polarization transfer (DEPT), with this technique, the signals of $\mathrm{CH} \& \mathrm{CH}_{3}$ carbon atoms appears normal (up) and the signal of carbon atoms in CH_{2} environments appears negative (down). The MS were measured on a Shimadzu GC/MS-QP5050A spectrometer. Elemental analyses for C, H and N were performed on a Perkin-Elmer 240 microanalyser in the Faculty of Science Cairo University.

General procedure for the preparation of $4 H$-pyrano[3,2-h] quinoline derivatives (3a-d) and 2-[4-(piperidin-1-yl)benzylidene]malononitrile (5)
A solution of 8-hydroxyquinoline 1a or 8-hydroxy-2-methylquinoline $\mathbf{1 b}(0.01 \mathrm{mmol})$ in EtOH (30 ml) was treated with α-cyano- p-chloro/bromo/fluorocinnamonitriles $\mathbf{2 a}-\mathbf{c}(0.01 \mathrm{mmol})$ and piperidine (0.5 ml). The reaction mixture was heated until complete precipitation occurred (reaction times: 60 min .). The solid product which formed was collected by filtration and recrystallised from benzene for compounds $\mathbf{3 a - d}$ and from ethanol for compound $\mathbf{5}$. The physical and spectral data of compounds $\mathbf{3 a - d}$ and $\mathbf{5}$ are as follows:
2-Amino-4-(4-chlorophenyl)-4H-pyrano[3,2-h]quinoline-3-carbonitrile (3a). Buff needles, yield 83%, m.p. $249-250{ }^{\circ} \mathrm{C}$; [Lit. M.p. $\left.223-224{ }^{\circ} \mathrm{C}\right]{ }^{27}$; IR $(\mathrm{KBr}) v\left(\mathrm{~cm}^{-1}\right): 3409,3310,\left(\mathrm{NH}_{2}\right)$, 3060, 2972, $2870(\mathrm{CH}), 2190(\mathrm{CN})$; ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) $\delta_{H}: 8.95-7.16(\mathrm{~m}, 9 \mathrm{H}$, aromatic), $5.00\left(\mathrm{bs}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 4.98(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO- d_{6}) $\delta \mathrm{c}: 160.33(\mathrm{C}-$ 2), 150.24 (C-10b), 144.52 (C-9), 137.46 (C-10a), 135.97 (C-7), 128.71 (C-5), 127.75 (C-6a), 123.66 (C-4a), 122.18 (C-8), 121.35 (C-6), 120.35 (CN), 55.66 (C-3), 40.64 (C-4), 143.01, 131.68, 129.57, 126.73 (aromatic); Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{12} \mathrm{ClN}_{3} \mathrm{O}: \mathrm{C}, 68.37 ; \mathrm{H}, 3.62 ; \mathrm{N}, 12.59$. Found: C, 68.29; H, 3.56; N, 12.48 \%.
2-Amino-4-(4-bromophenyl)-4H-pyrano[3,2-h]quinoline-3-carbonitrile (3b). Pale yellow needles, yield 81%; m.p. $230-231{ }^{\circ} \mathrm{C}$; IR (KBr) v $\left(\mathrm{cm}^{-1}\right)$: $3395,3320,\left(\mathrm{NH}_{2}\right), 3060,3020,2962$, $2861(\mathrm{CH}), 2196(\mathrm{CN}) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{H}}: 9.00-7.09$ (m, 9H, aromatic), 5.22 (bs, $\left.2 \mathrm{H}, \mathrm{NH}_{2}\right), 4.89(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4) ;{ }^{13} \mathrm{C}$ NMR (125 MHz) $\left(\mathrm{CDCl}_{3}\right) \delta \mathrm{c}: 159.44(\mathrm{C}-2), 150.57(\mathrm{C}-10 \mathrm{~b})$, 143.39 (C-9), 137.92 (C-10a), 136.31 (C-7), 128.35 (C-5), 127.07 (C-6a), 122.18 (C-4a), 121.62 (C-8), 121.17 (C-6), 119.45 (CN), 59.85 (C-3), 41.28 (C-4), 143.22, 132.14, 129.85, 124.02 (aromatic); MS m/z (\%): $379\left[\mathrm{M}^{+}+2\right](7), 377[\mathrm{M}]^{+}(7), 222$ (100), 155 (43), 113 (13), 75 (59);

Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{12} \mathrm{BrN}_{3} \mathrm{O}$: C, 60.34; H, 3.20; N, 11.11. Found: C, 60.26; H, 3.18; N, 11.03 \%.
2-Amino-4-(4-chlorophenyl)-9-methyl-4H-pyrano[3,2-h]quinoline-3-carbonitrile (3c).
