Simplified tricyclic model of quassinoids with in vitro antiparasitic activity

María F. Plano, ${ }^{\text {a }}$ Guillermo R. Labadie, ${ }^{\text {a }}$ Babu L. Tekwani, ${ }^{\text {b }}$ and Raquel M. Cravero ${ }^{a *}$
${ }^{a}$ IQUIR (Instituto de Química Rosario), Departamento Química Orgánica, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Suipacha 531 (S2002LRK) Rosario, Argentina
${ }^{b}$ National Center for Natural Products Research and Department of Pharmacology, School of Pharmacy, University of Mississippi, University, MS 38677, USA
E-mail: cravero@iquir-conicet.gov.ar

Dedicated to Dr. Manuel Gonzalez Sierra on the occasion of his $65^{\text {th }}$ birthday

DOI: http://dx.doi.org/10.3998/ark.5550190.0012.739

Abstract

This is a report of the synthesis of BCD ring partial analogs of quassinoids, and the evaluation of their biological activity so as to elucidate minimal functional requirements as potential antimalarial and leishmanicidal agents.

Keywords: Quassinoids, benzochromenes, acetals, antiparasitic activity

Introduction

Many infections are caused by protozoan parasites. Among them are trypanosomiasis, leishmaniasis and malaria. ${ }^{1-4}$ Malaria is the world's second major killer after tuberculosis. The most deadly of the four Plasmodium species that causes human malaria is the protozoan parasite Plasmodium falciparum. ${ }^{5}$

The development of new compounds for the treatment of these diseases is based on the available drugs which are few, inadequate in terms of efficiency, and often toxic. The synthesis of new chemotherapeutic agents requires a suitable selection of the molecular target that will be used in the compounds design.

Natural products have been and still are the main source of structurally diverse compounds as well as the main source of small molecule drugs. ${ }^{6}$

samaderine X

chaparrinone

orinocinolide

quassin

Figure 1

Quassinoids are complex natural triterpenes with a high degree of oxygenation. Their diverse biological activities, such as antitumoral, antifeedant, insecticidal, antimalarial, among others, motivated investigation related to their organic chemistry and pharmacology. ${ }^{7}$ Many of these natural products, isolated from plants, such as chaparrinone, ${ }^{8}$ dihydroxyeuricomanol, ${ }^{9}$ samaderines X and Z , orinocinolide, excelsite, and quassin, ${ }^{10-13}$ (Figure 1), have shown antimalarial activity. Owing to the wide spectrum of biological activities shown by this family of natural products, we postulate that their structure can be used as a privileged scaffold to prepare new bioactive compounds. Recently, we have been working on the search of new synthetic compounds with antiparasitic activity. Using 1,4-diene 2 as key intermediates in synthetic sequences, ${ }^{14}$ we have been able to prepare different saudin model compounds and A/B rings of ouabain. Following the same strategy, we envisioned that the same intermediates could also be useful to prepare simplified quassinoid analogs. In particular, in this opportunity, we were able to apply our experience on 1,4-diene to obtain tricyclic acetals and lactones as mimetics of the $\mathrm{B} / \mathrm{C} / \mathrm{D}$ cyclic system of the natural product and study if that could fill the minimum structural features to produce activities in the antiparasitic assay. The proposed structures hold different positions where it should be possible to introduce diversity over rings C and D and also on the axial substituent of the ring fusion, Scheme 1. The products can be prepared following our reported procedure ${ }^{14 \mathrm{~d}}$ that has the 1,4 -dienol $\mathbf{2}$ as key intermediate and that is the product of the reductive alkylation of α-tetralone, followed by the selective reduction of the ketone.

Scheme 1. Retrosynthetic analysis for the target compounds prepared.

Results and Discussion

As shown in Scheme 2, from α-tetralone, by means of our well-known methodology of alcoholdiene preparation by Birch alkylation reaction $\left(\mathrm{NH}_{3}, \mathrm{~K}\right.$, alkylating reagents methyl iodide, methoxymethyl iodide), we prepared two series of compounds, $\mathrm{R}=$ methyl and $\mathrm{R}=$ methoxymethyl.

Scheme 2. a: 1) $\mathrm{Et}_{2} \mathrm{O},{ }^{t} \mathrm{BuOH}, \mathrm{NH}_{3(1)} / \mathrm{K},-78^{\circ} \mathrm{C}$, 2) RX, $-40^{\circ} \mathrm{C}$ to r.t. b: 1 M L-Selectride ${ }^{\circledR}$, THF, $78{ }^{\circ} \mathrm{C}$ then $30 \% \mathrm{H}_{2} \mathrm{O}_{2}, 1 \mathrm{M} \mathrm{NaOH}$. c: m-CPBA, $0.5 \mathrm{M} \mathrm{NaHCO} 3, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 4{ }^{\circ} \mathrm{C}$, overnight. d: $\mathrm{BrCH}_{2} \mathrm{CH}(\mathrm{OEt}) \mathrm{Br}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t., overnight. e: $\mathrm{NaBH}_{3} \mathrm{CN}$, AIBN, $\mathrm{Bu}_{3} \mathrm{SnCl}$, ${ }^{t} \mathrm{BuOH}$, reflux. f: $\mathrm{NaBH}_{4}, \mathrm{Ph}_{2} \mathrm{Se}_{2}, \mathrm{EtOH}$, reflux. g: $30 \% \mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{NaHCO}_{3}$, THF, r.t. h: PCC, $\mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t. i: $6 \mathrm{M} \mathrm{HCl}, \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}, 40^{\circ} \mathrm{C}$. j: Jones reagent, acetone; $\mathrm{k}: \mathrm{e}+t \mathrm{BuNC}$.

The selective ketone reduction of $\mathbf{1}$ leads to the dienols $\mathbf{2 a}$-b. α-alcohols were obtained when L-Selectride ${ }^{\circledR}$ was used; while β-alcohols were generated with $\mathrm{NaBH}_{4}, \mathrm{MeOH}$, at $-78{ }^{\circ} \mathrm{C}$. These dienols were converted to the corresponding bromoacetals 7 which have been the starting materials for obtaining the tricyclic compounds $\mathbf{4}$ and $\mathbf{8}$ by radical cyclizations with $\mathrm{NaBH}_{3} \mathrm{CN}$,

AIBN , and $\mathrm{Bu}_{3} \mathrm{SnCl}$ in $t \mathrm{BuOH}$. The presence of the products $\mathbf{8}$ has demonstrated that the reactivity of the $\mathrm{C}_{3 \mathrm{a}}-\mathrm{C}_{4}$ double bond towards radical attack is directed by the stereochemistry of the alcohol. Therefore the reaction gives exclusively six membered rings via a regioselective 6-exo-trig closure. ${ }^{14,15}$ This outcome was rationalized assuming that the conformer that leads to a chair-axial-chair transition state is responsible for the before mentioned stereocontrol.

