# Synthesis of diphenyl(X)phosphonium betaines (X = CH<sub>3</sub>, C<sub>6</sub>H<sub>5</sub>, 2,5-F<sub>2</sub>C<sub>6</sub>H<sub>3</sub>) from hexafluoro-1,4-naphthoquinone

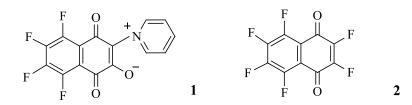
Leonid I. Goryunov,<sup>a</sup>\* Svetlana I. Zhivetyeva,<sup>a,b</sup> Georgy A. Nevinsky,<sup>c</sup> and Vitalij D. Shteingarts<sup>a</sup>

 <sup>a</sup>N.N. Vorozhtsov Institute of Organic Chemistry, Siberian Division of the Russian Academy of Sciences, 9 Ac. Lavrentjev Avenue, Novosibirsk, 630090, Russia
<sup>b</sup>Novosibirsk State University, 2 Pirogova Street, Novosibirsk, 630090, Russia
<sup>c</sup>Institute of Biological Chemistry and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, 8 Lavrentiev Ave., 630090 Novosibirsk, Russia E-mail: <u>goryunov@nioch.nsc.ru</u>

Dedicated to Professor Usein M Dzhemilev on the occasion of his 65<sup>th</sup> birthday

DOI: http://dx.doi.org/10.3998/ark.5550190.0012.814

### Abstract

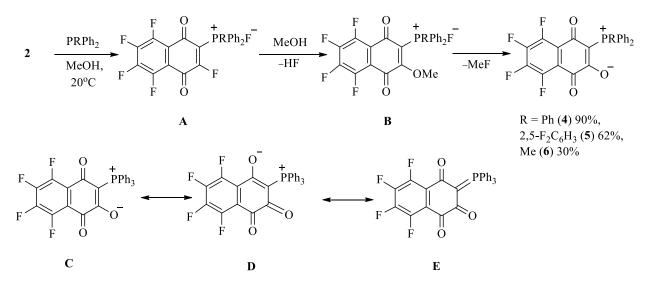

Betaines 5,6,7,8-tetrafluoro-3-(triphenyl- $\lambda^5$ -phosphanylidene)-1,2,3,4-tetrahydronaphthalene-1,2,4trione, 5,6,7,8-tetrafluoro-3-(methyldiphenyl- $\lambda^5$ -phosphanylidene)-1,2,3,4-tetrahydronaphthalene-1,2,4-trione, and 3-[(2,5-difluorophenyl)diphenyl- $\lambda^5$ -phosphanylidene]-5,6,7,8-tetrafluoro-1,2,3,4tetrahydronaphthalene-1,2,4-trione have been synthesized via fluorine substitution in the quinone ring of hexafluoro-1,4-naphthoquinone by tertiary phosphines RPh<sub>2</sub>P (R = Me, Ph, 2,5-F<sub>2</sub>C<sub>6</sub>H<sub>3</sub>) and methanol in 90, 30 and 62% yields, respectively. The first naphthalenetrione formed also upon interaction of pentafluoro-1,4-naphthoquinone with triphenylphosphine in methanol. The new 1,4-dibenzodioxine derivative – 6,11-difluoro-9-(triphenyl- $\lambda^5$ -phosphanylidene)-7,8,9,10tetrahydro-5,12-dioxatetracene-7,8,10-trione – has been obtained in a 83% yield by fluorine substitution in the benzene moiety of a naphthoquinone skeleton of this betaine by the action of pyrocatechol at the presence of potassium carbonate in DMSO.

**Keywords:** Tertiary phosphines, polyfluorinated 1,4-naphthoquinones, phosphoniodefluorination, phosphonium betaines, 5,12-dioxatetracene.