Colourless needles, yield 78%; m.p. $262-263{ }^{\circ} \mathrm{C}$; IR $(\mathrm{KBr}) v\left(\mathrm{~cm}^{-1}\right): 3464,3343\left(\mathrm{NH}_{2}\right), 3056$, 2900, $2870(\mathrm{CH}), 2188(\mathrm{CN}) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{H}}: 8.00-6.94(\mathrm{~m}, 8 \mathrm{H}$, aromatic), 4.98 (bs, $2 \mathrm{H}, \mathrm{NH}_{2}$), $4.82(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4), 2.74\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{c}: 159.94(\mathrm{C}-$ 2), 159.46 (C-9), 142.95 (C-10b), 137.61 (C-10a), 136.20 (C-7), 129.13 (C-5), 125.96 (C-6a), 123.85 (C-8), 123.08 (C-4a), 121.08 (C-6), $119.56(\mathrm{CN}), 60.13(\mathrm{C}-3), 41.20(\mathrm{C}-4), 25.62\left(\mathrm{CH}_{3}\right)$, $142.90,133.36,129.40,126.59$ (aromatic); MS $m / z(\%): 349\left[\mathrm{M}^{+}+2\right]$ (5), $347[\mathrm{M}]^{+}(15), 236$ (100), 208 (5), 180 (2), 124 (4), 98 (2), 75 (19); Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{ClN}_{3} \mathrm{O}$: C, 69.07; H, 4.06; N, 12.08. Found: C, 69.14; H, 4.14; N, 12.15%.
2-Amino-4-(4-bromophenyl)-9-methyl-4H-pyrano[3,2-h]quinoline-3-carbonitrile (3d). Colourless needles, yield 75%; m.p. $277-278{ }^{\circ} \mathrm{C}$; IR (KBr) v $\left(\mathrm{cm}^{-1}\right): 3464,3344\left(\mathrm{NH}_{2}\right), 3079$, 3059, 2950, $2870(\mathrm{CH}), 2188(\mathrm{CN}) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta_{\mathrm{H}}: 8.21-7.10(\mathrm{~m}, 8 \mathrm{H}$, aromatic), 7.18 (bs, $2 \mathrm{H}, \mathrm{NH}_{2}$), 4.97 (s, $1 \mathrm{H}, \mathrm{H}-4$), $2.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO- d_{6}) $\delta \mathrm{c}: 160.32$ (C-2), 159.08 (C-9), 145.13 (C-10b), 137.01 (C-10a), 136.10 (C-7), 130.77 (C-5), 129.89 (C-6a), 126.12 (C-8), 125.75 (C-4a), 121.32 (C-6), 120.10 (CN), 142.59, 132.06, 131.62, 123.50 (aromatic), 55.66 (C-3), 41.51 (C-4), $24.96\left(\mathrm{CH}_{3}\right) ; \mathrm{MS} \mathrm{m/z}$ (\%): 393 $\left[\mathrm{M}^{+}+2\right](11), 391[\mathrm{M}]^{+}(11), 236$ (100), 208 (6), 180 (1), 124 (5), 99 (2), 77 (6); Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{BrN}_{3} \mathrm{O}: \mathrm{C}, 61.24 ; \mathrm{H}, 3.60$; N, 10.71. Found: C, $61.21 ; \mathrm{H}, 3.56$; N, 10.68%.
2-[4-(Piperidin-1-yl)benzylidene]malononitrile (5). Orange crystals, yield 76\%; m.p. 122-123 ${ }^{\circ} \mathrm{C}$; [Lit. M.p. $\left.120-121{ }^{\circ} \mathrm{C}\right]{ }^{28}$; IR (KBr) v $\left(\mathrm{cm}^{-1}\right): 3070,3027,2990,2941,2860(\mathrm{CH}), 2215(\mathrm{CN})$; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}}: 7.45(\mathrm{~s}, 1 \mathrm{H},(=\mathrm{CH}), 7.91-6.85(\mathrm{~m}, 4 \mathrm{H}$, aromatic), 3.53-3.51(m, $\left.4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 1.76-1.67\left(\mathrm{~m}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{c}: 157.78$ (=CH), 115.98 (CN), 154.43, 134.00, 112.96 (aromatic), 72.14 (C-2), 48.03, 25.40, 24.30 (piperidine); Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}_{3}$: C, 75.92; H, 6.37; N, 17.71. Found: C, 76.00; H, 6.42; N, 17.84 \%.

Preparation of 2-[4-(piperidin-1-yl)benzylidene]malononitrile (5) from α-cyano-p-fluorocinnamonitriles (2c). This compound was prepared according to the literature procedure ${ }^{28}$.