We have been able to extend the cyclization reaction toward a cyanation of the incipient radical using $t \mathrm{Bu}$-isocyanide as intermolecular radical trap. Thus, the reaction performed in a ratio of $t \mathrm{BuNC}$: substrate $\mathbf{7 a}$ of $10: 1$, led stereoselectively to the β-cyano $\mathbf{1 0}$. In this case the cyclization followed the same ring closure stereochemical behavior, and the radical intermediate reacted with the isocyanide by the opposite face of the new formed bond.

Rearrangement of the epoxides 4, obtained from 2 in three steps, was thought as method for introducing oxygen functionalities on $\mathrm{C}_{5}, \mathrm{C}_{6}$ and $\mathrm{C}_{6 \mathrm{a}}$. The cleavage of 4 with $\mathrm{NaBH}_{4}, \mathrm{Ph}_{2} \mathrm{Se}_{2}$, EtOH , reflux, then oxidation of the resultant selenide $\left(30 \% \mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{NaHCO}_{3}\right.$, THF, r.t.) and further allyl rearrangement with $\mathrm{PCC}, \mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ at r.t., generated the unsaturated ketone 6 .

The conversions from acetals to lactones $\mathbf{1 0} \rightarrow \mathbf{1 1}$ and $\mathbf{8} \rightarrow \mathbf{9}$ have been accomplished employing the hydrolysis reaction with $6 \mathrm{M} \mathrm{HCl}, \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}, 40^{\circ} \mathrm{C}$ and further oxidation of corresponding acetals with Jones reagent in acetone.

Thus, functional groups transformations of 1,4-dienes 2 (B / C rings) gave products with $B / C / D$ rings of quassinoids possessing substitutions on $\mathrm{C}_{4}(\mathrm{R}=\mathrm{H}, \mathrm{CN}), \mathrm{C}_{5}(\mathrm{C}=\mathrm{O}), \mathrm{C}_{6}$ (oxirane, double bond), $\mathrm{C}_{6 \mathrm{a}}(\mathrm{OH}), \mathrm{C}_{9 \mathrm{~b}}\left(\mathrm{R}=\mathrm{Me}, \mathrm{CH}_{2} \mathrm{OMe}\right)$, acetals $4,5,6,8,10\left(\mathrm{C}_{2} \mathrm{R}=\mathrm{OEt}, \mathrm{OAc}, \mathrm{OBn}\right)$ and lactones 9 and 11, on the D-ring.

These prepared substructures of quassinoids were screened in vitro for their antimalarial and antileishmanial activities (Table 1).

As a result of this screening only the compound 8a showed activity on the chloroquine sensitive Plasmodium falciparum strain (D6 clone) with an IC_{50} value of $550 \mathrm{ng} / \mathrm{mL}$ and 870 $\mathrm{ng} / \mathrm{mL}$ on the chloroquine resistant (W2 clone). Under the same experimental conditions chloroquine exhibited an IC_{50} value lower than 9.7 and $148.5 \mathrm{ng} / \mathrm{mL}$ against D6 and W 2 clones respectively.

The presence of an acetal group at C_{2} and a methyl group at $C_{9 b}$ on D ring of $\mathbf{8 a}\left(R=M e, R^{1}\right.$ $=\mathrm{OEt})$ seems of pivotal importance, whereas a small structural variation of the acetal function $\mathbf{8 c}$ $\left(R^{1}=A c\right)$ or $\mathbf{8 d}\left(R^{1}=B n\right)$ induced the total loss of antimalarial activity. Similarly, the relative lactone 9a obtained from the oxidation of $\mathbf{8 e}$ was equally ineffective against Plasmodium falciparum strains. Conversely $\mathbf{8 d}\left(\mathrm{R}^{1}=\mathrm{Bn}\right)$ that has proven to be ineffective against malaria, displayed activity against L. donovani with an IC_{50} value of $13 \mu \mathrm{~g} / \mathrm{mL}$. The incorporation of larger acetal substituents $\mathbf{8 d}\left(\mathrm{R}^{1}=\mathrm{Bn}\right)$ at C_{2} had a better result than the acetyl group in compound 8c. The lack of antileishmanial activity of product $8 \mathbf{c}$ could be a consequence of the ester hydrolysis by an esterase producing the hemiketal $\mathbf{8 e}$ that is inactive, but that hypothesis should be studied further.

Table 1. Antiparasitic activities of synthetic substructures of quassinoids

NA: inactive, NC: no cytotoxicity, NT: not tested; SI- Selectivity index $=\mathrm{IC}_{50}$ against vero cells/IC I_{50} against parasite; The highest concentration tested for antimalarial activity and vero cell cytotoxicity is $4760 \mathrm{ng} / \mathrm{mL}$. The highest concentration tested against L. donovani promastigotes is $40 \mu \mathrm{~g} / \mathrm{mL}$. *Values are mean \pm S.D. of three observations.

The comparison of the antiparasitic activity developed by $\mathbf{8 a}$ with the inactive compound $\mathbf{8 b}$ against Plasmodium falciparum strains, shows an interesting input on the requirement of the oxygen function on the E ring, Figure 1. The introduction of the methoxy methyl group at C_{g} which mimics a tetrahydrofuran, suggested that E ring might not be needed for bioactivity of this core of quassinoids.

In general, the antimalarial activity cannot be ascribed to the C_{5}-carbonyl group of the α, β unsaturated ketone $6\left(\mathrm{C}_{5}-\mathrm{C}=\mathrm{O}, \mathrm{R}=\mathrm{Me}\right)$ of the C -ring because it was an activity inhibitor structural feature. The structural modifications introduced at $\mathrm{C}_{6 \mathrm{a}}, \mathrm{C}_{6}(\mathbf{4 a}, \mathbf{4 d})$, and at $\mathrm{C}_{4}(\mathbf{1 0})$
along with its corresponding lactone $\mathbf{1 1}$ showed no contribution for the activity against Plasmodium falciparum and Leishmania donovani. The transformation of 8a into 9 gave a lactone group on D-ring, present in bruceantin ${ }^{16}$ and its related compounds already described as antimalarials. 9a was active for L. donovani with an IC_{50} of $19 \mu \mathrm{~g} / \mathrm{mL}$, but it was inactive for antimalarial activity on Plasmodium falciparum. All these synthetic compounds were noncytotoxic to the Vero cells at the maximum concentration tested $(4.75 \mu \mathrm{~g} / \mathrm{mL})$. This result is not negligible due to one of the main drawbacks of quassinoids is their cytotoxicity although they have high potency as antimalarial compounds.