# Introduction

Amino derivatives of polyfluorinated 1,4-naphthoquinones are potential inhibitors of tumoral cells growth and antioxidants protecting cells against spontaneous mutagenesis.<sup>1</sup> Among them there is an ammonium betaine - 1,4-dioxo-3-(1-pyridinio)-1,4-dihydro-5,6,7,8-tetrafluoronaphthalene-2-olate **1**, obtained by fluorine substitution in the quinone ring of

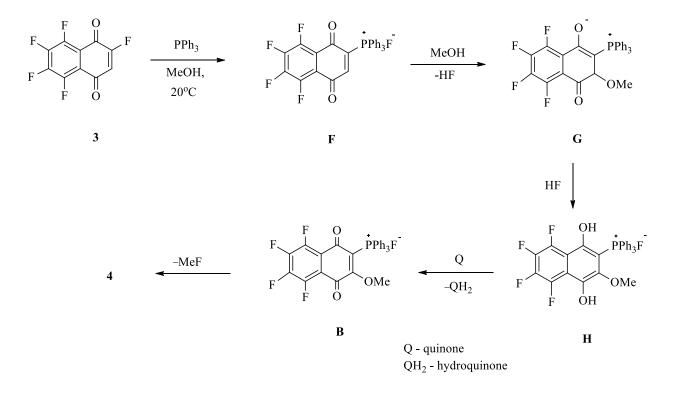
hexafluoro-1,4-naphthoquinone **2** by action of pyridine and methanol.<sup>1</sup> The phosphonium analogues of ammonium betaine are also of interest for studying their biochemical properties. It was noted that the reaction of 2,3-dichloro-1,4-naphthoquinone with triphenylphosphine in methanol gave a phosphonium betaine – 3-(triphenylphosphoranylidene)-1,2,4(3*H*)-naphthalenetrione in a 68% yield.<sup>2,3</sup>




In this connection, in the present work we report the synthesis of 5,6,7,8-tetrafluoro-1,4-naphthoquinone phosphonium betaines via phosphoniodefluorination of quinone **2** and 2,5,6,7,8-pentafluoro-1,4-naphthoquinone **3** by the action of phosphines RPh<sub>2</sub>P (R = Me, Ph, 2,4-F<sub>2</sub>C<sub>6</sub>H<sub>3</sub>) and methanol. The possibility to modify betaines of this type via fluorine nucleophilic substitution in the benzene ring of a naphthaquionone skeleton is exemplified by heterocyclization to construct a benzodioxin core.

## **Results and Discussion**

#### Synthesis of phosphonium betaine derivatives of 5,6,7,8-tetrafluoro-1,4-naphthoquinone


Interaction of quinone **2** with triphenylphosphine in methanol gave in a 90% yield a betaine – 5,6,7,8-tetrafluoro-3-(triphenyl- $\lambda^5$ -phosphanylidene)-1,2,3,4-tetrahydronaphthalene-1,2,4-trione **4** – whose electronic structure could be depicted in a first approximation by a resonance of structures **C**, **D**, and **E** (Scheme 1).

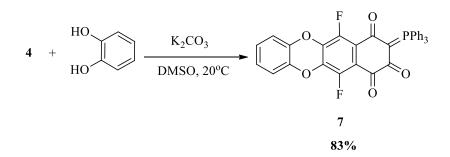


Scheme 1. General synthetic route to the title compounds 4–6.

Analogously to the earlier described synthesis of ammonium betaine 1,<sup>4</sup> one may believe that phosphonium salt **A** is originally formed, in which a triphenylphosphonium group activates effectively the neighboring position 3 for a nucleophilic attack, whereupon the rapid  $F^3$ substitution occurs by methanol to give quinone **B**. Nucleophilic demethylation of this quinone by the action of a fluoride anion leads to **4**. Similarly, by the action of diphenyl(2,5difluorophenyl)phosphine or biphenylmethylphosphine on quinone **2** synthesized are, respectively, 3-[(2,5-difluorophenyl)diphenyl- $\lambda^5$ -phosphanylidene]-5,6,7,8-tetrafluoro-1,2,3,4tetrahydronaphthalene-1,2,4-trione **5** or 5,6,7,8-tetrafluoro-3-(methyldiphenyl- $\lambda^5$ -phosphanylidene)-1,2,3,4-tetrahydronaphthalene-1,2,4-trione **6** (Scheme 1).

The interaction of naphthoquinone **3** with triphenylphosphine resulted in  $\sim 25\%$  consumption of the starting material to give betaine **4** in 18% isolated yield (Scheme 2).




