Synthesis of linear dibenzo[1,8]naphthyridines using 2-chloro-4methylquinolines

Manickam Manoj and Karnam Jayaramapillai Rajendra Prasad*
Department of Chemistry, Bharathiar University, Coimbatore, Tamil Nadu 641 046, India
E-mail: prasad_125@yahoo.com

DOI: http://dx.doi.org/10.3998/ark.5550190.0012.922

Abstract

The attempted synthesis of linear dibenzonaphthyridines utilizing 2-chloro-4-methylquinolines leads to the formation of hitherto unknown compounds. The reaction of 2 -chloro- 4 methylquinoline with 2-amino-5-chlorobenzophenone afforded 6-chloro-10Hdibenzo $[b, g]$ naphtho $[1,2,3-d e][1,8]$ naphthyridine. In an alternate way, anilinoquinolines were reacted with benzoic acid but yielded (dibenzo[b,g][1,8]naphthyridin-11(6H)-ylidene)-1phenylethanone.

Keywords: 2-Chloro-4-methylquinolines, aminoketones, anilinoquinolines, novel dibenzonaphthyridines

Introduction

Quinoline and naphthyridine derivatives represent an important class of heterocycles as these ring systems occur in various natural products, especially in alkaloids and exhibit exceptionally broad spectrum of biological activities. ${ }^{1-3}$ After the discovery of cinchona alkaloids as antimalarial agents several anilinoquinolines were also established as synthetic antimalarials ${ }^{4}$ and have been utilized as synthons in obtaining various fused heterocycles like indoloquinoline alkaloids. ${ }^{5,6}$ Among the quinoline derivatives, pyrido fused quinolines (benzonaphthyridines) and quinoline fused quinolines (dibenzonaphthyridines) play an important role in living cells and in pharmaceuticals. Many reports represent the synthesis of linear ${ }^{7,8}$ and angular dibenzonaphthridines ${ }^{9-11}$ and only very few accomplish their construction through anilinoquinolines. ${ }^{12,13}$ Marine sponges are proving to be productive sources of many interesting biologically active nitrogen-containing heterocyclic compounds, including a series of 1 H benzo[de][1,6]naphthyridine alkaloids. ${ }^{14-16}$ Aaptamine i.e., 8,9-dimethoxy-1 H-benzo $[d e][1,6]$ naphthyridine was first isolated from marine sponge Aaptos aaptos and was found to possess
various biological activity like anti-neoplastic activity, cancer cell growth inhibitory activity ${ }^{17}$ and recently found to activate p21 promoter in a p53 independent manner. ${ }^{18}$ Isoaaptamine ($8-$ methoxy-1-methyl-1 H-benzo $[d e][1,6]$ naphthyridin-9-ol), a novel benzo[de][1,6]naphthyridine alkaloid of the aaptamine class isolated from an Indonesian marine sponge ${ }^{19}$ was also reported to possess various biological activities. A formal total synthesis of the marine alkaloid aaptamine ${ }^{20}$ and the synthetic conversion of aaptamine to isoaaptamine and other aaptamine derivatives ${ }^{21}$ were also carried out with multisteps since simple construction of benzo[de]naphthyridine core structure is quiet tedious. Our present investigation though aimed in the preparation of linear dibenzonaphthyridines from 2-chloro-4-methylquinolines (1) by two methods (i) condensation of $\mathbf{1}$ with 2-amino-5-chlorobenzophenone $\mathbf{2}$ in single step.(ii) condensation of $\mathbf{1}$ with aniline $\mathbf{4}$ followed by cyclisation using benzoic acid in presence of PPA as represented in Scheme 1, ended up in hitherto unknown naphthyridine derivatives which also includes dibenzo $[b, g]$ naphtho $1,2,3-d e][1,8]$ naphthyridine.

Scheme 1. Reaction sequences to achieve linear dibenzonaphthyridines.

Results and Discussion

In addition to our earlier work for the preparation of the angular dibenzonaphthyridines ${ }^{22,23}$ from 4-chloro-2-methylquinolines and linear ${ }^{24,25}$ and angular ${ }^{26}$ dibenzonaphthyridines from 2,4dichloroquinolines the objective of the present investigation was aimed in the preparation of some linear dibenzonaphthyridines from 2-chloro-4-methylquinolines. With regard to the earlier idea, the reaction of 2-chloro-4-methylquinolines 1a-c with 2-amino-5-chlorobenzophenone 2 under neat condition at $160{ }^{\circ} \mathrm{C}$ (Scheme 2) afforded the products, namely 2 [(2'-benzoyl-4'-chlorophenyl)amino]-4-methylquinolines 6a-c and not the expected products $\mathbf{3}$ as observed in
earlier work. ${ }^{22,23}$ In its ${ }^{1} \mathrm{H}$ NMR spectrum apart from the methyl groups in the aliphatic region all the aromatic protons resonated between $\delta 7.00-8.00$ except for one proton doublet which was very much deshielded to ~ 8.50 and assigned to C6'-H (2D NMR pattern of similar compounds is discussed in our earlier work ${ }^{24,25}$). A broad singlet around $\delta 11.00$ showed the presence of C2NH (Hydrogen bonded). The conformations of the compounds $\mathbf{6 a - c}$ is shown in Figure 1.

Scheme 2. Reaction of 2-chloro-4-methylquinoline 1 and 5-chloro-2-aminobenzophenone $\mathbf{2}$.

Figure 1. Conformations of 2[(2'-benzoyl-4'-chlorophenyl)amino]-4-methylquinolines 6a-c.

After obtaining the methylquinolines 6a-c we aimed to cyclise them under acidic condition and hence 2[(2'-benzoyl-4'-chlorophenyl)amino]-4-methylquinolines 6a-c were heated in presence of PPA at $160{ }^{\circ} \mathrm{C}$ for 5 hours to give the new products $7 \mathbf{a}-\mathbf{c}$. Its ${ }^{1} \mathrm{H}$ NMR spectrum showed the absence of $\mathrm{C} 3-\mathrm{H}$. The C 7 -and $\mathrm{C} 9-\mathrm{CH}_{3}$ were observed around $\delta 2.50$ for all the derivatives whereas the expected $\mathrm{C} 11-\mathrm{CH}_{3}$ methyl group was absent. The appearance of a broad singlet at $\sim \delta 7.40$ was due to $\mathrm{N} 5-\mathrm{H} / \mathrm{N} 6-\mathrm{H}$. Its ${ }^{13} \mathrm{C}$ NMR spectrum showed the presence of 24
carbons with the absence of C11-methyl carbon signal. The absence of methyl group and the presence of a NH group indicate that the methyl group might have involved further in reaction with the neighbouring phenyl ring. Finally the molecular ion peak for the compounds $\mathbf{7 a , b}$ appeared at $(\mathrm{m} / z) 366$ and $M+2$ at 368 in its mass spectrum and the elemental analysis showed the molecular formula to be $\mathrm{C}_{24} \mathrm{H}_{15} \mathrm{ClN}_{2}$ for its methyl derivative which confirmed that the compounds obtained were 6-chloro-10H-dibenzo $[b, g]$ naphtho $1,2,3-d e][1,8]$ naphthyridines $7 \mathbf{7 a - c}$ (Scheme 3).

Scheme 3. Preparation of 6-chloro-10H-dibenzo $[b, g]$ naphtho $[1,2,3-d e][1,8]$ naphthyridines 7a-c.

