Synthesis of 1,4-phenylene bridged bis-heterocyclic compounds

Raafat M. Shaker
Chemistry Department, College of Science, Al-Jouf University, Sakaka, Kingdom of Saudi Arabia
E-mail: rmshaker@yahoo.com

DOI: http://dx.doi.org/10.3998/ark.5550190.0013.101

Abstract

The synthesis of 1,4-phenylene bis-heterocyclic compounds is comprehensively reviewed.

Keywords: Synthesis, 1,4-phenylene, bis-heterocyclic compounds, terephthalaldehyde

Contents

1. Introduction
2. Five-membered Rings with One Heteroatom
2.1. 1,4-Phenylene-bis-furans and their fused derivatives
2.2. 1,4-Phenylene-bis-thiophenes
2.3. 1,4-Phenylene-bis-pyrroles
3. Five-membered Rings with Two Heteroatoms
3.1. 1,4-Phenylene-bis-pyrazoles and their fused derivatives
3.2. 1,4-Phenylene-bis-imidazoles and their fused derivatives
3.3. 1,4-Phenylene-bis-oxazoles
3.4. 1,4-Phenylene-bis-isoxazoles
3.5. 1,4-Phenylene-bis-thiazoles and their fused derivatives
4. Five-membered Rings with Three Heteroatoms
4.1. 1,4-Phenylene-bis-triazoles and their fused derivatives
4.2. 1,4-Phenylene-bis-dioxazoles
4.3. 1,4-Phenylene-bis-oxadiazoles
4.4. 1,4-Phenylene- is-thiadiazoles
5. Five-membered Rings with Four Heteroatoms
5.1. 1,4-Phenylene-bis-tetrazoles
6. Six-membered Rings with One Heteroatom
6.1. 1,4-Phenylene-bis-pyrans and their fused derivatives

Abstract

6.2. 1,4-Phenylene-bis-thiopyrans 6.3. 1,4-Phenylene-bis-pyridines and their fused derivatives 7. Six-membered Rings with Two Heteroatoms 7.1. 1,4-Phenylene-bis-pyrimidines and their fused derivatives 7.2. 1,4-Phenylene-bis-oxazines 7.3. 1,4-Phenylene-bis-pyrazines 7.4. 1,4-Phenylene-bis-1,3-thiazines and their fused derivatives 8. 1,4-Phenylene- Bis-spiroheterocycles 9. Conclusions 10. References

\section*{1. Introduction}

Heterocyclic chemistry comprises at least half of all organic chemistry research worldwide. The large number of biologically active molecules that contain heterocyclic rings has made synthetic studies of new heterocyclic rings very attractive, ${ }^{1-5}$ particularly, polyfunctionalized heterocyclic compounds play important roles in the drug discovery process, and analysis of drugs in late development or on the market shows that 68% of them are heterocycles. ${ }^{6-12}$ Therefore, it is not surprising that research on the synthesis of polyfunctionalized heterocyclic compounds has received significant attention. In recent years, attention has been increasingly paid to the synthesis of bis-heterocyclic compounds which exhibit various biological activities, ${ }^{13-20}$ including antibacterial, fungicidal, tuberculostatic, antiamoebic, and plant growth regulative properties. The current first specialized review covers the synthesis of 1,4-phenylene-bisheterocyclic compounds from the late 1972 until 2011, and our survey of the literature on the synthesis of these heterocyclic has been divided according to the number of heteroatom in the heterocyclic.

2. Five-membered Rings with One Heteroatom

2.1. 1,4-Phenylene-bis-furans and their fused derivatives

Terephthalaldehyde $\mathbf{1}$ when treated with two equivalents of dimethyl acetylenedicarboxylate (DMAD) 2 and methoxytriazoline $\mathbf{3}$ afforded both mono- and bis-adducts $\mathbf{4}$ and 5, respectively, (Scheme 1). ${ }^{21}$

The 5,5'-(1,4-phenylene)bis(furo[2,3-d]pyrimidine-2,4(1H,3H)-dione) derivatives $\mathbf{8}$ were obtained from the reaction of isocyanides 6, terephthalaldehyde $\mathbf{1}$ and N, N-dimethylbarbituric acid 7 via efficient one-pot three-component condensation reactions (Scheme 2). ${ }^{22}$

Scheme 1

Scheme 2

2.2. 1,4-Phenylene-bis-thiophenes

The 1,4-bis(thiophen-2-yl)benzene $\mathbf{1 1}$ was synthesized according to the procedure reported by Yang et al. ${ }^{23}$ As shown in Scheme, 3, 2-bromothiophene 9 is reacted with magnesium to afford Grignard reagents $\mathbf{1 0}$ which are then cross-coupled to 1,4 -dibromobenzene in the presence of catalytic bis(triphenylphosphino)dichloronickel (II) $\left(\mathrm{NiCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right)$ (Scheme 3).

Scheme 3. Reagents: (i) $\mathrm{Mg}, \mathrm{Et}_{2} \mathrm{O}$; (ii) 1,,4-dibromobenzere, $\mathrm{NiCI}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$, THF.

Suzuki cross-couplings onto the isomeric 1,4-dibromo-2,5-diiodobenzene $\mathbf{1 2}$ afforded the thienyl-substituted terphenyl 13 (Scheme 4). ${ }^{24}$

Scheme 4. Reagents: (a) 2-tridutylstannythiopene, $\left(\mathrm{Ph}_{3} \mathrm{P}_{2} \mathrm{PdCI}_{2}\right.$, DMF, $80^{\circ} \mathrm{C}$. (b) 3,4-di (2-tthylhexyloxy)phenylpinacolatoborane, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{PhMe}, \mathrm{EtOH}, \mathrm{H}_{2} \mathrm{O}, 90^{\circ} \mathrm{C}$.

2.3. 1,4-Phenylene-bis-pyrroles

The 1,4-bis($1 H$-pyrrol-2-yl)benzene derivatives $\mathbf{1 8}$ were prepared by modification of the method of Engel and Steglich, ${ }^{25}$ in accordance with the general pathway set out in Scheme 5 . The acid chlorides $\mathbf{1 4}$ were reacted with allylamine $\mathbf{1 5}$ to give aryl bis(allylamides) 16. Subsequent treatment with phosgene furnished the aryl bis(allylimino chlorides) 17, which were used without isolation or purification in the following step. Compounds $\mathbf{1 7}$ were cyclized under basic conditions to form 18 (Scheme 5). ${ }^{26,27}$

Scheme 5

The 1,4-bis(1-vinyl-1H-pyrrol-2-yl)benzene 20 was synthesized by the Trofimov reaction from 1,4-diacetylbenzene dioxime 19 and acetylene in a KOH - DMSO system (Scheme 6). ${ }^{28-30}$

Scheme 6

When a mixture of 3,4-diethyl-2-ethoxycarbonyl-5-iodopyrrole 21 (2.0 mmol), 1,4-phenylene-bisboronic acid $22(1.0 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(6.6 \mathrm{~mol}), \mathrm{Pd}(\mathrm{OAc})_{2}(0.10 \mathrm{mmol})$, and PPh_{3} $(0.20 \mathrm{mmol})$ in ethanol was heated under argon for 24 h at reflux, diethyl 5,5'-(1,4-phenylene)bis(3,4-diethyl-1H-pyrrole-2-carboxylate) 23 was obtained (Scheme 7). ${ }^{31}$

Scheme 7

The oxidative electropolymerization of these 1,4-bis(1H-pyrrol-2-yl)benzene $\mathbf{1 8}(\mathrm{R}=\mathrm{H})$ gave the polymer 24 (Figure 1). ${ }^{26,27}$

24

Figure 1

In the reaction of 1,4-diaminobenzene 25 with methyl 4-methoxy-6-oxo-7,7,7-trifluoro-4heptenoate 26 in a stoichiometric ratio $2: 1$ mol-equiv ratio in MeCN under reflux conditions the intramolecular cyclisation took place with the formation of 1,1'-(1,4-phenylene)bis(5-(3,3,3-trifluoro-2-oxopropylidene)pyrrolidin-2-one) 27 (Scheme 8). ${ }^{32}$

