Synthesis of 3-(2-aminoethyl)-5-hydroxy-1H-pyrazole derivatives

Uroš Grošelj, ${ }^{\text {a }}$ David Kralj, ${ }^{\text {a }}$ Jernej Wagger, ${ }^{\text {a Georg Dahmann, }}{ }^{\text {b }}$ Branko Stanovnik, ${ }^{\text {a }}$ and Jurij Svete*a
${ }^{a}$ Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, P.O. Box 537, 1000 Ljubljana, Slovenia
${ }^{b}$ Boehringer Ingelheim Pharma GmbH \& Co. KG, Medicinal Chemistry, Birkendorfer Strasse 65, 88397 Biberach, Germany
E-mail: jurij.svete@fkkt.uni-lj.si

Dedicated to Professor Reiner Beckert, Friedrich Schiller University Jena, on the occasion of his $60^{\text {th }}$ anniversary

DOI: http://dx.doi.org/10.3998/ark.5550190.0013.305

Abstract

Treatment of β-keto ester $\mathbf{8}$ with hydrazines $9 \mathbf{a - g}$ gave 1'-substituted tert-butyl 2-(5-hydroxy-1H-pyrazol-3-yl)ethylcarbamates 10a-e and 2-(5-oxo-2,5-dihydro-1 H -pyrazol-3-yl)ethylcarbamates 11f,g. Acidolytic deprotection of 10b,c afforded the corresponding 3-(2-aminoethyl)-5-hydroxy$1 H$-pyrazoles $\mathbf{6 b}, \mathbf{c}$ in good yields. Acylation of $\mathbf{6}$ gave either the N-acyl compounds $\mathbf{1 2 b}, \mathbf{c}$ and 13c, or the N, O-diacyl derivative 14. Next, three N, N-dialkyl analogues $\mathbf{1 5 a}, \mathbf{b}$ and 26c were prepared from dimethyl acetone-1,3-dicarboxylate 21 via condensation with hydrazines 9a and $\mathbf{9 h}$ followed by hydrolysis of the esters 22a,b, amidation of the carboxylic acids 23a,b, and reduction of the tertiary carboxamides $\mathbf{2 4} \mathbf{a}$ and $\mathbf{2 5 b}, \mathbf{c}$.

Keywords: Acetone-1,3-dicarboxylates, enaminones, hydrazines, pyrazole, histamine analogues

Introduction

Novel 2-(heteroaryl)ethylamine-containing molecules represent important targets in medicinal and synthetic organic chemistry because these compounds are synthetic analogs of histamine $\mathbf{1}$, tyramine, dopamine, tryptamine, serotonin, and melatonin, which are involved as chemical messengers in numerous biological processes. ${ }^{1}$

Pyrazoles ${ }^{2}$ and imidazoles ${ }^{3}$ are important classes of structurally closely related heterocyclic compounds. The ability of 1 -unsubstituted derivatives to act as proton acceptor and donor simultaneously is probably the most important common feature of both systems. In contrast to
naturally abundant imidazoles, the occurrence of pyrazoles among natural products is rare.
Nevertheless, numerous synthetic pyrazole derivatives found use in various pharmaceutical, agrochemical, and other applications, and a general interest in the chemistry of pyrazoles is still continuing. ${ }^{2}$

Recently, a part of our research has been focused on the synthesis of histamine analogues 2-5 based on aminoethyl functionalized pyrazole scaffold. ${ }^{4-7}$ Within this context, syntheses of analogues $\mathbf{2}^{4}$ and $\mathbf{3}^{5}$ have been developed first, followed by synthesis of conformationally constrained histamine analogues $\mathbf{4}^{6}$ and $\mathbf{5}^{7}$. Next, we focused our attention on 3-(2-aminoethyl)pyrazol-5-ols 6 as novel type of histamine analogues (Figure 1).

Figure 1. Histamine 1 and its analogues 2-6.

We found pyrazolols $\mathbf{6}$ interesting because they are structurally closer analogues of histamine 1 than their known regioisomers $\mathbf{2}$. Like histamine $\mathbf{1}$, compounds $\mathbf{6}$ have the aminoethyl residue attached at the position adjacent to the ring nitrogen atom. Besides, 3-(2-aminophenyl)pyrazolols could also serve as useful building blocks for further transformations including combinatorial studies. As a result of our research efforts in this field, we now report two simple syntheses of title compounds $\mathbf{6}$ and their derivatives.

Results and Discussion

First, a simple and straightforward three-step synthesis of 3-(2-aminoethyl)-1H-pyrazol-5-ols 6 from N-Boc- β-alanine 7 was developed. Following literature procedure, ${ }^{5} \beta$-keto ester $\mathbf{8}$ was prepared from 7 by Masamune-Claisen type condensation. ${ }^{8}$ Further treatment of the β-keto ester $\mathbf{8}$ with hydrazine derivatives $9 \mathbf{9}-\mathbf{g}$ in refluxing methanol gave 1'-substituted tert-butyl 2-(5-hydroxy-1H-pyrazol-3-yl)ethylcarbamates 10a-e and 2-(5-oxo-2,5-dihydro-1H-pyrazol-3yl)ethylcarbamates 11f,g in $48-83 \%$ yields. Subsequent acidolytic deprotection of 10b and 10c with $\mathrm{HCl}-\mathrm{EtOAc}$ furnished the title compounds $\mathbf{6 b}$ and $\mathbf{6 c}$ in 78% and 84% yield, respectively. Treatment of $\mathbf{6 b}, \mathbf{c}$ with acetic anhydride in methanol produced the N -acetylated compounds 12b,c in good yields. Similarly, treatment of $\mathbf{6 c}$ with benzoyl chloride in methanol in the presence of triethylamine gave the N -benzoylated compound 13c, whereas benzoylation in
dichloromethane furnished the N,O-dibenzoylated compound 14 in 79% yield. O-Benzoylation was not really surprising, since pyrazolones are readily O -acylated with acid chlorides and anhydrides (Scheme 1, Table 1). ${ }^{2}$

Scheme 1

Reagents and conditions: i: CDI , MeCN , r.t., then potassium monomethyl malonate, MgCl_{2}, r.t. ii: $\mathrm{R}^{1} \mathrm{NHNH}_{2} \mathbf{9 a - g}, \mathrm{MeOH}$, reflux. iii: $\mathrm{HCl}-\mathrm{EtOAc}$, r.t. iv: $\mathrm{Ac}_{2} \mathrm{O}$ (1 equiv.) or $\mathrm{PhCOCl}(1$ equiv.), $\mathrm{MeOH}, \mathrm{Et}_{3} \mathrm{~N}, 0 \rightarrow 20^{\circ} \mathrm{C}$. v: PhCOCl (2 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{Et}_{3} \mathrm{~N}$, r.t.

Table 1. Selected experimental data for compounds 6 and 10-13

Compound	R^{1}	R^{2}	Yield (\%)
$\mathbf{6 b}$	Me	-	78
$\mathbf{6 c}$	Ph	-	84
$\mathbf{1 0 a}$	H	-	48
$\mathbf{1 0 b}$	Me	-	73
$\mathbf{1 0 c}$	Ph	-	83
$\mathbf{1 0 d}$	4-chlorophenyl	-	61
$\mathbf{1 0 e}$	4-carboxyphenyl	-	55
$\mathbf{1 1 f}$	6-phenylpyridazin-3-yl	-	81
$\mathbf{1 1 g}$	imidazo[1,2-b]pyridazin-6-yl	-	66
$\mathbf{1 2 b}$	Me	Me	62
$\mathbf{1 2 c}$	Ph	Me	87
$\mathbf{1 3 c}$	Ph	Ph	55

Next, we tried to synthesize the N, N-dialkyl analogues 15 by a similar synthetic pathway. N, N-dialkyl- β-alanines 19 seemed to be obvious starting materials, since they are available by 1,4 -addition of secondary amines $\mathbf{1 7}$ to methyl acrylate $\mathbf{1 6}$ followed by hydrolysis of the esters 18. ${ }^{9}$ Indeed, alaninates $18 \mathbf{a}^{10 a}$ and $\mathbf{1 8 b}{ }^{10 b, c}$ were obtained in quantitative yield by addition of benzyl(methyl)amine 17a and pyrrolidine 17b to methyl acrylate $\mathbf{1 6}$ following a slightly modified literature procedure. ${ }^{10 \mathrm{a}}$ Hydrolysis of the esters 18a,b in aqueous NaOH , followed by neutralization, and isolation by ion-exchange chromatography gave the crude β-amino acids $\mathbf{1 9 a}^{11 \mathrm{a}}$ and $\mathbf{1 9 b ^ { 1 1 b }}$ in 77% and 80% yield, respectively. Unfortunately, all attempts to prepare the β-keto ester 20 by carboxymethylation of the β-amino acids 19a,b, either under MasamuneClaisen conditions, or by condensation with Meldrum's acid followed by methanolysis, failed. Nevertheless, this was not surprising, since changing the NHBoc group of compound 7 ($c f$. Scheme 1) to a strongly basic tertiary amino group of compounds $\mathbf{1 8}$ results in zwitterionic structure and, hence, different reactivity (Scheme 2).

Scheme 2

Reagents and conditions: i: $\mathrm{Bn}(\mathrm{Me}) \mathrm{NH} \mathbf{1 7 a}$ or pyrrolidine $\mathbf{1 7 b}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t. ii: $\mathrm{NaOH}, \mathrm{H}_{2} \mathrm{O}$, r.t. iii: CDI, MeCN , r.t., then potassium monomethyl malonate, MgCl_{2}, r.t. (Method A). iv: Meldrum's acid, DMAP, DCC, THF, r.t., then MeOH, reflux (Method B). v: $\mathrm{R}^{1} \mathrm{NHNH}_{2} \mathbf{9 c}$, \mathbf{h}, MeOH , reflux.

Our alternative strategy for the preparation of the desired products $\mathbf{1 5}$ started from (pyrazol-3-yl)acetates 22, which are easily available from dimethyl acetone-1,3-dicarboxylate 21 and monosubstituted hydrazines $9 .{ }^{2,12}$ First, methyl (pyrazol-3-yl)acetates 22a,b were prepared from 21 following the literature procedure. ${ }^{12 a}$ Base-catalyzed hydrolysis of 22a,b gave the acids $\mathbf{2 3 a}, \mathbf{b}$, which were subsequently amidated with the secondary amines $\mathbf{1 7 a}-\mathbf{c}$ to give the carboxamides 24a and 25b,c in 42-79\% yields. Reduction of the carboxamides 24a and 25b,c with LiAlH_{4} in refluxing THF furnished the title compounds $\mathbf{1 5 a}$,b and $\mathbf{2 6 c}$ in $50-54 \%$ yields (Scheme 3, Table 2).

Scheme 3

Reagents and conditions: i: $\mathrm{R}^{1} \mathrm{NHNH}_{2} \mathbf{9 a}, \mathbf{h}, \mathrm{MeOH}$, reflux. ${ }^{12 \mathrm{a}}$ ii: $\mathrm{NaOH}-\mathrm{H}_{2} \mathrm{O}$, r.t. iii: CDI, MeCN , r.t., then $\mathrm{Bn}(\mathrm{Me}) \mathrm{NH} 17 \mathrm{a}$ or pyrrolidine 17b or $\mathrm{Bn}_{2} \mathrm{NH} 17 \mathrm{c}$, MeCN , r.t. iv: LiAlH_{4}, THF, $60^{\circ} \mathrm{C}$.

