New possibilities in a synthesis of (2R,4'R,8'R)-α-tocopherol (natural vitamin E)

Anna Yu. Spivak,* Ruslan V. Shafikov, and Victor N. Odinokov

Institute of Petrochemistry and Catalysis of Russian Academy of Sciences, 141 Prospekt Oktyabrya, Ufa 450075, Russian Federation
E-mail: ink@anrb.ru

Dedicated to Professor Usein M. Dzemilev on the occasion of his 65th birthday

DOI: http://dx.doi.org/10.3998/ark.5550190.0012.805

Abstract
New methods for the synthesis of homochiral C_{14} and C_{15}-terpenoids desired as building blocks for phytic side chain of natural α-tocopherol have been developed. A natural phytone resulted from the proposed effective method of chlorophyll ozonolysis was used in a synthesis of optically active terpenoids. Chiral chroman compound for vitamin E, namely, (S)-(−)-6-benzyloxy-3,4-dihydro-2,5,7,8-tetramethylchroman-2-methanol was obtained by enantioselective transesterification of the corresponding racemic alcohol catalysed by Amano PS lipase from Burkholderia cepacia in ionic liquid [bmim]PF_{6}.

Keywords: Natural α-tocopherol, chlorophyll, (6R,10R)-6,10,14-trimethylpentadecane-2-on (phytone), homochiral chroman compounds, enantioselective transesterification, ionic liquid [bmim]PF_{6}.

Introduction

(2R,4'R,8'R)-α-Tocopherol is the most studied principal component of vitamin E which defines its anti-oxidant properties.1,2 In addition, (2R,4'R,8'R)-α-tocopherol participates in transmission of signals between cells, decreases activity of C protein kinase, inhibits proliferation of the smooth muscle cells and governs the expression of α-tropomiosine gene.3 The last decade studies showed that the specific liver transport protein (α-TTP) recognizes only the natural α-tocopherol out of all tocopherol isoforms and provides its transportation to plasma.4

At present a simple and economic overall synthesis of natural α-tocopherol does not exist. A semisynthetic isomerically pure (2R,4'R,8'R) - α-tocopherol is obtained from vegetable oils,
mainly from soya deodorizes distillates in a limited volume (~2000 tons per year) according to the complex technology.5,6

Methodology based on the combination of chiral trimethylated 2-substituted chromanes with optically pure C\textsubscript{14}- and C\textsubscript{15}-terpenoids is widely used in the laboratory practice (Scheme 1).6 For the building blocks of chromane and isoprenoid structure the various synthetic schemes were developed with the use of microbiological methods,7 chemoenzymatic transformations,8 chiral auxiliaries9 or asymmetric metal complex catalysis.10 As a rule, these methods were shown to be multistep, based on the use of atmosphere sensitive reagents and catalysts, and low perspective for practical application.

\begin{scheme}
\begin{eqnarray*}
\text{HO-} & \text{O} & \text{2R} \quad \text{4R} \quad \text{8R} \\
\text{4H} & \text{R} & \text{2H} \\
\end{eqnarray*}
\end{scheme}

\begin{scheme}
\begin{eqnarray*}
\text{HO-} & \text{O} & \text{2R} \quad \text{4R} \quad \text{8R} \\
\text{4H} & \text{R} & \text{2H} \\
\end{eqnarray*}
\end{scheme}

\begin{eqnarray*}
\text{R}=\text{OH}, \text{OTs}, \text{CHO}; & & \text{n}=0, 1 \\
\text{R}=\text{OH}, \text{OTs}, \text{Br}; & & \text{n}=0, 1
\end{eqnarray*}

\section*{Results and Discussion}

\subsection*{Synthesis of (3R,7R)-1-bromo-3,7,11-trimethyldodecane and (2R,6R)-2,6,10-trimethylundecan-1-ol}

We proposed an original methods for the transformation of available homochiral (6R,10R)-6,10,14-trimethylpentadecan-2-on (phytone) \textit{1}, obtained by ozonolysis of chlorophyll, to (2R,6R)-2,6,10-trimethylundecan-1-ol \textit{7} and (3R,7R)-1-bromo-3,7,11-trimethyldodecane ((3R,7R)-hexahydrofarnesyl bromide) \textit{5} -- synthones for the side chain of (2R,4'R,8'R)-\alpha-tocopherol (Scheme 2).