Scheme 8

The reaction of cis-1,2,3,6-tetrahydrophthalic anhydride 28 and maleic anhydride 29 with 1,4-diaminobenzene 25 on montmorillonite K-10 under microwave irradiation afforded 2,2'-(1,4-phenylene)bis(isoindoline-1,3-dione) 30 and 1,1'-(1,4-phenylene)bis(1 H -pyrrole-2,5-dione) 31, respectively (Scheme 9). ${ }^{33}$

Scheme 9

The Knorr-Paal reaction 1,4-diaminobenzene 25 with 1,4-bis(2-thienyl)-1,4-butanedione 32 in the presence of propionic acid catalysts afforded 1,4-bis[2,5-di(2-thienyl)-1H-1pyrrolyl]benzene 33 (Scheme 10). ${ }^{34}$

Scheme 10

3. Five-membered Rings with Two Heteroatoms

3.1. 1,4-Phenylene-bis-pyrazoles and their fused derivatives

In the reaction between diarylidene-1,4-diacetylbenzenes $\mathbf{3 4}$ and phenylhydrazine hydrochloride, 1,4-bis(4,5-dihydro-1H-pyrazol-3-yl)benzene derivatives 35 were obtained which possess a bright green or blue luminescence (Figure 2). ${ }^{35}$

34

35

Figure 2

The cyclization of bischalcone 36 with $N-4$ substituted-thiosemicarbazides $\mathbf{3 7}$ under basic condition led to the formation of 5,5'-(1,4-phenylene)bis(4,5-dihydro-1 H-pyrazole-1carbothioamide) $\mathbf{3 8}$ (Scheme 11). ${ }^{18}$

Scheme 11

The 5,5'-(1,4-phenylene)bis(3-aryl-1 H-pyrazole) 39 are synthesized by the reaction of bischalcone 35 with hydrazine hydrate catalyzed by anhydrous sodium acetate/acetic anhydride under ultrasonic irradiation method at $45^{\circ} \mathrm{C}$ within 10-20 min (Figure 3). ${ }^{36}$

Figure 3

The anodic oxidation of 4-tert-butylcatecol $\mathbf{4 0}$ in the presence of pyrazol-5-ones $\mathbf{4 1}$ in 2:1 volume ratio of acetate buffer to acetonitrile, gave 4,4'-(1,4-phenylene)bis(1-aryl-3-methyl- 1 H -pyrazol-5-ol) 42 (Scheme 12). ${ }^{37}$

Scheme 12

The 1,2,4-tris(1 H -pyrazolyl)benzene 45 was synthesized by the reaction of 2,4difluoroiodobenzene 43 with pyrazole 44 catalyzed by $\mathrm{Cu}_{2} \mathrm{O}$ ($5 \mathrm{~mol} \%$) 20% salicylaldoxime (20 $\mathrm{mol} \%$) and $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (2 equiv) in acetonitrile (Scheme 13). ${ }^{38}$

Scheme 13

Also, the $1,1^{\prime}$-(2,5-difluoro-1,4-phenylene)bis(1H-pyrazole) 46, ${ }^{39}$ 1,1'-(perfluoro-1,4-phenylene)bis(1H-pyrazole) $\quad \mathbf{4 7},{ }^{39} \quad$ 1,2,3,4-tetrakis(pyrazol-1-yl)benzene $\quad \mathbf{4 8},{ }^{39} \quad 1,2,4,5-$ tetrakis(pyrazol-1-yl)benzene 49, ${ }^{39,40} 1,4$-difluoro-2,3,5,6-tetrakis(pyrazol-1-yl)benzene $\mathbf{5 0}^{39}$ and hexakis(pyrazol-1-yl)benzene 51, ${ }^{39-42}$ were prepared by nucleophilic substitution of fluorine in 1,2,3,4-tetrafluoro-, 1,2,4,5-tetrafluoro, and hexafluorobenzene, respectively (Figure 4).

46

49

47

50

48

51

Figure 4

The condensation reaction between terephthalaldehyde 1, dimedone 52 and 4-phenylurazole 53 gave 9,9'-(1,4-phenylene)bis(6,7-dihydro-[1,2,4]triazolo[1,2-a]indazole-trione) 54 (Scheme 14). ${ }^{43}$

1

52

53

Scheme 14

3.2. 1,4-Phenylene- bis-imidazoles and their fused derivatives

The 1,4-bis(1-chloro-2,2-dicyanovinyl)benzene 55 reacts with excess amount of ethylenediamine to give 1,4-bis(4,5-dihydro-1H-imidazol-2-yl)benzene 56 at room temperature (Scheme 15). ${ }^{44}$

Scheme 15

Similarly, the condensation of enantiopure 1,2-diamines with terephthalaldehyde (1), in toluene followed by treatment with N -bromosuccinimide in dichloromethane gives direct access to enantiopure 1,4-bis[4,5-diphenyl-4,5-dihydro- 1 H -imidazol-2-yl]benzene 57 and 1,4-bis[4,5-dimesyl-4,5-dihydro- 1 H -imidazol-2-yl]benzene 58 (Figure 5). ${ }^{45}$

57

58

Figure 5

The 2,2'-(1,4-phenylene)bis(1 H -imidazole-5-carboxamide) 63 was prepared by multicomponent reaction of terephthalic acid 59, cyclohexylisocyanide 60, n-butylamine $\mathbf{6 1}$ and phenylglyoxal hydrate 62 (Scheme 16). ${ }^{46}$

Scheme 16

The 1,1'-(1,4-phenylene)bis(dihydropyrimidine-2,4($1 H, 3 H$)-dione) $\mathbf{6 5}$ was also obtained along with $2,2^{\prime}-\left(3,3^{\prime}-(1,4\right.$-phenylene)bis(2,5-dioxoimidazolidine-4,3-diyl))diacetic acid 66 by heating aspartic acid dimer 64 with urea (Figure 6). ${ }^{47}$

64

65

66

Figure 6

Heating the tetracarboxylic acid $\mathbf{6 4}$ with potassium thiocyanate in acetic acid and subsequent addition of hydrochloric acid gave 2,2'-(3,3'-(1,4-phenylene)bis(5-oxo-2-thioxoimidazolidine-4,3-diyl)) diacetic acid 67 (Figure 7). ${ }^{47}$

67

Figure 7

Treatment of 4-(benzylidene-4-benzenesulphoate)-2-phenyl-2-oxazolin-5-one 68 with 1,4diaminobenzene $\mathbf{2 5}$ in acetic acid containing catalytic amounts of freshly fused sodium acetate gave the corresponding 1,1'-(1,4-phenylene)bis(4-arylidene-2-phenyl- 1 H -imidazol- $5(4 \mathrm{H})$-one) 69 (Figure 8). ${ }^{48}$

68

69

$$
\mathrm{Ar}=-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{SO}_{3}-\mathrm{Ph}
$$

Figure 8

When 1,4-phenylenedicarbamothioyl cyanide 70 was reacted with two moles of acetonitrile in tetrahydrofuran containing triethylamine at room temperature cyclization occurred to afford 1,1'-(1,4-phenylene)bis(4-imino-2-methyl-1H-imidazole-5(4H)-thione) 71 (Scheme 17). ${ }^{49}$

Scheme 17

Also, the 1,4-phenylenedicarbamothioyl cyanide 70 underwent cyclization upon its reaction with phenyl iso(thio)cyanate in tetrahydrofuran containing a catalytic amount of triethylamine giving the corresponding 3,3'-(1,4-phenylene)bis(4-thioxoimidazolidin-2-one) 72a and/or 3,3'-(1,4-phenylene)bis(imidazolidine-2,4-dithione) 72b, respectively (Scheme 18). ${ }^{49}$