Reaction of 8-hydroxy-2-methylquinoline (1b) with p-chlorobenzaldehyde

Method A. A mixture of 8-hydroxy-2-methylquinoline 1b (0.01 mmol), p-chlorobenzaldehyde, $(0.08 \mathrm{mmol})$ and acetic anhydride (100 ml) was heated at $150{ }^{\circ} \mathrm{C}$ for 30 h (TLC monitoring). After cooling, the solvent was removed in vacuum, and the residue was recrystallised from ethanol/benzene to give 6. Compound 6 was heated at $100{ }^{\circ} \mathrm{C}$ for 1 h (TLC monitoring) in pyridine/water ($\mathrm{v} / \mathrm{v}=4: 1$) $(100 \mathrm{ml})$. After cooling, the solvent was removed in vacuum to provide the crude product which recrystallised from ethanol to give 7. The physical and spectral data of compounds $\mathbf{6}$ and $\mathbf{7}$ are as follows:
(E) 8-Acetoxy-2-(4-chlorostyryl)quinoline (6). Pale yellow crystals, yield 41\%; m.p. 100-101 ${ }^{\circ} \mathrm{C}$; IR (KBr) v (cm^{-1}): 3090, 3050, 3010, 2942, 2961 (CH), 1760 (CO); ${ }^{1} \mathrm{H}$ NMR (500 MHz ,
$\left.\mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}}: 8.12-7.38(\mathrm{~m}, 9 \mathrm{H}$, aromatic), $7.63(\mathrm{~d}, J=17 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}), 7.47(\mathrm{~d}, J=17 \mathrm{~Hz}, 1 \mathrm{H}$, $=\mathrm{CH}), 2.60\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{c}: 169.83(\mathrm{CO}), 155.45(\mathrm{C}-2)$, 147.35 (C-8), 140.87 (C-1a), 136.53 (C-4), 134.42 (=CH), 129.35 (=CH), 128.63 (C-4a), 125.88 (C-6), 125.57 (C-5), 121.78 (C-7), $120.20(\mathrm{C}-3), 21.06\left(\mathrm{CH}_{3}\right), 134.96,133.47,129.01,128.57$ (aromatic); ${ }^{13} \mathrm{C}$ NMR-DEPT spectrum at $135^{\circ} \mathrm{CH}, \mathrm{CH}_{3}$ [positive (up)], CH_{2} [negative (down)], revealed the following signals at $\delta \mathrm{c}: 136.53(\mathrm{C}-4 \uparrow), 134.42(=\mathrm{CH} \uparrow), 129.35(=\mathrm{CH} \uparrow), 129.01$ (aromatic \uparrow), 128.57 (aromatic \uparrow), $125.88(\mathrm{C}-6 \uparrow), 125.57(\mathrm{C}-5 \uparrow), 121.78(\mathrm{C}-7 \uparrow), 120.20(\mathrm{C}-3$ \uparrow), $21.06\left(\mathrm{CH}_{3} \uparrow\right)$. In the DEPT spectrum at 90° only CH signals are positive (up) and showed $\delta \mathrm{c}$: $136.53(\mathrm{C}-4 \uparrow), 134.42(=\mathrm{CH} \uparrow), 129.35(=\mathrm{CH} \uparrow), 129.01$ (aromatic \uparrow), 128.57 (aromatic \uparrow), $125.88(\mathrm{C}-6 \uparrow), 125.57(\mathrm{C}-5 \uparrow), 121.78(\mathrm{C}-7 \uparrow), 120.20(\mathrm{C}-3 \uparrow)$. In the DEPT spectrum at 45° $\left(\mathrm{CH}, \mathrm{CH}_{2}\right.$ and CH_{3} positive) revealed signals at $\delta \mathrm{c}$: $136.53(\mathrm{C}-4 \uparrow), 134.42(=\mathrm{CH} \uparrow), 129.35$ $(=\mathrm{CH} \uparrow), 129.01$ (aromatic \uparrow), 128.57 (aromatic \uparrow), $125.88(\mathrm{C}-6 \uparrow), 125.57(\mathrm{C}-5 \uparrow), 121.78(\mathrm{C}-7$ $\uparrow), 120.20(\mathrm{C}-3 \uparrow), 21.06\left(\mathrm{CH}_{3} \uparrow\right) ; \mathrm{MS} m / z(\%): 325\left[\mathrm{M}^{+}+2\right],(0.3), 323[\mathrm{M}]^{+},(1), 283[\mathrm{M}]^{+}(11)$, $281\left[\mathrm{M}^{+}+2\right]$ (33), 280 (100), 170 (3), 144 (4), 113 (44), 74 (54), 50 (72); Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{ClNO}_{2}$: C, 70.48 ; H, 4.36; N, 4.33. Found: C, 70.49 ; H, 4.39; N, 4.36%.