The mechanism for the formation of the final compound 7 is proposed as follows in the Scheme 4. 2[(2'-Benzoyl-4'-chlorophenyl)amino]-4-methylquinoline $\mathbf{6}$ on intramolecular electrophilic substitution under the influence of H^{+}donated by PPA afforded the intermediate III through the intermediates I and II. Then the intermediate III on the removal of $\mathrm{H}_{2} \mathrm{O}$ molecule furnished the expected product 3. The in situ formed product $\mathbf{3}$ on tautomerism gives the intermediate $\mathbf{3 '}^{\prime}$ and $\mathbf{3}^{\prime}$ '. The intermediate $\mathbf{3 '}^{\prime}$ on electrocyclic reaction via $=\mathrm{CH}_{2}$ and neighbouring phenyl ring catalysed by protonation of the ring nitrogen afforded the intermediate $\mathbf{I V}$. The intermediate IV on oxidation (either in presence of air or under N_{2} atomosphere) furnished the final product 2-chloro-6,11-dihydro-naphthyl $[3,2,1-d e]$ dibenzo $[b, g][1,8]$ naphthyridines 7 which is in equilibrium with its other tautomeric form 7'.

Scheme 4. Proposed mechanism for the formation of 7 from 6.

Now we chose an alternate way to diversify the target dibenzonaphthyridine where the anilinoquinolines were utilized as intermediates. Hence for the preparation of the anilinoquinoline, 2-chloro-4-methylquinolines 1a-c were reacted with p-chloroaniline $\mathbf{4}$ under neat condition to afford 4-methyl-2(4'-chloro-phenylamino)quinolines 5a-c (Scheme 5).

Scheme 5. Preparation of anilinoquinolines 5a-c.

The anilinoquinolines 5a-c thus obtained were treated with benzoic acid (slight excess) in presence of PPA at $150-155^{\circ} \mathrm{C}$. In the obtained products $\mathbf{8 a - c}$, besides the $\mathrm{C} 7-$ and $\mathrm{C} 9-\mathrm{CH}_{3}$ in the aliphatic region and aromatic protons, a broad singlet appeared around $\delta 9.00$ due to $\mathrm{N} 6-\mathrm{H}$. In this case also the appearance of a NH and the absence of C11-methyl protons suggest the formation of an unexpected product. Its ${ }^{13} \mathrm{C}$ NMR spectrum supported the presence of 31 carbons with the carbonyl carbon at $\sim \delta 185.4$ which further supported by its IR spectrum. All these observations confirm the formation of the C11-benzoylated products. Finally its mass spectrum exhibited the molecular ion peak at $(\mathrm{m} / \mathrm{z}) 472$ and elemental analyses showed the molecular formula as $\mathrm{C}_{31} \mathrm{H}_{21} \mathrm{ClN}_{2} \mathrm{O}$ for its methyl derivative which confirmed the structure of the product formed as 2-(2-chloro-12-phenyldibenzo $[b, g][1,8]$ naphthyridin-11(6H)-ylidene)-1phenylethanones 8a-c (Scheme 6).

8

5,8 a) $\mathrm{R}^{1}=\mathrm{CH}_{3}, \mathrm{R}^{2}=\mathrm{H}$
b) $\mathrm{R}^{1}=\mathrm{H}, \quad \mathrm{R}^{2}=\mathrm{CH}_{3}$
c) $\mathrm{R}^{1}=\mathrm{Cl}, \quad \mathrm{R}^{2}=\mathrm{H}$

Scheme 6. Reaction of anilinoquinolines 5a-c with benzoic acid.

Similarly a set of reaction was performed in which 1a-c were reacted with p-toluidine $\mathbf{9}$ to afford the corresponding anilinoquinolines 10a-c and they were treated with benzoic acid to give 2-(2-methyl-12-phenyldibenzo[$b, g][1,8]$ naphthyridin-11($6 H$)-ylidene)-1-phenylethanones 11a-c (Scheme 7). In both the above cases for the formation of products $\mathbf{8}$ and $\mathbf{1 1}$ from the starting materials 5 and 10 respectively, the yield was poor ($\sim 20 \%$) and the starting materials were recovered. When the same reaction was done with twice the quantity of benzoic acid no starting materials were recovered and the yield was good ($\sim 40 \%$).

$\mathbf{1 , 9 , 1 0 , 1 1}$ a) $\mathrm{R}^{1}=\mathrm{CH}_{3}, \mathrm{R}^{2}=\mathrm{H}$
b) $\mathrm{R}^{1}=\mathrm{H}, \quad \mathrm{R}^{2}=\mathrm{CH}_{3}$
c) $\mathrm{R}^{1}=\mathrm{Cl}, \quad \mathrm{R}^{2}=\mathrm{H}$

numbering of compound 11

11

Scheme 7, Reaction of anilinoquinolines 10a-c with benzoic acid.

The mechanism for the formation of the hitherto unknown compounds $\mathbf{8}$ and $\mathbf{1 1}$ is discussed in the Scheme 8. Benzoylation of anilinoquinolines $\mathbf{5 , 1 0}$ afforded \mathbf{V} which on cyclisation yielded 3. One of the tautomer $\mathbf{3}$ ' reacts with benzoic acid to give intermediate VI

The intermediate VI on removal of $\mathrm{H}_{2} \mathrm{O}$ molecule afforded the final dibenzonaphthyridines $\mathbf{8 , 1 1}$ through its tautomers $\mathbf{8}^{\prime}, \mathbf{1 1}$ '.

Scheme 8. Mechanism for the formation of $\mathbf{8 , 1 1}$.

Various reaction conditions were optimized to isolate the possible intermediate 3, but unsuccessful, perhaps the reason might be due to the less stability of the intermediate at the experimental condition. The similarity of the above couple of reactions conclude that after the
formation of the target cyclised dibenzonaphthyridines (in situ) the methyl group reacts further with the neighbouring phenyl ring or benzoic acid through its tautomeric form, thus ending up in the formation of hitherto unknown dibenzonaphthyridines. It is pertinent to mention here that anilinoquinolines do not react with benzoic acid unless PPA is present.

A similar set of reaction was aimed to perform with o-aminoacetophenone in order to get $\mathbf{1 2}$. Hence 2-chloro-4-methylquinoline 1 and o-aminoacetophenone was reacted under neat condition at $160^{\circ} \mathrm{C}$ to afford 2 [(2'-acetylphenyl)amino]-4-methylquinoline $\mathbf{1 3}$ (Scheme 9).

Scheme 9. Reaction of 2-chloro-4-methylquinolines 1a-c with o-aminoacetophenone.

As mentioned in the earlier case the peculiar deshielded C6'-H was assigned on the basis of the 2D NMR pattern of similar compound in our earlier work. ${ }^{24,25}$ The conformation of the compound 12b (similar to Figure 1) was confirmed by single crystal XRD studies. The ORTEP diagram of $2\left[\left(2^{\prime}\right.\right.$-acetylphenyl)amino]-4,8-dimethylquinoline 12b is shown in Figure 2.

Figure 2. ORTEP diagram of 2[(2'-acetylphenyl)amino]-4,8-dimethylquinoline 12b.

Conclusion

The attempted synthesis of linear dibenzonaphthyridines leads to the formation of novel compounds. The reaction of 2-chloro-4-methylquinolines $\mathbf{1}$ with amino ketones afforded the uncyclised 6 which further on acid catalysed cyclisation yielded hitherto unknown [de]dibenzonaphthyridines. In an alternate way to diversify the target compounds, $\mathbf{1}$ was converted to $\mathbf{5 , 1 0}$ and its further reaction with carboxylic acid led to the unknown dibenzonaphthyridin-ylidene-ones $\mathbf{8 , 1 1}$. The reason for not realizing the target compounds $\mathbf{3}$ as expected might be the following reasons (i) less stability of the target compounds (ii) higher reactivity of C_{11}-methyl group of the compound 3 .