Scheme 18

Reaction of 72a with $\mathrm{DMF} / \mathrm{HCl}$ and with phenyl hydrazine gave the corresponding 1,1'-(1,4-phenylene)bis(5-thioxoimidazolidine-2,4-dione) 73 and 3,3'-(1,4-phenylene)bis(5-imino-1-phenyl-4-(2-phenylhydrazono)imidazolidin-2-one) 74 (Figure 9). ${ }^{49}$

73

74

Figure 9

Ceric ammonium nitrate (CAN) is used as an efficient catalyst for the synthesis of 1,4-bis(4,5-diphenyl- 1 H -imidazol-2-yl)benzene 76 via condensation of terphthaldehyde 1, benzoin 75, and ammonium acetate (Scheme 19). ${ }^{50}$

Scheme 19

The reaction of two moles of 1,2-phenylenediamine derivatives 77 with terphthalaldehyde $\mathbf{1}$ gave the 1,4-bis(1 H -benzo[d]imidazol-2-yl)benzene 78 by PEG-mediated catalyst-free synthesis under solvent-less conditions (Scheme 20). ${ }^{51}$

Scheme 20

Shaabani et al. ${ }^{52}$ have described the synthesis of 1,4-phenylene-bis(imidazo[1,2-a]pyridines), 1,4-phenylene- bis-pyrimidines, and 1,4-phenylene-bis-pyrazines $\mathbf{8 0}$ by a pseudo-fivecomponent condensation of 2-amino-pyridines or 2-amino-pyrimidines and/or 2-aminopyrazines 79 with terephthalaldehyde $\mathbf{1}$ and isocyanides $\mathbf{6}$ in the presence of p-toluenesulfonic acid in methanol (Scheme 21).

Scheme 21

3.3. 1,4-Phenylene- bis-oxazoles

The 1,4-bis(4,5-dihydrooxazol-2-yl)benzene $\mathbf{8 3}$ was prepared in two-steps. The dimethylterephthalate $\mathbf{8 1}$ reacted with 2 -aminoethanol to give the N, N^{\prime}-bis(2-hydroxyethyl)terephthalamide 82. Subsequent treatment with thionyl chloride furnished $\mathbf{8 3}$ (Scheme 22). ${ }^{53,54}$

Scheme 22

When 1,4-phenylenedicarbamothioyl cyanide 70 was treated with two moles of acetaldehyde in tetrahydrofuran containing a catalytic amount of triethylamine a product was formed which was formulated as 3,3'-(1,4-phenylene)bis(5-imino-2-methyloxazolidine-4-thione) 84a. Hydrolysis of 84a by DMF/HCl gave 3,3'-(1,4-phenylene)bis(4-thioxooxazolidin-5-one) 84b (Scheme 23). ${ }^{49}$

Scheme 23

3.4. 1,4-Phenylene- bis-isoxazoles

Shabarov and coworkers ${ }^{55}$ found that under the influence of nitrosyl cation 1,4-dicyclopropylbenzene $\mathbf{8 5}$ is converted with high yields into 5-(4-cyclopropylphenyl)-4,5-dihydroisoxazole $\mathbf{8 6}$. It should be noted ${ }^{56-58}$ that the second three-carbon ring is not transformed with the initially employed reagent ratio and is, therefore, converted into the 1,4-bis(4,5-dihydroisoxazol-5yl)benzene $\mathbf{8 7}$ only with extreme difficulty (Scheme 24).

Scheme 24

3.5. 1,4-Phenylene- bis-thiazoles and their fused derivatives

Condensation of 1,4-diaminobenzene $\mathbf{2 5}$ with arylaldehyde in aqueous ethanol gave the corresponding diarylidenebenzene-1,4-diamine 88, which on condensation with thioglycollic acid furnished 3,3'-(1,4-phenylene)bis(2-aryl-thiazolidin-4-one) 89 (Scheme 25). ${ }^{59,60}$

Scheme 25

Condensation of $\mathbf{8 9}$ with arylaldehyde yielded 3,3'-(1,4-phenylene)bis(5-arylidene-thiazolidin-4-one) 90, which when treated with 2,4-dinitrophenylhydrazine afforded the cyclized product, 1,4- bis(pyrazolo[3,4-d]thiazol-6(5H)-yl)benzene 91, in one step (Figure 10). ${ }^{60}$

Figure 10

4. Five-membered Rings with Three Heteroatoms

4.1. 1,4-Phenylene- bis-triazoles and their fused derivatives

Shaker et al. ${ }^{61}$ reported that the bis-semicarbazide 92 on treatment with NaOH underwent cyclization to the 3,3'-(1,4-phenylene)bis(1H-1,2,4-triazol-5(4H)-one) 93 (Scheme 26).

Scheme 26

Smith et al. ${ }^{62}$ accomplished the reaction of the corresponding dienamines with dimethyl ester tetrazine $\mathbf{9 4}$ to yield the corresponding 5,5'-(1,4-phenylene)bis($2 \mathrm{H}-1,2,3$-triazole) $\mathbf{9 5}$ and 3,3'-(1,4-phenylene)bis($1 \mathrm{H}-1,2,4$-triazole) 96 (Figure 11).

Figure 11

Shaker et al. ${ }^{61}$ reported that the treatment of 1,4-phenylene-bis-thiosemicarbazide 97 with sodium hydroxide gives 3,3'-(1,4-phenylene)bis(1H-1,2,4-triazole-5(4H)-thione) 98 (Scheme 27).

Scheme 27

The reaction of 98 with ethyl iodide in DMF at room temperature and in the presence of anhydrous potassium carbonate gave 1,4-bis(4H-1,2,4-triazol-3-yl)benzene 99 (Figure 12). ${ }^{61}$

99

Figure 12

The bis-dithiocarbazinate $\mathbf{1 0 1}$ was synthesized by reacting dihydrazide $\mathbf{1 0 0}$ with carbon disulfide and potassium hydroxide in ethanol. This salt 101 underwent ring closure with an excess of 99% hydrazine hydrate to give the 5,5'-(1,4-phenylene)bis(4-amino-4H-1,2,4-triazole-3-thiol) 102 (Scheme 28). ${ }^{63}$

101

102
Scheme 28

The 1,4 -bis($4 H-1,2,4$-triazol-4-yl)benzene $\mathbf{1 0 5}$ was prepared from the reaction of N, N^{\prime}-($1,4-$ phenylene)bis-2-pyridinecarbothioamide $\mathbf{1 0 3}$ with benzoylhydrazine 104 (Scheme 29). ${ }^{64,65}$

Scheme 29

When two moles of benzoylhydrazine $\mathbf{1 0 4}$ was reacted with 1,4 -phenylenedicarbamothioyl cyanide $\mathbf{7 0}$ the 4,4'-(1,4-phenylene)bis(3-phenyl-1H-1,2,4-triazole-5(4H)-thione) $\mathbf{1 0 6}$ was obtained (Scheme 30). ${ }^{49}$

106

Scheme 30

The 1,4-phenylene-bis(4-amino-4H-1,2,4-triazole-3-thiol) $\mathbf{1 0 2}$ was converted to 1,4 -bis(1,2,4]-triazolo[3,4-b][1,3,4]thiadiazol-3-yl)benzene 107a,b in a one pot reaction, by condensation with aromatic acids in the presence of POCl_{3} (Scheme 31). ${ }^{63}$

Scheme 31

The condensation of dihydrazide $\mathbf{1 0 0}$ with phthalic anhydride $\mathbf{1 0 8}$ leads to the formation of $2,2^{\prime}-\left(1,4\right.$-phenylene) bis(5H-[1,2,4]triazolo[5,1-a]isoindol-5-one) $\mathbf{1 0 9}$ (Scheme 32). ${ }^{66}$

Scheme 32

The 1,4-bis(pyrazinothienotriazolopyrimidinones)benzene 111 was synthesized by the intermolecular aza-Wittig reaction of phosphazenes 110 with acid chloride $14(\mathrm{R}=\mathrm{H})$ followed by heterocyclization (Scheme 33). ${ }^{67}$