Table 2. Selected experimental data for compounds 15 and 22-26

Compound	R^{1}	R^{2}	R^{3}	Yield (\%)	
22a	Ph	-	-	$62^{12 \mathrm{a}}$	
22b	4-methoxyphenyl	-	-	43	
23a	Ph	-	-	94	
23b	4-methoxyphenyl	-	-	79	
24a	Ph	Me		$\mathrm{CH}_{2} \mathrm{Ph}$	48
25b	4-methoxyphenyl		$-\left(\mathrm{CH}_{2}\right)_{4} 4^{-}$		79
25c	Ph	$\mathrm{CH}_{2} \mathrm{Ph}$		$\mathrm{CH}_{2} \mathrm{Ph}$	42
$\mathbf{1 5 a}$	Ph	Me		$\mathrm{CH}_{2} \mathrm{Ph}$	50
$\mathbf{1 5 b}$	4-methoxyphenyl		$-\left(\mathrm{CH}_{2}\right)_{4}-$		54
26c	Ph	$\mathrm{CH}_{2} \mathrm{Ph}$	$\mathrm{CH}_{2} \mathrm{Ph}$	50	

The structures of novel compounds $\mathbf{6 b}, \mathbf{c}, \mathbf{1 0 a}-\mathbf{e}, \mathbf{1 1 f}, \mathbf{g}, \mathbf{1 2 b}, \mathbf{c}, \mathbf{1 3 c}, \mathbf{1 4}, \mathbf{1 5 a}, \mathbf{b}, \mathbf{2 2 b}, \mathbf{2 4 a}, \mathbf{2 5 b}, \mathbf{c}$, and 26c were determined by spectroscopic methods (IR, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, NOESY spectroscopy, and MS) and by elemental analyses for C, H, and N. Compounds 23a,b, 24a, and 25b,c were not obtained in analytically pure form. The identities of carboxamides 24a and 25b,c were confirmed by ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and HRMS, while the intermediate carboxylic acids 23a,b were characterized only by ${ }^{1} \mathrm{H}$ NMR and HRMS. Physical and spectral data for known compounds $\mathbf{1 8 a},{ }^{10 a} \mathbf{1 8 b},{ }^{10 b, c} \mathbf{1 9 a},{ }^{11 a} \mathbf{1 9 b},{ }^{11 \mathrm{~b}}$ and $\mathbf{2 2 a}{ }^{12 \mathrm{a}}$ were in agreement with the literature data.

Like related 5-hydroxypyrazoles, ${ }^{2-4,13}$ the novel derivatives 6, 10-13, 15, and 22-26 can exist in three tautomeric forms, the fully unsaturated "OH-tautomer" (5-hydroxy- 1 H -pyrazole, $\mathbf{6}, \mathbf{1 0}$, $\mathbf{1 2 - 1 5}, \mathbf{2 3}, 24)$ and the partially unsaturated "NH-tautomer" ($1 H$-pyrazol-3 $2 H$-one, 11) and "CH-tautomer" (1 H -pyrazol-5(4H)-one, 22, 25, 26). In the solid state, the tautomerism of novel compounds $6,10-13,15$, and $22-26$ was studied by IR. Absence of $\mathrm{C}=\mathrm{O}$ vibrations indicate that pyrazoles 6b,c and 15a,b exist as the 5-hydroxy-1H-pyrazoles (OH-tautomers), whereas absorption at $1700-1750 \mathrm{~cm}^{-1}$ is in agreement with the $1 H$-pyrazol- $5(4 H)$-one form for compounds $\mathbf{2 2 b}$, $\mathbf{2 5 b}, \mathbf{c}$, and $\mathbf{2 6 c}$ (CH-tautomers). Unambiguous discrimination between the $\mathrm{OH}-$ and the NH-tautomers for the N-acylated compounds $\mathbf{1 0} \mathbf{- 1 3}$ and $\mathbf{2 4}$ was not possible, due to carboxamide absorption at $\sim 1640 \mathrm{~cm}^{-1}$. However, the absorption band at $\sim 1690 \mathrm{~cm}^{-1}$ (Boc) and absence of $\mathrm{C}=\mathrm{O}$ vibrations at $\sim 1640 \mathrm{~cm}^{-1}$ support the OH -tautomeric form of $\mathbf{1 0 a}-\mathbf{e}$, while absorption bands at $\sim 1690 \mathrm{~cm}^{-1}$ and $\sim 1640 \mathrm{~cm}^{-1}$ are in agreement with the NH -tautomeric form of 1-heteroarylpyrazoles 11f,g. Accordingly, the N-acylated 1 -methylpyrazole 12b and 1 phenylpyrazoles 12c, 13c, and 24a exhibiting single $\mathrm{C}=\mathrm{O}$ absorption bands at $\sim 1640 \mathrm{~cm}^{-1}$ most probably exist as the OH -tautomers. In solution, the tautomer equilibrium was solvent-depended. In DMSO- d_{6}, chemical shifts of 4-H ($\delta \sim 5.5 \mathrm{ppm}$) and 5-C ($\left.\delta \sim 153 \mathrm{ppm}\right)$ were in agreement with the $1 H$-pyrazol-5-ols 6b,c, 10a-e, 12b,c, 13c, 15b, 22b, 23a,b, 24a, 25b,c, and 26c. Broad signals for the $4-\mathrm{H}$ and methylene protons and the corresponding carbon nuclei indicated fast tautomerisation between the OH - and the NH -tautomer in these compounds. In CDCl_{3}, on the other hand, a singlet for the $4-\mathrm{CH}_{2}$ group at $\sim 3.5 \mathrm{ppm}$ clearly indicated the 1 H -pyrazol- $5(4 \mathrm{H})$ ones $\mathbf{1 3 c}, \mathbf{1 5 a}, \mathbf{2 2 b}, \mathbf{2 4 a}, \mathbf{2 5 b}, \mathbf{c}$, and 26c. These data are also in agreement with the literature data on tautomerism of related pyrazolones (Figure 2). ${ }^{2,4,13}$

Figure 2. Tautomeric forms of pyrazole derivatives 6, 10-13, 15, and 22-26.

Conclusions

In summary, two synthetic methods for the preparation of a novel type of pyrazole analogues of histamine 6, 15, and 26 were developed. The first method starts from Boc- β-alanine 7, which is transformed in three steps into the title compounds, 1-substituted 3-(2-aminophenyl)-1 H -pyrazol$5(4 H)$-ones $\mathbf{6}$. Further acylation of $\mathbf{6}$ in methanol produced the N-acyl derivatives $\mathbf{1 2}$ and 13, while acylation of $\mathbf{6 c}$ in dichloromethane led to the N,O-diacylated compound $\mathbf{1 4}$. The second method enables access to N, N-dialkyl analogues 15. It comprises cyclisation of dialkyl acetone-1,3dicarboxylate 21 with monosubstituted hydrazines 9 to give alkyl pyrazolone-3-acetates 22, followed by a three-step transformation into 3-(2-(dialkylamino)phenyl)-1H-pyrazol-5-ols $\mathbf{1 5}$ and 26. These synthetic methods enable easy access to a novel type of histamine analogues as interesting molecules for biological studies.

Experimental Section

General. Melting points were determined on a Kofler micro hot stage and on a Stanford Research Systems MPA100 OptiMelt automated melting point system. The NMR spectra were obtained on a Bruker Avance DPX 300 at 300 MHz for ${ }^{1} \mathrm{H}$ and 75.5 MHz for ${ }^{13} \mathrm{C}$ nucleus and on Bruker Avance III UltraShield 500 plus at 500 MHz for ${ }^{1} \mathrm{H}$ and 126 MHz for ${ }^{13} \mathrm{C}$ nucleus, using DMSO- d_{6} and CDCl_{3} with TMS as the internal standard, as solvents. Mass spectra were recorded on an AutoSpecQ spectrometer and Agilent 6224 Accurate Mass TOF LC/MS, IR spectra on a Perkin-Elmer Spectrum BX FTIR spectrophotometer. Microanalyses were performed on a Perkin-Elmer CHN Analyzer 2400 II. Column chromatography (CC) and flash chromatography (FC) were performed on silica gel (Fluka, Silica gel 60, particle size: $0.035-0.070 \mathrm{~mm}$).
Boc- β-alanine 7, hydrazines $\mathbf{9 a - h}$, methyl acrylate 16, amines $\mathbf{1 7 a} \mathbf{a} \mathbf{c}$, and dimethyl acetone-1,3dicarboxylate 21 are commercially available (Sigma-Aldrich). Methyl 5-(tert-butoxycarbonylamino)-3-oxopentanoate $\mathbf{8}^{5}$ and methyl 2-(5-oxo-1-phenyl-4,5-dihydro-1H-pyrazol-3-yl)acetate 22a ${ }^{12 a}$ were prepared following the literature procedures.

Preparation of 1'-substituted tert-butyl 2-(5-hydroxy-1H-pyrazol-3-yl)ethylcarbamates

