Synthesis of 2,8-disubstituted-4,7-dioxatricyclo[3.2.1.0^{3,6}]octane and 2,6-dioxabicyclo[3.2.0]heptane derivatives starting from furan

Ana Aljarilla and Joaquín Plumet*

Universidad Complutense. Facultad de Química. Departamento de Química Orgánica, 28040 Madrid, Spain
E-mail: plumetv@quim.ucm.es

Dedicated to Prof. Julio Álvarez-Builla. University of Alcalá de Henares

DOI: http://dx.doi.org/10.3998/ark.5550190.0012.303

Abstract
The title compounds have been prepared from previously synthesized 2-endo-acetoxy-3-endo-hydroxy-7-oxabicyclo[2.2.1]hept-5-ene and 3-acetoxy-4-hydroxy-2,5-divinyl-furan via intramolecular electrophilic cyclization. Both types of compounds constitute new functionalized oxetane ring systems.

Keywords: Oxetanes, electrophilic addition, dioxatricyclooctane, dioxabicyclooctane

Introduction
The oxetane ring system\(^1\) constitutes subunits of important naturally occurring compounds such as taxoids,\(^2\) thromboxane A\(_2\) (TXA\(_2\)),\(^3\) some sesquiterpene lactones,\(^4\) diterpenoids\(^5\) and medium-sized cyclic ethers.\(^6\) On the other hand these compounds are valuable monomers in different polymerization processes\(^7\) being also well established synthetic intermediates\(^8\) and useful tools in drug discovery.\(^9\)

On the other hand, compounds possessing the 4,7-dioxatricyclo[3.2.1.0^{3,6}]octane and 2,6-dioxabicyclo[3.2.0]heptane skeletons (structures 1 and 2 respectively, Figure 1) constitute two interesting class of compounds bearing an oxetane subunit. Compounds with structure 1 are efficient herbicides and plant-growth regulators and at least four patents concerning the synthesis and applications of products showing this motif have been reported.\(^10\) On the other hand, the bicyclic oxetane 2 constitutes a “sugar” subunit of several conformationally restricted nucleosides. These compounds have been extensively investigated as building blocks for oligonucleotides with important therapeutic and diagnostic applications.\(^11\) The “oxetane T” 3 (Figure 1) is an example of this type of molecules.\(^12\)
Figure 1. The 4,7-dioxatricyclo[3.2.1.03,6]octane and 2,6-dioxabicyclo[3.2.0]heptane skeletons.

The synthesis of 8-hydroxy derivatives of 1 (compound 5, Scheme 1) has been reported using intramolecular ring-opening of 5,6-exo-epoxy-7-oxa-2-endo-hydroxynorbornane 4.13,14 Moreover, several accounts concerning the preparation of other 8-substituted derivatives of 1 have been carried out by intramolecular halo-, arylsulfanyl- and arylselenil etherification15 of 2-endo-hydroxy-7-oxabicyclo[2.2.1]hept-5-ene derivatives 6.16 It should be pointed out that compounds with structure 7 have been used as starting materials in some useful synthetic transformations.17 Regarding compounds 2 (Figure 1), they have usually been synthesized by photochemical cycloaddition reactions of 2,3-dihydrofuran derivatives and carbonyl compounds (the Paternó-Büchi reaction).18

Scheme 1. Synthesis of 4,7-dioxatricyclo[3.2.1.03,6]octane derivatives.

The 2,8-disubstituted derivatives of 1 have, to the best of our knowledge, never been synthesized with the exception of the dihydroxy compound 9 which was obtained (60 %) by reaction of the dihydroxyepoxide 8 with NaOH followed by crystallization of the polymeric reaction crude (Scheme 2).19

Scheme 2. Synthesis of 2,8-dihydroxy-4,7-dioxatricyclo[3.2.1.03,6]octane 9.
Recently20 we have reported the synthesis of enantiomerically enriched 7-oxanorbornene derivative 10 (Scheme 3) \textit{via} Diels-Alder cycloaddition between furan and vinylene carbonate followed by hydrolysis and enzymatic desymmetrization. Compound 10 may be transformed into 2,5-divinyl-3-acetoxy-4-hydroxytetrahydrofuran 11 \textit{via} ring-opening metathesis (ROM)-cross metathesis (CM) tandem reactions (“metathesis rearrangement”) using ethylene as cross metathesis partner.

\[
\text{Scheme 3. General sequence for the synthesis of compounds 10 and 11.}
\]