Conclusions

We synthesized two series of compounds ($\mathrm{R}=\mathrm{Me}, \mathrm{R}=\mathrm{CH}_{2} \mathrm{OMe}$) as substructures of quassinoids for the understanding of structure-antiparasitic activity relationships. This exploratory study allowed us to validate the method in order to discover the minimal tricyclic structure having bioactivity. In this way the above-mentioned compounds are the starting point to obtain new analogs for improving presented activities.

Experimental Section

General. All chemicals and solvents are commercially available and were used after distillation or treatment with drying agents. Melting points are uncorrected. ${ }^{1} \mathrm{H}(300 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}$ NMR (75.13 MHz) spectra were recorded in CDCl_{3} (with TMS for ${ }^{1} \mathrm{H}$ and chloroform- d for ${ }^{13} \mathrm{C}$ as the internal standard). Numbering of compounds is according to tricyclic structure as we have shown in Scheme 2.

Synthesis of 6-ethoxy-7b-methoxymethyl-decahydro-1,5-dioxacyclopropa[c]phenalene

The compounds $\mathbf{4}$ a-d were obtained following the synthetic sequence of reactions previously reported as communication. ${ }^{17}$
(4c ($\boldsymbol{\alpha}$-acetal)). colorless oil. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.43$ (dd, $J=2.5$ and $9.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ acetalic), 3.75 (br s, $1 \mathrm{H}, \mathrm{CH}-\mathrm{O}$), $3.51\left(\mathrm{q}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.48(\mathrm{q}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$), $3.42\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OCH}_{3}\right), 3.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.78(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-$ epoxide $)$, $2.58(\mathrm{dt}, J=4.2,13.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9), 2.00-1.68(\mathrm{~m}, 10 \mathrm{H}), 1.21\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($75.13 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 97.4(\mathrm{C} 2), 69.9(\mathrm{C} 9 \mathrm{a}), 63.3(\mathrm{C} 6 \mathrm{a}), 62.4\left(9 \mathrm{~b}-\mathrm{CH}_{2} \mathrm{OCH}_{3}\right), 56.5(\mathrm{C} 6)$, 33.9 (C9b), 32.4 (C3), 30.9 (C9), 27.0 (C4), 22.6 (C7), 20.2 (C3a), 19.6 (C7), 18.8 (C8), 15.1 $\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$. IR (film, cm^{-1}) 2937, 1457, 1442, 1369, 1339, 1286, 1247, 1217, 1139, 1125, 1071, 1027, 993, 959, 876, 768. EM: (relative intensity) $m / z 252$ (14), $234\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 5\right), 206$ (16), 181 (50), 145 (34), 118 (48), 108 (100), 79 (83), 41 (79). EIRMS $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{O}_{4}$ Calcd for 282.1831, Experimental for $\left(\mathrm{M}^{+}\right) m / z 282.1829$.

4d. (β-acetal, less polar than $4 \mathbf{c}$): ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.92$ (dd, $J=4.2$, and 1.1 Hz , $1 \mathrm{H}, \mathrm{H}$-acetalic), 3.74 (br s, $1 \mathrm{H}, \mathrm{CH}-\mathrm{O}$), 3.65 (q, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$), 3.48 (dd, $J=6.5$, and $3.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OCH}_{3}$), $3.46\left(\mathrm{q}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.79(\mathrm{~d}, J$ $=3.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$-epoxide), $2.60(\mathrm{dt}, J=4.1,12.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9), 2.02-1.63(\mathrm{~m}, 10 \mathrm{H}), 1.21(\mathrm{t}, J=$ $\left.7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($75.13 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 97.1(\mathrm{C} 2), 74.8(\mathrm{C} 9 \mathrm{a}), 65.2(\mathrm{C} 6 \mathrm{a}), 61.9$ ($9 \mathrm{~b}-\mathrm{CH}_{2} \mathrm{OCH}_{3}$), $58.8(\mathrm{C} 6), 38.2(\mathrm{C} 9 b), 32.1(\mathrm{C} 3), 30.8(\mathrm{C} 9), 27.7(\mathrm{C} 4), 27.0(\mathrm{C} 7), 20.4(\mathrm{C} 3 \mathrm{a})$, 19.7 (C7), 18.2 (C 8), $14.9\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$. EIRMS $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{O}_{4}$ calc. for $\left(\mathrm{M}^{+}\right) \mathrm{m} / \mathrm{z}$ 282.1831, Experimental for $\left(\mathrm{M}^{+}\right) m / z$ 282.1833.