Scheme 33

The reaction with 1,4-phenylene diisocyanate 112 and two equivalents of the phosphorimidate $\mathbf{1 1 3}$ led to the formation of 1,4-bis(imidazo[4,5-d][1,2,3]triazol-2(4H)yl)benzene 114 (Scheme 34). ${ }^{68}$

Scheme 34

4.2. 1,4-Phenylene- bis-dioxazoles

Cyclization of benzene-1,4-dicarbaldehyde dioxime $\mathbf{1 1 5}$ with different aromatic aldehydes in inert atmosphere yielded 1,4-bis(1,4,2-dioxazol-3-yl)benzene 116 (Scheme 35). ${ }^{20}$

Scheme 35

4.3. 1,4-Phenylene- bis-oxadiazoles

The condensation of dihydrazide $\mathbf{1 0 0}$ with aromatic aldehydes afforded corresponding hydrazones $\mathbf{1 1 7}$, respectively. Cyclization of $\mathbf{1 1 7}$ with propionic anhydride at $160^{\circ} \mathrm{C}$ yielded $1,4-$ bis[3- N-propionyl-2-aryl-1,3,4-oxadiazo-5-yl]benzene $\mathbf{1 1 8}$ (Scheme 36). ${ }^{69}$

Scheme 36

Various 1,4-bis(5-aryl-1,3,4-oxadiazol-2-yl)benzene 119 were prepared by treatment of dihydrazide $\mathbf{1 0 0}$ with aromatic acids in the presence of trifluoroacetic acid (Scheme 37). ${ }^{63}$

Scheme 37

The synthesis, optical properties and electrochemical properties, of 1,4-bis(5-p-tolyl-1,3,4-oxadiazol-2-yl)benzene $\mathbf{1 2 1}$ are reported (Scheme 38). ${ }^{70}$

Scheme 38

The N^{11}, N^{14}-bis(4-bromo-2,5-bis(octyloxy)benzoyl)terephthalohydrazide $\mathbf{1 2 3}$ was obtained from the reaction of acid chloride $\mathbf{1 4}(\mathrm{R}=\mathrm{H})$ with 4-bromo-2,5-bis(octyloxy)benzohydrazide $\mathbf{1 2 2}$. After cyclodehydration of compound 123, the 1,4-bis(1,3,4-oxadiazol-2-yl)benzene $\mathbf{1 2 4}$ was obtained (Scheme 39). ${ }^{71}$

124

Scheme 39

Shaker et al. ${ }^{61}$ reported that the bis-semicarbazide 92 on treatment with NaOH underwent cyclization to the corresponding 5,5'-(1,4-phenylene)bis(1,3,4-oxadiazol) $\mathbf{1 2 5}$ (Scheme 40).

Scheme 40

4.4. 1,4-Phenylene- bis-thiadiazoles

Shaker et al. ${ }^{61}$ reported that 1,4-phenylene-bis-thiosemicarbazide 97 reacted with phosphoryl chloride at reflux to give 5,5'-(1,4-phenylene)bis(1,3,4-thiadiazol) $\mathbf{1 2 6}$ (Scheme 41).

Scheme 41

5. Five-membered Rings with Four Heteroatoms

5.1. 1,4-Phenylene-bis-tetrazoles

A series of 1,4-bis(tetrazole)benzene derivatives $\mathbf{1 2 7} \mathbf{- 1 3 0}$ were prepared by different methods (Figure 13). ${ }^{72-74}$

Figure 13

6. Six-membered Rings with One Heteroatom

6.1. 1,4-Phenylene- bis-pyrans and their fused derivatives

The reaction of phenylthioacetone $\mathbf{1 3 1}$ with malononitrile in a molar ratio of 1:2 carried out in absolute ethanol and catalyzed by piperidine afforded 4,4'-(1,4-phenylene)bis(2-amino-6-methyl-5-(phenylthio)-4H-pyran-3-carbonitrile) 132 (Scheme 42). ${ }^{75}$

Scheme 42

The 4,4'-(1,4-phenylene)bis(7,8-dihydro- $4 H$-chromen- $5(6 H)$-one) derivatives $\mathbf{1 3 3}$ were prepared from terephthalaldehyde 1, dimedone 52 and malononitrile or ethyl cyanoacetate under MW irradiation (Scheme 43). ${ }^{76}$

133
Scheme 43

The multi-component approach to the synthesis of 4,4'-(1,4-phenylene)bis(7,7-dimethyl-3,4,7,8-tetrahydro- 2 H -chromene-2,5(6H)-dione) $\mathbf{1 3 5}$ is based on the reaction of terephthalaldehyde 1, dimedone 52 and Meldrum's acid 134 under MW irradiation (Scheme 44). ${ }^{76}$

Scheme 44

Reaction of terephthalaldehyde 1, 3-methyl-2-pyrazolin-5-one $\mathbf{1 3 6}$ and malononitrile or methyl cyanoacetate under classical heating ${ }^{77}$ or MW irradiation ${ }^{76}$ gave the corresponding 4,4'-(1,4-phenylene)bis(1,4-dihydropyrano[2,3-c]pyrazole) 137 (Scheme 45).

137

Scheme 45

Terephthalaldehyde 1, on treatment with malononitrile and some phenolic compounds afforded 138-140 (Figure 14). ${ }^{77}$

Figure 14

The 9,9'-(1,4-phenylene)bis(3,3,6,6-tetramethyl-3,4,5,6,7,9-hexahydro-1H-xanthene-1,8(2H)-dione) $\mathbf{1 4 1}$ was prepared by condensing terephthalaldehyde $\mathbf{1}$ with dimedone 52 under different conditions (Figure 15). ${ }^{76,78,79}$

Figure 15

The 4,4'-(1,4-phenylene)bis(4,5-dihydropyrano[3,2-c]chromene) $\mathbf{1 4 3}$ has been synthesized via a one-pot multi-component condensation of terephthalaldehyde $\mathbf{1}$ with malononitrile and 4-hydroxy-coumarin 142 (Scheme 46). ${ }^{80}$

Scheme 46

6.2. 1,4-Phenylene- bis-thiopyrans

The $4,4^{\prime}$-(1,4-phenylene)bis(4H-thiopyran) 144 was synthesized by condensation of terephthalaldehyde 1, malononitrile and cyanothioacetamide in a 1:2:2 molar ratio (Figure 16). ${ }^{77}$

144

Figure 16

6.3. 1,4-Phenylene- bis-pyridines and their fused derivatives

The multi-component approach to the synthesis of diethyl 4,4'-(1,4-phenylene)bis(2-methyl-6-oxo-1,4,5,6-tetrahydropyridine-3-carboxylate) $\mathbf{1 4 5}$ is based on the reaction of terephthalaldehyde 1, ethyl acetoacetate, Meldrum's acid $\mathbf{1 3 4}$ and ammonium acetate under MW irradiation (Scheme 47). ${ }^{81}$

145

Scheme 47

The reaction of terephthalaldehyde 1, methyl acetoacetate, and ammonium acetate under MW irradiation in a 1:4:3 molar ratio gave 4,4'-(1,4-phenylene)bis(1,4-dihydropyridine) $\mathbf{1 4 6}$ (Figure 17). ${ }^{81}$

Figure 17

Refluxing an ethanolic solution of terephthalaldehyde 1, malononitrile and cyanothioacetamide in 1:2:2 molar ratio afforded 4,4'-(1,4-phenylene)bis(2,6-diamino-1,4-dihydropyridine-3,5-dicarbonitrile) 147 (Figure 18). ${ }^{77}$

Figure 18

The multi-component approach to the synthesis of 4,4'-(1,4-phenylene)bis(3,4,7,8-tetrahydroquinoline-2,5(1H,6H)-dione) $\mathbf{1 4 8}$ is based on the reaction of terephthalaldehyde $\mathbf{1}$, dimedone 52, Meldrum's acid $\mathbf{1 3 4}$ and ammonium acetate in a 1:2:2:3 molar ratio under MW irradiation (Scheme 48). ${ }^{81}$