Phytone \textit{1} is usually obtained by the ozonolysis of (2E,7R,11R)-phytol isolated from green plants by alkaline treatment of acetone extract of chlorophyll. This method requires a pre-purification of the chlorophyll from lipids. In addition, an alkaline saponification of chlorophyll in acetone gives sodium salts of high fat acids, and products of acetone self-condensation, that impedes the isolation of phytoll in pure form.11 The method for the preparation of phytone \textit{1} proposed by us is simple and includes ozonolytic oxidation of acetone extract of chlorophyll from great nettle without pre-purification of extract from related impurities. The reaction in the
presence of Ba(OH)$_2$ (acceptor of peroxide oxygen) led to phytone 1 in ~90% yield (in calculation on a chlorophyll content in the acetone extract).12

![chlorophyll (R=Me,CHO)](image)

Scheme 2. Reagents and conditions: a. Ac$_2$O, TsOH-H$_2$O, microwave irradiation, 750 W, 10 min.; b. Ac$_2$O, TsOH-H$_2$O, 150 °C, 7 h.; c. O$_3$ (1 eq.)/Ba(OH)$_2$, Me$_2$CO; d. CrO$_3$/H$_2$SO$_4$, Me$_2$CO; e. O$_3$ (2 eq.)/Ba(OH)$_2$, Me$_2$CO; f. KOH/AgNO$_3$/Br$_2$/CCl$_4$; g. Pb(OAc)$_4$/Cu(OAc)$_2$, C$_6$H$_6$, 70 °C; h. 1) O$_3$ (2 eq.), Ba(OH)$_2$, Me$_2$CO; 2) NaBH$_4$, MeOH.

The main problem in the transformation of phytone 1 to 5 or 7 compounds concludes in the shortening of the starting C$_{18}$-isoprenoid chain by three or four C atoms respectively. The pathway based on the enolization of ketone 1 to \(\Delta^{2,3}\)-enol esters and its ozonolitic oxidation to C$_{16}$-acid 4 seems to be the most rational. The desired \(\Delta^{2,3}\)-enol acetates 2 (mixture of E- and Z-isomers) were successfully obtained by the reflux (7h) of ketone 1 with acetic anhydride in the presence of TsOH-H$_2$O under conditions of thermodynamic control.13 The other \(\Delta^{1,2}\)-izomer was not formed. Conversion of ketone 1 was 49%. The use of microwave irradiation allowed us to considerably decrease the reaction time with complete retention of regioselectivity reaction. Conversion of starting ketone 1 to the mixture of \(\Delta^{2,3}\)-enol acetates 2 consisted of 57% after irradiation for 10 min (power 750W). Enol acetates 2 can be easily separated from the unreacted
phytone 1 by column chromatography on silica gel, and the recovered phytone 1 can be repeatedly involved into the enolysation reaction.

Aldehyde 3 was obtained by the ozonolysis of mixture of enol acetates 2 in acetone in the presence of Ba(OH)₂ and was oxidized by the Jones reagent to acid 4. When enol acetates 2 are treated with excess ozone, they are converted to acid 4 in a single step. The Hunsdiecker reaction was used for the transformation of C₁₆-acid 4 to the target C₁₅-bromide 5. The interaction between the silver salt of C₁₆-acid 4 and Br₂ in CCl₄ afforded the target bromide 5 in 46% yield. The oxidative decarboxylation of acid 4 led to (3R,7R)-3,7,11-trimethyl-1-dodecene 6. Ozonolysis of the latter gave alcohol 7.¹⁴

Synthesis of (S)-(−)-6-benzyloxy-3,4-dihydro-2,5,7,8-tetramethyl-2H-1-benzopyran-2-methanol