(E) 2-(4-Chlorostyryl)-8-hydroxyquinoline (7). Yellow needles, yield 34\%; m.p. 142-143 ${ }^{\circ} \mathrm{C}$; [Lit. m.p. $\left.150{ }^{\circ} \mathrm{C}\right]^{1 \mathrm{ffg}}$; IR (KBr) v $\left(\mathrm{cm}^{-1}\right): 3349(\mathrm{OH}), 3050,3020,2972,2865(\mathrm{CH}) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{H}}: 9.85(\mathrm{bs}, 1 \mathrm{H}, \mathrm{OH}), 8.32-7.12(\mathrm{~m}, 9 \mathrm{H}$, aromatic), $8.14(\mathrm{~d}, J=16 \mathrm{~Hz}, 1 \mathrm{H}$, $=\mathrm{CH}), 7.51(\mathrm{~d}, J=16 . \mathrm{Hz}, 1 \mathrm{H},=\mathrm{CH}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{c}: 160.25(\mathrm{C}-2), 153.10(\mathrm{C}-$ 8), $138.12(\mathrm{C}-1 \mathrm{a}), 136.54(\mathrm{C}-4), 135.15(=\mathrm{CH}), 131.62(=\mathrm{CH}), 129.58(\mathrm{C}-4 \mathrm{a}), 127.72(\mathrm{C}-6)$, 121.04 (C-3), 117.55 (C-5), 111.21 (C-7), 135.44, 133.18, 128.96, 128.91 (aromatic); MS m/z (\%): $283\left[\mathrm{M}^{+}+2\right](32), 281[\mathrm{M}]^{+}$(100), 170 (2), 144 (4), 113 (31), 74 (18), 50 (31); Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{ClNO}: \mathrm{C}, 72.47$; H, 4.29; N, 4.97. Found: C, $72.50 ; \mathrm{H}, 4.31$; N, 4.99%.
Method B. 8-Hydroxy-2-methylquinoline 1b $(0.01 \mathrm{mmol})$ and p-chlorobenzaldehyde (0.02 mmol) were mixed thoroughly using mortar and put in an open vessel. Then the mixture was exposed to Microwave irradiation for 4 min . The oven was operated at 70% power (560 W) in a two step mode with interval ($2 \mathrm{~min}-30 \mathrm{~s}-2 \mathrm{~min}$). After the reaction, the mixture was allowed to cool down and $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{ml})$ was added. The crude product was filtered, washed with $\mathrm{Et}_{2} \mathrm{O}$ (15 ml) and purified by recrystallization from ethanol to give 7 (m.p. and mixed m.p.) yield 40%; (Lit. m.p. $150^{\circ} \mathrm{C}$) ${ }^{\mathrm{lf}, g}$

General procedure for the preparation of 9-(4-chlorostyryl)-4H-pyrano[3,2-h]quinoline derivatives (8a,b and 9a,b)

A solution of (E) 2-(4-chlorostyryl)-8-hydroxyquinoline $7(0.01 \mathrm{mmol})$ in $\mathrm{EtOH}(30 \mathrm{ml})$ was treated with α-cyano- p-chloro/bromocinnamonitrile $\mathbf{2 a}, \mathbf{b}(0.01 \mathrm{mmol})$ or ethyl α-cyano- p chloro/bromocinnamate $2 \mathbf{d}, \mathbf{e}(0.01 \mathrm{mmol})$ and piperidine $(0.5 \mathrm{ml})$. The reaction mixture was heated until complete precipitation occurred (reaction times: 15 min . for 2a,b and 30 min . for $\mathbf{2 d}, \mathbf{e})$. The solid product which formed was collected by filtration and recrystallised from benzene or ethanol to give $\mathbf{8 a , b}$ and $\mathbf{9 a}, \mathbf{b}$. The physical and spectral data of compounds $\mathbf{8 a}, \mathbf{b}$ and $\mathbf{9 a}, \mathbf{b}$ are as follows:
(E) 2-Amino-4-(4-chlorophenyl)-9-(4-chlorostyryl)-4H-pyrano[3,2-h]quinoline-3-carbonitrile (8a). Pale yellow needles, yield 91\%; m.p. 244-245 ${ }^{\circ} \mathrm{C}$; $\mathrm{IR}(\mathrm{KBr}) v\left(\mathrm{~cm}^{-1}\right): 3417,3310,3182$ $\left(\mathrm{NH}_{2}\right), 3070,3040,2950,2872(\mathrm{CH}), 2189(\mathrm{CN}) ;{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta_{\mathrm{H}}: 8.34-7.14$ $(\mathrm{m}, 12 \mathrm{H}$, aromatic), $8.00(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}), 7.52(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}), 7.21$ (bs, $2 \mathrm{H}, \mathrm{NH}_{2}$ cancelled by $\mathrm{D}_{2} \mathrm{O}$), 5.01 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-4$); ${ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}) $\delta \mathrm{c}: 160.25$ (C2), 155.13 (C-9), 144.59 (C-10b), 137.44 (C-10a), 136.53 (C-7), 133.18 (=CH), 128.95 (=CH), 128.72 (C-5), 126.89 (C-6a), 123.41 (C-8), 121.72 (C-4a), 121.00 (C-6), 120.28 (CN), 56.00 (C3), 40.42 (C-4), $142.82,135.15,133.42,131.26,129.57,128.89,126.34$ (aromatic); ${ }^{13}$ C NMRDEPT spectrum at $135^{\circ} \mathrm{CH}, \mathrm{CH}_{3}$ [positive (up)], CH_{2} [negative (down)], revealed the following signals at $\delta \mathrm{c}$: $136.53(\mathrm{C}-7 \uparrow$), 133.42 (aromatic \uparrow), $133.18(=\mathrm{CH} \uparrow$), 129.57 (aromatic \uparrow), 128.95 $(=\mathrm{CH} \uparrow), 128.89$ (aromatic \uparrow), $128.72(\mathrm{C}-5 \uparrow$), 126.34, (aromatic \uparrow), 123.41 (C-8 \uparrow), 121.00 (C-6 \uparrow), $40.42(\mathrm{C}-4 \uparrow)$. In the DEPT spectrum at 90° only CH signals are positive (up) and showed $\delta \mathrm{c}$: $136.53(\mathrm{C}-7 \uparrow), 133.42$ (aromatic \uparrow), $133.18(=\mathrm{CH} \uparrow), 129.57$ (aromatic \uparrow), $128.95(=\mathrm{CH} \uparrow$), 128.89 (aromatic \uparrow), 128.72 ($\mathrm{C}-5 \uparrow$), 126.34 , (aromatic \uparrow), 123.41 ($\mathrm{C}-8 \uparrow$), 121.00 (C-6 \uparrow), 40.42 $(\mathrm{C}-4 \uparrow)$. In the DEPT spectrum at $45^{\circ}\left(\mathrm{CH}, \mathrm{CH}_{2}\right.$ and CH_{3} positive) revealed signals at $\delta \mathrm{c}: 136.53$ $(\mathrm{C}-7 \uparrow), 133.42$ (aromatic \uparrow), $133.18(=\mathrm{CH} \uparrow$), 129.57 (aromatic \uparrow), $128.95(=\mathrm{CH} \uparrow), 128.89$ (aromatic \uparrow), $128.72(\mathrm{C}-5 \uparrow$), 126.34, (aromatic \uparrow), $123.41(\mathrm{C}-8 \uparrow), 121.00(\mathrm{C}-6 \uparrow), 40.42(\mathrm{C}-4$ \uparrow); MS m/z (\%): $473\left[\mathrm{M}^{+}+4\right]$ (2.71), $471\left[\mathrm{M}^{+}+2\right]$ (18.51), $469[\mathrm{M}]^{+}$(28.91), $360\left[\mathrm{M}^{+}+2\right]$ (30.97), $358[\mathrm{M}]^{+}$(93.49), 247 (3), 221(3), 166 (29), 126 (68), 74 (100), 50 (75); Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{17} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}: \mathrm{C}, 68.95$; H, 3.64; N, 8.93. Found: C, 69.01 ; H, 3.69; N, 8.99%.
(E) 2-Amino-4-(4-bromophenyl)-9-(4-chlorostyryl)-4H-pyrano[3,2-h]quinoline-3-carbonitrile (8b). Pale yellow needles, yield 90%; m.p. $254-255^{\circ} \mathrm{C}$; $\mathrm{IR}(\mathrm{KBr}) v\left(\mathrm{~cm}^{-1}\right)$: 3384, 3315, 3199 $\left(\mathrm{NH}_{2}\right), 3080,3050,2968,2872(\mathrm{CH}), 2198(\mathrm{CN}) ;{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta_{\mathrm{H}}: 8.34-7.14$ ($\mathrm{m}, 12 \mathrm{H}$, aromatic), $8.00(\mathrm{~d}, J=16 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}$), $7.53(\mathrm{~d}, J=16 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}), 7.21(\mathrm{bs}, 2 \mathrm{H}$, NH_{2}, cancelled by $\mathrm{D}_{2} \mathrm{O}$), 5.00 (s, $1 \mathrm{H}, \mathrm{H}-4$); ${ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}) δ c: 160.25 (C-2), 155.14 (C-9), 145.00 (C-10b), 137.43, (C-10a), 136.53 (C-7), 133.43 (=CH), 128.95 (=CH), 126.89 (C-6a), 126.33 (C-5), 121.65 (C-4a), 123.41 (C-6), 121.00 (C-8), 120.15 (CN), 56.01 (C3), 40.50 (C-4), $142.82,135.15,133.19,131.64,129.94,128.89,128.29,120.28$ (aromatic); ${ }^{13} \mathrm{C}$ NMR-DEPT spectrum at $135^{\circ} \mathrm{CH}, \mathrm{CH}_{3}$ [positive (up)], CH_{2} [negative (down)], revealed the following signals at $\delta \mathrm{c}$: $136.53(\mathrm{C}-7 \uparrow), 133.43(=\mathrm{CH} \uparrow$), 131.64 (aromatic \uparrow), 129.94 (aromatic \uparrow), 128.89 (aromatic \uparrow), 128.29 (aromatic \uparrow), $128.95(=\mathrm{CH} \uparrow$), 126.33 (C-5 \uparrow), 123.41 (C-6 \uparrow), $121.00(\mathrm{C}-8 \uparrow), 40.50(\mathrm{C}-4 \uparrow)$. In the DEPT spectrum at 90° only CH signals are positive (up) and showed $\delta \mathrm{c}: 136.53(\mathrm{C}-7 \uparrow), 133.43(=\mathrm{CH} \uparrow), 131.64$ (aromatic \uparrow), 129.94 (aromatic \uparrow), 128.89 (aromatic \uparrow), 128.29 (aromatic \uparrow), $128.95(=\mathrm{CH} \uparrow), 126.33(\mathrm{C}-5 \uparrow), 123.41$ (C-6 \uparrow), $121.00(\mathrm{C}-8 \uparrow), 40.50(\mathrm{C}-4 \uparrow)$. In the DEPT spectrum at $45^{\circ}\left(\mathrm{CH}, \mathrm{CH}_{2}\right.