148

Scheme 48

The 4,4'-(1,4-phenylene)bis(1,4,5,6,7,8-hexahydroquinoline) 149 was prepared from terephthalaldehyde 1, dimedone 52, ethyl acetoacetate and ammonium acetate in a 1:2:2:3 molar ratio under MW irradiation (Scheme 49). ${ }^{81}$

149
Scheme 49

The boronation of 2,5-bis(2-(tert-butyldimethylsilyloxy)ethyl)-1,4-benzenedibromide 150 gives the corresponding diboronic acid bis(pinacol) ester 151. Head-to-head 6,6'-(2,5-bis(2-(tert-butyldimethylsilyloxy)ethyl)-1,4-phenylene)bis(3-bromopyridine) $\mathbf{1 5 3}$ was synthesized by regioselective Suzuki coupling of $\mathbf{1 5 1}$ with 2,5-dibromopyridine $\mathbf{1 5 2}$ in 58% yield (Scheme 50). ${ }^{82}$

Scheme 50

The 1,4-bis(terpyridine)benzene $\mathbf{1 5 4}^{83}$ and $\mathbf{1 5 5}^{84}$ were synthesized by condensation of terephthalaldehyde 1 with a fourfold excess of 4- and/or 2-acetylpyridine in the presence of ammonium acetate in acetic acid (grinding method) ${ }^{83}$ and/or under the action of a base in polyethylene glycol (PEG-300) $)^{84}$ at $0^{\circ} \mathrm{C}$ (Figure 19).

154

155

Figure 19

Shaker et al. ${ }^{85}$ have been reported a synthetic route to 1,4 -bis(4-pyridyl)benzenes $\mathbf{1 5 6}$ via the reaction of terephthalaldehyde) with two equivalents of malononitrile and acetylhetarenes in the presence of ammonium acetate (Scheme 51).

Scheme 51

The reaction of terephthalaldehyde 1 with β-amino- β-(pyrid-4-yl)acrylonitrile 157 in a $4: 1$ molar ratio carried out in AcOH afforded the desired 4,4'-(1,4-phenylene)bis(pyridine) $\mathbf{1 5 8}$ (Scheme 52). ${ }^{86}$

158

Scheme 52

The reaction of dienaminone 159 with malononitrile or ethyl cyanoacetate at ambient temperature in ethanolic solution and in the presence of piperidine afforded the corresponding 6,6'-(1,4-phenylene)bis(pyridin-2(1H)-one) derivatives 160 (Scheme 53). ${ }^{87}$

Scheme 53

Treatment of terephthalaldehyde $\mathbf{1}$ with malononitrile and cycloalkanones 161 in ethanol containing a catalytic amount of ammonium acetate afforded 4,4'-(1,4-phenylene)bis(5Hcycloalkan[b]pyridine) $\mathbf{1 6 2}$ (Scheme 54). ${ }^{85}$

Scheme 54

The ternary condensation of terephthalaldehyde $\mathbf{1}$, malononitrile and cyclohexanone in refluxing alcoholic sodium ethoxide gave 4,4'-(1,4-phenylene)bis(5,6,7,8-tetrahydroquinoline) 163 (Figure 20). ${ }^{85}$

163

Figure 20

The aminoaldehyde $\mathbf{1 6 4}$ undergoes double Friedländer condensation with 1,4diacetylbenzene 165 under basic conditions to provide 7,7'-(1,4-phenylene)bis(1,8naphthyridine) $\mathbf{1 6 6}$ (Scheme 55). ${ }^{88}$

Scheme 55

The condensation of terephthalaldehyde 1, with malononitrile and 6-amino-2-thiouracil 167 in ethanol containing in the presence of piperidine afforded the corresponding 5,5'-(1,4-phenylene)bis(1,2,3,4-tetrahydropyrido[2,3-d]pyrimidine) 168 (Scheme 56). ${ }^{89}$

168

Scheme 56

Similarly, 5,5'-(1,4-phenylene)bis(2,3-dihydropyrido[2,3- d] pyrimidin-4($1 H$)-one) derivatives 169 were synthesized by treatment of 6-amino-2-thiouracil $167\left(\mathrm{R}=2-\mathrm{ClC}_{6} \mathrm{H}_{4}\right)$ with terephthalaldehyde $\mathbf{1}$ and acetylhetarenes (Figure 21). ${ }^{89}$

169, Het = 3-pyridyl, 2-thienyl, 5-methyl-2-furyl

Figure 21

The 9,9'-(1,4-phenylene)bis(3,3,6,6-tetramethyl-3,4,6,7,9,10-hexahydroacridine-1,8(2H,5H)dione) $\mathbf{1 7 0}(\mathrm{R}=\mathrm{H})$ has been synthesized by condensation of terephthalaldehyde with dimedone in the presence of ammonium acetate under MW irradiation. ${ }^{78,81}$ The N-hydroxyacridine $\mathbf{1 7 0}^{78,90}$ $(\mathrm{R}=\mathrm{OH})$ has been synthesized by using hydroxylamine instead of ammonium acetate (Figure 22).

Figure 22

In 1999, it was reported that the reaction between benzyne 171 and diarylidenebenzene-1,4diamine $\mathbf{8 8}$ led to 1,4-bis(acridin-9-yl)benzene $\mathbf{1 7 2}$ via [2+2] cycloadditions (Scheme 57). ${ }^{91}$

172

Scheme 57

The 1,4-bis(1,2,3,4,5,6,7,8-octahydroacridin-10(9H)-yl)benzene 173 was synthesized from methylene-2, 2^{\prime}-dicyclohexanone and 1,4-diaminobenzene 25 (Figure 23). ${ }^{92}$

173

Figure 23

7. Six-membered Rings with Two Heteroatoms

7.1. 1,4-Phenylene- bis-pyrimidines and their fused derivatives

The $4,44^{\prime}$-(1,4-phenylene)bis(3,4-dihydropyrimidine) $\mathbf{1 7 5}$ were prepared from the reaction of terephthalaldehyde $\mathbf{1}$ with 1,3-dicarbonyl $\mathbf{1 7 4}$ and urea or thiourea in acidic medium ${ }^{81-85}$ or using silica-supported tin chloride and titanium tetrachloride as catalyst ${ }^{93}$ (Scheme 58).

Scheme 58

The trifluoromethyl derivatives of 1,4-bis(tetrahydropyrimidinone-4-yl)benzenes $\mathbf{1 7 7}$ were synthesized via one-pot condensation of terephthalaldehyde $\mathbf{1}$ with (thio)urea or guanidine and fluorinated 1,3-dicarbonyl derivatives $\mathbf{1 7 6}$ at ambient temperature using catalytic quantities of chlorotrimethylsilane (TMSCl) (Scheme 59). ${ }^{94}$

Scheme 59

The ternary condensation of terephthalaldehyde $\mathbf{1}$, ethyl benzoylacetate and urea or thiourea or methyl thiourea in a molar ratio 1:2:2, in ethanol containing catalytic amount of hydrochloric acid yielded the corresponding 4,4'-(1,4-phenylene)bis(1,2,3,4-tetrahydropyrimidine) $\mathbf{1 7 8}$ (Figure 24). ${ }^{89}$

178

Figure 24

Scheme 60 outlines the synthesis of 4,4'-(1,4-phenylene)bis(2-substituted-pyrimidine) derivatives $\mathbf{1 8 1}$ from the reaction of the 3-dimethylamino-1-[4-(3-dimethylaminoacryloyl)phenyl]propenone 179 with amidine hydrochlorides 180 and sodium ethoxide. ${ }^{87}$

Scheme 60

Also, the reaction of amidine hydrochlorides $\mathbf{1 8 0}$ with 3,3'-(1,4-phenylene)bis[1-(2-thienyl)-2-propen-1-one] 182 and sodium ethoxide carried out in ethanol resulted of 4,4'-(1,4-phenylene)bis(2-substituted-6-(2-thienyl)-pyrimidine) derivatives 183 (Figure 25). ${ }^{87}$