Experimental Section

General. Melting points (m.p) were determined on Mettler FP 51apparatus (Mettler Instruments, Switzerland) and are uncorrected. They are expressed in degree centigrade $\left({ }^{\circ} \mathrm{C}\right)$. IR spectra were recorded on Schimadzu FTIR-8201PC spectrophotometer (Schimadzu, Japan) using KBr disc. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Bruker AMX $400\left(400 \mathrm{MHz}\left({ }^{1} \mathrm{H}\right)\right.$ and 100 $\mathrm{MHz}\left({ }^{13} \mathrm{C}\right)$) and $\mathrm{AV} 300\left(300 \mathrm{MHz}\left({ }^{1} \mathrm{H}\right)\right.$ and $\left.75 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right)\right)$ NMR spectrometer using tetramethylsilane (TMS) as an internal reference. The chemical shifts are expressed in parts per million (ppm). Mass spectra (MS), were recorded on AutoSpec EI+ shimadzu QP 2010 PLUS GC-MS mass spectrometer. Micro analyses were performed on a Vario EL III model CHNS analyser (Vario, Germany) at the Department of Chemistry, Bharathiar University. The purity of the products was tested by TLC with plates coated with silica gel-G with petroleum ether, ethyl acetate and methanol as developing solvents.

General procedure for the preparation of 2[(2'-benzoyl-4'-chlorophenyl)amino]-4methylquinoline (6)
An appropriate 2-chloro-4-methylquinoline $\mathbf{1}(0.004 \mathrm{~mol})$ was reacted with 2-amino-5chlorobenzophenone $2(0.004 \mathrm{~mol})$ under neat condition at $160^{\circ} \mathrm{C}$ for half an hour. The product was washed with water, adsorbed and purified using silica gel column chromatography and the product was eluted with petroleum ether ethyl acetate (98 2) mixture to get $\mathbf{6}$ which was then recrystallised using methanol.
2[(2'-Benzoyl-4'-chlorophenyl)amino]-4,6-dimethylquinoline (6a). Pale yellow prisms, Yield $65 \%, 1.004 \mathrm{~g}, \mathrm{mp} 180-182^{\circ} \mathrm{C}$, IR $(\mathrm{KBr}) \nu_{\max }\left(\mathrm{cm}^{-1}\right) 3397(\mathrm{NH}), 1639(\mathrm{C}=\mathrm{O}), 1585,1516,1136$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 2.58\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 6-\mathrm{CH}_{3}\right), 2.80\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 4-\mathrm{CH}_{3}\right), 6.88(1 \mathrm{H}, \mathrm{s}, \mathrm{C} 3-\mathrm{H})$, 7.21-7.78 (10H,m, C5, C7, C8, C3', C5', C2", C3", C4", C5", C6"-H), 9.48 (1H, d, C6'-H, J = 8.98 $\mathrm{Hz}), 11.12\left(1 \mathrm{H}, \mathrm{b}\right.$ s, C2-NH), ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}} 20.7,22.7,112.4,120.1,120.7$, $121.5,123.3,124.9,126.0,126.7,127.8,129.4,130.0,132.2,133.2,135.5,137.2,142.6,145.5$, 149.6, 152.0, 185.2, MS, (m/z) (\%) 386 ($\mathrm{M}^{+}, 50$), 357 (100), 343 (55), 322 (55), 281 (50), 245
(40), 77 (80), 66 (71), Anal. Calcd. for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{ClN}_{2} \mathrm{O}$ C, $74.51, \mathrm{H}, 4.95, \mathrm{~N}, 7.24$. Found C, 74.99, H, 4.56, N, 7.15\%.
2[(2'-Benzoyl-4'-chlorophenyl)amino]-4,8-dimethylquinoline (6b). Colourless needles, Yield $62 \%, 0.957 \mathrm{~g}, \mathrm{mp} 174-176^{\circ} \mathrm{C}$, IR (KBr) $v_{\max }\left(\mathrm{cm}^{-1}\right) 3390(\mathrm{NH}), 1641(\mathrm{C}=\mathrm{O}), 1595,1515,1150$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 2.69\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 8-\mathrm{CH}_{3}\right), 2.79\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 4-\mathrm{CH}_{3}\right), 6.83(1 \mathrm{H}, \mathrm{s}, \mathrm{C} 3-\mathrm{H})$, 7.24-7.73 (10H, m, C5, C6, C7, C3', C5', C2", C3", C4", C5", C6"-H), 9.51 (1H, d, C6'-H, J = $8.92 \mathrm{~Hz}), 11.01(1 \mathrm{H}, \mathrm{b} \mathrm{s}, \mathrm{C} 2-\mathrm{NH}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}} 19.8,22.4,114.6,121.4$, $124.5,124.3,127.2,128.8,129.4,129.7,130.1,130.9,132.0,132.6,133.1,137.1,138.6,142.6$, $145.9,150.1,151.8,183.5, \mathrm{MS},(\mathrm{m} / \mathrm{z})(\%) 388 / 386\left(\mathrm{M}^{+}, 15 / 50\right), 357$ (100), 343 (38), 322 (60), 281 (42), 245 (38), 77 (95), 43 (86) Anal. Calcd. for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{ClN}_{2} \mathrm{O}$ C, 74.51, H, 4.95, N, 7.24. Found C, 74.47, H, 5.00, N, 7.38%.
2[(2'-Benzoyl-4'-chlorophenyl)amino]-6-chloro-4-methylquinoline (6c). White solid, Yield $60 \%, 0.974 \mathrm{~g}, \mathrm{mp} 186-188^{\circ} \mathrm{C}$, IR (KBr) $v_{\max }\left(\mathrm{cm}^{-1}\right) 3430(\mathrm{NH}), 1635(\mathrm{C}=\mathrm{O}), 1580,1521,1139$, ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 2.68\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 4-\mathrm{CH}_{3}\right), 6.74(1 \mathrm{H}, \mathrm{s}, \mathrm{C} 3-\mathrm{H}), 7.19-7.73(10 \mathrm{H}, \mathrm{m}$, C5, C7, C8, C3', C5', C2", C3", C4", C5", C6"-H), 9.54 (1H, d, C6'-H, J = 9.00 Hz), 10.99 (1H, b $\mathrm{s}, \mathrm{C} 2-\mathrm{NH}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}} 22.9,114.3,121.1,121.4,121.6,124.1,125.2$, $126.2,127.5,128.2,129.0,131.2,131.9,133.5,136.0,137.4,141.5,144.2,149.8,150.2,184.2$, MS, (m / z) (\%) 410/408/406 ($\mathrm{M}^{+}, 10 / 34 / 62$), 378 (100), 371 (55), 322 (60), 281 (42), 196 (45), 76 (80), 43 (86), Anal. Calcd. for $\mathrm{C}_{23} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}$ C, $67.82, \mathrm{H}, 3.95, \mathrm{~N}, 6.87$. Found C, 68.10. H, 4.07, N, 6.88\%.