 10a-e and tert-butyl 2-(5-oxo-2,5-dihydro-1H-pyrazol-3-yl)ethylcarbamates 11f,g. A mixture of $\mathbf{8}(245 \mathrm{mg}, 1 \mathrm{mmol})$, methanol (5 mL), and hydrazine derivative $\mathbf{9 a - g}(1 \mathrm{mmol})^{14}$ was stirred under reflux for 5 h , and cooled to r.t. Compounds 10a, 10e, and 11f precipitated from the reaction mixtures and were collected by filtration to give 10a,e and 11f. Compounds 10b-d and 11 g did not precipitate from the reaction mixtures, which were evaporated in vacuo and the residues were chromatographed over silica gel $(\mathrm{EtOH} / \mathrm{EtOAc}$ or $\mathrm{EtOAc} /$ hexanes, column dimensions: $1.5 \times 7 \mathrm{~cm}$). Fractions containing the product were combined and evaporated in vacuo to give 10b-d and 11g.tert-Butyl 2-(5-hydroxy-1H-pyrazol-3-yl)ethylcarbamate (10a). Prepared from 8 ($245 \mathrm{mg}, 1$ mmol) and hydrazine hydrate $9 \mathrm{a}(50 \mu \mathrm{~L}, 50 \mathrm{mg}, 1 \mathrm{mmol})$. White solid, yield $48 \%, 108 \mathrm{mg}, \mathrm{mp}$ $188-191{ }^{\circ} \mathrm{C}$, IR ($v_{\text {max }}, \mathrm{cm}^{-1}$): 3380, 2982, $1689(\mathrm{C}=\mathrm{O}), 1613,1528,1460,1364,1271,1246$, $1171,974,759 .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$), $\delta_{\mathrm{H}} 1.38(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}), 2.56\left(2 \mathrm{H}, \mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.5\right.$ $\left.\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}\right), 3.10\left(2 \mathrm{H}\right.$, br q, $\left.{ }^{3} J_{\mathrm{HH}}=6.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}\right), 5.25(1 \mathrm{H}, \mathrm{br}$ s, 4-H of pyrazole $)$, $6.86\left(1 \mathrm{H}\right.$, br t, ${ }^{3} J_{\mathrm{HH}}=6.3 \mathrm{~Hz}$, NHBoc), $9.44(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 1-\mathrm{H}), 11.14(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO- $\left.d_{6}\right), \delta_{\mathrm{C}} 26.5,28.3,77.6,77.8,88.3,141.8,155.5,160.8 . \mathrm{MS}, m / z=228\left(\mathrm{MH}^{+}\right)$, HRMS (ESI), $m / z=228.1335\left(\mathrm{MH}^{+}\right), \mathrm{C}_{10} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{3}$ requires 228.1343. Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3}$ (227.26): C, $52.85 ; \mathrm{H}, 7.84$; N, 18.49%, Found: C, $52.83 ; \mathrm{H}, 7.60$; N; 18.46%.
tert-Butyl 2-(5-hydroxy-1-methyl-1H-pyrazol-3-yl)ethylcarbamate (10b). Prepared from 8 ($245 \mathrm{mg}, 1 \mathrm{mmol}$) and methylhydrazine $\mathbf{9 b}(50 \mu \mathrm{~L}, 46 \mathrm{mg}, 1 \mathrm{mmol}$), CC (EtOAc/hexanes, 1:1). White solid, yield $73 \%, 177 \mathrm{mg}, \mathrm{mp} 160-162^{\circ} \mathrm{C}$, IR ($v_{\max }, \mathrm{cm}^{-1}$): 3376, 2982, 1690 (C=O), 1533, 1459, 1401, 1270, 1173, 1039, 1000, 974, 748, 684. ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}), δ_{H} $1.37(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}), 2.45\left(2 \mathrm{H}, \mathrm{bt} \mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}\right), 3.08\left(2 \mathrm{H}, \mathrm{br} \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}\right), 3.41$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}$), $5.16(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 4-\mathrm{H}$ of pyrazole), $6.73(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NHBoc}), 10.64(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH})$. ${ }^{13} \mathrm{C}$ NMR (75.5 MHz , DMSO- d_{6}), $\delta_{\mathrm{C}} 28.3,29.1,32.5,77.5,77.8,85.2,147.3,153.0,155.5 . \mathrm{MS}$, $m / z=242\left(\mathrm{MH}^{+}\right)$, HRMS $(\mathrm{ESI}), m / z=242.1494\left(\mathrm{MH}^{+}\right), \mathrm{C}_{11} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3}$ requires 242.1499. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3}$ (241.29): C, 54.76; H, 7.94; N, 17.41%, Found: C, 54.76; H, 8.05; N; 17.29\%.
tert-Butyl 2-(5-hydroxy-1-phenyl-1H-pyrazol-3-yl)ethylcarbamate (10c). Prepared from 8 ($245 \mathrm{mg}, 1 \mathrm{mmol}$) and phenylhydrazine $9 \mathrm{c}(103 \mu \mathrm{~L}, 108 \mathrm{mg}, 1 \mathrm{mmol}$), CC (EtOAc/hexanes, 1:2). Beige solid, yield $83 \%, 250 \mathrm{mg}, \mathrm{mp} 155-157{ }^{\circ} \mathrm{C}$. IR $\left(v_{\text {max }}, \mathrm{cm}^{-1}\right): 3218,3050,2866,1669$ (C=O), 1601, 1560, 1455, 1409, 1365, 1306, 1256, 1160, 1060, 1037, 964, 868, 761, 694, 644. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta_{\mathrm{H}} 1.41(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}), 2.67\left(2 \mathrm{H}, \mathrm{br} \mathrm{t},{ }^{3} J_{\mathrm{HH}}=6.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}\right)$, $3.49\left(2 \mathrm{H}, \mathrm{br}\right.$ s, $\left.4^{\prime}-\mathrm{CH}_{2}\right), 3.52\left(2 \mathrm{H}, \mathrm{br} \mathrm{q},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}\right), 4.87(1 \mathrm{H}, \mathrm{br}$ s, NHBoc), $7.19\left(1 \mathrm{H}, \mathrm{tt},{ }^{4} J_{\mathrm{HH}}=1.1 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=7.4 \mathrm{~Hz}, p-\mathrm{Ph}\right), 7.36-7.40(2 \mathrm{H}, \mathrm{m}, m-\mathrm{Ph}), 7.82-7.88(2 \mathrm{H}, \mathrm{m}, o-$ $\mathrm{Ph}) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$), $\delta_{\mathrm{H}} 1.38(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}), 2.58\left(2 \mathrm{H}, \mathrm{br} \mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.5 \mathrm{~Hz}\right.$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}\right), 3.18\left(2 \mathrm{H}\right.$, br q, $\left.{ }^{3} J_{\mathrm{HH}}=6.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}\right), 5.40(1 \mathrm{H}, \mathrm{br}$ s, $4-\mathrm{H}$ of pyrazole), 6.88 $(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{N} H \mathrm{Boc}), 7.21\left(1 \mathrm{H}, \mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.4 \mathrm{~Hz}, p-\mathrm{Ph}\right), 7.41\left(2 \mathrm{H}, \mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.9 \mathrm{~Hz}, m-\mathrm{Ph}\right), 7.68(2 \mathrm{H}$, $\left.\mathrm{d},{ }^{3} J_{\mathrm{HH}}=7.8 \mathrm{~Hz}, o-\mathrm{Ph}\right), 11.53(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO- d_{6}), $\delta_{\mathrm{C}} 28.2,28.3$, $29.2,77.6,87.0,120.6,125.1,128.8,138.9,150.0,153.1,155.5 . \mathrm{MS}, m / z=304\left(\mathrm{MH}^{+}\right)$, HRMS $(E S I), m / z=304.1650\left(\mathrm{MH}^{+}\right), \mathrm{C}_{16} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{3}$ requires 304.1656. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3}$ (303.36): C, 63.35; H, 6.98; N, 13.85\%, Found: C, 63.24; H, 7.08; N, 13.60%.
tert-Butyl 2-(5-hydroxy-1-(4-chlorophenyl)-1H-pyrazol-3-yl)ethylcarbamate (10d). Prepared from 8 ($245 \mathrm{mg}, 1 \mathrm{mmol}$) and 4-chlorophenylhydrazine hydrochloride $9 \mathrm{~d}(179 \mathrm{mg}, 1 \mathrm{mmol}), \mathrm{CC}$ (EtOAc/hexanes, 1:2). Grayish solid, yield 61%, $206 \mathrm{mg}, \mathrm{mp} 107-100^{\circ} \mathrm{C}$. IR $\left(v_{\mathrm{max}}, \mathrm{cm}^{-1}\right): 3393$, 2980, 2928, 1688 (C=O), 1526, 1493, 1397, 1366, 1274, 1254, 1168, 1092, 1028, 1012, 842, $788,755,659 .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta_{\mathrm{H}} 1.39(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}), 2.66\left(2 \mathrm{H}, \mathrm{br} \mathrm{t},{ }^{3} J_{\mathrm{HH}}=6.3 \mathrm{~Hz}\right.$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}\right), 3.49\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, 4^{\prime}-\mathrm{CH}_{2}\right), 3.49\left(2 \mathrm{H}, \mathrm{br} \mathrm{q},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}\right), 4.83(1 \mathrm{H}$, br s, NHBoc), 7.34 and $7.83\left(4 \mathrm{H}, 2 \mathrm{dt}, 1: 1,{ }^{3} J_{\mathrm{HH}}=2.6,9.0 \mathrm{~Hz}, \mathrm{C}_{6} \mathrm{H}_{4}\right) .{ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}),
$\delta_{\mathrm{H}} 1.38(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}), 2.58\left(2 \mathrm{H}, \mathrm{brt},{ }^{3} J_{\mathrm{HH}}=7.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}\right), 3.18\left(2 \mathrm{H}, \mathrm{brq},{ }^{3} J_{\mathrm{HH}}=6.5 \mathrm{~Hz}\right.$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}\right), 5.42(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}$ of pyrazole), $6.88(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NHBoc}), 7.48$ and $7.77(4 \mathrm{H}, 2 \mathrm{dt}, 1: 1$, $\left.{ }^{3} J_{\mathrm{HH}}=2,5,8.7 \mathrm{~Hz}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 11.73(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO- d_{6}), $\delta_{\mathrm{C}} 28.1,28.3$, $29.2,77.5,87.1,121.8,128.8,129.0,137.9,150.4,153.2,155.5 . \mathrm{MS}, m / z=338\left(\mathrm{MH}^{+}\right)$, HRMS $(E S I), m / z=338.1264\left(\mathrm{MH}^{+}\right), \mathrm{C}_{16} \mathrm{H}_{21} \mathrm{ClN}_{3} \mathrm{O}_{3}$ requires 338.1266. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{ClN}_{3} \mathrm{O}_{3}$ (337.80): C, 56.89 ; H, 5.97 ; N, 12.44%, Found: C, 56.87 ; H, 5.80 ; N, 12.28%.