### Scheme 2. Formation of betaine 4 from quinone 3.

By analogy to Scheme 1 and literature data,<sup>5</sup> this transformation consists supposedly in formation of phosphonium salt  $\mathbf{F}$  and the subsequent methanol addition to its position 3 to give betaine  $\mathbf{G}$ . The latter adds HF to give hydroquinone  $\mathbf{H}$ , which is oxidized, apparently, by quinones being present in the system to compound  $\mathbf{B}$  that converts eventually to betaine  $\mathbf{4}$ .

#### Aryloxydefluorination of quinone 2 by action of pyrocatechol

Compounds 4-6 are promising building blocks for the synthesis of various derivatives as potentially biologically active compounds. Ample opportunities of their modification on a

benzene moiety are afforded by use of fluorine nucleophilic substitutions. In the present work this is exemplified by the equimolar interaction of **4** with pyrocatechol in the presence of potassium carbonate to yield a 1,4-dibenzodioxin derivative – 6,11-difluoro-9-(triphenyl- $\lambda^5$ -phosphanylidene)-7,8,9,10-tetrahydro-5,12-dioxatetracene-7,8,10-trione **7** (Scheme 3).



Scheme 3. Synthesis of 5,12-dioxatetracene 7.

Its structure is confirmed by the presence in the <sup>19</sup>F NMR spectrum of two doublets with  $^{para}J_{FF} = 13.6$  Hz belonging to F<sup>6</sup> and F<sup>11</sup>. Two isomers of **7** were also observed in the product mixture in amounts of 4 to 10% emerging obviously via substitution of F<sup>5</sup> and F<sup>6</sup> or F<sup>7</sup> and F<sup>8</sup> in **4**. They manifest themselves by the presence of doublets with  $^{ortho}J_{FF} = 19-20$  Hz in a <sup>19</sup>F NMR spectrum.

All new compounds were characterized by <sup>1</sup>H, <sup>19</sup>F, and <sup>31</sup>P NMR spectra and MS data (see the experimental section). The <sup>19</sup>F NMR characteristics of quinones **4–6** nicely agree with similar data for pyridinium betaine: 4 signals in these spectra are multiplets located at  $\delta$  22–24 for F<sup>5</sup> and F<sup>8</sup> and 11–17 ppm for F<sup>6</sup> and F<sup>7</sup>, their spin coupling structures being typical for *ortho* disubstituted tetrafluorobenzenes (<sup>*ortho*</sup>*J*<sub>FF</sub>  $\approx$  19, <sup>*meta*</sup>*J*<sub>FF</sub> = 8–10, <sup>*para*</sup>*J*<sub>FF</sub> = 13.6–13.8 Hz).

# **Experimental Section**

**General.** <sup>1</sup>H NMR, <sup>19</sup>F, and <sup>31</sup>P spectra were recorded on a Bruker AV-300 spectrometer [300.13, 282.36, and 121.50 MHz, respectively] with residual protons in deuterated solvents, external  $C_6F_6$  and internal  $H_3PO_4$  as standards. HRMS data were obtained with a "DFS" spectrometer. The melting points were determined on an FP 900 Thermosystem microscope melting point apparatus (Mettler-Toledo International Inc., Zürich, Switzerland). Solvents and reagents were reagent quality.

Compounds  $2,^{6} 3^{7}$  and diphenyl(2,5-difluorophenyl)phosphine<sup>8</sup> were prepared according to the literature procedures. Methanol and methylene chloride were destilled. DMSO was dried by molecular sieves 3Å. Triphenylphosphine was crystallized from diethyl ether.