General procedure for bromoketal generation

1,2-dibromoethyl ether (1.1 eq) was added to a solution of the alcohol $\mathbf{2 b}$ (1.1 eq) with $\mathrm{N}, \mathrm{N}-$ dimethylaniline (1.5 eq) in dichloromethane $(10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The solution was stirred at room temperature over 3 h and then 1,2-dibromoethyl ether (1.1 eq) and N, N-dimethylaniline (1.5 eq) were added. The mixture was stirred overnight and cold sat. $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ was added. The reaction mixture was extracted three times with dichloromethane $(3 \times 15 \mathrm{~mL})$, water $(1 \times 10 \mathrm{~mL})$ and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$.
A stirred solution of the dienone (1 mmol) in THF ($5 \mathrm{~mL} / \mathrm{mmol}$) at $-78{ }^{\circ} \mathrm{C}$ was treated with 2 mmol of a 1.0 M solution of L-selectride ${ }^{\circledR}$ in THF. After $1.5 \mathrm{~h} 2 \mathrm{~mL} / \mathrm{mmol}$ of 1.0 M aqueous solution NaOH was added, followed by of $0.6 \mathrm{~mL} / \mathrm{mmol} 30 \% \mathrm{H}_{2} \mathrm{O}_{2}$. The heterogeneous solution was stirred for 2 h at $45^{\circ} \mathrm{C}$. The combined organic extract was washed with water (30 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and the solvent removed under reduced pressure. The crude residue was purified by column chromatography.
2-Ethoxy-9b-methyl-6-phenylselanyl-decahydro-benzo[de]chromen-6a-ol (5 α-acetal). Colorless crystals, 87%. M.p. $=155-156{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.54(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}-\mathrm{Se})$, 7.23 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{Ph}-\mathrm{Se}$), $5.12(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 4.97(\mathrm{t}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 3.75(\mathrm{br} \mathrm{s}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-9 \mathrm{a}), 3.60\left(\mathrm{dq}, J=7.1\right.$ and $\left.9.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.45(\mathrm{dq}, J=7.1$ and $9.8 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$), 3.20 (br s, 1H, H-6), 2.7-1.50 (complex signal, $13 \mathrm{H}, \mathrm{H}-9, \mathrm{H}-8, \mathrm{H}-7, \mathrm{H}-5, \mathrm{H}-4, \mathrm{H}-3 \mathrm{a}$, $\mathrm{H}-3), 1.22\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right.$) , $1.15\left(\mathrm{~s}, 3 \mathrm{H}, 9 \mathrm{~b}-\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75.13 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 133.3,131.3,128.8$ and $126.5(\mathrm{Ph}-\mathrm{Se}), 98.0(\mathrm{C} 2), 77.8(\mathrm{C} 6 \mathrm{a}), 73.2(\mathrm{C} 9 \mathrm{a}), 63.6\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, 52.7 (C6), 36.3 (C9b), 34.7 (C3), 33.5 (C3a), 32.7 (C9), 25.1(C8), 24.5 (C7), 22.7 (C9b-CH3), 21.7 (C5), $17.2(\mathrm{C} 4), 14.9\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right) . \mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 3464,3443,2962,1579,1476,1432$, $1369,1232,1125,1115,1071,1056,1027,978,929,856,710,690,671$. EM: (relative intensity) $\mathrm{m} / z 410\left(\mathrm{M}^{+}, 22\right), 207$ (92), 189 (69), 147 (78), 145 (100), 118 (60), 105 (62), 92 (73), 91 (82). EIHRMS $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{Se}$ calc. for $\left(\mathrm{M}^{+}\right) \mathrm{m} / \mathrm{z} 410.1360$. Experimental for $\left(\mathrm{M}^{+}\right) \mathrm{m} / \mathrm{z} 410.1354$.
(5β-acetal): Oil, 91%. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.51$ (m, 2H, $\mathrm{Ph}-\mathrm{Se}$), 7.24 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{Ph}-\mathrm{Se}$), $5.2(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 4.55(\mathrm{dd}, J=10.5$ and $3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 3.90\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.55(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$), 3.30 (br s, 1H, H-9a), 3.20 (br s, $1 \mathrm{H}, \mathrm{H}-6$), 2.6-1.40 (complex signal, $13 \mathrm{H}, \mathrm{H}-9, \mathrm{H}-$ 8, H-7, H-5,H-4, H-3a, H-3), 1.23 (t, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$), $1.11\left(\mathrm{~s}, 3 \mathrm{H}, 9 \mathrm{~b}-\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($75.13 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 132.2,128.8$ and 126.7 ($\mathrm{Ph}-\mathrm{Se}$), 102.7 (C2), 76.6 (C6a), 82.1 (C9a), 64.1 $\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, $52.8(\mathrm{C} 6), 36.1(\mathrm{C} 9 b), 34.6(\mathrm{C} 3), 38.9(\mathrm{C} 3 \mathrm{a}), 25.4(\mathrm{C} 8), 24.7(\mathrm{C} 7), 24.5(\mathrm{C} 9), 22.5$
(C9b-CH3), $22.1(\mathrm{C} 5), 17.3(\mathrm{C} 4), 15.0\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right) . \mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 3442,2986,2938$, 2882, $1576,1450,1388,1185,1140,1078,1016,952,890,752,702$. EM: (relative intensity) $\mathrm{m} / \mathrm{z} 410$ ($\mathrm{M}^{+}, 8$), 207 (76), 189 (44), 174 (28), 145 (100), 105 (16), 91 (14).
2-Ethoxy-9b-methyl-2,3,3a,7,8,9,9a,9b-octahydro-4H-benzo[de]chromen-5-one (6) ($\boldsymbol{\alpha}$ acetal). Colorless crystals, 83%. M.p. $=138-139{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.81$ (br s, $1 \mathrm{H}, \mathrm{H}-6), 4.50(\mathrm{dd}, J=10.6$ and $2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 3.90\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.47(\mathrm{~d}, J=3 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-9 \mathrm{a}$), 3.45 (m, 1H, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$), 2.6-1.40 (complex signal, $11 \mathrm{H}, \mathrm{H}-9, \mathrm{H}-8, \mathrm{H}-7, \mathrm{H}-4, \mathrm{H}-3 \mathrm{a}$, $\mathrm{H}-3), 1.28\left(\mathrm{~s}, 3 \mathrm{H}, 9 \mathrm{~b}-\mathrm{CH}_{3}\right), 1.20\left(\mathrm{t}, J=7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (75.13 MHz, CDCl ${ }_{3}$) δ 197.7 (C5), 165.8 (C6a), 125.7 (C6), $101.0(\mathrm{C} 2), 78.9(\mathrm{C} 9 a), 63.8\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 40.0$ (C3a), 39.9 (C4), 38.3 (C9b), 33.8 (C7), 31.7 (C9), 26.9 (C8), 22.1 (s, 3H, 9b-CH3), 19.8 (C-3), 15.0 $\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$. IR (KBr, $\left.\mathrm{cm}^{-1}\right) 2915,2840,1720,1610,1450,1430,1370,1270,1290,1250,1230$, 1170, 1030, 980, 905, 780. EM: (relative intensity) $m / z 252\left(\mathrm{M}^{+}, 2\right), 205(19), 158(23), 145$ (90), 134 (100), 122 (45), 107 (24), 91 (71), 79 (42), 61 (19), 55 (18). EIRMS $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{3}$ calc. for (M^{+}) m / z 250.1569, Experimental for $\left(\mathrm{M}^{+}\right) m / z 250.1560$.
6 ($\boldsymbol{\beta}$-acetal). Colorless crystals, 78%. $\mathrm{Mp}=145-146{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.83$ (br $\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-6), 4.80(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 3.81(\mathrm{t}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9 \mathrm{a}), 3.67(\mathrm{dq}, J=14.2$ and $7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$), $3.44\left(\mathrm{dq}, J=14.2\right.$ and $\left.7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.6-1.40$ (complex signal, $11 \mathrm{H}, \mathrm{H}-9, \mathrm{H}-8, \mathrm{H}-7, \mathrm{H}-4, \mathrm{H}-3 \mathrm{a}, \mathrm{H}-3$), 1.31 ($\mathrm{s}, 3 \mathrm{H}, 9 \mathrm{~b}-\mathrm{CH}_{3}$), $1.22\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($75.13 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.1$ (C5), 165.9 (C6a), 125.6 (C6), 96.3 (C2), 34.7 (C3a), 70.7 (C9a), $62.4\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 26.9(\mathrm{C} 3), 39.9(\mathrm{C} 4), 38.4(\mathrm{C} 9 \mathrm{~b}), 34.7(\mathrm{C} 9), 32.1(\mathrm{C} 8), 31.8(\mathrm{C} 7), 22.7(\mathrm{~s}, 3 \mathrm{H}$, $\left.9 \mathrm{~b}-\mathrm{CH}_{3}\right), 15.0\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$) 2940, 1670, 1425, 1370, 1340, 1240, 1135, 1060, 1030, 980, 950, 875. Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{3}$: C,71.95; H, 8.86. Found: C, 71.50; H, 8.82.
4-(2-Bromo-1-ethoxyethyloxy)-4a-methoxymethyl-1,2,3,4,4a,7-hexahydronaphthalene (7b). Colorless oil. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.76$ (m, 2H, H-8, H-9), $5.60(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6), 4.69$ (m, $1 \mathrm{H}, \mathrm{H}$-acetalic), $3.85(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-1), 3.79\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.69\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OCH}_{3}\right), 3.31(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{OCH}_{3}$), 2.65 (br s, 2H, H-allylic), 2.3-1.7 (m, 6H), $1.19\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (75.13 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.3$ (C5), 133.0 (C8), 103.7 (C-acetal), 114.9 (C6), 72.3 (C1), 72.2 $\left(\mathrm{CH}_{2} \mathrm{OCH}_{3}\right), 72.1\left(\mathrm{CH}_{2} \mathrm{Br}\right), 54.8\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 54.7\left(\mathrm{CH}_{2} \mathrm{OCH}_{3}\right), 44.5(\mathrm{C} 10), 24.8(\mathrm{C} 3), 35.6$ (C4), 34.1 (C2), $30.6(\mathrm{C} 7), 15.8\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$. IR (film, $\left.\mathrm{cm}^{-1}\right) 2980,1630,1465,1430,1370$, 1345, 1270, 1140, 1090, 1053, 995, 960, 880, 765. EIHRMS $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{BrO}_{3}$ calc. for $\left(\mathrm{M}^{+}\right) \mathrm{m} / \mathrm{z}$ 344.0987. Experimental for $\left(\mathrm{M}^{+}\right) m / z 344.0989$.