4-(3-(2-(tert-butoxycarbonylamino)ethyl)-5-hydroxy-1H-pyrazol-1-yl)benzoic acid (10e). Prepared from $8(245 \mathrm{mg}, 1 \mathrm{mmol})$ and 4-hydrazinobenzoic acid $9 \mathrm{e}(152 \mathrm{mg}, 1 \mathrm{mmol})$. White solid, yield 55%, $192 \mathrm{mg}, \mathrm{mp} 187-189{ }^{\circ} \mathrm{C}$ (decomp.), IR ($v_{\max }, \mathrm{cm}^{-1}$): 3328, 1691 (C=O), 1649 (C=O), 1621, 1604, 1588, 1573, 1539, 1511, 1407, 1366, 1337, 1237, 1186, 1154, 993, 854, 773, 703, 684. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$), $\delta_{\mathrm{H}} 1.38(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}), 2.60\left(2 \mathrm{H}, \mathrm{br} \mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.3 \mathrm{~Hz}\right.$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}\right), 3.19\left(2 \mathrm{H}\right.$, br q, $\left.{ }^{3} J_{\mathrm{HH}}=6.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}\right), 5.46(1 \mathrm{H}, \mathrm{br}$ s, $4-\mathrm{H}$ of pyrazole), 6.89 $(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{N} H \mathrm{Boc}), 7.91$ and $7.98\left(4 \mathrm{H}, 2 \mathrm{br} \mathrm{d}, 1: 1,{ }^{3} J_{\mathrm{HH}}=8.7 \mathrm{~Hz}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 11.90$ and $12.89(2 \mathrm{H}, 2$ br s, 1:1, OH and COOH). ${ }^{13} \mathrm{C}$ NMR (75.5 MHz , DMSO- d_{6}), $\delta_{\mathrm{C}} 28.1,28.3,29.3,77.6,87.5$, $119.4,126.7,130.3,142.5,151.1,153.8,155.5,166.9 . \mathrm{MS}, m / z=348\left(\mathrm{MH}^{+}\right)$, HRMS (ESI), m / z $=348.1548\left(\mathrm{MH}^{+}\right), \mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{5}$ requires 348.1554. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{5}$ (347.37): C, 58.78 ; H, 6.09; N, 12.10\%, Found: C, 58.78; H, 6.16; N, 12.06\%.
tert-Butyl 2-(5-oxo-1-(6-phenylpyridazin-3-yl)-2,5-dihydro-1H-pyrazol-3-yl)ethylcarbamate (11f). Prepared from 8 ($245 \mathrm{mg}, 1 \mathrm{mmol}$) and 3-hydrazino-6-phenylpyridazine $9 f(186 \mathrm{mg}, 1$ mmol). White solid, yield $81 \%, 310 \mathrm{mg}, \mathrm{mp} 242-246{ }^{\circ} \mathrm{C}$, IR $\left(v_{\text {max }}, \mathrm{cm}^{-1}\right): 3321,3076,1713$ (C=O), 1634 (C=O), 1562, 1547, 1455, 1422, 1366, 1296, 1247, 1167, 1131, 784, 690. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$), $\delta_{\mathrm{H}} 1.38(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}), 2.69\left(2 \mathrm{H}\right.$, br t, $\left.{ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}\right), 3.25$ $\left(2 \mathrm{H}, \mathrm{br} \mathrm{q},{ }^{3} J_{\mathrm{HH}}=6.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}\right), 5.28(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 4-\mathrm{H}$ of pyrazole $), 6.97\left(1 \mathrm{H}, \mathrm{br} \mathrm{t},{ }^{3} J_{\mathrm{HH}}=5.0\right.$ $\mathrm{Hz}, \mathrm{N} H \mathrm{Boc}), 7.49-7.61(3 \mathrm{H}, \mathrm{m}, p-\mathrm{Ph}, m-\mathrm{Ph}), 8.12-8.17(2 \mathrm{H}, \mathrm{m}, o-\mathrm{Ph}), 8.36\left(1 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=9.4\right.$ $\mathrm{Hz}, 4 "-\mathrm{H}), 8.65\left(1 \mathrm{H}\right.$, br s, $\left.5^{\prime \prime}-\mathrm{H}\right), 12.52\left(1 \mathrm{H}, \mathrm{br}\right.$ s, $\left.2^{\prime}-\mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$), δ_{C} $26.8,28.3,38.4,77.7,101.7,116.7,126.1,126.4,129.1,129.9,135.6,153.3,155.5,162.7,167.0$, 171.4. MS, $m / z=382\left(\mathrm{MH}^{+}\right)$, HRMS (ESI), $m / z=382.1866\left(\mathrm{MH}^{+}\right), \mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{5} \mathrm{O}_{3}$ requires 382.1874. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}_{3}$ (381.43): C, 62.98 ; H, 6.08 ; N, 18.36\%, Found: C, 62.85 ; H, 5.99; N; 18.46\%.
tert-Butyl 2-(1-(imidazo[1,2-b]pyridazin-6-yl)-5-oxo-2,5-dihydro-1H-pyrazol-3-yl)ethylcarbamate (11g). Prepared from 8 ($245 \mathrm{mg}, 1 \mathrm{mmol}$) and 6-hydrazinoimidazo[4,3-b]pyridazine $9 \mathrm{~g}(149 \mathrm{mg}, 1 \mathrm{mmol})$, CC: EtOAc. Yellowish solid, yield $66 \%, 227 \mathrm{mg}, \mathrm{mp} 221-225{ }^{\circ} \mathrm{C}$, IR $\left(v_{\text {max }}, \mathrm{cm}^{-1}\right): 3370,3137,2978,1716(\mathrm{C}=\mathrm{O}), 1684(\mathrm{C}=\mathrm{O}), 1638(\mathrm{C}=\mathrm{O}), 1573,1544,1522,1403$, 1403, 1366, 1327, 1288, 1250, 1168, 1061, 813, 778. ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}), $\delta_{\mathrm{H}} 1.38$ $(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}), 2.64\left(2 \mathrm{H}, \mathrm{br} \mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}\right), 3.23\left(2 \mathrm{H}, \mathrm{br} \mathrm{q},{ }^{3} J_{\mathrm{HH}}=7.1 \mathrm{~Hz}\right.$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}\right), 5.28(1 \mathrm{H}, \mathrm{br}$ s, $4-\mathrm{H}$ of pyrazole), $6.94(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NHBoc}), 7.76-7.78(1 \mathrm{H}, \mathrm{m}, 3 "-\mathrm{H})$, 8.15-8.28 (3H, m, 2"-H, 7"-H, 8"-H), $11.92\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{2'-H)}.{ }^{13} \mathrm{C}\right.$ NMR (126 MHz, DMSO- d_{6}), δ_{C} 28.1, 28.3, 38.7, 77.7, 88.0, 92.4, 110.2, 117.2, 127.1, 133.7, 137.1, 146.4, 153.9, 155.6. MS, m / z $=345\left(\mathrm{MH}^{+}\right)$, HRMS (ESI), $m / z=345.1669\left(\mathrm{MH}^{+}\right), \mathrm{C}_{16} \mathrm{H}_{21} \mathrm{~N}_{6} \mathrm{O}_{3}$ requires 345.1670. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{6} \mathrm{O}_{3}$ (344.37): C, 55.80 ; H, 5.85; N, 24.40\%, Found: C, 55.73 ; H, 5.87; N; 24.33%.

General procedure for the synthesis of 1-substituted 3-(2-aminoethyl)-5-hydroxy-1Hpyrazoles dihydrochlorides (6b,c)
$2 \mathrm{M} \mathrm{HCl}-\mathrm{EtOAc}(25 \mathrm{~mL}, 50 \mathrm{mmol})$ was added to a stirred suspension of $\mathbf{1 0}(5 \mathrm{mmol})$ in anhydrous ethanol (25 mL) and the mixture was stirred at r.t. for 3 h . The precipitate was collected by filtration and washed subsequently with $\operatorname{EtOAc}(25 \mathrm{~mL})$ and ether $(25 \mathrm{~mL})$ to give 6.
3-(2-Aminoethyl)-5-hydroxy-1-methyl-1H-pyrazole dihydrochloride (6b). Prepared from 10b ($1.206 \mathrm{~g}, 5 \mathrm{mmol}$). White solid, yield 78%, $832 \mathrm{mg}, \mathrm{mp} 197-200^{\circ} \mathrm{C}$, IR $\left(\mathrm{v}_{\mathrm{max}}, \mathrm{cm}^{-1}\right): 1609$, $1539,1287,1096,945,831,673 .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$), $\delta_{\mathrm{H}} 2.90\left(2 \mathrm{H}, \mathrm{br} \mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.2\right.$ $\left.\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{3}{ }^{+}\right), 3.10\left(2 \mathrm{H}\right.$, br sextet, $\left.{ }^{3} J_{\mathrm{HH}}=7.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{3}{ }^{+}\right), 3.60\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 5.75$ $\left(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}\right.$ of pyrazole), $8.23\left(3 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{3}{ }^{+}\right)$, OH exchanged. ${ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO- d_{6}), $\delta_{\mathrm{C}} 24.6,32.3,37.3,88.7,144.7,154.8 . \mathrm{MS}, m / z=142\left(\mathrm{MH}^{+}\right)$, HRMS $(\mathrm{ESI}), m / z=142.0969$ $\left(\mathrm{MH}^{+}\right), \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{O}$ requires 142.0975. Anal. Calcd for $\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O} \cdot 2^{1} / 6 \mathrm{HCl}$ (220.17): C, 32.73; H, 6.03 ; N, 19.09\%, Found: C, 32.67; H, 6.39; N, 18.90\%.

3-(2-Aminoethyl)-5-hydroxy-1-phenyl-1H-pyrazole dihydrochloride (6c). Prepared from 10c ($1.515 \mathrm{~g}, 5 \mathrm{mmol}$). White solid, yield $84 \%, 1.159 \mathrm{~g}, \mathrm{mp} 192-195^{\circ} \mathrm{C}$, IR ($v_{\max }, \mathrm{cm}^{-1}$): 3381, 1603, $1547,1497,1464,1366,1310,1145,942,812,754,691 .{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}), δ_{H} $2.92\left(2 \mathrm{H}, \mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{3}{ }^{+}\right), 3.13\left(2 \mathrm{H}\right.$, br sextet, $\left.{ }^{3} J_{\mathrm{HH}}=6.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{3}{ }^{+}\right)$, $5.72\left(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}\right.$ of pyrazole), $7.32\left(1 \mathrm{H}, \mathrm{br} \mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.4 \mathrm{~Hz}, p-\mathrm{Ph}\right), 7.46\left(2 \mathrm{H}, \mathrm{br} \mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.9 \mathrm{~Hz}\right.$, $m-\mathrm{Ph}), 7.71\left(2 \mathrm{H}\right.$, br d, $\left.{ }^{3} J_{\mathrm{HH}}=7.7 \mathrm{~Hz}, o-\mathrm{Ph}\right), 8.30\left(3 \mathrm{H}\right.$, br s, $\left.\mathrm{NH}_{3}{ }^{+}\right)$, OH exchanged. ${ }^{13} \mathrm{C}$ NMR (75.5 MHz, DMSO- d_{6}), $\delta_{\mathrm{C}} 25.9,37.7,88.4,121.8,126.5,129.1,137.3,148.0,154.4 . \mathrm{MS}, m / z=$ $204\left(\mathrm{MH}^{+}\right)$, HRMS (ESI), $m / z=204.1130\left(\mathrm{MH}^{+}\right), \mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}$ requires 204.1131. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O} \cdot 2 \mathrm{HCl}$ (276.16): C, 47.84; H, 5.47; N, 15.22\%, Found: C, $47.22 ; \mathrm{H}, 5.69 ; \mathrm{N}, 14.95 \%$.