General procedure for the preparation of 6-chloro-10H-dibenzo[b,g]naphtho[1,2,3$d e][1,8]$ naphthyridine (7)
2[(2'-Benzoyl-4'-chlorophenyl)amino]-4-methylquinoline 6 (0.002 mol) was heated in PPA (6 g of $\mathrm{P}_{2} \mathrm{O}_{5}$ and $3 \mathrm{~mL} \mathrm{H} \mathrm{H}_{3} \mathrm{PO}_{4}$) at $160{ }^{\circ} \mathrm{C}$ for 5 hours. The reaction was monitored using TLC and after the completion of the reaction, the reaction mixture was poured into ice water, extracted using ethyl acetate and purified by column chromatography over silica gel and the product eluted with petroleum ether ethyl acetate (955) mixture to get 7 which was then recrystallised using methanol.
6-Chloro-13-methyl-10H-dibenzo $[b, g]$ naphtho $[1,2,3-d e][1,8]$ naphthyridine (7a). Colourless prisms, Yield $45 \%, 0.329 \mathrm{~g}, \mathrm{mp} 170-172{ }^{\circ} \mathrm{C}$, $\mathrm{IR}(\mathrm{KBr}) v_{\max }\left(\mathrm{cm}^{-1}\right) 3405(\mathrm{NH}), 1591,1521,1148$, ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 2.44\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 13-\mathrm{CH}_{3}\right), 7.04-8.50(10 \mathrm{H}, \mathrm{m}, \mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 3, \mathrm{C} 4, \mathrm{C} 5$, $\mathrm{C} 7, \mathrm{C} 8, \mathrm{C} 11, \mathrm{C} 12, \mathrm{C} 14-\mathrm{H}), 7.41(1 \mathrm{H}, \mathrm{b} \mathrm{s}, \mathrm{NH}), 8.54(1 \mathrm{H}, \mathrm{s}, \mathrm{C} 15-\mathrm{H}){ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 18.9,122.3,123.0,123.4,123.8,123.9,125.1,125.6,126.4,126.9,127.2,127.8$, $128.1,128.7,129.3,129.8,131.4,131.8,132.5,132.8,133.6,143.8,144.8,154.0, \mathrm{MS},(\mathrm{m} / \mathrm{z})(\%)$ 368/366/ ($\mathrm{M}^{+}, 5 / 14$), 352 (100), 326 (5), 315 (20), 264 (42), 176 (28), 158 (15), 76 (10) Anal. Calcd. for $\mathrm{C}_{24} \mathrm{H}_{15} \mathrm{ClN}_{2} \mathrm{C}, 78.51, \mathrm{H}, 4.12$. N, 7.63. Found C, 78.59, H, 4.21, N, 7.72\%.
6-Chloro-11-methyl-10H-dibenzo $[b, g]$ naphtho $[1,2,3-d e][1,8]$ naphthyridine (7b). Colourless needles, Yield $0.322 \mathrm{~g}, 44 \%$, mp $168-170{ }^{\circ} \mathrm{C}$, $\mathrm{IR}(\mathrm{KBr}) v_{\max }\left(\mathrm{cm}^{-1}\right) 3408(\mathrm{NH}), 1591,1518$, $1152,{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{H}} 2.50\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 11-\mathrm{CH}_{3}\right), 7.05-8.38(10 \mathrm{H}, \mathrm{m}, \mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 3$,
$\mathrm{C} 4, \mathrm{C} 5, \mathrm{C} 7, \mathrm{C} 8, \mathrm{C} 12, \mathrm{C} 13, \mathrm{C} 14-\mathrm{H}), 7.36\left(1 \mathrm{H}, \mathrm{b}\right.$ s, NH), $8.50(1 \mathrm{H}, \mathrm{s}, \mathrm{C} 15-\mathrm{H}){ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 22.6,122.0,122.6,122.9,123.4,123.9,124.5,125.4,125.5,126.0,126.9$, $127.6,127.6,128.8,128.9,129.8,130.0,130.7,131.5,131.8,132.7,142.8,144.6,153.5, \mathrm{MS}$, $(\mathrm{m} / \mathrm{z})(\%) 368 / 366 /\left(\mathrm{M}^{+}, 5 / 14\right), 352$ (100), 315 (10), 293 (10), 289 (15), 266 (5), 161 (5), 134 (18), 76 (10), Anal. Calcd. for $\mathrm{C}_{24} \mathrm{H}_{15} \mathrm{ClN}_{2} \mathrm{C}, 78.51, \mathrm{H}, 4.12, \mathrm{~N}, 7.63$. Found C, 78.58, H, 4.06, N, 7.73\%.
6,13-Dichloro-10H-dibenzo $[b, g]$ naphtho $[1,2,3-d e][1,8]$ naphthyridine (7c). White solid, Yield $0.301 \mathrm{~g}, 39 \%, \mathrm{mp} 173-175{ }^{\circ} \mathrm{C}$, IR (KBr) $v_{\max }\left(\mathrm{cm}^{-1}\right) 3400(\mathrm{NH}), 1596,1525,1141,{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 7.04-8.41(10 \mathrm{H}, \mathrm{m}, \mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 3, \mathrm{C} 4, \mathrm{C} 5, \mathrm{C} 7, \mathrm{C} 8, \mathrm{C} 11, \mathrm{C} 12, \mathrm{C} 14-\mathrm{H}), 7.38(1 \mathrm{H}, \mathrm{b}$ $\mathrm{s}, \mathrm{NH}) 8.48(1 \mathrm{H}, \mathrm{s}, \mathrm{C} 15-\mathrm{H}){ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}} 122.4,123.1,123.2,123.9,124.3$, $124.8,125.7,126.0,126.5,127.1,127.6,128.2,128.6,129.3,129.9,130.8,131.4,131.7,132.3$, 133.1, 142.6, 144.5, 153.6, MS, (m / z) (\%) 388/386/384 ($\mathrm{M}^{+}, 5 / 14 / 32$), 352 (100), 351 (10), 315 (5), 293 (10), 292 (8), 158 (15), 76 (10); Anal. Calcd. for $\mathrm{C}_{23} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{C}, 71.33, \mathrm{H}, 3.12, \mathrm{~N}, 7.23$. Found C, 71.42, H, 3.03, N, 7.33\%.