(S)-(−)-6-Benzyloxy-3,4-dihydro-2,5,7,8-tetramethyl-2H-1-benzopyran-2-methanol (S)-9 and debenzylated (S)-chromanmethanol (S)-11 are the important intermediates for the synthesis of the natural tococols such as of α-tocopherol and α-tocotrienol.⁶,⁸,¹⁵ A stereodivergent synthesis of (S)-cromannmethanols 9 and 11 with the use of lipases were described in papers.⁸,¹⁵b,¹⁶ As a rull the ethereal solvents were used in reactions of biocatalytic transesterification of (R,S)-chromanmethanols that is a sufficient shortcoming for the application of hydrolytic enzymes (lipases) to the large-scale syntheses. In quest of the new possibilities to optimize the synthesis of chromanmethanols 9 and 11 our attention was turned to ionic liquids, which in recent years were used as the perfect reaction media for the biocatalytic transformations.¹⁷

We have proposed an effective method for the synthesis of (S)-(−)-6-benzyloxy-3,4-dihydro-2,5,7,8-tetramethyl-2H-1-benzopyran-2-methanol (S)-9 by kinetically selective acylation with vinyl acetate of the corresponding racemic alcohol in the presence of Amano PS lipase (from Burkholderia cepacia) in ionic liquid (1-butyl-3-methylimidazolium hexafluorophosphate [bmim]PF₆) (Scheme 3). Earlier, the transesterification reaction of the derivatives of 2-methylchromanes was not conducted in ionic liquids.

Chroman-2-methanol (±)-9 was obtained by the three-step transformation of commercially available (±)-chroman-2-carboxylic acid (±)-8 according to the described methods.⁸ From commercially available and inexpensive enzymes, such as lipases from Burkholderia cepacia (Amano PS), Candida cylindracea (CCL) and Hog pancreas (PPL) tested, the lipase Amano PS has been chosen. It was found, that Amano PS lipase showed a high catalytic activity and enantioselectivity. Kinetic resolution of alcohol (±)-9 through selective acylation with succinic anhydride in [bmim]PF₆ proceeded (at 0⁰ or 20⁰C) with low stereoselectivity to afford the products with an optical rotation within the measurement error. When, vinyl acetate was employed as the acyl donor (substrate : enzyme weight ratio of 1.5:1, 20⁰C, 24 h, 39% conversion), (S)-acetate (S)-10 ([α]D²⁰ 3.6⁰, 35%) and the unchanged alcohol (R)-9 ([α]D²⁰ 1.1⁰, 59%) were obtained. The signs of [α]D and values of optically rotation were identical to those as described for optically pure compounds.⁸,¹⁵b
Scheme 3. Reagents and conditions: a) TsOH, MeOH; 2) BnCl, K$_2$CO$_3$, DMFA; 3) LiAlH$_4$, Et$_2$O. b) AcOCH=CH$_2$/Amano PS, [bmim]PF$_6$, 20 °C, 24 h. c) MeONa/MeOH; 0.5 h. d) H$_2$, 20% Pd-C, AcOEt. e) ((COCl)$_2$, DMSO, Et$_3$N, CH$_2$Cl$_2$, -70 °C. f) (R)-MTPA-Cl, d-Py, CDCl$_3$, 24 h.