$\mathrm{R}=\mathrm{CH}_{3}, \mathrm{NH}_{2}$

183

Figure 25

Also, the reaction of amidines $\mathbf{1 8 0}\left(\mathrm{R}=\mathrm{CH}_{3}\right)$ with 2,2'-(1,4-phenylene)bis(1,1dicyanoethylene) 184 in ethanol containing a catalytic amount of piperidine gave the
corresponding 4,4'-(1,4-phenylene)bis(6-amino-5-cyano-2-substituted-pyrimidine) $\mathbf{1 8 5}$ (Scheme 61). ${ }^{87}$

Scheme 61

Heating of the N-[4-(2-Carboxyethyl)amino]phenyl-aspartic acid $\mathbf{1 8 6}$ with urea in acetic acid and subsequent addition of HCl gives the $1,1^{\prime}-(1,4$-phenylene)bis(dihydropyrimidine-2,4(1H,3H)-dione) $\mathbf{1 8 7}$ (Figure 26). ${ }^{47}$

186

187

Figure 26

Enaminones 188 have also been reacted with 1,4-diaminobenzene 24 and formaldehyde to give 3,3'-(1,4-phenylene)bis(1-alkyl-1,2,3,4-tetrahydropyrimidine) $\mathbf{1 8 9}$ (Figure 27). ${ }^{95}$

188

$$
\mathrm{Ar}=\mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}
$$

Figure 27

The reaction of 1,3-cyclohexadione $\mathbf{1 9 0}$ with terephthalaldehyde $\mathbf{1}$, and urea using silicasupported tin chloride and titanium tetrachloride as catalyst afforded 4,4'-(1,4-phenylene)bis(3,4,7,8-tetrahydroquinazoline-2,5(1H,6H)-dione) 191 (Scheme 62). ${ }^{93}$

Scheme 62

The reaction of benzene-1,4-diboronic acid 22 with 6-chloropurine $\mathbf{1 9 2}$ in the presence of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ and $\mathrm{K}_{2} \mathrm{CO}_{3}$ in $\mathrm{DME} / \mathrm{H}_{2} \mathrm{O}$ proceeded very smoothly giving the 1 , 4 -bis(7-benzyl- 7 H -pyrrolo[2,3- d]pyrimidin-4-yl)benzene 193 (Scheme 63). ${ }^{96}$

193

Scheme 63

When a mixture of enaminones 194, 1,4-diaminobenzene 25 and formaldehyde (2:1:4) in methanol was subjected to MWI yielded 3,3'-(1,4-phenylene)bis(1,2,3,4,7,8-hexahydro-quinazolin-5(6H)-one) 195 (Scheme 64). ${ }^{97}$

Scheme 64

The bis(pyrazino[$\left.2^{\prime}, 3^{\prime}: 4,5\right]$ thieno[3,2- d]pyrimidin-4-yl)benzene derivatives $\mathbf{1 9 8}$ were prepared in very good yields ($85-95 \%$) by the reaction of 1,4-phenylene diisocyanate 196 with 2 equiv of iminophosphorane 197, followed by heterocyclization on addition of secondary amines in the presence of a catalytic amount of $\mathrm{K}_{2} \mathrm{CO}_{3}$ (Scheme 65). ${ }^{98,99}$

Scheme 65

7.2. 1,4-Phenylene- bis-oxazines

Refluxing 1,4-phenylenedicarbamothioyl cyanide $\mathbf{7 0}$ with two moles of salicylic acid or methyl salicylate in DMF containing a catalytic amount of triethylamine, 3,3'-(1,4-phenylene)bis(2-thioxo-2,3-dihydro-benzo $[e][1,3]$ oxazine-4-one) 199 was obtained (Scheme 66). ${ }^{49}$

Scheme 66

7.3. 1,4-Phenylene- bis-pyrazines

The 6,6'-(1,4-phenylene)bis(5-substituted-pyrazine) 202 are prepared by cyclocondensation of bis(glyoxalyl)benzenes 200 with diaminomaleontrile 201 (Scheme 67). ${ }^{100}$

Scheme 67

7.4. 1,4-Phenylene- bis-1,3-thiazines and their fused derivatives

The $2,2^{\prime}$-(1,4-phenylene)bis(3,4-dihydro-2H-1,3-thiazine) 204 have been synthesized by the cyclocondensation of terephthalaldehyde $\mathbf{1}$ with 2 equivalents of $\mathbf{2 0 3}$ in the presence of catalytic amounts of p-toluenesulfonic acid in boiling ethanol. High yields of the products 204 also resulted when the reaction was performed in boiling glacial acetic acid (Scheme 68). ${ }^{101}$

Scheme 68

Oxidation of 204 in the presence of nitrobenzene gave 2,2'-(1,4-phenylene)bis(4-oxo-6-(phenylamino)-4H-1,3-thiazine-5-carbonitrile) 205 (Figure 28). ${ }^{101}$

205

Figure 28

The condensation of 5-substituted-2,4-dihydro-3H-1,2,4-triazole-3-thione 207 with benzene-1,4-diylbisacryloyl chloride 206 gave 5,5'-(1,4-phenylene)bis(5H-[1,2,4]triazolo[5,1$b][1,3]$ thiazin-7(6H)-one) 208 (Scheme 69). ${ }^{102}$

$$
\mathrm{Ar}=\mathrm{C}_{6} \mathrm{H}_{5}, 4-\mathrm{H}_{3} \mathrm{CO}-\mathrm{C}_{6} \mathrm{H}_{4}, 4-\mathrm{F}-\mathrm{C}_{6} \mathrm{H}_{4}, \text { 1-naphthyl }
$$

Scheme 69

8. 1,4-Phenylene- Bis-spiroheterocycles

The condensation of 1,4-diaminobenzene 24 with cyclohexanone or cycloheptanone and thioglycollic acid in molar ratio 1:2:2 using dry toluene as a solvent led to 4,4'-(1,4-phenylene)bis[1-thia-4-azaspiro[4.5]decan-3-one] 209 and/or 4,4'-(1,4-phenylene)bis[1-thia-4azaspiro[4.6] undecan-3-one] 210, respectively (Figure 29). ${ }^{59}$

209

210

Figure 29

Cyclocondensation of mercaptoacetic acid with diimines 211 (prepared from two equivalents of isatin or N-methylisatin with one equivalent 1,4-diaminobenzene 25), was carried out under MWI to yield 3,3'-(1,4-phenylene)bis(spiro[indoline-3, 2'-thiazolidinone]) 212 (Scheme 70). ${ }^{103}$

Scheme 70

9. Conclusions

Literature data published in the last 40 years have been summarized to help the reader to find information appropriate for the high synthetic potential of 1,4-phenylenebridged bis-heterocyclic compounds. Syntheses of many biologically active heterocyclic compounds belonging to this structural class have been reported.