General procedure for the preparation of 4-methyl-2-(4'-chloro-phenylamino)quinoline (5) A mixture of appropriate 2-chloro-4-methylquinoline $1(0.010 \mathrm{~mol})$ and p-chloroaniline 4 (0.010 mol) was heated under neat condition at $160^{\circ} \mathrm{C}$ for half an hour. The product obtained was washed with water, dried, purified by column chromatography over silica gel and eluted with ethyl acetate : methanol mixture (955) to get $\mathbf{5}$. It was recrystallised using methanol.
4,6-Dimethyl-2-(4'-chloro-phenylamino)quinoline (5a). Pale yellow prisms, Yield 72\%, 2.030 g, mp 120-122 ${ }^{\circ} \mathrm{C}$, (KBr) $v_{\text {max }}\left(\mathrm{cm}^{-1}\right) 3436,1588,1520,1135,{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ_{H} $2.54\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 6-\mathrm{CH}_{3}\right), 2.78\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 4-\mathrm{CH}_{3}\right), 6.52(1 \mathrm{H}, \mathrm{b}$ s, C2-NH$), 6.71(1 \mathrm{H}, \mathrm{s}, \mathrm{C} 3-\mathrm{H}), 7.27$ 7.78 (7H, m, C5, C7, C8, C2', C3', C5', C6'-H), ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}} 20.7,21.4$, $113.5,120.1,120.9,121.0,122.2,124.5,126.2,128.6,129.2,136.2,144.1,147.5,153.8$, MS, $(\mathrm{m} / \mathrm{z})(\%) 282\left(\mathrm{M}^{+}, 100\right), 284(\mathrm{M}+2,34), 281$ (80), 265 (35), 247 (60), 246 (30), 220 (25), 90 (48), 77 (48), Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{ClN}_{2} \mathrm{C}, 72.20, \mathrm{H}, 5.34, \mathrm{~N}, 9.90$. Found C, 72.10, H, 5.28, N, 9.73.
4,8-Dimethyl-2-(4'-chloro-phenylamino)quinoline (5b). Pale yellow prisms, Yield 75\%, 2.115 $\mathrm{g}, \mathrm{mp} 126-128{ }^{\circ} \mathrm{C}$, IR (KBr) $v_{\max }\left(\mathrm{cm}^{-1}\right) 3423,1599,1526,1087,{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}}$ $2.60\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 8-\mathrm{CH}_{3}\right), 2.72\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 4-\mathrm{CH}_{3}\right), 6.56(1 \mathrm{H}, \mathrm{b}$ s, C2-NH), $6.69(1 \mathrm{H}, \mathrm{s}, \mathrm{C} 3-\mathrm{H}), 7.21$ 7.76 (7H, m, C5, C6, C7, C2', C3', C5', C6'-H), ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}} 18.0,21.7$, $110.4,120.6,122.0,122.5,130.1,131.0,131.1,132.7,135.5,137.5,143.9,148.5,154.0$; MS, $(\mathrm{m} / \mathrm{z})(\%) 282\left(\mathrm{M}^{+}, 100\right), 284(\mathrm{M}+2,33), 28$ (92), 265 (10), 247 (50), 246 (15), 140 (30), 84 (30), 77 (20), Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{ClN}_{2} \mathrm{C}, 72.20, \mathrm{H}, 5.34, \mathrm{~N}, 9.90$. Found C, 72.13, H, 5.54, N, 9.32 .

6-Chloro-4-methyl-2-(4'-chloro-phenylamino)quinoline (5c). Pale yellow spongy mass, Yield 70%, $2.114 \mathrm{~g}, \mathrm{mp} 132-134^{\circ} \mathrm{C}$, IR (KBr) $v_{\max }\left(\mathrm{cm}^{-1}\right) 3435,1603,1519,1080,{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 2.83\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 4-\mathrm{CH}_{3}\right), 6.45(1 \mathrm{H}, \mathrm{b} \mathrm{s}, \mathrm{C} 2-\mathrm{NH}), 6.72(1 \mathrm{H}, \mathrm{s}, \mathrm{C} 3-\mathrm{H}), 7.17-7.68(7 \mathrm{H}, \mathrm{m}$, C5, C7, C8, C2', C3', C5', C6'-H), ${ }^{13}$ C NMR (100 MHz, CDCl_{3}) $\delta_{\mathrm{C}} 21.7,112.3,120.2,120.8$,
$121.5,122.0,123.3,126.5,127.8,129.1,138.0,144.5,147.7,154.4 ; \mathrm{MS},(\boldsymbol{m} / z)$ (\%) 306 (M+4, 32), 304 ($\mathrm{M}+2,62$), $302\left(\mathrm{M}^{+}, 100\right), 301$ (85), 287 (70), 286 (30), 285 (15), 267 (61), 165 (45), 77 (42), Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{C}, 63.38, \mathrm{H}, 3.98$, N, 9.23. Found C, 63.13, H, 4.03, N, 9.67.

General procedure for the preparation of 2-(2-chloro-12phenyldibenzo $[b, g][1,8]$ naphthyridin- $11(6 H)$-ylidene)-1-phenylethanone (8)

An appropriate mixture of 4'-chloro-4-methyl-2-(N-phenylamino)quinoline 5 (0.0010 mol) and benzoic acid (0.0011 mol) was added to polyphosphoric acid (3 g of $\mathrm{P}_{2} \mathrm{O}_{5}$ in 1.5 mL of $\mathrm{H}_{3} \mathrm{PO}_{4}$) and kept at $150-155{ }^{\circ} \mathrm{C}$ for 5 hours. The reaction was monitored by TLC. The spot for the starting compounds 5 was not completely disappeared. The reaction mixture was poured into ice water and neutralised with saturated NaHCO_{3} solution to remove the excess of benzoic acid. The precipitate was filtered, dried and purified by column chromatography over silica gel using petroleum ether : ethyl acetate (946) mixture to get 8. It was recrystallised using ethyl acetate.
2-(2-Chloro-9-methyl-12-phenyldibenzo $[b, g][1,8]$ naphthyridin-11($6 H$)-ylidene)-1-phenyl ethanone (8a). Pale yellow prisms, Yield 25%, $0.1180 \mathrm{~g}, \mathrm{mp} 190-192{ }^{\circ} \mathrm{C}$, IR (KBr) $v_{\text {max }}\left(\mathrm{cm}^{-1}\right)$ $3245,1596,1517,1112,{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{H}} 2.49\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 9-\mathrm{CH}_{3}\right), 7.43-8.47(17 \mathrm{H}$, m, C1, C3, C4, C7, C8, C10, C2', C3', C4', C5', C6', C2", C3', C4", C5"- C6"-H and olefinic proton), $8.98(1 \mathrm{H}, \mathrm{b} \mathrm{s}, \mathrm{N} 6-\mathrm{H}){ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}} 21.1,118.7,119.1,122.0,124.7$, $124.9,125.2,125.5,125.8,126.0,127.1,127.4,127.8,128.2,128.6,128.9,129.3,129.5,130.2$, $130.6,132.6,135.9,136.4,142.8,144.2,150.7,186.1, \mathrm{MS},(\mathrm{m} / \mathrm{z})(\%) 472\left(\mathrm{M}^{+}, 100\right), 474(\mathrm{M}+2$, 34), 457 (80), 386 (35), 371 (60), 351 (30), 246 (25), 105 (48), 77 (48), Anal. Calcd for $\mathrm{C}_{31} \mathrm{H}_{21} \mathrm{ClN}_{2} \mathrm{O}$ C, 78.72 , H, 4.47, N, 5.92. Found C, $79.00 \mathrm{H}, 4.27 \mathrm{~N}, 5.88 \%$.
2-(2-Chloro-7-methyl-12-phenyldibenzo $[b, g][1,8]$ naphthyridin-11($6 H$)-ylidene)-1-phenyl ethanone (8b). Pale yellow prisms Yield 28%, $0.132 \mathrm{~g}, \mathrm{mp} 187-189^{\circ} \mathrm{C}$ IR $(\mathrm{KBr}) \mathrm{v}_{\text {max }}\left(\mathrm{cm}^{-1}\right)$ 3340, 1646, 1529, 1079, ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{H}} 2.57\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 7-\mathrm{CH}_{3}\right), 7.49-8.50(17 \mathrm{H}$, m, C1, C3, C4, C8, C9, C10, C2', C3', C4', C5', C6', C2", C3", C4", C5", C6"-H and olefinic proton), $8.92(1 \mathrm{H}, \mathrm{b} \mathrm{s}, \mathrm{N} 6-\mathrm{H}){ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}} 18.6,117.7,118.1,122.9,123.9$, 124.1, 125.6, 126.5, 127.2, 128.6, 129.0, 129.2, 129.9, 130.2, 130.6, 131.4, 131.8, 132.0, 132.4, 133.1, 134.4, 142.3, 149.5, 151.9, 185.4, MS, (m / z) (\%) 472 ($\mathrm{M}^{+}, 100$), 474 (M+2, 34), 457 (80), 386 (35), 371 (60), 351 (30), 246 (25), 105 (48), 77 (48) Anal. Calcd for $\mathrm{C}_{31} \mathrm{H}_{21} \mathrm{ClN}_{2} \mathrm{O}$ C, 78.72; H, 4.47. N, 5.92. Found C, 79.02, H, 4.60, N, 6.00\%.
2-(2,9-Dichloro-12-phenyldibenzo $[b, g][1,8]$ naphthyridin-11($\mathbf{6 H}$)-ylidene)-1-phenylethanone (8c). Pale yellow spongy mass, Yield $20 \%, 0.098 \mathrm{~g}, \mathrm{mp} 193-195^{\circ} \mathrm{C}$; IR $v_{\max }\left(\mathrm{cm}^{-1}\right) 3241,1617$, $1517,1084,{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{H}} 7.45-8.47(17 \mathrm{H}, \mathrm{m}, \mathrm{C} 1, \mathrm{C} 3, \mathrm{C} 4, \mathrm{C} 7, \mathrm{C} 8, \mathrm{C} 10, \mathrm{C} 2 '$, C3', C4', C5', C6', C2", C3", C4", C5", C6"-H and olefinic proton), $9.03(1 \mathrm{H}, \mathrm{bs}, \mathrm{N} 6-\mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{c}} 116.1,118.6,122.1,122.8,123.9,124.4,125.2,125.4,125.8,126.2$, 126.9, 127.1, 127.6, 128.2, 105 (48), 77 (48), Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}$ C, 73.03, H, 3.67, N, 5.67. Found C, 73.02, H, 3.73, N, 5.58\%.