General procedures for acylation of amines 6b,c. Synthesis of 1-substituted 3-(2-(acylamino)ethyl)-5-hydroxy-1H-pyrazoles (12b,c)and (13c)
Acetic anhydride ($0.1 \mathrm{~mL}, 1 \mathrm{mmol}$) or benzoyl chloride $(0.115 \mu \mathrm{~L}, 1 \mathrm{mmol})$ was added to a stirred cold $\left(0^{\circ} \mathrm{C}\right)$ solution of amine $6(1 \mathrm{mmol})$ and 4-methylmorpholine ($\left.440 \mu \mathrm{~L}, 4 \mathrm{mmol}\right)$ in anhydrous methanol (5 mL) and the mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h and then at r. . for 12 h . Volatile component were evaporated in vacuo and the residue was chromatographed over silica gel ($10 \% \mathrm{EtOH} / \mathrm{EtOAc}$). Fractions containing the product were combined and evaporated in vacuo to give 12b,c and 13c.
\boldsymbol{N}-(2-(5-Hydroxy-1-methyl-1H-pyrazol-3-yl)ethyl)acetamide (12b). Prepared from 6b (214 $\mathrm{mg}, 1 \mathrm{mmol}$). White solid, yield $62 \%, 113 \mathrm{mg}, \mathrm{mp} 129-133{ }^{\circ} \mathrm{C}$, $\mathrm{IR}\left(v_{\max }, \mathrm{cm}^{-1}\right): 3255,3084$, 2953, 2884, 1633 (C=O), 1562, 1479, 1424, 1360, 1279, 1199, 1184, 1096, 1062, 1037, 894, $849,768,746,716,685,674,606 .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$), $\delta_{\mathrm{H}} 1.78$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{MeCO}$), 2.46 $\left(2 \mathrm{H}, \mathrm{br} \mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}\right), 3.30\left(2 \mathrm{H}, \mathrm{br} \mathrm{dt},{ }^{3} J_{\mathrm{HH}}=5.9,7.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}\right), 3.41$ $\left(3 \mathrm{H}, \mathrm{s}, 1\right.$ '-Me), $5.17\left(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}\right.$ of pyrazole), $7.83(3 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 10.66(1 \mathrm{H}, \mathrm{br}$ s OH$) .{ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO- d_{6}), $\delta_{\mathrm{C}} 22.7,28.8,32.6,38.5,85.0,147.4,152.5,169.1 . \mathrm{MS}, m / z=184$ $\left(\mathrm{MH}^{+}\right)$, HRMS (ESI), $m / z=184.1077\left(\mathrm{MH}^{+}\right), \mathrm{C}_{8} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}_{2}$ requires 184.1081. Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2}$ (183.21): C, 52.45 ; H, 7.15; N, 22.94\%, Found: C, 52.25; H, 7.38; N, 22.56\%.
\boldsymbol{N}-(2-(5-Hydroxy-1-phenyl-1H-pyrazol-3-yl)ethyl)acetamide (12c). Prepared from 6c (276 $\mathrm{mg}, 5 \mathrm{mmol}$) and acetic anhydride. Yellowish solid, yield $87 \%, 213 \mathrm{mg}, \mathrm{mp} 150-155{ }^{\circ} \mathrm{C}$, IR $\left(v_{\max }, \mathrm{cm}^{-1}\right): 3312,1640(\mathrm{C}=\mathrm{O}), 1577,1558,1497,1398,1358,1308,1202,1150,787,751,687$.
${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, ~ D M S O-d_{6}\right), \delta_{\mathrm{H}} 1.80(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.59\left(2 \mathrm{H}, \mathrm{br} \mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.4 \mathrm{~Hz}\right.$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}\right), 3.30\left(2 \mathrm{H}\right.$, br q, $\left.{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}\right), 5.41(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 4-\mathrm{H}$ of pyrazole $), 7.21$ $\left(1 \mathrm{H}, \mathrm{br} \mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.4 \mathrm{~Hz}, p-\mathrm{Ph}\right), 7.42\left(2 \mathrm{H}\right.$, br t, $\left.{ }^{3} J_{\mathrm{HH}}=8.0 \mathrm{~Hz}, m-\mathrm{Ph}\right), 7.72\left(2 \mathrm{H}, \mathrm{br} \mathrm{d},{ }^{3} J_{\mathrm{HH}}=7.8\right.$ $\mathrm{Hz}, o-\mathrm{Ph}), 7.90(3 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 11.46\left(1 \mathrm{H}\right.$, br s OH). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$), $\delta_{\mathrm{C}} 22.7$, 28.9, 38.2, 86.9, 120.7, 125.1, 128.8, 138.9, 150.0, 153.0, 169.1. MS, $m / z=246\left(\mathrm{MH}^{+}\right)$, HRMS (ESI), $m / z=246.1231\left(\mathrm{MH}^{+}\right), \mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{2}$ requires 246.1237. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2}$ (245.28): C, 63.66; H, 6.16; N, 17.13\%, Found: C, 63.47; H, 6.30; N, 16.91\%.
$\mathbf{N - (2 - (5 - H y d r o x y}-1-p h e n y l-1 H-p y r a z o l-3-y l) e t h y l) b e n z a m i d e ~(13 c) . ~ P r e p a r e d ~ f r o m ~ 6 c ~(276 ~$ $\mathrm{mg}, 1 \mathrm{mmol}$) and benzoyl chloride. Yellowish solid, yield $53 \%, 163 \mathrm{mg}, \mathrm{mp} 151-155{ }^{\circ} \mathrm{C}$, IR $\left(v_{\max }, \mathrm{cm}^{-1}\right): 3280,1638(\mathrm{C}=\mathrm{O}), 1543,1495,1396,1312,1150,843,677 .{ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}), $\delta_{\mathrm{H}} 2.76\left(2 \mathrm{H}\right.$, br t, $\left.{ }^{3} J_{\mathrm{HH}}=7.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}\right), 3.54\left(2 \mathrm{H}\right.$, br q, ${ }^{3} J_{\mathrm{HH}}=7.3 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}\right), 5.47(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 4-\mathrm{H}$ of pyrazole $), 7.22\left(1 \mathrm{H}, \mathrm{br} \mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.4 \mathrm{~Hz}, p-\mathrm{Ph}\right), 7.40-7.49$ $(4 \mathrm{H}, \mathrm{m}, 2 \times m-\mathrm{Ph}), 7.50-7.55(1 \mathrm{H}, \mathrm{m}, p-\mathrm{Ph}), 7.73$ and $7.86\left(4 \mathrm{H}, 2 \mathrm{br} \mathrm{d}, 1: 1,{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.5 \mathrm{~Hz}, 2 \times o-\right.$ $\mathrm{Ph}), 8.60(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 11.55(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta_{\mathrm{H}} 2.81(2 \mathrm{H}, \mathrm{br} \mathrm{t}$, $\left.{ }^{3} J_{\mathrm{HH}}=6.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}\right), 3.51\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, 4-\mathrm{CH}_{2}\right.$ of pyrazole $), 3.88\left(2 \mathrm{H}, \mathrm{br} \mathrm{q},{ }^{3} J_{\mathrm{HH}}=6.2 \mathrm{~Hz}\right.$, $\left.\mathrm{CH}_{2} \mathrm{CH} H_{2} \mathrm{NH}\right), 6.75(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 7.19\left(1 \mathrm{H}, \mathrm{br} \mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.4 \mathrm{~Hz}, p-\mathrm{Ph}\right), 7.36-7.44(4 \mathrm{H}, \mathrm{m}, 2 \times m-$ $\mathrm{Ph}), 7.45-7.52(1 \mathrm{H}, \mathrm{m}, p-\mathrm{Ph}), 7.72-7.77$ and $7.80-7.86(4 \mathrm{H}, 2 \mathrm{~m}, 1: 1,2 \times o-\mathrm{Ph}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO- d_{6}), $\delta_{\mathrm{C}} 28.8,39.0,87.0,118.0,120.7,125.2,127.2,128.3,128.8,131.1,134.6$, 150.0, 153.0, 166.1. MS, $m / z=308\left(\mathrm{MH}^{+}\right)$, HRMS $(E S I), m / z=308.1385\left(\mathrm{MH}^{+}\right), \mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{2}$ requires 308.1394. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{2}$ (307.35): C, $70.34 ; \mathrm{H}, 5.58 ; \mathrm{N}, 13.67 \%$, Found: C, 70.18; H, 5.60; N, 13.35\%.
3-(2-(Benzoylamino)ethyl)-1-phenyl-1H-pyrazol-5-yl benzoate (14). Benzoyl chloride (0.230 $\mathrm{mL}, 2 \mathrm{mmol})$ was added to a stirred suspension of amine $\mathbf{6 c}(276 \mathrm{mg}, 1 \mathrm{mmol})$ in a mixture of anhydrous dichloromethane (10 mL) and 4-methylmorpholine ($0.66 \mathrm{~mL}, 6 \mathrm{mmol}$) and the mixture was stirred at r.t. for 12 h . Volatile component were evaporated in vacuo and the residue was chromatographed over silica gel ($50 \% \mathrm{EtOAc} / \mathrm{hexanes}$). Fractions containing the products were combined and evaporated in vacuo to give 14. Yellow solid, yield $79 \%, 326 \mathrm{mg}, \mathrm{mp} 109-$ $112{ }^{\circ} \mathrm{C}$, IR ($v_{\text {max }}, \mathrm{cm}^{-1}$): 3289, $1753(\mathrm{C}=\mathrm{O}), 1632(\mathrm{C}=\mathrm{O}), 1445,1315,1247,1076,760,697 .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta_{\mathrm{H}} 3.01\left(2 \mathrm{H}, \mathrm{t},{ }^{3} J_{\mathrm{HH}}=6.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}\right), 3.86\left(2 \mathrm{H}, \mathrm{q},{ }^{3} J_{\mathrm{HH}}=6.0\right.$ $\left.\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}\right), 6.36(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}$ of pyrazole $), 7.16(3 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 7.31-7.53(8 \mathrm{H}, \mathrm{m}, 8 \mathrm{H}$ of $\mathrm{Ph}), 7.59-7.68(3 \mathrm{H}, \mathrm{m}, 3 \mathrm{H}$ of Ph$), 7.78-7.83(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{H}$ of Ph$), 8.05-8.11(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{H}$ of Ph$)$. ${ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO- d_{6}), $\delta_{\mathrm{C}} 28.7,38.9,95.8,122.7,127.17,127.23,127.3,128.3$, $129.25,129.30,130.1,131.1,134.6,134.8,137.6,144.0,150.3,161.8,166.2 . \mathrm{MS}, \mathrm{m} / \mathrm{z}=412$ $\left(\mathrm{MH}^{+}\right)$, HRMS (ESI), $m / z=412.1649\left(\mathrm{MH}^{+}\right), \mathrm{C}_{25} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{3}$ requires 412.1656. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3}$ (411.45): C, 63.66; H, 6.16; N, 17.13%, Found: C, 63.47 ; H, 6.30; N, 16.91%.

General procedure for the synthesis of N, N-dialkyl- β-alanines (19a,b)

First, the esters $\mathbf{1 8 a}$ and $\mathbf{1 8 b}$ were prepared following slightly modified literature procedure. ${ }^{10 \mathrm{a}}$ Amine $17(141 \mathrm{mmol})$ was added to a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of methyl acrylate $\mathbf{1 6}(12.7 \mathrm{~mL}, 141$ $\mathrm{mmol})$ in dichloromethane $(150 \mathrm{~mL})$ and the reaction mixture was stirred at room temperature for $2-24 \mathrm{~h}$. The solvent was evaporated in vacuo to yield the β-amino ester $\mathbf{1 8}$ as a yellowish oil, which was characterized by ${ }^{1} \mathrm{H}$ NMR.
Then, 4.4 M aq. $\mathrm{NaOH}(100 \mathrm{~mL}, 440 \mathrm{mmol})$ was added to the ester $\mathbf{1 8}(141 \mathrm{mmol})$ and the mixture was vigorously stirred at r.t. for $2-5 \mathrm{~h}$. Reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and neutralized with 6 M aq. $\mathrm{HCl}(73.3 \mathrm{~mL}$), stirred at r.t. for 15 min , and washed with EtOAc (50 mL) to remove non-polar impurities. The aqueous phase was purified by ion-exchange chromatography over Dowex ${ }^{\circledR} 50 \mathrm{~W}$ cation exchange resin. The product was eluted from the resin with 4% aq. ammonia (1 L), volatile components were evaporated in vacuo, and the residue was re-suspended five times in $\mathrm{EtOH}(100 \mathrm{~mL})$ to remove $\mathrm{H}_{2} \mathrm{O}$ and five times in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100$ mL) to remove EtOH . The residue was dried in vacuo ($0.01 \mathrm{Torr}, 40^{\circ} \mathrm{C}$) to give the β-amino acids $\mathbf{1 9 a}, \mathrm{b}$, which were characterized by NMR.