10. References

1. Katritzky, A. R.; Ramsden, C. A.; Scriven, E. F. V.; Taylor, R. J. K. Eds. In Comprehensive Heterocyclic Chemistry III; Elsevier: Oxford. 2008, pp 3-6.
2. Gil, C.; Bräse, S. J. Comb. Chem. 2009, 9, 175.
3. Carey, J. S.; Laffan, D.; Thomson, C.; Williams, M. T. Org. Biomol. Chem. 2006, 4, 2337.
4. Dömling, A. Chem. Rev. 2006, 106, 17.
5. Rück-Braun, K.; Freysoldt, T. H. E.; Wierschem, F. Chem. Soc. Rev. 2005, 34, 507.
6. O’Mahony, G. E.; Kelly, P.; Lawrence, S. E.; Maguire, A. R. Arkivoc 2011, (i), 1.
7. Shaker, R. M. Arkivoc 2006, (ix), 59.
8. Bellina, F.; Rossi, R. Tetrahedron 2006, 62, 7213.
9. Shaker, R. M.; Aly, A. A. Phosphorus, Sulfur Silicon Relat. Elem. 2006, 181, 2577.
10. Mehta, P. D.; Sengar, N. P. S.; Pathak, A. K. Eur. J. Med.Chem. 2010, 45, 5541.
11. Bellina, F.; Cauteruccio, S.; Rossi, R. Tetrahedron 2007, 63, 4571.
12. Ispikoudi, M.; Amvrazis, M.; Kontogiorgis, C.; Koumbis, A. E.; Litinas, K. E.; Hadjipavlou-Litina, D.; Fylaktakidou, K. C. Eur. J. Med. Chem. 2010, 45, 5635.
13. Singh, H.; Yadav, L. D. S.; Bhattacharya, B. K. J. Indian. Chem. Soc. 1979, 56, 1013.
14. Desai, N. C. Indian J. Chem. Sect. B 1993, 32, 343.
15. Feng, X. M.; Chen, R.; Liu, X. C.; Zhang, Z. Y. Chin. J. Appl. Chem. 1991, 8, 28.
16. Upadhyay, P. S.; Vansdadia, R. N.; Baxi, A. J. Indian J. Chem. Sect. B 1990, 29, 793.
17. Zhang, Z. Y.; Chen, X.; Wei, L. L.; Ma, Z. L. Chem. Res. Chin. Univ. 1991, 7, 129.
18. Bhat, A. R.; Athar, F.; Azam, A. Eur. J. Med. Chem. 2009, 44, 426.
19. Reddy, D. B.; Seenaiah, B.; Eswaraiah, S.; Seshamma, T.; Reddy, M. V. R. J. Indian. Chem. Soc. 1989, 66, 893.
20. Iqbal, P. F.; Parveen, H.; Bhat, A. R.; Hayat, F.; Azam, A. Eur. J. Med. Chem. 2009, 44, 4747.
21. Nair, V.; Mathew, S. C.; Vellalath, S.; Pillai, A. N.; Suresh, E. Synthesis 2008, 4, 551.
22. Teimouri, M. B.; Bazhrang, R. Bioorg. Med. Chem. Lett. 2006, 16, 3697.
23. Yang, M. J.; Zhang, Q. H.; Wu, P.; Ye, H.; Liu, X. Polymer 2005, 46, 6266.
24. Tovar, J. D.; Rose, A.; Swager T. M. J. Am. Chem. Soc. 2002, 124, 7762.
25. Engel, N.; Steglich, W. Angew. Chem. Ed. Int. Engl. 1978, 676.
26. Reynolds, J. R.; Katritzky, A. R., Soloducho, J.; Belyakov, S.; Sotzing, G.; Pyo, M. Macromolecules 1994, 27, 7225.
27. Sotzing, G. A.; Reynolds, J. R.; Katritzky, A. R.; Soloducho, J.; Belyakov, S.; Musgrave, R. Macromolecules 1995, 28, 1679.
28. Korostova, S. E.; Mikhaleva, A. I. Zh. Org. Khim. 1982, 18, 2620.
29. Trofimov, B. A.; Mikhaleva, A. I. Novosibirsk 1984, 264.
30. Trofimov, B. A.; Markova, M. V.; Morozova, L. V.; Mikhaleva, A. I.; Shmidt, E. Yu.; Zorina, N. V.; Hyun, S. H. Polymer Sci. Ser. B 2010, 52, 193.
31. Setsune, J.; Toda, M.; Watanabe, K.; Panda, P. K.; Yoshida, T. Tetrahedron Lett. 2006, 47, 7541.
32. Flores, A. F. C.; Flores, D. C.; Oliveira, G.; Pizzuti, L.; da Silva, R. M. S.; Martins, M. A. P.; Bonacorso, H. G. J. Braz. Chem. Soc. 2008, 19, 184.
33. Habibi, D.; Marvi, O. J. Serb. Chem. Soc. 2005, 70, 579.
34. Just, P. E.; Chan-Ching, K. I.; Lacaze, P. C. Tetrahedron 2002, 58, 3467.
35. Tsukerman, S. V.; Nikitchenko, V. M.; Maslennikova, V. P.; Bondarenko, V. E.; Lavrushin, V. F. Chem. Heterocycl.Compd. 1968, 4, 794.
36. Kanagarajan, V.; Ezhilarasi, M. R.; Gopalakrishnan, M. Spectrochimica Acta Part A 2011, 178, 635.
37. Gao, X. -G.; Yang, C. -W.; Zhang, Z. -Z.; Zeng, C. -C.; Song, X. -Q.; Hu, L. -M.; Zhong, R. -G.; She, Y. -B. Tetrahedron 2010, 66, 9880.
38. Jitchati, R.; Batsanov, A. S.; Bryce, M. R. Tetrahedron 2009, 65, 855.
39. Ivashchuk, O.; Sorokin, V. I. Tetrahedron 2009, 65, 4652.
40. Jouaiti, A.; Loï, M.; Hosseini, M. W.; De Cian, A. Chem. Commun. 2000, 2085.
41. Guerrero, A. M.; Jalon, F. A.; Manzano, B. R.; Claramunt, R. M.; Dolores Santa Maria, M.; Escolastico, C.; Elguero, J.; Rodriguez, A. M.; Maestro, M. A.; Mahia, J. Eur. J. Inorg. Chem. 2002, 3178.
42. Manzano, B. R.; Jalon, F. A.; Espino, G.; Guerrero, A.; Claramunt, R. M.; Escolastico, C.; Elguero, J.; Aranzazu Heras, M. Polyhedron 2007, 26, 4373.
43. Hasaninejad, A.; Zare, A.; Shekouhy, M. Tetrahedron 2011, 67, 390.
44. Shin, G.; Lee, J. I.; Kim, J. -H. Bull. Korean Chem. Soc. 1995, 16, 1037.
45. Braddock, D. C.; Cailleau, T.; Cansell, G.; Hermitage, S. A.; Pouwer, R. H.; Redmond, J. M.; White, A. J. P. Tetrahedron: Asymmetry 2010, 21, 2911.
46. Sung, K.; Wu, S. -H.; Chen, P. -I. Tetrahedron 2002, 58, 5599.
47. Rutkauskas, K.; Beresnevicius, Z.-I. Chem. Heterocycl. Compd. 2004, 40, 792.
48. Habib, O. M. O.; Moawad, E. B.; El-Morsy, S. S. J. Islamic Acad. Sci. 1989, 22, 135.
49. El-Sharief, A. M. Sh.; Ammar, Y. A.; Zahran, M. A.; Sabet, H. Kh. J. Chem. Res (S) 2003, 162.
50. Sangshetti, J. N.; Kokare, N. D.; Kotharkara, S. A.; Shinde, D. B. J. Chem. Sci. 2008, 120, 463.
51. Mukhopadhyay, C.; Tapaswi, P. K. Tetrahedron Lett. 2008, 49, 6237.
52. Shaabani A, Soleimani E, Maleki A, Moghimi-Rad J., Mol Divers. 2009, 13, 269.
53. Gaina, C. Chem. Bull. Politehnica Univ. (Timişoara) 2006, 51, 1.
54. Po, R.; Abis, L.; Fiocca, L.; Mansani, R. Macromolecules 1995, 28, 5699.
55. Shabarov, Yu. S.; Saginova, L. G.; Gazzaeva, R. A. Zh. Org. Khim. 1982, 18, 2627.
56. Shabarov, Yu. S.; Saginova, L. G.; Gazzaeva, R. A. Khim. Geterotsikl. Soedin. 1983, 738.
57. Gazzaeva, R. A.; Shabarov, Yu. S.; Saginova, L. G. Khim. Geterotsikl. Soedin. 1984, 309.
58. Novokreshchennykh, V. D.; Mochalov, S. S.; Lukashova, E. A.; Shabarov, Yu. S. Zh. Org. Khim. 1984, 20, 108.