The above same procedure was demonstrated with 0.002 mol of benzoic acid. Now the starting material spot on TLC was complete disappeared. The same product was obtained, however the yield was appreciably increased.

2-(2-Chloro-9-methyl-12-phenyldibenzo[b,g][1,8]naphthyridin-11(6H)-ylidene)-1-phenyl

 ethanone (8a). Yield $40 \%, 0.189 \mathrm{~g}$.2-(2-Chloro-7-methyl-12-phenyldibenzo[b,g][1,8]naphthyridin-11(6H)-ylidene)-1-phenyl ethanone (8b). Yield $42 \%, 0.198 \mathrm{~g}$.
2-(2,9-Dichloro-12-phenyldibenzo[b,g][1,8]naphthyridin-11(6H)-ylidene)-1-phenylethanone (8c). Yield $38 \%, 0.186 \mathrm{~g}$.

General procedure for the preparation of 4-methyl-2-(4'-methyl-phenylamino)quinoline (10)

A mixture of appropriate 2-chloro-4-methylquinoline $1(0.010 \mathrm{~mol})$ and p-toluidine 9 (0.010 mol) was heated under neat condition at $160^{\circ} \mathrm{C}$ for half an hour. The product obtained was washed with water, dried purified by column chromatography over silica gel and eluted with ethyl acetate methanol mixture (955) to get 10. It was recrystallised using methanol.
4,6-Dimethyl-2-(4'-methyl-phenylamino)quinoline (10a). Pale yellow prisms, Yield 70%, $1.834 \mathrm{~g}, \mathrm{mp} 118-120{ }^{\circ} \mathrm{C}$, IR (KBr) $v_{\max }\left(\mathrm{cm}^{-1}\right) 3445,1596,1517,1112,{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 2.35\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 4{ }^{\prime}-\mathrm{CH}_{3}\right), 2.57\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 6-\mathrm{CH}_{3}\right), 2.63\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 4-\mathrm{CH}_{3}\right), 6.62(1 \mathrm{H}, \mathrm{b} \mathrm{s}, \mathrm{C} 2-$ NH), 6.74 ($1 \mathrm{H}, \mathrm{s}, \mathrm{C} 3-\mathrm{H}$), 7.17-7.68 (7H, m, C5, C7, C8, C2' C3' C5' and C6'-H) ${ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 19.8,21.4,21.9,111.2,120.7,121.2,121.8,128.7,129.6,130.0,132.3,132.6$, 136.5, 143.5, 147.3, 161.7, MS, (m / z) (\%) 262 ($\mathrm{M}^{+} 100$) 261 (30), 246 (25), 245 (10), 232 (10), 122 (15), 77 (25), 65 (20), Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{C}, 82.40, \mathrm{H}, 6.91, \mathrm{~N}, 10.67$, Found C, 82.57, H, 6.71. N, 10.72%.

4,8-Dimethyl-2-(4'-methyl-phenylamino)quinoline (10b). Pale yellow prisms, Yield 75\%, $1.965 \mathrm{~g}, \mathrm{mp} 125-127{ }^{\circ} \mathrm{C}$, IR (KBr) $v_{\max }\left(\mathrm{cm}^{-1}\right) 3340,1600,1529,1079,{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 2.35\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}^{\prime}-\mathrm{CH}_{3}\right), 2.65\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C} 8-\mathrm{CH}_{3}\right), 2.77\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C} 4-\mathrm{CH}_{3}\right), 6.62(\mathrm{~b} \mathrm{~s}, 1 \mathrm{H}, \mathrm{C} 2-$ NH), 6.77 (s, 1H, C3-H), 7.17-7.71 (m, 7H, C5, C6, C7, C2' C3' C5', C6'-H) ${ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 19.4,21.8,110.4,120.6,121.4,122.2,122.8,123.2,129.8,131.0,134.4,137.5$, $144.5,154.4,162.9, \mathrm{MS},(\mathrm{m} / \mathrm{z})(\%) 262\left(\mathrm{M}^{+} 100\right) 261$ (45), 246 (40), 245 (15), 232 (15), 123 (22), 77 (12), 65 (12); Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{C}, 82.40, \mathrm{H}, 6.91, \mathrm{~N}, 10.67$. Found C, 82.37, H, 6.92 , N 10.71%.

6-Chloro-4-methyl-2-(4'-methyl-phenylamino)quinoline (10c). Pale yellow spongy mass, Yield $68 \%, 1.917 \mathrm{~g}, \mathrm{mp} 130-132{ }^{\circ} \mathrm{C}$. IR (KBr) $v_{\max }\left(\mathrm{cm}^{-1}\right) 3241,1617,1517,1084{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 2.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}^{\prime}-\mathrm{CH}_{3}\right), 2.77\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C} 4-\mathrm{CH}_{3}\right), 6.62(\mathrm{~b} \mathrm{~s}, 1 \mathrm{H}, \mathrm{C} 2-\mathrm{NH}), 6.66(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{C} 3-\mathrm{H}$), 7.19-7.72 (m, 7H, C5, C7, C8, C2' C3' C5' and C6'-H) ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}} 19.7,21.6,111.6,118.3,121.4,122.6,123.4,126.4,127.6,129.7,132.4,135.1,142.5,146.7$, 162.3, MS, (m / z) (\%) 284/282 (34/100) 267 (22) 265 (10) 247 (15) 232 (18) 77 (50) 65 (33) 43 (56), Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{ClN}_{2} \mathrm{C}, 72.21, \mathrm{H}, 5.34, \mathrm{~N}, 9.90$, Found C, $72.45, \mathrm{H}, 5.23, \mathrm{~N}, 9.85 \%$.