$ and CH_{3} positive) revealed signals at $\delta \mathrm{c}$: $136.53(\mathrm{C}-7 \uparrow$), $133.43(=\mathrm{CH} \uparrow$), 131.64 (aromatic \uparrow), 129.94 (aromatic \uparrow), 128.89 (aromatic \uparrow), 128.29 (aromatic \uparrow), $128.95(=\mathrm{CH} \uparrow$), $126.33(\mathrm{C}-5 \uparrow$), $123.41(\mathrm{C}-6 \uparrow)$, $121.00(\mathrm{C}-8 \uparrow), 40.50(\mathrm{C}-4 \uparrow) ; \mathrm{MS} \mathrm{m} / \mathrm{z}(\%): 517\left[\mathrm{M}^{+}+4\right](1.55), 515\left[\mathrm{M}^{+}+2\right](5.95), 513[\mathrm{M}]^{+}$ (4.55), $360\left[\mathrm{M}^{+}+2\right]$ (33.42), $358[\mathrm{M}]^{+}$(100), 221 (2), 166 (19), 101 (26), 75 (70), 50 (42); Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{17} \mathrm{BrClN}_{3} \mathrm{O}: \mathrm{C}, 62.99$; H, 3.33; N, 8.16. Found: C, 63.02; H, 3.35; N, 8.19%.
(E) Ethyl 2-amino-4-(4-chlorophenyl)-9-(4-chlorostyryl)-4H-pyrano[3,2-h]quinoline-3carboxylate (9a). Colourless needles, from ethanol; m.p. 192-193 ${ }^{\circ} \mathrm{C}$; 82%; IR (KBr) v $\left(\mathrm{cm}^{-1}\right)$: 3409, $3296\left(\mathrm{NH}_{2}\right), 3050,3035,2980,2930,2900(\mathrm{CH}), 1677(\mathrm{CO}) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{H}}: 8.12-7.19(\mathrm{~m}, 12 \mathrm{H}$, aromatic), $7.67(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}), 7.27(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}$, $=\mathrm{CH}), 6.88\left(\mathrm{bs}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 5.09(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4), 4.13\left(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.22(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}$, CH_{3}); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{c}: 169.06(\mathrm{CO}), 160.29(\mathrm{C}-2), 155.69(\mathrm{C}-9), 145.77(\mathrm{C}-$ 10b), 142.85 (C-10a), 134.78 (C-7), $134.35(=\mathrm{CH}), 129.30(=\mathrm{CH}), 128.43$ (C-5), 127.29 (C-6a), 125.48 (C-4a), $123.20(\mathrm{C}-6), 119.53(\mathrm{C}-8), 77.89(\mathrm{C}-3), 59.59\left(\mathrm{CH}_{2}\right), 40.71(\mathrm{C}-4), 14.39\left(\mathrm{CH}_{3}\right)$, $136.98,134.64,133.04,132.09,129.09,128.57,127.51,126.93$ (aromatic); MS m/z (\%): 516 $[\mathrm{M}]^{+}(3), 444$ (4), $282\left[\mathrm{M}^{+}+2\right],(31.67), 280[\mathrm{M}]^{+},(97.74), 170$ (3), 101 (46), 75(100), 50 (58); Anal. Calcd for $\mathrm{C}_{29} \mathrm{H}_{22} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 67.32; H, 4.29; N, 5.41. Found: C, 67.28; H, 4.27; N, 5.39%.
(E) Ethyl 2-amino-4-(4-bromophenyl)-9-(4-chlorostyryl)-4H-pyrano[3,2-h]quinoline-3carboxylate (9b). Colourless needles, yield 81%; m.p. 206-207 ${ }^{\circ} \mathrm{C}$; IR (KBr) $v\left(\mathrm{~cm}^{-1}\right): 3418$, $3297\left(\mathrm{NH}_{2}\right), 3050,3046,2985,2930(\mathrm{CH}), 1674(\mathrm{CO}) ;{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta_{\mathrm{H}}: 9.61$ (bs, $2 \mathrm{H}, \mathrm{NH}_{2}$, cancelled by $\mathrm{D}_{2} \mathrm{O}$), 8.33-7.23 (m, 12 H , aromatic), $8.15(\mathrm{~d}, J=16 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH})$, $7.98(\mathrm{~d}, J=16 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}), 5.09(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4), 4.01\left(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.10(\mathrm{t}, J=7 \mathrm{~Hz}$, $3 \mathrm{H}, \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta \mathrm{c}: 168.14$ (CO), 160.81 (C-2), 155.11 (C-9), 152.93 (C-10b), 142.77 (C-10a), 136.51 (C-7), $135.17(=\mathrm{CH}), 129.64(=\mathrm{CH}), 128.88$ (C-5), 127.72 (C$6 \mathrm{a}), 121.5$ (C-4a), $119.13(\mathrm{C}-6), 117.55(\mathrm{C}-8), 75.70(\mathrm{C}-3), 58.75\left(\mathrm{CH}_{2}\right), 40.09(\mathrm{C}-4), 14.27$ $\left(\mathrm{CH}_{3}\right), 147.14,138.12,133.30,132.92,131.13,129.12,128.97,124.95$ (aromatic); MS $m / z(\%)$: $560[\mathrm{M}]^{+}$, (4), 406 (5), 280 (82), 225 (6), 101 (32), 75 (35), 62 (100) ; Anal. Calcd for $\mathrm{C}_{29} \mathrm{H}_{22} \mathrm{BrClN}_{2} \mathrm{O}_{3}$: C, 61.99; H, 3.95; N, 4.99. Found: C, $62.02 ; \mathrm{H}, 4.00 ; \mathrm{N}, 5.03 \%$.