2-Ethoxy-9b-methyl-2,3,3a,4,5,7,8,9,9a,9b-decahydro-benzo[de]chromene (8a) ($\boldsymbol{\beta}$-acetal). $67 \% .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.66(\mathrm{dt}, J=11.0$ and $3.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), $5.35(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{H}-$ 6), $4.86(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 4.61(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 3.70\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.68(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-9 \mathrm{a})$, $3.45\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.10-1.40$ (complex signal, $\left.11 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-3 \mathrm{a}, \mathrm{H}-4, \mathrm{H}-7, \mathrm{H}-8, \mathrm{H}-9\right), 1.26$ $\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.14(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C} 9 \mathrm{~b}-\mathrm{Me}) .{ }^{13} \mathrm{C}$ NMR ($75.13 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 96.9$ (C2), 20.9 (C3),* 32.5 (C3a), 21.1 (C4),* 27.5 (C5),* 120.4 (C6), 136.6 (C6a), 30.5 (C7),* 31.7 (C8),* $22.5(\mathrm{C} 9), * 70.8(\mathrm{C} 9 \mathrm{a}), 36.5(\mathrm{C} 9 b), 15.1(\mathrm{C} 9 b-\mathrm{Me}), 62.1\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 15.1\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$. *interchangeable carbon assignments. IR (film, cm^{-1}) $3045,2895,1455,1435,1370,1325,1215$, 1170, 1115, 1045, 1010, 995, 870, 760. EM: (relative intensity) $m / z 236\left(\mathrm{M}^{+}, 10\right), 191(15), 164$
(100), 146 (40), 131 (80), 118 (60), 105 (62), 91 (82), 77 (38), 41 (44). EIRMS $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{2}$ calc. for $\left(\mathrm{M}^{+}\right) m / z$ 236.1776. Experimental for $\left(\mathrm{M}^{+}\right) m / z$ 236.1777.
2-Ethoxy-9b-methoxymethyl-2,3,3a,4,5,7,8,9,9a,9b-decahydro-benzo[de]chromene
(8b).
Colorless oil. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.36$ (br s, $1 \mathrm{H}, \mathrm{H}-6$), 4.88 (d, $J=3.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$), $4.00 \mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{H}-9 \mathrm{a}), 3.67\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.49\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OCH}_{3}\right), 3.45\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, $3.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OCH}_{3}\right), 1.95-1.30(\mathrm{~m}, 13 \mathrm{H}), 1.21\left(\mathrm{t}, J=10.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($75.13 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.6(\mathrm{C} 6 \mathrm{a}), 122.4(\mathrm{C} 6), 97.1(\mathrm{C} 2), 72.6(\mathrm{C} 9 \mathrm{a}), 69.5\left(\mathrm{CH}_{2} \mathrm{OCH}_{3}\right), 59.7$ $\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 69.3\left(\mathrm{OCH}_{3}\right), 45.3(\mathrm{C} 9 b), 33.3(\mathrm{C} 9), 33.2(\mathrm{C} 3), 32.9(\mathrm{C} 7), 27.8(\mathrm{C} 4), 27.1(\mathrm{C} 5)$, 26.1 (C 3 a), $24.5(\mathrm{C} 8), 19.8\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$. IR (film, $\left.\mathrm{cm}^{-1}\right) 3045,2895,1647,1455,1435,1370$, 1325, 1215, 1170, 1115, 1045, 1010, 995, 870, 760. EIRMS $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{O}_{3}$ calc. for ($\mathrm{M}+$) m / z 266.1882. Experimental for $\left(\mathrm{M}^{+}\right) m / z$ 266.1912.