General procedure for the preparation of 2-(2-methyl-12-phenyldibenzo $[b, g][1,8]$ naphthyridin$\mathbf{1 1 (6 H)}$-ylidene)-1-phenylethanone (11)
An appropriate mixture of 4,4'-dimethyl-2-(N-phenylamino)quinoline $\mathbf{1 0}(0.0010 \mathrm{~mol})$ and benzoic acid (0.0011 mol) was added to polyphosphoric acid (3 g of $\mathrm{P}_{2} \mathrm{O}_{5}$ in 1.5 mL of $\mathrm{H}_{3} \mathrm{PO}_{4}$) and kept at $160{ }^{\circ} \mathrm{C}$ for 5 hours. The reaction was monitored by TLC. The spot for the starting compounds $\mathbf{1 0}$ was not completely disappeared. The reaction mixture was poured into ice water and neutralised with saturated NaHCO_{3} solution to remove the excess of benzoic acid. The precipitate was filtered, dried and purified by column chromatography over silica gel using petroleum ether ethyl acetate (99 1) mixture to get 11. It was recrystallised using ethyl acetate. 2-(2,9-Dimethyl-12-phenyldibenzo $[b, g][1,8]$ naphthyridin- $\mathbf{1 1}(6 H)$-ylidene)-1-phenylethanone (11a). Pale yellow prisms, Yield $22 \%, 0.099 \mathrm{~g}, \mathrm{mp} 185-187^{\circ} \mathrm{C}$, IR (KBr) $v_{\max }\left(\mathrm{cm}^{-1}\right) 3245,1596$, $1517,111,{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{H}} 2.41\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C} 2-\mathrm{CH}_{3}\right.$), 2.49 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{C} 9-\mathrm{CH}_{3}$), $7.40-$ 8.48 (m, 17H, C1, C3, C4, C7, C8, C10, C2', C3', C4', C5', C6', C2", C3", C4", C5", C6"-H and olefinic proton), $9.12(\mathrm{~b} \mathrm{~s}, 1 \mathrm{H}, \mathrm{N} 6-\mathrm{H}){ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 20.5,22.3,118.5,119.7$, 123.9, 124.7, 127.1, 127.5, 127.7, 128.5, 128.7, 128.9, 129.0, 129.2, 129.8, 129.9, 130.2, 130.8, $131.2,132.2,132.5,133.8,134.5,136.7,140.5,149.9,151.2,188.5, \mathrm{MS},(\mathrm{m} / \mathrm{z})(\%) 452\left(\mathrm{M}^{+}\right.$, 100), 437 (80), 386 (35), 371 (60), 351 (30), 246 (25), 105 (48), 77 (48), Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}$ C, 84.93, H, 5.34. N, 6.18. Found C, 84.60. H, 5.39, N, 6.31%.
2-(2,7-Dimethyl-12-phenyldibenzo $[b, g][1,8]$ naphthyridin-11(6H)-ylidene)-1-phenylethanone
(11b). Pale yellow prisms, Yield $25 \%, 0.113 \mathrm{~g}, \mathrm{mp} 187-189{ }^{\circ} \mathrm{C}$, IR (KBr) $v_{\max }\left(\mathrm{cm}^{-1}\right) 3340,1600$, $1529,107,{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{H}} 2.41\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 2-\mathrm{CH}_{3}\right), 2.77\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 7-\mathrm{CH}_{3}\right), 7.46-$ 8.51 (17H, m, C1, C3, C4, C8, C9, C10, C2', C3', C4', C5', C6', C2", C3", C4", C5", C6"-H and olefinic proton), $9.07(1 \mathrm{H}, \mathrm{b} \mathrm{s}, \mathrm{N} 6-\mathrm{H}){ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 18.2,21.8,118.2,119.6$, $124.6,124.9,125.3,126.8,127.4,127.8,128.4,128.8,129.0,129.2,129.9,130.2,130.4,130.6$, $131.4,131.8,133.0,133.7,134.8,135.0,140.2,149.9,151.5,189.9 . \mathrm{MS},(\mathrm{m} / \mathrm{z})(\%) 452\left(\mathrm{M}^{+}\right.$, 100), 437 (80), 386 (35), 371 (60), 351 (30), 246 (25), 105 (48), 77 (48), Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}$ C, 84.93, H, 5.34, N, 6.18. Found C, 84.68, H, 5.21, N, 6.09%.
2-(9-Chloro-2-methyl-12-phenyldibenzo $[b, g][1,8]$ naphthyridin-11($6 H$)-ylidene)-1-phenyl ethanone (11c). Pale yellow spongy mass, Yield $18 \%, 0.085 \mathrm{~g}, \mathrm{mp} 193-195{ }^{\circ} \mathrm{C}$, $\mathrm{IR}(\mathrm{KBr}) v_{\max }$ $\left(\mathrm{cm}^{-1}\right) 3241,1617,1517,1084 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 2.41\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 2-\mathrm{CH}_{3}\right), 7.43-8.48$ (17H, m, C1, C3, C4, C7, C8, C10, C2', C3', C4', C5', C6', C2", C3", C4", C5", C6"-H and olefinic proton), $9.13(1 \mathrm{H}, \mathrm{b} \mathrm{s}, \mathrm{N} 6-\mathrm{H}){ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}} 20.2,118.5,119.9,123.7$, $124.5,126.7,127.1,127.5,127.7,127.9,128.0,128.7,129.5,129.7,129.9,130.1,131.0,131.6$, $131.9,132.2,133.3,134.5,140.7,149.9,151.2,187.6, \mathrm{MS},(\mathrm{m} / \mathrm{z})(\%) 472\left(\mathrm{M}^{+}, 100\right), 474(\mathrm{M}+2$, 34), 457 (80), 386 (35), 371 (60), 351 (30), 246 (25), 105 (48), 77 (48) Anal. Calcd for $\mathrm{C}_{31} \mathrm{H}_{21} \mathrm{ClN}_{2} \mathrm{O}$ C, 78.72, H, 4.47; N, 5.92. Found C, 79.02, H, 4.60, N, 6.00\%.
The above same procedure was demonstrated with 0.002 mol of benzoic acid. Now the starting material spot on TLC was complete disappeared. The same product was obtained, however the yield was appreciably increased.

2-(2,9-Dimethyl-12-phenyldibenzo[b,g][1,8]naphthyridin-11(6H)-ylidene)-1-phenylethanone (11a). Yield $41 \%, 0.185 \mathrm{~g}$.
 2-(2,7-Dimethyl-12-phenyldibenzo[b,g][1,8]naphthyridin-11(6H)-ylidene)-1-phenylethanone (11b). Yield $42 \%, 0.190$ g.

2-(9-Chloro-2-methyl-12-phenyldibenzo $[b, g][1,8]$ naphthyridin-11($6 H$)-ylidene)-1-phenyl ethanone (11c). Yield $37 \%, 0.175 \mathrm{~g}$.