### 5,6,7,8-Tetrafluoro-3-(triphenyl- $\lambda^5$ -phosphanylidene)-1,2,3,4-tetrahydronaphthalene-1,2,4-

trione (4). Method A. A mixture of quinone 2 (0.048 g, 0.180 mmol), triphenylphosphine (0.049 g, 0.187 mmol) and methanol (0.75 mL) was stirred under argon for 48 h at 20 °C. A precipitate was centrifuged off, washed with methanol (2×0.5 mL), dried in vacuum (0.5 torr) to obtain compound 4 (0.048 g, 53%). After evaporation of the solvent, the dry residue was crystallized from ethanol to yield an additional amount (0.034 g) of the product, an overall yield of 4 being 0.082 g (90%), bright yellow crystals thermally decomposing without melting. <sup>1</sup>H NMR ((CD<sub>3</sub>)<sub>2</sub>CO),  $\delta$  7.8 (m, 6H, CH), 7.7 (m, 3H, CH), 7.6 (m, 6H, CH). <sup>19</sup>F NMR ((CD<sub>3</sub>)<sub>2</sub>CO),  $\delta$  22.4 (ddd, <sup>ortho</sup>J<sub>FF</sub> ≈ 19 Hz, <sup>meta</sup>J<sub>FF</sub> ≈ 10 Hz, <sup>para</sup>J<sub>FF</sub> = 13.8 Hz, F<sup>5 or 8</sup>), 21.8 (ddd, <sup>ortho</sup>J<sub>FF</sub> ≈ 19 Hz, <sup>meta</sup>J<sub>FF</sub> ≈ 8 Hz, <sup>para</sup>J<sub>FF</sub> ≈ 10 Hz, F<sup>5 or 7</sup>). <sup>31</sup>P{<sup>1</sup>H} NMR ((CD<sub>3</sub>)<sub>2</sub>CO),  $\delta$  15.3 (s). MS, *m/z* (*I*<sub>rel</sub>., %): 506 [M]<sup>+</sup> (14), 477 [M–H–CO]<sup>+</sup> (48), 262 [M–C<sub>10</sub>F<sub>4</sub>O<sub>3</sub>]<sup>+</sup> (100). HRMS for C<sub>28</sub>F<sub>4</sub>H<sub>15</sub>O<sub>3</sub>P [M]<sup>+</sup>: calcd. 506.0690, found 506.0685.

**Method B.** A mixture of quinone **3** (0.0925 g, 0.373 mmol), triphenylphosphine (0.0978 g, 0.373 mmol) and methanol (1.5 mL) was stirred for 2 weeks under argon at 20 °C and analyzed by <sup>19</sup>F NMR and <sup>31</sup>P NMR (Scheme 2). Methanol was distilled off up to a residual volume of 0.5 mL, a precipitate was centrifuged off and purified by TLC (Sorbfil, diethyl ether) to yield compound **4** (0.033 g, 18%).

### $3-[(2,5-Difluorophenyl)diphenyl-\lambda^5-phosphanylidene]-5,6,7,8-tetrafluoro-1,2,3,4-$

**tetrahydronaphthalene-1,2,4-trione** (5). A mixture of quinone **2** (0.076 g, 0.285 mmol), diphenyl(2,5-difluorophenyl)phosphine (0.085 g, 0.285 mmol) and methanol (1.3 mL) was stirred for 48 h under argon at 20 °C. A precipitate was centrifuged off, washed with methanol (2×0.2 mL) and dried in vacuum (0.5 torr) to give the title compound **5** (0.096 g, 62%) as bright yellow crystals thermally decomposing without melting. <sup>1</sup>H NMR ((CD<sub>3</sub>)<sub>2</sub>CO, CH<sub>2</sub>Cl<sub>2</sub>), *δ* 7.92–7.81 (m, 4H, C<sub>6</sub>H<sub>5</sub>), 7.80–7.71 (m, 2H, C<sub>6</sub>H<sub>5</sub>), 7.69–7.58 (m, 4H, C<sub>6</sub>H<sub>5</sub>), 7.51 (m, 1H, C<sub>6</sub>F<sub>2</sub>H<sub>3</sub>), 7.29 (m, 1H, C<sub>6</sub>F<sub>2</sub>H<sub>3</sub>), 7.05 (m, 1H, C<sub>6</sub>F<sub>2</sub>H<sub>3</sub>). <sup>19</sup>F NMR ((CD<sub>3</sub>)<sub>2</sub>CO, CH<sub>2</sub>Cl<sub>2</sub>), *δ* 61.8 (m, 1F, C<sub>6</sub>F<sub>2</sub>H<sub>3</sub>), 46.7 (m, 1F, C<sub>6</sub>F<sub>2</sub>H<sub>3</sub>), 23.6 (ddd, *orthoJ*<sub>FF</sub> ≈ 19 Hz, *metaJ*<sub>FF</sub> ≈ 10 Hz, *paraJ*<sub>FF</sub> ≈ 19 Hz, *metaJ*<sub>FF</sub> ≈ 10 Hz, *F*<sup>6 or 7</sup>), 12.5 (ddd, *orthoJ*<sub>FF</sub> ≈ 19 Hz, *metaJ*<sub>FF</sub> ≈ 9 Hz, *F*<sup>6 or 7</sup>). <sup>31</sup>P{<sup>1</sup>H} NMR ((CD<sub>3</sub>)<sub>2</sub>CO, CH<sub>2</sub>Cl<sub>2</sub>), *δ* 9.4 (dd, <sup>3</sup>*J*<sub>PF</sub> ~ <sup>4</sup>*J*<sub>PF</sub> = 3 Hz). MS, *m/z* (*I*<sub>rel</sub>, %): 542 [M]<sup>+</sup> (7), 513 [M–H–CO]<sup>+</sup> (28), 298 [M–C<sub>10</sub>F<sub>4</sub>O<sub>3</sub>]<sup>+</sup> (100). HRMS for C<sub>28</sub>F<sub>6</sub>H<sub>13</sub>O<sub>3</sub>P [M]<sup>+</sup>: calcd. 542.0501, found 542.0490.