Acetic acid 9b-methyl-2,3,3a,4,5,7,8,9,9a,9b-decahydrobenzo[de]chromen-2-yl Ester (8c). A solution of $\mathbf{8 a}(1.8 \mathrm{mmol})$ in pyridine $(5 \mathrm{~mL})$ was cooled at $0{ }^{\circ} \mathrm{C} . \mathrm{Ac}_{2} \mathrm{O}(2.6 \mathrm{mmol})$ was added and dimethylaminopyridine (catalytic amount). After the reaction mixture was left for 24 h , it was then poured on 10% de $\mathrm{HCl}\left(25 \mathrm{~mL} / 5 \mathrm{~mL}\right.$ Py). The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(5 \times 15$ mL), washed with water, and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and the solvent was evaporated. Colorless oil, 98%. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.68(\mathrm{dm}, 1 \mathrm{H}, \mathrm{H}-2), 5.36(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6), 3.47(\mathrm{t}, J=2.7$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-9 \mathrm{a}), 2.09\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OC}(\mathrm{O}) \mathrm{CH}_{3}\right), 2.05(\mathrm{~m}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7), 1.98(\mathrm{~m}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}$, H-7), 1.93 (m, 2H, H-9), $1.82(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-5), 1.71(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{a}), 1.70(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3), 1.54(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{H}-4), 1.48(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-8), 1.11\left(9 \mathrm{~b}-\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($75.13 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.6(\mathrm{C}=\mathrm{O}), 138.2$ (C6a), 120.9 (C6), 95.2 (C2), 80.4 (C9a), 38.2 (C-3a), 36.4 (C-9b), 31.7 (C-7), 31.3 (C-3), 27.6 (C-5), $24.4\left(\mathrm{CH}_{3}\right), 22.8(\mathrm{C}-4), 21.4(\mathrm{C}-9), 21.2(\mathrm{C}-8), 21.1\left(\mathrm{OC}(\mathrm{O}) \mathrm{CH}_{3}\right) . \mathrm{IR}\left(\right.$ film, $\left.\mathrm{cm}^{-1}\right) 3015$, $2935,2866,2360,1747,1729,1441,1366,1229,1136,1051,1033,911,723$. EIRMS C ${ }_{15} \mathrm{H}_{22} \mathrm{O}_{3}$ calc. for $\left(\mathrm{M}^{+}\right) m / z 250.1569$. Experimental for $\left(\mathrm{M}^{+}\right) m / z 250.1549$.
2-Benzyloxy-9b-methyl-2,3,3a,4,5,7,8,9,9a,9b-decahydrobenzo[de]chromene (8d). A solution of the compound $\mathbf{8 a}(6.6 \mathrm{mmol})$ in THF (11 mL) was added into a vessel with $\mathrm{NaH}(6.7 \mathrm{mmol})$ in THF $(2 \mathrm{~mL})$. To this mixture was added $\mathrm{BnBr}(6.8 \mathrm{mmol})$. The mixture was stirred at room temperature for 48 h . Florisil ${ }^{\circledR}(46 \mathrm{mg})$ was incorporated to the mixture. The solvent was evaporated and the residue filtered through a sintered glass funnel with hexane. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and the solvent was evaporated to give a crude which was purified by column chromatography. Colorless oil, 96%. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38$ (dm, 2H, Ar-H), $7.33(\mathrm{~m}, 1 \mathrm{H}, \operatorname{Ar}-\mathrm{H}), 7.27(\mathrm{dm}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 5.34(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6), 4.87(\mathrm{~d}, J=12.2$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ar}\right), 4.60\left(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ar}\right), 4.50(\mathrm{dd}, J=9.3$ and $2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2)$, 3.30 (br s, 1H, H-9a), 2.09-1.90 (m, 2H, H-9), 1.86-1.51 (m, 2H, H-8), 2.23-2.08 (m, 2H, H-5), $1.90(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4), 1.88(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-7), 1.72-1.51(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3), 1.58(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{a}), 1.09$ (9b$\left.\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($75.13 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.5$ (C1-Ar), $129.0(\mathrm{C} 3-\mathrm{Ar}), 128.4$ (C-2-Ar), 127.5 (C4-Ar), 138.3 (C-6a), 120.8 (C6), 100.7 (C2), 79.4 (C9a), $69.5\left(\mathrm{CH}_{2} \mathrm{Ar}\right), 38.5$ (C3a), 31.8 (C7), 32.6 (C3), 27.8 (C5), $24.5 \mathrm{CH}_{3}$), 23.2 (C4), 23.1 (C9), 21.3 (C8). IR (film, cm^{-1}) 3015, 2927, $2866,2360,1640,1454,1363,1196,1108,1070,980,734,697$. EIRMS $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{Na}$ calc. for $\left(\mathrm{M}^{+}\right) m / z 321.1831$. Experimental for $\left(\mathrm{M}^{+}\right) m / z 321.1844$.

General procedure for the syntheses of compounds (9)

To a solution of the compound $\mathbf{8 a}(50 \mathrm{mg})$ in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}(3 \mathrm{~mL}, 2: 1) 6 \mathrm{M} \mathrm{HCl}(0.5 \mathrm{~mL})$ was added. The mixture was maintained at $40{ }^{\circ} \mathrm{C}$ for 48 h . After this time, a sat. soln. of $\mathrm{NaHCO}_{3}(10$ mL) was added and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$, and the organic extract was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The solvent was evaporated and the crude product was purified by column chromatography yielding the hemiketal $\mathbf{8 e}(93 \%)$. Compound $\mathbf{9 a}$ was directly obtained from the crude product by oxidation with Jones reagent in acetone or from the pure $\mathbf{8 e}$.
9b-Methyl-2,3,3a,4,5,7,8,9,9a,9b-decahydrobenzo[de]chromen-2-ol (8e). oil (93\%). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.36$ (br s, $1 \mathrm{H}, \mathrm{H}-6$), $5.33(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 3.59(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-9 \mathrm{a})$, 1.98 (bs, 1H, HO), 1.97 (m, 4H, H-5, H-7), 1.70-1.64 (m, 5H), 1.46-1.34 (m, 4H), 1.26 (s, 3H, $\left.9 \mathrm{~b}-\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($75.13 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.0(\mathrm{C} 6 \mathrm{a}), 122.7(\mathrm{C} 6), 92.6(\mathrm{CH}-\mathrm{OH}), 76.4(\mathrm{C} 9 \mathrm{a})$, 44.3 (C9b), 35.7 (C3), 35.5 (C7), 33.6 (C9), 32.8 (C4), 31.4 (C3a), 7.2 (C5), 24.0 (C8), 13.8 $\left(\mathrm{CH}_{3}\right)$.
9b-Methyl-3a,4,5,7,8,9,9a,9b-octahydro-3H-benzo[de]chromen-2-one (9a). Colorless crystals, 86%. M.p. 81.7-83 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.54$ (br s, $1 \mathrm{H}, \mathrm{H}-6$), $4.26(\mathrm{~d}, J=2.7 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-9 \mathrm{a}$), $2.62(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-5), 2.58(\mathrm{dd}, J=17.2$ and $9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 2.33$ (dd, $J=17.2$ and 5.6 $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-4), 2.12-1.89(\mathrm{~m}, 9 \mathrm{H}), 1.24\left(\mathrm{~s}, 3 \mathrm{H}, 9 \mathrm{~b}-\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (75.13 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 173.2$ (C=O), 136.5 (C6a), 123.3 (C6), 82.5 (C9a), 38.4 (C9b), 36.5 (C9), 36.3 (C3a), 32.5 (C3), 30.8 (C7), 26.5 (C5), $24.5\left(\mathrm{CH}_{3}\right), 20.4(\mathrm{C} 4), 20.1(\mathrm{C} 8) . \mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 2910,2830,1715,1425,1350$, 1310, 1240, 1160, 1120, 1095, 1075, 1040, 1010, 995, 975, 940, 850, 735, 700. EM: (relative intensity) $m / z 206\left(\mathrm{M}^{+}, 12\right), 164$ (58), 146 (88), 131 (100), 118 (69), 105 (73), 91 (96), 77 (59), 65 (27), 41 (54). EIRMS $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2}$ calc. for $\left(\mathrm{M}^{+}\right) \mathrm{m} / \mathrm{z}$ 206.1307. Experimental for $\left(\mathrm{M}^{+}\right) \mathrm{m} / \mathrm{z}$ 206.1306.