Methyl 3-(benzyl(methyl)amino)propanoate (18a). ${ }^{10 \mathrm{a}}$ Prepared from 16 ($12.7 \mathrm{~mL}, 141 \mathrm{mmol}$) and benzyl(methyl)amine $\mathbf{1 7 a}$ ($18.9 \mathrm{~mL}, 141 \mathrm{mmol}$), stirring for 24 h . Yellowish oil, yield: $100 \%, 29.02 \mathrm{~g} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.20(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}), 2.51(2 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}, 2-$ $\left.\mathrm{CH}_{2}\right), 2.74\left(2 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}, 2-\mathrm{CH}_{2}\right), 3.50\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.66(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 7.20-7.35(5 \mathrm{H}$, m, Ph).
Methyl 3-(pyrrolidin-1-yl)propanoate (18b). ${ }^{10 b, c}$ Prepared from 16 ($12.7 \mathrm{~mL}, 141 \mathrm{mmol}$) and pyrrolidine $17 \mathrm{a}(11.8 \mathrm{~mL}, 141 \mathrm{mmol})$, stirring for 2 h . Yellowish oil, yield: $100 \%, 22.01 \mathrm{~g} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.74-1.82\left(4 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{CH}_{2}\right.$ and $\left.4^{\prime}-\mathrm{CH}_{2}\right), 2.47-2.58\left(6 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{CH}_{2}\right.$, $5^{\prime}-\mathrm{CH}_{2}$, and $2-\mathrm{CH}_{2}$), 2.74-2.81 ($2 \mathrm{H}, \mathrm{m}, 3-\mathrm{CH}_{2}$), $3.68(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$.
3-(Benzyl(methyl)amino)propanoic acid (19a). ${ }^{11 \mathrm{a}}$ Prepared from methyl 3(benzyl(methyl)amino)propanoate $18 \mathbf{a}(29.02 \mathrm{~g}, 140 \mathrm{mmol})$, stirring for 5 h . Brownish semisolid, yield: $77 \%, 22.12 \mathrm{~g} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.17(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}), 2.45\left(2 \mathrm{H}, \mathrm{t},{ }^{3} J_{\mathrm{HH}}=\right.$ $\left.7.1 \mathrm{~Hz}, 2-\mathrm{CH}_{2}\right), 2.80\left(2 \mathrm{H}, \mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.1 \mathrm{~Hz}, 3-\mathrm{CH}_{2}\right), 3.60\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right), 7.15-7.31(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$, $10.69(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{COOH}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 33.7,40.75,53.7,61.1,127.8,128.59$, 129.9, 136.1, 178.0.

3-(Pyrrolidin-1-yl)propanoic acid (19b). ${ }^{11 b}$ Prepared from methyl 3-(pyrrolidin-1yl)propanoate $\mathbf{1 8 b}(22.01 \mathrm{~g}, 140 \mathrm{mmol})$, stirring for 2 h . Brownish semi-solid, yield: $80 \%, 16.19$ g. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$): $\delta 1.90-2.06\left(4 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{CH}_{2}\right.$ and $\left.4{ }^{\prime}-\mathrm{CH}_{2}\right), 2.54\left(2 \mathrm{H}, \mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.3\right.$ $\mathrm{Hz}, 2-\mathrm{CH}_{2}$), $3.08-3.24\left(6 \mathrm{H}, \mathrm{m}, 3-\mathrm{CH}_{2}, 2^{\prime}-\mathrm{CH}_{2}\right.$, and $\left.5^{\prime}-\mathrm{CH}_{2}\right), \mathrm{COOH}$ exchanged. ${ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right): ~ \delta 23.1,34.4,52.3,53.9,178.5$.
Synthesis of methyl 2-(1-(4-methoxyphenyl)-5-oxo-4,5-dihydro-1H-pyrazol-3-yl)acetate (22b). A mixture of 21 ($0.803 \mathrm{~mL}, 5.28 \mathrm{mmol}$), (4-methoxyphenyl)hydrazine hydrochloride 9 h (922 $\mathrm{mg}, 5.28 \mathrm{mmol})$, toluene $(15 \mathrm{~mL})$, and $\mathrm{Et}_{3} \mathrm{~N}(0.736 \mathrm{~mL}, 5.28 \mathrm{mmol})$ was stirred at r.t. for 4 h and then at $80{ }^{\circ} \mathrm{C}$ for additional 2 h . The reaction mixture was purified directly by CC
(hexanes/EtOAc, 1:1) without the prior removal of volatile components (mainly toluene). Fractions containing the product were combined and evaporated in vacuo. The solid residue was re-crystallized from a mixture of EtOAc / n-heptane to give 22b. White solid, yield: $43 \%, 600 \mathrm{mg}$, mp 141-142 ${ }^{\circ} \mathrm{C}$, IR ($v_{\max }, \mathrm{cm}^{-1}$): 3448, 1744 (C=O), 1637 (C=O), 1542, 1516, 1465, 1406, 1314, $1252,1173,1150,1111,1032,1005,840,756,630 .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 3.58$ and $3.60\left(4 \mathrm{H}, 2 \mathrm{~s}, 1: 1,2-\mathrm{CH}_{2}, 4-\mathrm{CH}_{2}\right.$ of pyrazole), 3.77 and $3.81(6 \mathrm{H}, 2 \mathrm{~s}, 1: 1,2 \times \mathrm{OMe}), 6.88-6.96$ $\left(2 \mathrm{H}, \mathrm{m}, m-\mathrm{C}_{6} \mathrm{H}_{4}\right), 7.67-7.75\left(2 \mathrm{H}, \mathrm{m}, o-\mathrm{C}_{6} \mathrm{H}_{4}\right) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta_{\mathrm{H}} 3.54(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{2}\right), 3.63$ and $3.77(6 \mathrm{H}, 2 \mathrm{~s}, 1: 1,2 \times \mathrm{OMe}), 5.47(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}$ of pyrazole), 6.99 and $7.57(4 \mathrm{H}, 2 \mathrm{td}$, $\left.1: 1,{ }^{4} J_{\mathrm{HH}}=2.8 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=9.1 \mathrm{~Hz}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 11.44(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right): \delta_{\mathrm{C}}$ $34.6,51.7,55.3,87.4,114.0,122.7,132.0,144.6,152.6,157.0,170.7 . \mathrm{MS}, m / z=263\left(\mathrm{MH}^{+}\right)$, HRMS (ESI), $m / z=263.1035\left(\mathrm{MH}^{+}\right), \mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires 263.1032. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{4}$ (262.26): C, 59.54; H, 5.38; N, 10.68%, Found: C, $59.54 ;$ H, $5.14 ;$ N, 10.61%.

General procedure for the preparation of carboxamides (24a) and (25b,c)

A suspension of the ester $\mathbf{2 2}(10 \mathrm{mmol})$ in $1.5 \mathrm{M} \mathrm{aq} . \mathrm{NaOH}(40 \mathrm{~mL})$ was vigorously stirred at r.t. for 24 h . Reaction mixture was neutralized with 3 M aq. $\mathrm{HCl}(20 \mathrm{~mL})$ and stirred for additional 15 min at r.t. The product was extracted with EtOAc $(3 \times 100 \mathrm{~mL})$, the combined organic phase was dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and the volatile components were evaporated in vacuo to give 23a,b as sticky resins, which were characterised by ${ }^{1} \mathrm{H}$ NMR and HRMS and then used for further amidation without purification. Under argon, the crude acid 23 (10 mmol) was dissolved in anh. THF (40 mL), 1,1'-carbonyldiimidazole ($2.432 \mathrm{~g}, 15 \mathrm{mmol}$) was added, and the reaction mixture was stirred at $\mathrm{r} . \mathrm{t}$. for 2 h . Then, the corresponding amine $\mathbf{1 7}(40 \mathrm{mmol})$ was added and stirring at r.t. was continued for 3 h . Volatile components were evaporated in vacuo, the residue was dissolved in EtOAc (200 mL) and the resulting solution was washed with $1 \mathrm{M} \mathrm{aq} . \mathrm{NaHSO}_{4}$ $(100 \mathrm{~mL})$. The organic phase was dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and volatile components were evaporated in vacuo. The residue was purified by CC (EtOAc/hexanes). Fractions containing the product were combined and volatile components were evaporated in vacuo to give $\mathbf{2 4}$ or $\mathbf{2 5}$ as a viscous oil.

2-(5-Hydroxy-1-phenyl-1H-pyrazol-3-yl)acetic acid (23a). Prepared from 21a (2.46 g, 10 mmol). Yellow-orange resin, yield $94 \%, 2.064 \mathrm{~g} .{ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}), $\delta_{\mathrm{H}} 3.45(2 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{CH}_{2}\right), 5.49(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}$ of pyrazole), 7.18-7.28 (1H, m, $p-\mathrm{Ph}), 7.38-7.49(2 \mathrm{H}, \mathrm{m}, m-\mathrm{Ph}), 7.68-$ $7.74(2 \mathrm{H}, \mathrm{m}, o-\mathrm{Ph}), 11.68(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 12.25(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}) . \mathrm{MS}, m / z=219\left(\mathrm{MH}^{+}\right)$, HRMS (ESI), $m / z=219.0766\left(\mathrm{MH}^{+}\right), \mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{3}$ requires 219.0770.
2-(5-Hydroxy-1-(4-methoxyphenyl)-1H-pyrazol-3-yl)acetic acid (23b). Prepared from 21b ($2.625 \mathrm{~g}, 10 \mathrm{mmol}$). Yellow-brown resin, yield $79 \%, 1.979 \mathrm{~g} .{ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}), $\delta_{\mathrm{H}} 3.42\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 3.77(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 5.45(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}$ of pyrazole), 6.95-7.03 and 7.52-7.61 $\left(4 \mathrm{H}, 2 \mathrm{~m}, 1: 1, \mathrm{C}_{6} \mathrm{H}_{4}\right), 11.34(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 12.29(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{COOH}) . \mathrm{MS}, m / z=249\left(\mathrm{MH}^{+}\right)$, HRMS (ESI), $m / z=249.0867\left(\mathrm{MH}^{+}\right), \mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires 219.0875.