Acknowledgements

This study was supported by the King Abdulaziz City for Science and Technology (KACST), No. A-S-11-0560.We also deeply thanks Mr. Ali Y. A. Alshahrani for making the ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR samples.

References

1. (a) Ramesh, R. D.; Manian, R. S. ; Raghunathan, R.; Sainath, S.; Raghunathan, M. Bioorg. Med. Chem. 2009, 17, 660. (b) Larghi, E. L.; Bohn, M. L.; Kaufman, T. S. Tetrahedron 2009, 65, 4257. (c) Xin-Hua Liu, Jing Zhu, An-na Zhou, Bao-An Song, Hai-Liang Zhu, Lin-Shan bai, Pinaki S. Bhadury, Chun-Xiu Pan, Bioorg. Med. Chem. 2009, 17, 1207. (d) Ganesh, T.; Min, J.; Thepchatri, P.; Du, Y.; Li, L.; Lewis, I.; Wilson, L.; Chiosis, H. Fu, G.; Dingledine, R.; Liotta, D.; Snyder, J. P.; Sun, A. Bioorg. Med. Chem. 2008, 16, 6903. (e) Righi, G.; Ciambrone, S.; Bonini, C.; Campaner, P. Bioorg. Med. Chem. 2008, 16, 902. (f)

Musiol, R.; Jampilek, J.; Kralova, K.; Richardson, D. R.; Finster, J.; Kalinowski, D.; Podeszwa, B.; Niedbala, H.; Palka, A.; Polanski, J. Bioorg. Med. Chem. 2007, 15, 1280. (g) Musiol, R.; Jampilek, J.; Buchta, V.; Silva, L.; Niedbala, H.; Podeszwa, B.; Palka, A.; Majerz-Maniecka, K.; Oleksyn, B.; Polanski, J. Bioorg. Med. Chem. 2006, 14, 3592. (h) Vazquez, M. T.; Romero, M.; Pujol, M. D. Bioorg. Med. Chem. 2004, 12, 949. (i) Narender, P.; Srinivas, U.; Ravinder, M.; Ch. Ramesh, B.; K.; Gangadasu, B.; Murthy, U. S. N.; Jayathirtha Rao, V. Bioorg. Med. Chem. 2006, 14, 4600.
2. Kaur, K.; Jain, M.; Kaur, T.; Jain, R. Bioorg. Med. Chem. 2009, 17, 3229.
3. Behforouz, M.; Cai, W.; Mohammadi, F.; Stocksdale, M. G.; Gu, Z.; Ahmadian, M.; Baty, D. E.; Etling, M. R.; Al-Anzi, C. H.; Swiftney, T. M.; Tanzer, L. R.; Merriman, R. L.; Behforouz, N. C. Bioorg. Med. Chem. 2007, 15, 495.