9b-Methoxymethyl-3a,4,5,7,8,9,9a,9b-octahydro-3H-benzo[de]chromen-2-one (9b). Oil, 67%. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.69$ (br s, $1 \mathrm{H}, \mathrm{H}-6$), 4.61 (dd, $J=5.3$ and $3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ $9 \mathrm{a}), 3.69$ and $3.27\left(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OCH}_{3}\right), 3.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.70(\mathrm{t}, 2 \mathrm{H}, \mathrm{H}-5), 2.63-$ $1.40(\mathrm{~m}, 11 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75.13 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.8(\mathrm{C}=\mathrm{O}), 133.8$ (C6a), 126.6 (C6), 78.0 $(\mathrm{C} 9 \mathrm{a}), 75.0\left(\mathrm{CH}_{2} \mathrm{OCH}_{3}\right), 59.2\left(\mathrm{OCH}_{3}\right), 41.7(\mathrm{C} 9 \mathrm{~b}), 33.5(\mathrm{C} 3), 31.4(\mathrm{C} 7), 31.1(\mathrm{C} 3 a), 30.1(\mathrm{C} 9)$, 26.3 (C4), 20.7 (C5), 20.1 (C8). EIRMS $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{3}$ calc. for $\left(\mathrm{M}^{+}\right) \mathrm{m} / z$ 236.1412. Experimental for $\left(\mathrm{M}^{+}\right) m / z 236.1412$.
Synthesis of 2-Ethoxy-9b-methyl-2,3,3a,4,5,7,8,9,9a,9b-decahydro-benzo[de]chromene-4carbonitrile (10). To a degassed solution of the bromoketal $7 \mathbf{7 a}(0.63 \mathrm{mmol})$ in $t \mathrm{BuOH}(17 \mathrm{~mL})$, was added $\mathrm{NaCNBH}_{3}(1.27 \mathrm{mmol})$, AIBN $(0.06 \mathrm{mmol})$, and finally $\mathrm{Bu}_{3} \mathrm{SnCl}(0.06 \mathrm{mmol})$. The mixture was refluxed over 10 h over argon and the $t \mathrm{BuOH}$ was evaporated. The residue was dissolved in dichloromethane, washed with brine $(2 \times 5 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. The crude product was purified by column chromatography. Oil 87%. ${ }^{1} \mathrm{H}$ NMR (300 MHz , CDCl_{3}) $\delta 5.32$ (br s, $1 \mathrm{H}, \mathrm{H}-6$), $4.88(\mathrm{t}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 3.70(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-9 \mathrm{a}), 3.41(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{3}$), $3.10\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.65(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 2.40-2.13(\mathrm{~m}, 6 \mathrm{H}), 1.90-1.61(\mathrm{~m}, 5 \mathrm{H}), 1.22$ $\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.14\left(\mathrm{~s}, 3 \mathrm{H}, 9 \mathrm{~b}-\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($75.13 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.4$ (C6a), 121.5
(C6), 118.9 (nitrile), 98.1 (C2), $70.0(\mathrm{C} 9 \mathrm{a}), 62.3\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 36.6$ (C9b), 35.4 (C7), 31.3 (C9), $29.5(\mathrm{C} 3), 27.1(\mathrm{C} 3 a), 25.3(\mathrm{C} 4), 24.8(\mathrm{C} 5), 24.6(\mathrm{C} 8), 20.7\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 14.9\left(9 \mathrm{~b}-\mathrm{CH}_{3}\right)$.
Synthesis of 9b-Methyl-2-oxo-2,3,3a,4,5,7,8,9,9a,9b-decahydro-benzo[de]chromene-4carbonitrile (11). Compound 10 was treated with the same reaction conditions for the conversion $\mathbf{8} \rightarrow \mathbf{9}$, ketal hydrolysis with $6 \mathrm{M} \mathrm{HCl}, \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}, 40^{\circ} \mathrm{C}$ and subsequent Jones reagent in acetone. Oil 86%. ${ }^{1} \mathrm{HNMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.52$ (br s, $1 \mathrm{H}, \mathrm{H}-6$), 4.35 (br s, 1H, H-9a), $3.01(\mathrm{dt}, J=7.8$ and $3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 2.83(\mathrm{dd}, J=17.0$ and $10.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 2.59(\mathrm{dd}, J=$ 17.0 and $4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 2.40-1.60(\mathrm{~m}, 9 \mathrm{H}), 1.28\left(\mathrm{~s}, 3 \mathrm{H}, 9 \mathrm{~b}-\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{CNMR}$ (75.13 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 171.0(\mathrm{C}=\mathrm{O})$, 137.2 (C6a); 120.6 (C6), 120.4 (nitrile), 81.4 (C9a), 38.6 (C3a), 37.5 (C9b), 30.3 (C3), 29.0 (C5), 27.0 (C4), 25.9 (C8), 24.1 (C9), 23.9 (CH_{3}), 19.8 (C7). IR (film, cm^{-} ${ }^{1}$) $2950,2840,2256,1735,1635,1420,1350,1240,1160,1100,1040,970,735$. EM: (relative intensity) $m / z 232(\mathrm{M}+1,100), 219(21)$. EIRMS $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{~N}$ calc. for $(\mathrm{M}+\mathrm{H})^{+} m / z$ 232.1331. Experimental for $(\mathrm{M}+\mathrm{H})^{+} \mathrm{m} / \mathrm{z} 232.1338$.