#### 5,6,7,8-Tetrafluoro-3-(methyldiphenyl- $\lambda^5$ -phosphanylidene)-1,2,3,4-tetrahydronaphthalene-

**1,2,4-trione (6).** A mixture of quinone **2** (0.100 g, 0.376 mmol), diphenylmethylphosphine (0.075 g, 0.376 mmol) and methanol (1.5 mL) was stirred for 48 h under argon at 20 °C to give the mixture containing compounds **6** and **2** (64 and 18%, accordingly). The solvent was distilled off, a residue was crystallized from ethanol (1 mL) and purified by TLC (Sorbfil, chloroform) to yield the title compound **6** (0.05 g, 30%), bright yellow crystals, mp 179 °C. <sup>1</sup>H NMR ((CD<sub>3</sub>)<sub>2</sub>CO),  $\delta$  7.92–7.81 (m, 4H, C<sub>6</sub>H<sub>5</sub>), 7.76–7.68 (m, 2H, C<sub>6</sub>H<sub>5</sub>), 7.66–7.58 (m, 4H, C<sub>6</sub>H<sub>5</sub>), 2.6 (d, <sup>2</sup>J<sub>PH</sub> = 14.2 Hz, 3H, CH<sub>3</sub>). <sup>19</sup>F NMR ((CD<sub>3</sub>)<sub>2</sub>CO),  $\delta$  22.5 (ddd, <sup>ortho</sup>J<sub>FF</sub> ≈ 19 Hz, <sup>meta</sup>J<sub>FF</sub> ≈ 10

Hz,  ${}^{para}J_{FF} = 13.8$  Hz,  $F^{5 \text{ or } 8}$ ), 21.8 (ddd,  ${}^{ortho}J_{FF} \approx 19$  Hz,  ${}^{meta}J_{FF} \approx 8$  Hz,  ${}^{para}J_{FF} = 13.8$  Hz,  $F^{5 \text{ or } 8}$ ), 15.9 (ddd,  ${}^{ortho}J_{FF} \approx 19$  Hz,  ${}^{meta}J_{FF} \approx 10$  Hz,  $F^{6 \text{ or } 7}$ ), 11.1 (ddd,  ${}^{ortho}J_{FF} \approx 19$  Hz,  ${}^{meta}J_{FF} \approx 8$  Hz,  $F^{6 \text{ or } 7}$ ), 11.1 (ddd,  ${}^{ortho}J_{FF} \approx 19$  Hz,  ${}^{meta}J_{FF} \approx 8$  Hz,  $F^{6 \text{ or } 7}$ ).  ${}^{31}P{}^{1}H$  NMR ((CD<sub>3</sub>)<sub>2</sub>CO),  $\delta$  13.6 (s). MS, m/z ( $I_{rel.}$ , %): 444 [M]<sup>+</sup> (6), 200 [M–C<sub>10</sub>F<sub>4</sub>O<sub>3</sub>]<sup>+</sup> (62). HRMS for C<sub>23</sub>F<sub>4</sub>H<sub>13</sub>O<sub>3</sub>P [M]<sup>+</sup>: calcd. 444.0533, found 444.0535.