General procedure for the preparation of 2[(2'-acetylphenyl)amino]-4-methylquinoline (12) An appropriate 2-chloro-4-methylquinoline $\mathbf{1}(0.004 \mathrm{~mol})$ was reacted with o aminoacetophenone $2(0.004 \mathrm{~mol})$ under neat condition at $160{ }^{\circ} \mathrm{C}$ for half an hour. The product was washed with water, adsorbed and purified using silica gel column chromatography and eluted with petroleum ether ethyl acetate (98 2) mixture to get $\mathbf{1 3}$ which was then recrystallised using methanol.
2[(2'-Acetylphenyl)amino]-4,6-dimethylquinoline (12a). Pale yellow prisms, Yield 0.788 g , 68%, mp 118-120 ${ }^{\circ} \mathrm{C}$, IR (KBr) $v_{\text {max }}\left(\mathrm{cm}^{-1}\right) 3245,1596,1517,1112{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta_{\mathrm{H}} 2.60\left(3 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{3}\right), 2.66\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 6-\mathrm{CH}_{3}\right), 2.76\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 4-\mathrm{CH}_{3}\right), 6.67(1 \mathrm{H}, \mathrm{s}, \mathrm{C} 3-\mathrm{H}), 7.05$ 7.94 (6H, m, C5, C7, C8, C3', C4', C5'-H), 9.50 ($1 \mathrm{H}, \mathrm{d}, \mathrm{C} 6 '-\mathrm{H}, ~ J=8.99 \mathrm{~Hz}$), 11.80 ($1 \mathrm{H}, \mathrm{b}$ s, NH); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}} 19.4,22.1,28.9,111.8,118.1,118.3,119.2,120.5,120.8,127.8$, $128.9,129.5,131.7,133.2,143.9,147.2,152.8,154.9,196.6 . \mathrm{MS},(\mathrm{m} / \mathrm{z})(\%) 290\left(\mathrm{M}^{+}, 100\right), 289$ (10), 276 (20), 247 (15), 156 (8), 143 (18), 76 (16), Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}$ C, 78.59, H, $6.24, ~ N, ~ 9.64$. Found C, $78.55, ~ H, 6.32, ~ N, ~ 9.56 \% . ~$
2[(2'-Acetylphenyl)amino]-4,8-dimethylquinoline (12b). Pale yellow prisms, Yield 70\%, $0.812 \mathrm{~g}, \mathrm{mp} 125-127^{\circ} \mathrm{C}$, IR (KBr) $v_{\max }\left(\mathrm{cm} 3390,1635,1529,1079{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\right.$ $\delta_{\mathrm{H}} 2.62\left(3 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{3}\right), 2.70\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 8-\mathrm{CH}_{3}\right), 2.76\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 4-\mathrm{CH}_{3}\right), 6.83(1 \mathrm{H}, \mathrm{s}, \mathrm{C} 3-\mathrm{H}), 6.94$ 7.93 (6H, m, C5, C6, C7, C3', C4', C5'-H), 9.57 ($1 \mathrm{H}, \mathrm{d}, \mathrm{C} 6 '-\mathrm{H}, J=8.87 \mathrm{~Hz}$), 11.80 ($1 \mathrm{H}, \mathrm{b}$ s, NH), ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 17.8,19.2,28.3,110.7,117.5,118.2,118.9,120.2,121.6,122.8$, $128.4,128.9,132.1,132.6,144.8,145.7,154.1,163.5,199.1, \mathrm{MS},(\mathrm{m} / \mathrm{z})(\%) 290\left(\mathrm{M}^{+}, 100\right), 289$ (8), 276 (24), 247 (18), 156 (12), 143 (6), 76 (8), Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}$ C, 78.59, H, 6.24, N 9.64. Found C, 78.77, H, 6.19, N, 9.73\%.

X-Ray Crystallographic data

Crystallographic data of the structure 12b in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication. CCDC No. 755306. Copies of the data can be obtained, free of charge, on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK. Or email: deposit@ccdc.cam.ac.UK.

Acknowldegements

The authors thank IISc, Bangalore, MKU, Madurai for NMR spectra, IICT, Hyderabad for mass spectral data and IIT Madras, Chennai for single crystal XRD data.

References

1. Embrey, M. W, Wai, J. S.; Funk, T. W.; Homnick, C. F.; Perlow, D. S.; Young, S. D.; Vacca, J. P.; Hazuda, D. J.; Felock, P. J.; Stillmock, K. A.; Witmer, M. V.; Moyer, G.; Schleif, W A.; Gabryelski, L. J.; Jin, L.; Chen, I-Wu.; Ellis, J. D.; Wong, B. K.; Lin, J. H.; Leonard, Y. M.; Tsou N. N.; Zhuang, L. Bioorg. Med. Chem. Lett. 2005, 15, 4550.
2. Zhuang, L.; Wai, J. S.; Embrey, M. W.; Fisher, T. E.; Egbertson, M. S.; Payne, L. S Guare, J. P.; Vacca, J. P.; Hazuda, D. J.; Felock, P. J.; Wolfe, A. L.; Stillmock, K. A.; Witmer, M. V.; Moyer, G.; Schleif, W. A.; Gabryelski, L. J.; Leonard, Y. M.; Lynch, J. J.; Michelson, S. R.; Young, S. D. J. Med. Chem. 2003, 46, 453.
3. Atanasova, M.; Ilieva, S.; Galabov, B. Euro. J. Med. Chem. 2007, 42, 1184.
4. Curd, F. H. S.; Raison, C. G.; Rose, F. L. J. Chem. Soc. 1947, 899.
5. Hostyn, S.; Maes, B. U.; Baelen, G. V.; Gulevskaya, A.; Meyers, C.; Smits, K. Tetrahedron 2006, 62, 4676.
6. Dhanabal, T.; Sangeetha, R.; Mohan, P. S. Tetrahedron 2006, 62, 6258.
7. Mallams, A. K. Angew. Chem. 1964, 76, 646.
8. Sampath Kumar, N.; Venkatesh Kumar N.; Rajendran, S. P. Synth. Commun. 2004, 34, 2019.
9. Elslager, E. F.; Tendict, F. H.; Davis P.; Arbov, A. J. Med. pharm. Chem. 1962, 5, 546.
10. Hutton, M. S.; Mackay, S. P.; Meth-Cohn, O. Synthesis 2000, 1121.
11. Gopalasamy, A.; Shi M.; Nilakantan, R. Org. Process Res. Dev. 2007, 11, 450.
12. Settimo, A. D.; Biagi, G.; Primofiore, G.; Ferrarini, P. L.; Livi O.; Marini A. M. J. Heterocycl. Chem. 1980, 17, 1225.
13. Kidwai, M.; Kohli, S. Indian J. Chem. 2001, 40B, 248.
14. Nakamura, H.; Kobayashi, J.; Ohizumi, Y.; Hirata, Y. Tetrahedron Lett. 1982, 23, 5555.
15. Nakamura, H.; Kobayashi, J.; Ohizumi, Y.; Hirata, Y. J. Chem. Soc. Perkin Trans. 1 1987, 173.
16. Rudi, A.; Kashman, Y. Tetrahedron Lett. 1993, 34, 4683.
17. Ohizumi, Y.; Kajiwara, A.; Nakamura, H.; Kobayashi, J. J. Pharm. Pharmacol. 1984, 36, 785.
18. Aoki, S.; Kong, D.; Suna, H.; Sowa, Y.; Sakai, T.; Setiawan, A.; Kobayashi, M. Biochem. Biophys. Res. Commun. 2006, 342, 101.
19. Calcul, L.; Longeon, A.; Mourabit, A. A.; Michèle, G.; Bourguet-Kondracki, M. L. Tetrahedron 2003, 59, 6539.
20. Larghi, E. L.; Obrist, B. V.; Kaufman, T. S. Tetrahedron 2008, 64, 5236.
21. Pettit, G. R.; Hoffmann, H.; Herald, D. L.; McNulty, J.; Murphy, A.; Higgs, K. C.; Hamel, E.; Lewin, N.E.; Pearce, L. V.; Blumberg, P. M.; Pettit, R. K.; Knight, J. C. J. Org. Chem. 2004, 69, 2251.
22. Manoj, M.; Rajendra Prasad, K. J. J. Chem. Res. 2009, 485.
23. Manoj, M.; Rajendra Prasad, K. J. Synth. Commun. (in press).
24. Manoj, M.; Rajendra Prasad, K. J. J. Chem. Res. 2009, 713.
25. Manoj, M.; Rajendra Prasad, K. J. Synth. Commun. 2010, 40, 3290.
26. Manoj, M.; Rajendra Prasad, K. J. J. Heterocycl. Chem. (in press)