N -Benzyl-2-(5-hydroxy-1-phenyl-1H-pyrazol-3-yl)- N -methylacetamide (24a). Prepared from 23a ($2.181 \mathrm{~g}, 10 \mathrm{mmol}$) and benzyl(methyl)amine 17a ($4.844 \mathrm{~g}, 40 \mathrm{mmol}$), CC (EtOAc/hexanes, 2:1). Yellowish oil, yield $48 \%, 1.561 \mathrm{~g}$, $\operatorname{IR}\left(v_{\max }, \mathrm{cm}^{-1}\right): 3490,1639(\mathrm{C}=\mathrm{O}), 1559,1496,1453$, $1401,1112,1020,804,759,731,692 .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta_{\mathrm{H}} 3.01$ (3H, s, Me), 3.63$3.72\left(4 \mathrm{H}, \mathrm{m}, 2-\mathrm{CH}_{2}\right.$ and $4-\mathrm{CH}_{2}$ of pyrazole), 4.61 and $4.63\left(2 \mathrm{H}, 2 \mathrm{br} \mathrm{s}, 5: 3, \mathrm{CH}_{2} \mathrm{Ph}\right), 7.14-7.22$ $(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{H}$ of Ph$), 7.24-7.42(6 \mathrm{H}, \mathrm{m}, 6 \mathrm{H}$ of Ph$), 7.77-7.86(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{H}$ of Ph$) .{ }^{13} \mathrm{C}$ NMR (300 $\mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta_{\mathrm{C}} 33.8 / 34.0,35.9 / 36.2,42.1 / 42.2,50.8 / 50.9$, 118.58/118.60, 121.3/121.4, 127.5/127.6, 127.3/127.4, 128.3/128.4, 128.5/128.6, 136.3/136.4, 137.7/137.8, 154.6/154.7, $167.7 / 167.9,170.7 / 170.9 .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$), $\delta_{\mathrm{H}} 2.79$ and 2.98 ($3 \mathrm{H}, 2 \mathrm{~s}, 1: 2$, Me), 3.62 and $3.67\left(2 \mathrm{H}, 2 \mathrm{~s}, 1: 2,2-\mathrm{CH}_{2}\right), 4.54$ and $4.68\left(2 \mathrm{H}, 2 \mathrm{~s}, 2: 1, \mathrm{CH}_{2} \mathrm{Ph}\right), 5.47$ and $5.48(1 \mathrm{H}, 2 \mathrm{~s}$, $\sim 1: 2$, 4-H of pyrazole), 7.16-7.36 (8H, m, 8H of Ph), 7.38-7.46 ($2 \mathrm{H}, \mathrm{m}, 2 \mathrm{H}$ of Ph), 7.64-7.67 and $7.72-7.75(1 \mathrm{H}, 2 \mathrm{~m}, 1: 2,1 \mathrm{H}$ of Ph$), 11.63(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO- d_{6}), $\delta_{\text {С }} 33.4 / 35.3,34.6 / 34.8,50.0 / 52.8,87.7,120.6 / 120.9$, 125.3/125.4, 126.8/127.4, 127.0/127.3, $128.4 / 128.6,128.8 / 128.9,137.4 / 137.8,138.8 / 138.9,146.7,153.2,169.4 / 169.5 . \mathrm{MS}, m / z=322$ $\left(\mathrm{MH}^{+}\right)$, HRMS (ESI), $m / z=322.1549\left(\mathrm{MH}^{+}\right), \mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{2}$ requires 322.1556.
1-(4-Methoxyphenyl)-3-(2-oxo-2-(pyrrolidin-1-yl)ethyl)-1H-pyrazol-5(4H)-one
(25b).
Prepared from 23b ($2.491 \mathrm{~g}, 10 \mathrm{mmol}$) and pyrrolidine 17b ($2.840 \mathrm{~g}, 40 \mathrm{mmol}$), CC (first EtOAc to elute less polar impurities, then $\mathrm{MeOH} / \mathrm{EtOAc}, 1: 9$, to elute the product). Yellowish oil, yield $79 \%, 2.388 \mathrm{~g}$, IR ($v_{\max }, \mathrm{cm}^{-1}$): 3438, 2928, 2877, $1703(\mathrm{C}=\mathrm{O}), 1621,1557,1511,1454,1340$, $1298,1249,1172,1024,913,833,730 .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta_{\mathrm{H}} 1.89$ and $2.00(4 \mathrm{H}, 2$ quintets, 1:1, $\left.{ }^{3} J_{\mathrm{HH}}=6.8 \mathrm{~Hz}, 3^{\prime \prime}-\mathrm{CH}_{2}, 4^{\prime \prime}-\mathrm{CH}_{2}\right), 3.49$ and $3.51\left(4 \mathrm{H}, 2 \mathrm{t}, 1: 1,{ }^{3} J_{\mathrm{HH}}=6.9 \mathrm{~Hz}, 2^{\prime \prime}-\mathrm{CH}_{2}\right.$, $\left.5 "-\mathrm{CH}_{2}\right), 3.53$ and $3.68\left(4 \mathrm{H}, 2 \mathrm{~s}, 1: 1,2^{\prime}-\mathrm{CH}_{2}, 4-\mathrm{CH}_{2}\right.$ of pyrazole), $3.81(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.91$ and $7.70\left(4 \mathrm{H}, 2 \mathrm{brd}, 1: 1,{ }^{3} J_{\mathrm{HH}}=9.1 \mathrm{~Hz}, \mathrm{C}_{6} \mathrm{H}_{4}\right) .{ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}), $\delta_{\mathrm{H}} 1.70-1.93(4 \mathrm{H}$, $\left.\mathrm{m}, 3^{\prime \prime}-\mathrm{CH}_{2}, 4^{\prime \prime}-\mathrm{CH}_{2}\right), 3.28$ and $3.50\left(4 \mathrm{H}, 2 \mathrm{t},{ }^{3} \mathrm{JHH}_{\mathrm{HH}}=6.9 \mathrm{~Hz}, 2^{\prime \prime}-\mathrm{CH}_{2}, 5^{\prime \prime}-\mathrm{CH}_{2}\right), 3.46\left(2 \mathrm{H}, \mathrm{s}, 1^{\prime}-\mathrm{CH}_{2}\right)$, $3.77(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 5.40(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}$ of pyrazole $), 6.95-7.03$ and $7.52-7.60\left(4 \mathrm{H}, 2 \mathrm{~m}, 1: 1, \mathrm{C}_{6} \mathrm{H}_{4}\right)$, $11.31(1 \mathrm{H}$, br s, OH$) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta_{\mathrm{C}} 24.5,26.2,37.8,42.5,46.2,47.1,55.6$, 114.1, 121.1, 131.4, 154.5, 157.2, 166.0, 170.9. MS, $m / z=302\left(\mathrm{MH}^{+}\right), \operatorname{HRMS}(\mathrm{ESI}), m / z=$ $302.1510\left(\mathrm{MH}^{+}\right), \mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{3}$ requires 302.1505 .
N, N-dibenzyl-2-(1-phenyl-5-oxo-4,5-dihydro-1H-pyrazol-3-yl)acetamide (25c). Prepared from 23a ($2.181 \mathrm{~g}, 10 \mathrm{mmol}$) and dibenzylamine $\mathbf{1 7 c}(7.88 \mathrm{~g}, 40 \mathrm{mmol})$, CC (EtOAc/hexanes, 1:1). Yellowish semi-solid, yield $42 \%, 1.675 \mathrm{~g}$, IR ($\mathrm{v}_{\text {max }}, \mathrm{cm}^{-1}$): 3480, $1715(\mathrm{C}=\mathrm{O}), 1633(\mathrm{C}=\mathrm{O})$, $1558,1496,1452,1360,1208,1168,1078,954,751,694 .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta_{\mathrm{H}} 3.65$ $\left(4 \mathrm{H}, \mathrm{s}, 2-\mathrm{CH}_{2}, 4-\mathrm{CH}_{2}\right.$ of pyrazole), 4.52 and $4.64\left(4 \mathrm{H}, 2 \mathrm{~s}, 1: 1,2 \times \mathrm{CH}_{2} \mathrm{Ph}\right), 7.12-7.42(13 \mathrm{H}, \mathrm{m}$, 13 H of Ph), $7.77-7.83(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{H}$ of Ph$) .{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}), $\delta_{\mathrm{H}} 3.68$ ($2 \mathrm{H}, 2 \mathrm{~s}, 1: 2$, $\left.2-\mathrm{CH}_{2}\right), 4.51$ and $4.60\left(4 \mathrm{H}, 2 \mathrm{~s}, 1: 1, \mathrm{CH}_{2} \mathrm{Ph}\right), 5.51(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}$ of pyrazole $), 7.19\left(3 \mathrm{H}, \mathrm{d},{ }^{3} J_{\mathrm{HH}}=\right.$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}$ of Ph$), 7.22-7.30(6 \mathrm{H}, \mathrm{m}, 6 \mathrm{H}$ of Ph$), 7.35\left(2 \mathrm{H}, \mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.4 \mathrm{~Hz}, 2 \mathrm{H}\right.$ of Ph$), 7.43(2 \mathrm{H}$, dd, ${ }^{3} J_{\mathrm{HH}}=7.3,8.6 \mathrm{~Hz}, 2 \mathrm{H}$ of Ph$), 7.70\left(2 \mathrm{H}, \mathrm{dd},{ }^{3} J_{\mathrm{HH}}=1.4,8.3 \mathrm{~Hz}, 2 \mathrm{H}\right.$ of Ph$), 11.67(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$), $\delta_{\mathrm{C}} 34.8,47.7,50.4,87.7,120.8,125.4,126.7$, 127.0, $127.4,127.5,128.4,128.7,128.8,137.2$, 137.6, 138.8, 146.6, 153.2, 169.9. MS, $m / z=398$ $\left(\mathrm{MH}^{+}\right)$, HRMS (ESI), $m / z=398.1859\left(\mathrm{MH}^{+}\right), \mathrm{C}_{25} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{2}$ requires 398.1869.

General procedure for the reduction of amides (24a) and (25b,c) to amines (15a,b) and