The saponification of (S)-10 led to optically pure chromanmethanol of S-configuration (S)-9, in accordance with a sign and value of optical rotation $[\alpha]_D^{20} -2.2^\circ$ (c 0.7, CHCl$_3$). An enantiomeric excess (ee) for alcohol (S)-9 was determined on the basis of analysis of 1H NMR spectra of diastereomeric esters (Mosher esters – (SR)-13 and (RR)-13, obtained by the interaction between alcohol (S)-9 and (R)-(+)−α-methoxy−α-trifluoromethyl-α-phenylacetic acid chloride (MTPA-Cl). 1H NMR spectra were recorded in CDCl$_3$ or C$_6$D$_5$N with in a narrow interval of chemical shifts from 2.5 to 5 ppm. The ratio of the obtained Mosher diastereomeric esters (SR)-13 and (RR)-13 (96:4) were determined from the intensity ratio of the signals (1H NMR) attributable to protons of the isolated methylene group OCH$_2$ in esters (SR)-13 (δ 4.02 or 4.27 ppm, 2J = 11.2 Hz) and (RR)-13 (δ 4.08 or 4.18 ppm, 2J = 11.2 Hz). Thus, an diastereomeric excess (de) of ester (SR)-13 and enantiomeric excess (ee) of alcohol (S)-9 are equal to 92%
respectively. An absolute configuration and optically purity of compound (S)-9 were confirmed by its Swern oxidation to aldehyde (S)-12 ([α]D20 11.3° (0.9, CHCl3)) (lit15c [α]D25 11.9° (CHCl3)). Hydrogenolysis of alcohol (S)-9 20% Pd-C in ethylacetate led to compound (S)-11 (90% yield) with a specific rotation [α]D20 1.5° (c 1.4, EtOH) (lit15b [α]D23 1.6° (c 1.2, EtOH)).

We have studied the reaction of partial acetylation of chromanmethanols (±)-9 in the presence of Amano PS lipase in diisopropylether or in a mixture of organic solvent and [bmim]PF6 and established a sufficient influence of ionic liquid upon the stereoselectivity of the biocatalyst. Thus, this reaction in [bmim]PF6 afforded alcohol (S)-9 with [α]D20 -2.2° (c 0.7 CHCl3) and in (Pr)2O - (S)-9 with [α]D20 -1.4° (c 0.9 CHCl3). In the mixture of solvents at volume ratio [bmim]PF6 and (Pr)2O equal to 3:1, 1:1 or 1:3 the value of optical rotation of (S)-9 consisted of -2.0°, -1.9° and -1.5° respectively (lit8 [α]D20 -2.36° (CHCl3)). In addition we found that Amano PS lipase containing in the ionic liquid [bmim]PF6 retains its initial activity and enantioselectivity reaction even after the third catalytic cycle, that evidences for the stability of biocatalyst under the reaction conditions.

Conclusions

The short and efficient synthesis of C14- and C15-terpenoids as synthones for the natural α-tocopherol has been developed using a microwave-activated regioselective enolization of homochiral phytone. The method for the synthesis of (S)-(−)-6-benzyloxy-3,4-dihydro-2,5,7,8-tetramethyl-2H-1-benzopyran-2-methanol (S)-9 has been proposed by kinetically selective acylation with vinyl acetate of the corresponding racemic alcohol in the presence of Amano PS lipase in [bmim]PF6. The ionic liquid is an efficient recyclable solvent in this reaction allowing to give a target (S)-(−)-enantiomer of high enantiomeric purity.

Experimental Section

General. 1H- and 13C-NMR spectra were recorded on a Bruker Avance-400 spectrometer (400.13 and 100.62 MHz for 1H and 13C respectively) in CDCl3. Chemical shifts are on the δ scale, relative to internal Me4Si. HPLC analysis used a Helwett Packard 1050 chromatograph with 250x4.6 mm columns C-18 ”zorbax”, the rate of elution was 1 ml/min, CH3COCN:H2O – 80:20 + 1% Et3N with UV-detector under wavelength 254 nm. IR spectra were recorded on a Specord IR-75 spectrometer by CARL ZEISS JENA in tablet of KBr. Specific angles of rotation was determined using a Perkin-Elmer-141 polarimeter.