59. Shaker, R. M. Phosphorus, Sulfur Silicon Relat. Elem. 1999, 149, 7.
60. Mohan, J.; Kumar, A. Indian J. Chem. 2005, 44B, 631.
61. Shaker, R. M.; Mahmoud, A. F.; Abdel-Latif, F. F. Phosphorus, Sulfur Silicon Relat. Elem. 2005, 180, 397.
62. Kotschy, A.; Farago, J.; Smith, D. M. Tetrahedron 2004, 60, 3421.
63. Palekar, V. S.; Damle, A. J.; Shukla, S.R. Eur. J. Med. Chem. 2009, 44, 5112.
64. Klingele, M. H.; Brooker, S. Inorg. Chim. Acta 2004, 357, 1598.
65. Mobinikhaledi, A.; Foroughifar, N.; Kalhor, M.; Ebrahimi, S.; Bodaghi Fard M. A. Phosphorus, Sulfur Silicon Relat. Elem. 2011, 186, 1563.
66. Korshak, V. V.; Rusanov, A. L.; Leont'eva, S. N.; Dzhashiashvili, T. K. Khim. Geterotsikl. Soedin. 1974, 1569.
67. Blanco, G.; Quintela, J. M.; Peinador, C. Tetrahedron 2008, 64, 1333.
68. Taher, A.; Eichenseher, S.; Slawin, A. M. Z.; Tennant, G.; Weaver, G. W. J. Chem. Soc. Perkin Trans. I 2002, 1968.
69. Li, D. J.; FU, H. Q. Chin. Chem. Lett. 2006, 17, 625.
70. Zhang, X.; Tang, B.; Zhang, P.; Li, M.; Tian, W. J. Molecular Str. 2007, 846, 55.
71. Wan, J. -H.; Feng, J. -C.; Wen, G. -A.; Wang, H. -Y.; Fan, Q. -L.; Wei, W.; Huang, C. H.; Huang, W. Tetrahedron Lett. 2006, 47, 2829.
72. Bethel, P. A.; Hill, M. S.; Mahon, M. F.; Molloy, K. C. J. Chem. Soc. Perkin Trans. I 1999, 3507.
73. Fleming, A.; Kelleher, F.; Mahon, M. F.; McGinley, J.; Prajapati, V. Tetrahedron 2005, 61, 7002.
74. Vorobèv A. N.; Baranovskii, A. V.; Gaponic, P. N.; Ivashkevich, O. A. Russ. J. Org. Chem. 2010, 46, 291.
75. Bogdanowicz-Szwed, K.; Budzowski, A. Monatsh. Chem. 1999, 130, 545.
76. Feng, Y. J.; Miao, C. B.; Gao, Y.; Tu, S. J.; Fang, F.; Shi, D. Q. Chin. J. Chem. 2004, 22, 622.
77. Abdel-Latif, F. F.; Mashaly, M. M.; Mekheimer, R.; Abdel-Aleem, T. B. Z. Naturforsch. 1993, 48b, 817.
78. Tu, S.; Gao, Y.; Miao, C.; Zhu, S.; Li, T.; Zhang, X. Synth. Commun. 2004, 34, 2617.
79. Jin, T. -S.; Liu, L. -B.; Zhao, Y.; Li, T. -S. Synth. Commun. 2005, 35, 2379.
80. Shaker, R. M. Pharmazie 1996, 51, 148.
81. Tu, S.; Miao, C.; Fang, F.; Youjian, F.; Li, T.; Zhuang, Q.; Zhang, X.; Zhu, S.; Shi, D. Bioorg. Med. Chem. Lett. 2004, 14, 1533.
82. Izuhara, D.; Swager, T. M. J. Am. Chem. Soc. 2009, 131, 17724.
83. Cave, G. W. V.; Raston, C. L. J. Chem. Soc. Perkin Trans. I 2001, 3258.
84. Winter, A.; van den Berg, A. M. J.; Hoogenboom, R.; Kickelbick, G.; Schubert, U. S. Synthesis 2006, 2873.
85. Shaker, R. M.; Abdel-Latif, F. F. J. Chem. Res. (S) 1997, 294.
86. Ghozlan, S. A. S.; Hassanien, A. Z. A. Tetrahedron 2002, 58, 9423.
87. Shaker, R. M. Heteroatom. Chem. 2005, 16, 507.
88. Fernández-Mato, A.; Blanco, G.; Quintela, J. M.; Peinador, C. Tetrahedron 2008, 64, 3446.
89. Shaker, R. M.; Mahmoud, A. F.; Abdel-Latif, F. F. Phosphorus, Sulfur Silicon Relat. Elem. 2000, 160, 207.
90. Feng, Y. -J.; Zhang, X. -J.; Miao, C. -B.; Jiang, H.; Tu, S. -J. Youji Huaxue. 2004, 24, 950. Chem. Abstr. 2004, 142, 93657.
91. Aly, A. A.; Mohamed, N. K.; Hassan, A. A.; Mourad, A.-F. E. Tetrahedron 1999, 55, 1111.
92. Saverchenko, A. N.; Kaminskii, V. A.; Tilichenko, M. N. Khim. Geterotsikl. Soedin. 1972, 1232.
93. Niknam, K.; Hasaninejad, A.; Arman, M. Chin. Chem. Lett. 2010, 21, 399.
94. Azizian, J.; Mirza, B.; Mojtahedi, M. M.; Abaee, M. S.; Sargordan, M. J. Fluorine. Chem. 2008, 129, 1083.
95. Vishwakarma, J. N.; Dutta, M. C.; Chanda, K.; Das, B.; Laskar, M. A.; Nongkhlaw, R. L. Arkivoc 2009, (xiii), 131.
96. Havelková, M.; Dvořák, D.; Hocek, M. Tetrahedron 2002, 58, 7431.
97. Dutta, M. C.; Chanda, K.; Nongkhlaw, R. L.; Vishwakarma, J. E. J. Chem. 2010, 7, 281.
98. Blanco,G.; Quintela, J. M.; Peinador, C. Tetrahedron 2007, 63, 2034.
99. Blanco, G.; Fernández-Mato, A.; Quintela, J. M.; Peinador, C. Tetrahedron 2008, 64, 11136.
100. Tadokoro, K.; Shoji, M.; Nanba, M.; Shimada, T.; Tanaka, C. Jpn Kokai. Jpn. Kokai Tokkyo Koho JP 2001002661 A2; Chem. Abstr. 2001, 134, 86278.
101. Shaker, R. M.; Ibrahim, Y. R.; Abdel-Latif, F. F.; Hamoda, A. Z. Naturforsch 2010, 65b, 1148.
102. Kudryavtsev, A. A.; Lozinskii, M. O. Russ. J. Org. Chem. 2004, 40, 232.
103. Azizian, J.; Morady, A. V.; Jadidi, K.; Mehrdad, M.; Sarraffi, Y. Synth. Commun. 2000, 30, 537.

Authors' Biographies

Raafat M. Shaker was born in 1963 in Minia, Egypt. He is a Professor of Organic Chemistry in Chemistry Department, Faculty of Science, Organic Division, El-Minia University, 61519 - El Minia, Egypt. He received both his B.Sc. degree (1985) and M.Sc. degree (1989) from Minia

University, Egypt. He was awarded with a channel system program to complete his Ph.D. program under the supervision of Prof Dr H. H. Otto, in the field of Heterocyclic chemistry for two years at Albert - Ludwigs - Freiburg University, Freiburg, Germany (1992-1994). In 1999 he was awarded the DFG scholarship for two months with Prof Dr Hartmut Laatsch, Department of Organic Chemistry, University of Goettingen, Goettingen, Germany. He was awarded for one year (July, 2002 - July, 2003) the post doctoral scientific grant for International Authors from the Royal Society of Chemistry (FRSC) and collaborated with Prof. Dr Grahame Mackenzie, University of Hull, Department of Chemistry, Hull, UK. His research is focused on the synthesis of heterocyclic compounds which may have prospective biological and pharmaceutical activities. He contracted with Al-Jouf University, Chemistry department, Faculty of Science, Al-Jouf, Sakaka, Kingdom of Saudi Arabia (2009 - Now).