 (26c)Under argon, $\mathrm{LiAlH}_{4}(1 \mathrm{M}$ in THF, $10 \mathrm{~mL}, 10 \mathrm{mmol})$ was added to a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of amide 24 or $25(5 \mathrm{mmol})$ in anhydrous THF (10 mL) and the resulting reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 20 min . and then at $60^{\circ} \mathrm{C}$ for 5 h . The reaction mixture was cooled to $0^{\circ} \mathrm{C}$ and quenched subsequently with aq. sat. $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ and $\mathrm{MeOH}(10 \mathrm{~mL})$. The resulting mixture was stirred at room temperature for 10 min . followed by filtration through a short plug of Celite ${ }^{\circledR}$ and washing with EtOAc (200 mL). The filtrate was evaporated in vacuo and the residue was purified by CC. Fractions containing the product were collected and volatile components evaporated in vacuo to give $\mathbf{1 5 a}, \mathbf{b}$ and $\mathbf{2 6 c}$. Compound $\mathbf{1 5 b}$ was isolated as dihydrochloride in the following way. The partially purified free amine obtained by CC was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 mL) and, while vigorous stirring at r.t., $2 \mathrm{M} \mathrm{HCl}-\operatorname{EtOAc}(2 \mathrm{~mL}, 4 \mathrm{mmol})$ was added. The precipitate was collected by filtration, washed with EtOAc, dried in vacuo to give the dihydrochloride of $\mathbf{1 5 b}$.
3-(2-(Benzyl(methyl)amino)ethyl)-5-hydroxy-1-phenyl-1H-pyrazole (15a). Prepared from 24a ($1.605 \mathrm{~g}, 5 \mathrm{mmol}$), $\mathrm{CC}(\mathrm{MeOH} / \mathrm{EtOAc}, 1: 7)$. Yellowish-brown semi-solid, yield 50\%, 771 mg , IR ($v_{\max }, \mathrm{cm}^{-1}$): 3030, 2951, 2790, 1598, 1564, 1498, 1454, 1362, 1153, 1069, 1023, 907, 757, 698. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta_{\mathrm{H}} 2.26(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}), 2.68\left(4 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{2}\right), 3.38(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{2}\right), 3.52\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 7.14-7.43(8 \mathrm{H}, \mathrm{m}, 8 \mathrm{H}$ of Ph$), 7.86\left(2 \mathrm{H}, \mathrm{d},{ }^{3} J_{\mathrm{HH}}=8.0 \mathrm{~Hz}, 2 \mathrm{H}\right.$ of Ph$)$. MS, $m / z=308\left(\mathrm{MH}^{+}\right)$, HRMS (ESI), $m / z=308.1759\left(\mathrm{MH}^{+}\right), \mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}$ requires 308.1763. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3}$ (307.39): C, $74.24 ; \mathrm{H}, 6.89$; N, 13.67\%, Found: C, 73.19; H, 6.88; N, 13.31\%.
5-Hydroxy-1-(4-methoxyphenyl)-3-(2-(pyrrolidin-1-yl)ethyl)-1H-pyrazole dihydrochloride (15b). Prepared from 25b ($1.506 \mathrm{~g}, 5 \mathrm{mmol}$), CC (neutral $\mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 1: 9$). White solid, yield 54%, $981 \mathrm{mg}, \mathrm{mp} 199-201^{\circ} \mathrm{C}$, IR $\left(v_{\max }, \mathrm{cm}^{-1}\right): 3424,2958,2841,2702,2605,2514$, 2359, 2331, 1592, 1580, 1559, 1535, 1508, 1448, 1420, 1400, 1362, 1303, 1257, 1184, 1172, $1109,1065,1034,1018,850,799 .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$), $\delta_{\mathrm{H}} 1.80-2.09(4 \mathrm{H}, \mathrm{m}, 3$ "$\left.\mathrm{CH}_{2}, 4 "-\mathrm{CH}_{2}\right), 2.88-2.98$ and $2.99-3.10\left(4 \mathrm{H}, 2 \mathrm{~m}, 1: 1, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.35-3.46$ and $3.47-3.60(4 \mathrm{H}$, $\left.2 \mathrm{~m}, 1: 1,2^{\prime \prime}-\mathrm{CH}_{2}, 5{ }^{\prime \prime}-\mathrm{CH}_{2}\right), 3.78(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 5.52(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}$ of pyrazole), $5.93(2 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\left.\mathrm{NH}_{2}{ }^{+}\right), 6.96-7.04$ and $7.52-7.61\left(4 \mathrm{H}, 2 \mathrm{~m}, 1: 1, \mathrm{C}_{6} \mathrm{H}_{4}\right), 10.75(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO- d_{6}), $\delta_{\mathrm{C}} 22.8,24.2,52.3,52.8,55.5,88.1,114.2,124.0,129.9,146.8,154.0,157.9$. MS, $m / z=288\left(\mathrm{MH}^{+}\right)$, HRMS $(\mathrm{ESI}), m / z=288.1720\left(\mathrm{MH}^{+}\right), \mathrm{C}_{16} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{2}$ requires 288.1712. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{2}$ (360.28): C, 53.34; H, 6.43; N, 11.66\%, Found: C, 52.76; H, 6.41; N, 11.60%.
3-(2-(Dibenzylamino)ethyl)-1-phenyl-1H-pyrazol-5(4H)-one (26c). Prepared from 25c (1.985 g, 5 mmol), CC (EtOAc/hexanes, 1:1). Brownish oil, yield 50\%, 966 mg , IR ($\mathrm{v}_{\mathrm{max}}, \mathrm{cm}^{-1}$): 3060, 3027, 2928, 2800, 2359, 2341, 1714 (C=O), 1597, 1558, 1497, 1453, 1409, 1365, 1337, 1248, $1154,1128,1071,1027,977,906,749,697 .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta_{\mathrm{H}} 2.61-2.67$ and 2.69-2.76 ($4 \mathrm{H}, 2 \mathrm{~m}, 1: 1, \mathrm{CH}_{2} \mathrm{CH}_{2}$), $2.99\left(2 \mathrm{H}, \mathrm{s}, 4-\mathrm{CH}_{2}\right.$ of pyrazole), $3.57\left(4 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{2} \mathrm{Ph}\right)$, 7.14-7.43 ($13 \mathrm{H}, \mathrm{m}, 13 \mathrm{H}$ of Ph), 7.84-7.91 ($2 \mathrm{H}, \mathrm{m}, 2 \mathrm{H}$ of Ph). ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}),
$\delta_{\mathrm{H}} 3.07-3.13$ and $3.19-3.25\left(4 \mathrm{H}, 2 \mathrm{~m}, 1: 1, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NBn}_{2}\right), 4.39\left(4 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{2} \mathrm{Ph}\right), 5.44(1 \mathrm{H}, \mathrm{s}, 4-$ H of pyrazole $), 7.24\left(1 \mathrm{H}, \mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.4 \mathrm{~Hz}, 1 \mathrm{H}\right.$ of Ph$), 7.41-7.45(9 \mathrm{H}, \mathrm{m}, 9 \mathrm{H}$ of Ph$), 7.62-7.65$ $(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{H}$ of Ph$), 7.69-7.73(3 \mathrm{H}, \mathrm{m}, 3 \mathrm{H}$ of Ph$), 11.55(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR (75.5 MHz , DMSO- d_{6}, , $\delta_{\text {C }} 22.7,22.7,50.0,56.1,87.4,121.1,121.1,125.8,128.6,128.8,128.9,129.0$, $129.5,130.1,130.3,131.5,138.2,147.6,153.8 . \operatorname{MS}, m / z=384\left(\mathrm{MH}^{+}\right), \operatorname{HRMS}(E S I), m / z=$ 384.2080 $\left(\mathrm{MH}^{+}\right), \mathrm{C}_{25} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}$ requires 384.2076. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}$ (383.49): C, 78.30; H, 6.57; N, 10.96\%, Found: C, 79.59; H, 6.74; N, 10.83\%.

Acknowledgements

We acknowledge with thanks the financial support from Boehringer-Ingelheim Pharma GmbH \& Co. KG (Biberach, Germany). The financial support from the Slovenian Research Agency through grant P1-0179 is gratefully acknowledged.

References

1. (a) Patrick, G. L. An Introduction to Medicinal Chemistry; $3^{\text {rd }}$ Edn., Oxford University Press: Oxford, 2005. (b) Kazuta, Y.; Hirano, K.; Natsume, K.; Yamada, S.; Kimura, R.; Matsumoto, S.-i.; Furuichi, K.; Matsuda, A.; Shuto, S. J. Med. Chem. 2003, 46, 1980. (c) Paillet-Loilier, M.; Fabis, F.; Lepailleur, A.; Bureau, R.; Butt-Gueulle, S.; Dauphin, F.; Lesnard, A.; Delarue, C.; Vaudryb, H.; Rault, S. Bioorg. Med. Chem. Lett. 2007, 17, 3018. (d) Pullagurla, M.; Dukat, M.; Roth, B. L.; Setola, V.; Glennon, R. A. Med. Chem. Res. 2005, 14, 1. (e) Liebscher, J.; Patzel, M. Synlett 1994, 471.
2. (a) Yet, L. Pyrazoles In Comprehensive Heterocyclic Chemistry III; Katritzky, A. R.; Ramsden, C. A.; Scriven, E. F. V.; Taylor, R. J. K., Eds., Vol. 4, Joule, J. A., Ed., Elsevier: Oxford, 2008, pp. 1-141. (b) Stanovnik, B.; Svete, J. Pyrazoles In Science of Synthesis, Houben-Weyl Methods of Organic Transformations; Neier, R. Ed., Vol. 12, Georg Thieme Verlag, Stuttgart, 2002, pp. 15-225. (c) Stanovnik, B.; Grošelj, U. Adv. Heterocycl. Chem. 2010, 100, 145.
3. (a) N. Xi, Q. Huang, L. Lin, Imidazoles In Comprehensive Heterocyclic Chemistry III; Katritzky, A. R.; Ramsden, C. A.; Scriven, E. F. V.; Taylor, R. J. K., Vol. 4, J. Joule, Ed., Elsevier: Oxford, 2008, pp. 143-364. (b) Grimmett, M. R Imidazoles In Science of Synthesis, Houben-Weyl Methods of Organic Transformations; Neier, R., Ed., Vol. 12, Georg Thieme Verlag, Stuttgart, 2002, pp. 325-528.
4. (a) Kralj, D.; Grošelj, U. Meden, A.; Dahmann, G.; Stanovnik, B.; Svete, J. Tetrahedron 2007, 63, 11213. (b) Kralj, D.; Novak, A.; Dahmann, G.; Grošelj, U.; Meden, A.; Svete, J. J. Comb. Chem. 2008, 10, 664.
5. Kralj, D.; Friedrich, M.; Grošelj, U.; Kiraly-Potpara, S.; Meden, A.; Wagger, J.; Dahmann, G.; Stanovnik, B.; Svete, J. Tetrahedron 2009, 65, 7151.
6. Žerovnik, D.; Grošelj, U.; Kralj, D.; Malavašič, Č.; Bezenšek, J.; Dahmann, G.; Stare, K.; Meden, A.; Stanovnik, B.; Svete, J. Synthesis 2010, 3633.
7. Janjić, M.; Prebil, R.; Grošelj, U.; Kralj, D.; Malavašič, Č.; Golobič, A.; Stare, K.; Dahmann, G.; Stanovnik, B.; Svete, J. Helv. Chim. Acta 2011, 94, 1703.
8. (a) Brooks, D. W.; Lu, L. D.-L.; Masamune, S. Angew. Chem. Int. Ed. 1979, 18, 72. (b) Hashiguchi, S.; Kawada, A.; Natsugari, H.Synthesis 1992, 403. (c) Moreau, R. J.; Sorensen, E. J. Tetrahedron 2007, 63, 6446.
9. (a) S. J. Miller and D. J. Guerin in Enantioselective Synthesis of β-Amino Acids, $2^{\text {nd }}$ Edn, John Wiley \& Sons, Inc.: 2005, Hoboken, N. J., pp. 351-376. (b) Liu M.; Sibi, M. P. In Enantioselective Synthesis of β-Amino Acids, $2^{\text {nd }}$ Edn, Wiley: Hoboken, N. J., 2005, pp. 377-395.
10. (a) Yeom, C.-E.; Kim, M. J.; Kim, B. M. Tetrahedron 2007, 63, 904. (b) Le Sann, C.; Huddleston, J.; Mann, J. Tetrahedron 2007, 63, 12903. (c) Ranu, B. C.; Dey, S. S.; Hajra, A. ARKIVOC 2002, (vii), 76.
11. (a) Liu, S.; Yang, Y.-L. A.; Sambandam, A.; Molino, B. F.; Olson, R. E. WO 2008141082 ; Chem. Abstr. 2008, 149, 576408. (b) Yamada, N.; Sugi, H.; Kon, K. EP 219852; Chem. Abstr. 1990, 112, 139733.
12. (a) D. Bevk, R. Jakše, J. Svete, A. Golobič, L. Golič, and B. Stanovnik, Heterocycles 2003, 61, 197. (b) A. P. Yakubov, D. V. Tsyganov, Y. M. Emel'yanova, and V. N. Nesterov, Khim. Geterotsikl. Soed. (Chem. Heterocycl.Compds.) 2002, 38, 1180. (c) K. Fukushi, M. Nakaya, S. Shiraishi, M. Nakamura, and S. Numata, Jpn. Kokai Tokkyo Koho JP 01056690, 1989, Chem. Abstr. 1989, 111, 134146. (d) Jpn. Kokai Tokkyo Koho JP 82 40,467, 1982, Chem. Abstr. 1982, 97, 92271. (e) Fujimura, H.; Hori, M.; Kojima, S.; Kato, K.; Sugiura, S. Jpn. Kokai Tokkyo Koho JP49011232, 1974, Chem. Abstr. 1974, 81, 136138. (f) Short, F. W.; Schoeb, E. J. J. Heterocycl. Chem. 1969, 6, 723. (g) von Pechmann, H. Liebigs Ann. Chem. 1891, 261, 171.
13. (a) Holzer, W.; Kautsch, C.; Laggner, C.; Claramunt, R. M.; Perez-Torralba, M.; Alkorta, I.; Elguero, J. Tetrahedron 2004, 60, 6791. (b) Katritzky, A. R.; Karelson, M.; Harris, P. A.; Heterocycles 1991, 32, 329. (c) Dorn, H. J. Prakt. Chem. 1973, 315, 382.
14. In the case of hydrazine hydrochloride, one equivalent of $\mathrm{Et}_{3} \mathrm{~N}(0.14 \mathrm{~mL}, 1 \mathrm{mmol})$ was added as well.