The specific activity of lipase from Candida cylindracea (CCL, Fluka) was 3.85 ед·мг⁻¹ and from Hog pancreas (PPL, Fluka) – 20.6 ед·мг⁻¹ Amano lipase PS from Burkholderia cepacia of Aldrich firm. Racemic chromanmethanal (±)-9 was obtained by three-step transformation from commercial accessible 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox acid)
(±)-1 according. Ionic liquid \([\text{bmim}]PF_6\) was obtained according. \(^{18}\) Phytone \(1\) \(\{[\alpha]_D^{20} 1.1^\circ (c 1.78, \text{CHCl}_3)\}\) was synthesized according to our method, described earlier. \(^{12}\) Methods of synthesis, spectral data (HNMR, IR, elemental analysis) and specific angles of rotation of compounds 2-7 described in our manuscripts. \(^{13,14}\)

\((S)-(++)-2\text{-Acetoxymethyl-6-benzyl}-2,5,7,8\text{-tetramethylchromane ((}\(S\))\text{-10})\) and \((R)-(++)-6\text{-benzyl}-2,5,7,8\text{-tetramethylchroman-2-methanol ((}\(R\))\text{-9})\). To a solution of \((±)-9\) \((0.18 \text{ g}, 0.55 \text{ mmol})\) in \([\text{bmim}]PF_6\) \((2.8 \text{ ml})\) was added equimolar amount of vinyl acetate \((0.05 \text{ ml})\) and of \textit{Amano PS} lipase \((0.12 \text{ g})\). The reaction mixture was stirred at a temperature of \(20^\circ\text{C}\) and was controlled by TLC \((\text{hexane-ethyl acetate}, 3:1)\) and HPLC analysis. When given conversion was achieved the reaction mixture was extracted by \(\text{Et}_2\text{O}\) \((3\times10 \text{ ml})\) and combined extracts were concentrated \textit{in vacuo} at a temperature of \(40^\circ\text{C}\). Column chromatography on \(\text{Si}_2\text{O} \((8 \text{ g}, \text{eluent – petroleum ether})\) gave acetate \((S)-10\) \((0.07 \text{ g}, 35\%)\), \(R_f\) 0.74 \((\text{hexane-ethyl acetate}, 3:1)\), m.p. 38-40°C, \([\alpha]_D^{20} 3.6^\circ\ (c 1.3, \text{CHCl}_3)\) \((\text{lit.}^8 \text{ m.p. 39°C, } [\alpha]_D^{22} 4.0^\circ(\text{CHCl}_3))\) and of residual alcohol \((R)-9\) \((0.11 \text{ g}, 59\%)\) \([R_f\) 0.61 \((\text{hexane-ethyl acetate}, 3:1)\), m.p. 67-69°C, \([\alpha]_D^{20} 1.1^\circ (c 1.6, \text{CHCl}_3)\) \((\text{lit.}^{15b} \text{ m.p. 72-74°C, } [\alpha]_D^{22} 1.1^\circ(\text{CHCl}_3))\). IR-, NMR \(^1\text{H}-\) and \(^{13}\text{C}-\)spectra of compounds \((S)-10\) and \((R)-9\) in agreement with those described. \(^{15b}\) Separated suspension of lipase \textit{Amano PS} in \([\text{bmim}]PF_6\) was used threefold.

\((S)-(++)-6\text{-Benzyl}-2,5,7,8\text{-tetramethylchroman-2-methanol ((}\(S\))\text{-9})\). To a solution of \((S)-10\) \((0.07 \text{ g}, 0.19 \text{ mmol})\) in methanol \((4 \text{ ml})\) was added of natrium \((0.004 \text{ g}, 0.17 \text{ mmol})\). The reaction mixture was stirred for 0.5 h then was added 5% solution of \(\text{HCl}\) (until neutral reaction) and the mixture was extracted with \(\text{EtOAc}\) \((3\times7 \text{ ml})\), evaporated. Column chromatography on \(\text{Si}_2\text{O} \((4 \text{ g}, \text{eluent – petroleum ether})\) gave \((S)-9\) \((0.06 \text{ g}, 93\%)\) as a colourless oil, \(R_f\) 0.61 \((\text{hexane-ethyl acetate}, 3:1)\), \([\alpha]_D^{20} -2.2^\circ (c 0.7, \text{CHCl}_3)\) \((\text{lit.}^8 [\alpha]_D^{23} -2.36^\circ(\text{CHCl}_3))\). IR- and NMR \(^1\text{H}-\)spectra are in agreement with those described. \(^8\)