In vitro antimalarial and antileishmanial assays

Antimalarial activity of the compounds was determined in vitro on chloroquine sensitive (D6, Sierra Leone) and resistant (W2, IndoChina) strains of Plasmodium falciparum . The 96 well microplate assay is based on evaluation of the effect of the compounds on growth of asynchronous cultures of P. falciparum, determined by the assay of parasite lactate dehydrogenase (pLDH) activity. ${ }^{18}$ The appropriate dilutions of the compounds were prepared in DMSO or RPMI-1640 medium and added to the cultures of P. falciparum (2% hematocrit, 2% parasitemia) set up in clear flat bottomed 96 well plates. The plates were placed into the humidified chamber and flushed with a gas mixture of $90 \% \mathrm{~N}_{2}, 5 \% \mathrm{CO}_{2} \& 5 \% \mathrm{O}_{2}$. The cultures were incubated at $37{ }^{\circ} \mathrm{C}$ for 48 h . Growth of the parasite in each well was determined by pLDH assay using Malstat ${ }^{\circledR}$ reagent. The medium and RBC controls were also set-up in each plates. The standard antimalarial agents, chloroquine and artemisinin, were used as the positive controls while DMSO was tested as the negative control. Antileishmanial activity of the compounds was tested in vitro on a culture of Leishmania donovani promastigotes (Strain S1). In a 96 well microplate assay the compounds with appropriate dilution were added to the leishmania promastigotes culture ($2 \times 10^{6} \mathrm{cell} / \mathrm{mL}$) to get the final concentrations of 40,8 and $1.6 \mu \mathrm{~g} / \mathrm{mL}$. The plates were incubated at $26{ }^{\circ} \mathrm{C}$ for 72 h and growth of leishmania promastigotes was determined by Alamar blue assay. ${ }^{19}$ Pentamidine and Amphotericin B were used as the standard antileishmanial agents. All the analogs were simultaneously tested for cytotoxicty on VERO (monkey kidney fibroblast) cells by Neutral Red assay. ${ }^{20} \mathrm{IC}_{50}$ value for each compound was computed from the growth inhibition curve.

Acknowledgements

Financial supports through Universidad Nacional de Rosario, CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), ANPCYT (Agencia Nacional de Promoción Científica y

Tecnológica), and Fundación Josefina Prats, are gratefully acknowledged. M. F. P. thanks CONICET for a doctoral fellowship. We thank John Trott for antimalarial \& cytotoxicity assays and Rajnish Sahu for antileishmania assays. NCNPR, University of Mississippi is partially supported through a cooperative scientific agreement No. 58-6408-2-0009 from USDA Agricultural Research Service. This investigation has received financial support from the UNICEF /UNDP /WORLD BANK /WHO Special Programme for Research and Training in Tropical Diseases (TDR) to GRL.

References

1. Tracy, W. J.; Webster Jr., L. T. "The Pharmacology Basis of Therapeutics"; 9th Ed.; Gilman's, G. A.; Ed.; McGraw-Hill: New York, 1996, 25, 517.
2. Newton, P.; White, N. Annu. Rev. Med. 1999, 50, 179.
3. Ashford, R. W. Int. J. Parasitol. 2000, 30, 1269.
4. Werbovetz, K. A. Curr. Med. Chem. 2000, 7, 835.
5. Kelly, J. X.; Smilkstein, M. J.; Cooper, R. A.; Lane, K. D.; Johnson, R. A.; Janowsky, A.; Dodean, R. A.; Hinrichs, D. J.; Winter, R.; Riscoe, M. Antimicrob. Agents Chemother. 2007, 51, 4133, and references cited therein.
6. Newman, D.J. J. Med. Chem. 2008, 51, 2589.
7. Kaur, K; Jain, M.; Kaur, T.; Jain, R. Bioorg. Med. Chem. 2009, 17, 3229.
8. Almeida, M. M. B.; Arriaga, Â. M. C.; Dos Santos, A. K. L.; Lemos, T. L. G.; Braz-Filho, R.; Curcino Vieira, I. J. Quim. Nova 2007, 30, 935.
9. Kuo, P.-C.; Damu, A. G.; Lee, K.-H.; Wu, T.-S. Bioorg. Med. Chem. 2004, 12, 537.
10. Kitagawa, I.; Mahmud, T.; Yokota, K.-I.; Nakagawa, S.; Mayumi, T.; Kobayashi, M.; Shibuya, H. Chem. Pharm. Bull. 1996, 44, 2009.
11. Muhammad, I.; Bedir, E.; Khan, S. I.; Tekwani, B. L.; Khan, I. A.; Takamatsu, S.; Pelletier, J.; Walker, L. A. J. Nat. Prod. 2004, 67, 772.
12. (a) Hall, I. H.; Lee, K. H.; Imakura, Y.; Okano, M.; Johnson, A. J. Pharm. Sci. 1983, 72, 1282. (b) Kirandeep, K.; Meenakshi, J.; Tarandeep, K.; Rahul J. Bioorg. Med. Chem. 2009, 17, 3229.
13. Mishra, K.; Chakraborty, D.; Pal, A.; Dey, N. Exp. Parasitol. 2010, 4, 421.
14. (a) Cravero, R. M.; Gonzalez Sierra, M.; Labadie, G. R. Helv. Chim. Acta 2003, 86, 2741. (b) Labadie, G. R.; Luna, L. E.; Gonzalez Sierra, M.; Cravero, R. M. Eur. J. Org. Chem. 2003, 3429. (c) Labadie, G. R.; Luna, L. E.; Cravero, R. M.; Gonzalez Sierra, M. Helv. Chim. Acta 2006, 89, 2732. (d) Labadie, G. R.; Cravero, R. M.; Gonzalez Sierra, M. Tetrahedron Lett. 2001, 42, 1811.
15. (a) Blunt, J. W.; Copp, B. R.; Munro, M. H. G.; Northcote, P. T.; Prinsep, M. R. Nat. Prod. Rep. 2003, 20, 1. (b) Beckwith, A. L. J.; Schiesser, C. H. Tetrahedron 1985, 41, 3925.
16. Guo, Z.; Vangapandu, S.; Nimrod, A.; Walker, L. A.; Sindelar, R. D. Med. Chem. 2005, 1, 3.
17. Labadie, G. R.; Cravero, R. M.; Gonzalez Sierra, M. Synth. Commun. 1996, 26, 4671.
18. Makler, M. T.; Ries, J. M.; Williams, J. A.; Bancroft, J. E.; Piper, R. C.; Gibbins, B. L.; Hinriches, D. J. Am. J. Trop. Med. Hyg. 1993, 48, 739.
19. Mikus, J.; Steverding, D. Parasitol. Int. 2000, 48, 265.
20. Babich, H.; Borenfreund, E. App. Envt. Microbiol. 1991, 57, 2101.