4. Abas, F.; Lajis, N. H.; Israf, D. A.; Khozirah, S.; Umi Kalsom, Y. Food Chemistry 2006, 95, 566.
5. Rocha, L. G.; Almeida, J. R. G. S.; Macêdo, R. O.; Barbosa-Filho, J. M. Phytomedicine 2005, 12, 514.
6. Reen-Yen Kuo, Fang-Rong Chang, Chung-Yi Chen, Che-Ming Teng, Hsin-Fu Yen, YangChang Wu Phytochemistry 2001, 57, 421.
7. Watson, A. A.; Fleet, G. W. J.; Asano, N.; Molyneux, R. J.; Nugh, R. J. Phytochemistry 2001, 56, 265.
8. Atwell, G. J.; Baguley, B.C.; Denny, W.A. J. Med. Chem. 1989, 32, 396.
9. Chen, Y. L.; Chen, I. L.; Tzeng, C. C.; Wang, T. C. Helv. Chim. Acta 2000, 83, 989.
10. Majerz-Maniecka, K.; Oleksyn, B.; Musiol, R.; Podeszwa, B.; Polanski, J. Sci. Pharm. 2005, 73, 194.
11. (a) Thomas Leonard, J.; Roy, K. Eur. J. Med. Chem. 2008, 43, 81. (b) Polanski, J.; Zouhiri, F.; Jeanson, L.; Desmaele, D.; d'Angelo, J.; Mouscadet, J.; Gieleciak, R.; Gasteiger, J.; Bret, M. L.; J. Med. Chem. 2002, 45, 4647. (c) Mekouar, K.; Mouscadet, J. F.; Desmaele, D.; Subra, F.; Leh, H.; Savoure, D.; Auclair, C.; d'Angelo, J. J. Med. Chem. 1998, 41, 2846. (d) Zouhiri, F.; Danet, M.; Bernard, C.; Normand-Bayle, M.; Mouscadet, J. F.; Leh, H.; Thomas, C. M.; Mbemba, G.; d'Angelo, J.; Desmaele, D. Tetrahedron Lett. 2005, 46, 2201. (e) Pommier, Y.; Johnson, A. A.; Marchand, C. Nat. Rev. Drug. Discov. 2005, 4, 236. (f) Jiang, J. B.; Hesson, D. P.; Dusak, B. A.; Dexter, D. L.; Kang, G. J.; Hamel, E. J. Med. Chem. 1990, 33, 1721.
12. El-Agrody, A. M. J. Chem. Res. (S) 1994, 280.
13. El-Agrody, A. M.; Emam, H. A.; El-Hakim, M. H.; Abd El-Latif, M. S.; Fakery, A.H. J. Chem. Res. (S) 1997, 320.
14. El-Agrody, A. M.; Emam, H. A.; El-Hakim, M. H.; Abd El-Latif, M. S.; Fakery, A.H. J. Chem. Res. (M) 1997, 2039.
15. Bedair, A. H.; El-Hady, N. A.; Abd El-Latif, M. S.; Fakery, A.H.; El-Agrody, A.M. IL Farmaco 2000, 55, 708.
16. El-Agrody, A. M.; El-Hakim, M. H.; Abd El-Latif, M. S.; Fakery, A. H.; El-Sayed, E. S. M.; El-Ghareab, K. A. Acta Pharm. 2000, 50, 111.
17. Sayed, A. Z.; El-Hady, N. A.; El-Agrody, A. M. J. Chem. Res. (S) 2000, 146.
18. El-Agrody, A. M.; Abd El-Latif, M. S.; El-Hady, N. A.; Fakery, A. H.; Bedair, A. H. Molecules 2000, 6, 519.
19. Bedair, A. H.; Emam, H. A.; El-Hady, N. A.; Ahmed, K.A.R.; El-Agrody, A. M. IL Farmaco 2001, 56, 965.
20. El-Agrody, A. M.; Eid, F. A.; Emam, H. A.; Mohamed, H. M.; Bedair, A. H. Z. Naturforsch., Teil B 2002, 57, 579.
21. Khafagy, M. M.; Abd El-Wahab, A. H. F.; Eid, F. A.; El-Agrody, A. M. IL Farmaco 2002, 57, 715.
22. Eid, F. A.; Bedair, A. H.; Emam, H. A.; Mohamed, H. M.; El-Agrody, A. M. Al-Azhar Bull. Sci. 2003, 14, 311.
23. Abd-El-Aziz, A. S.; El-Agrody, A. M.; Bedair, A. H.; Christopher Corkery, T.; Ata, A. Heterocycles 2004, 63, 1793.
24. Abd-El-Aziz, A. S.; Mohamed, H. M.; Mohammed, S.; Zahid, S.; Ata, A.; Bedair, A. H.; ElAgrody, A. M.; Harvey, P. D. J. Heterocycl. Chem. 2007, 44, 1287.
25. Sabry, N. M.; Mohamed, H. M.; Khattab , Essam Shawky A. E. H.; Motlaq, S. S.; ElAgrody, A. M. Eur. J. Med. Chem. 2011, 46, 765.
26. El-Agrody, A. M.; Sabry, N. M.; Motlaq, S. S. J. Chem. Res. 2011, 35, 77.
27. Khalil, Z. H.; Abdel-Hafez, A. A.; Geies A. A.; kamal El-Dean, A. M. Bull. Chem. Soc. Jpn. 1991, 64, 668.
28. Bloxham, J.; Dell, C.P.; Smith, C.W. Heterocycles 1994, 38, 399.
29. El-Gaby, M. S. A. J. of the Chinese Chem. Soc. 2004, 51, 125.
30. Hendrickx, E.; Zhang, Y.; Ferrio, K. B.; Herlocker, J. A.; Anderson, J.; Armstrong, N. R.; Mash, E. A.; Persoons, A. P.; Peyghambarian, N.; Kippelen, B. J. Mater.Chem.1999, 9, 2251.
31. Meciarova, M.; Toma, S.; Magdolen,P. Ultrasonics Sonochemistry 2003, 10, 265.