\((S)-(++)-6\text{-Hydroxy-2,5,7,8-tetramethylchroman-2-methanol ((}\(S\))\text{-11})\). To a solution of \((S)-9\) \((0.09 \text{ g}, 0.26 \text{ mmol})\) in anhydrous \(\text{AcOEt}\) \((5 \text{ ml})\) was added 20% \(\text{Pd-C}\) \((0.04 \text{ g})\) and stirred under \(\text{H}_2\) for 6 h. When the reaction was over (control by TLC in mixture hexane-ethyl acetate = 3:1) the catalyst was filtered off and the filtrate evaporated. The residue was chromatographed on \(\text{Si}_2\text{O} \((4 \text{ g}, \text{eluent – petroleum ether})\) to obtain of \((S)-11\) \((0.06 \text{ g}, 90\%)\) \([R_f\) 0.42 \((\text{hexane-ethyl acetate}, 3:1)\), \([\alpha]_D^{20} 1.5^\circ (c 1.4, \text{EtOH})\) \((\text{lit.}^{15b} [\alpha]_D^{23} 1.6^\circ(\text{EtOH}))\). IR- and NMR \(^1\text{H}-\) and \(^{13}\text{C}-\)spectra are in agreement with those described. \(^{15b}\)

\((S)-(++)-6\text{-Benzyloxy-2,5,7,8-tetramethylchroman-2-carboxaldehyde ((}\(S\))\text{-12})\). To a solution of \(\text{DMSO} \((0.2 \text{ g}, 2.54 \text{ mmol})\) in dichloromethane \((2 \text{ ml})\) at a temperature of \(-70^\circ\text{C}\) was added oxalylchloride \((0.11 \text{ ml}, 1.32 \text{ mmol})\) and stirred for 0.5 h. A solution of \((S)-9\) \((0.05 \text{ g}, 0.16 \text{ mmol})\) in dichloromethane \((2 \text{ ml})\) was added and stirred for 1 h at \(-70^\circ\text{C}\). Then triethylamine \((0.7 \text{ ml})\) was added and stirred at \(-70^\circ\text{C}\) for 0.5 h. Temperature was raised to \(0^\circ\text{C}\) and the mixture was stirred over again for 0.5 h. The reaction mixture was diluted of water \((10 \text{ ml})\) and extracted with ethyl acetate \((3\times10 \text{ ml})\). Combined organic layers were dried \((\text{MgSO}_4)\) and concentrated under low pressure. The residue was chromatographed on \(\text{Si}_2\text{O} \((5 \text{ g}, \text{eluent – hexane})\) to give of
(S)-12 (0.05 g, 93%) Rf 0.67 (hexane-ethyl acetate, 3:1), m.p. 57-59°C, [α]D 20 11.3° (c 0.7, CHCl3) (lit.15c m. p. 56°C, [α]D 23 11.9° (CHCl3)). IR- and NMR 1H-spectra are in agreement with those described.8

[(S)-6-Benzylloxy-2,5,7,8-tetramethylchroman-2-methanol] ether (R)-α-methoxy-α-trifluoromethyl-α-phenylacetic acid ((SR)-13). To a solution of (S)-9 (0.002 g, 0.006 mmol) in C6D5N (0.1 ml) and CDCl3 (0.1 ml) was added (+)-α-methoxy-α-trifluoromethyl-α-phenylacetic acid chloride (MTPA-Cl) (0.003 g, 0.012 mmol) and stirred for 24 h at room temperature. Then the reaction mixture was diluted of toluene (0.6 ml) and C6D5CD3 (0.1 ml) and recorded NMR 1H-spectra. The enantiomeric purity of ester (SR)-6 92% ee were obtained from ratio intensities of signals, CH2-O (96:4) diastereomeric esters (SR)-13 (δ 4.02 or 4.27 ppm 2J = 11.2 Hz) and (RR)-13 (δ 4.08 or 4.18 ppm 2J = 11.2 Hz).

Acknowledgements

We thank the Russian Foundation for Basic Research (grant 10-03-00105).

References