### 6,11-Difluoro-9-(triphenyl- $\lambda^5$ -phosphanylidene)-7,8,9,10-tetrahydro-5,12-dioxatetracene-

**7,8,10-trione (7).** A mixture of betaine **4** (0.051 g, 0.101 mmol), pyrocatechol (0.011 g, 0.101 mmol), potassium carbonate (0.028 g. 0.203 mmol) and DMSO (1.5 mL) was stirred for 6 h at 20 °C and analyzed by <sup>19</sup>F and <sup>31</sup>P NMR (Scheme 3). Water (3 mL) was added, a precipitate was centrifuged off, washed with water (1 mL), dried on air and the titled compound **7** (0.048 g, 83%) was isolated by TLC (Sorbfil, chloroform–methylene chloride, 1:1) as bright yellow crystals decomposing at heating without melting. <sup>1</sup>H NMR (CDCl<sub>3</sub>),  $\delta$  7.73–7.64 (m, 6H, C<sub>6</sub>H<sub>5</sub>), 7.64–7.56 (m, 3H, C<sub>6</sub>H<sub>5</sub>), 7.55–7.46 (m, 6H, C<sub>6</sub>H<sub>5</sub>), 7.02–6.97 (m, 4H, C<sub>6</sub>H<sub>4</sub>). <sup>19</sup>F NMR (CDCl<sub>3</sub>),  $\delta$  24.0 (d, <sup>*para*</sup>J<sub>FF</sub> = 13.6 Hz, F<sup>6 or 11</sup>), 21.6 (d, <sup>*para*</sup>J<sub>FF</sub> = 13.6 Hz, F<sup>6 or 11</sup>). <sup>31</sup>P{<sup>1</sup>H) NMR (CDCl<sub>3</sub>),  $\delta$  14.8 (s). MS, *m*/*z* (*I*<sub>rel</sub>., %): 577 [M+H]<sup>+</sup> (2), 547 [M–H–CO]<sup>+</sup> (25), 262 [M–C<sub>16</sub>H<sub>5</sub>F<sub>2</sub>O<sub>5</sub>]<sup>+</sup> (52). HRMS for C<sub>34</sub>F<sub>2</sub>H<sub>19</sub>O<sub>5</sub>P [M+H]<sup>+</sup>: calcd. 577.1011, found [M+H]<sup>+</sup> 577.1310.

# Acknowledgements

Authors are grateful to Russian Foundation of Basic Research for the financial support (grant 09-03-00248).

# References

- (a) Nevinsky, G. A; Zakharova, O. D.; Goryunov, L. I.; Troshkova, N. M.; Shteingarts, V. D. RU Patent 2387635, 2008. (b) Zakharova, O. A.; Goryunov, L. I.; Troshkova, N. M.; Ovchinnikova, L. P.; Shteingarts, V. D.; Nevinsky, G. A. *Eur. J. Med. Chem.* 2010, 45, 270. Zakharova O. D.; Ovchinnikova L. P.; Goryunov L. I.; Troshkova N. M.; Shteingarts V. D.; Nevinsky G. A. *Eur. J. Med. Chem.* 2010, 45, 2321.
- 2. Loskutov, V. A.; Mamatyuk, V. I.; Beregovaya, I. V. Russ. Chem. Bull. 1999, 48, 371.
- Makoto, M.; Yorinobu, Y.; Kazuaki, S.; Kozo, B.; Tsunekatsu, S. Jpn. Pat. Appl. 53–147050 1978.
- 4. Goryunov, L. I.; Troshkova, N. M.; Nevinsky, G. A.; Shteingarts, V. D. *Russ. J. Org. Chem.* **2009**, *45*, 835.
- 5. Finley, K. T. In *The chemistry of the quinonoid compounds*; Patai, S. J. Ed.; Wiley&Sons Ltd., 1974; Vol 2, pp 844–1145.
- 6. Shteingarts, V. D.; Osina, O. I.; Kostina, N. G.; Yakobson, V. D. Zh. Org. Khim. 1970, 6, 833.

- 7. Yakobson, V. D.; Shteingarts, V. D.; Vorozhtsov-jun., N. N. Zh. Vses. Khim. Ob. im. D. I. Mendeleeva 1964, 9, 702.
- 8. Goryunov, L. I.; Grobe, J.; Zhivetyeva, S. I.; Shteingarts, V. D.; Mews, R. 16th European Symposium on Fluorine Chemistry, Ljubljana, Slovenia, July 18–23, 2010: Book of Abstracts, P1-58.