Compound 10 is a suitable starting material for the synthesis of 2,8-disubstituted-4,7-dioxa-tricyclo[3.2.1.03,6]octane derivatives 12 \textit{via} intramolecular etherification (\textit{endo} hydroxyl group at the position 2 of the starting material 10) of the epi-cation intermediate generated by electrophilic addition on the double bond of 10 (Scheme 4a). Compounds 12 are fully and differentially substituted tricyclic systems, potentially useful as herbicidal agents or as intermediates in other synthetic transformations. On the other hand compound 11 shows an homoallylic alcohol functionality and, in this way, the electrophilic addition to the double bond at position 5 could be an interesting procedure for the synthesis of new functionalized 2,6-dioxabicyclo[3.2.0]heptane derivatives such as 13 (Scheme 4b). In addition this reaction may constitute a possibility for the differentiation of both double bonds at position 2 and 5.

\[
\text{Scheme 4. Intramolecular etherification of compounds 10 and 11.}
\]
Thus, the exploration of this synthetic approach to compounds 12 and 13 constitutes the objective of the present report.

Results and Discussion

Synthesis of 2,8-disubstituted-4,7-dioxatricyclo[3.2.1.0^3,6]octane derivatives 12

The reaction of compound 10 with N-chlorosuccinimide (NCS), N-bromosuccinimide (NBS), N-Iodosuccinimide (NIS), p-nitrophenylsulfanylcchloride and phenylselenylchloride afforded oxetanes 14-18 in moderate-good yields (Scheme 5). The structure of compounds 14-18 was secured by spectroscopic (^1H NMR, ^13C NMR, IR), combustion analysis and comparison with data previously published for related compounds (see references 14a and 16b-d). The assignments of proton (^1H NMR) and carbon (^13C NMR) signals have been carried out by DEPT 135, HMQC and HMBC experiments.

On the other hand, reaction of 10 with m-CPBA afforded oxirane 19 (89 %, Scheme 6). No trace of the related hydroxyderivative 20 was observed in the reaction crude. It should be pointed out that the herbicidal activity of compounds with structure of 3,8-dioxatricyclo[3.2.1.0^2,4]octane such as 20 has been reported.21

Scheme 6. Reaction of compound 10 with m-CPBA.

The reaction of compound 10 with NIS deserves some comments. In this case a mixture of the iododervative 18 and iodoepoxide 21 (58 %) was isolated after column chromatography.
Change of the experimental conditions (ratio 10:NIS and reaction time) did not modify this result. The formation of compounds 18 and 21 appears to be the result of a competition between two intramolecular attacks (hydroxy- or acetoxy- groups) on the epiiodoium cation intermediate 22 (Scheme 7). It should be indicated that this reaction path has previously been proposed, for instance, in the 1,2-hydroxyiodination of acetoxy cyclohex-2-ene.

Scheme 7. Reaction of compound 10 with NIS.

This different behaviour of compound 10 in their reaction with NIS may be explained on the basis of the greater stability of cation 22 regarding the analogous derived from NCS and NBS.

Synthesis of substituted 2,6-dioxabicyclo[3.2.0]heptane derivatives 13
The reaction of compound 11 with NIS, NBS, NIS and p-nitrophenylsulphanylchloride afforded the expected oxetanes 23-26 in moderate-good yields. The results are summarized in Scheme 8.

The synthesis of 2,6-dioxabicyclo[3.2.0]heptane derivatives from 2-vinyl-3-hydroxytetrahydro-furan precursors has never been reported using this methodology. Note that from compound 11 two modes of cyclization are possible: the 4-exo mode (a, Scheme 9) giving the oxetane 13 and the 5-exo mode (b, Scheme 9) giving the tetrahydrofuran 27.
Scheme 9. Oxetane vs. tetrahydrofuran formation in the electrophilic cyclization of compound 11.

In the case of electrophilic cyclization of a homoallylic alcohol incorporated into a cyclic structure such as 11 some precedents indicate that the tetrahydrofuran derivative is the only reaction product. A representative example is shown in Scheme 10. In this way the formation of compounds 23-26 is noteworthy.

Scheme 10. Tetrahydrofuran formation in the electrophilic cyclization of a cyclic homoallylic alcohol.

Conclusions

In this report two types of oxetane derivatives have been synthesized using the intramolecular etherification protocol. Firstly we have described an efficient method for the preparation of 2,8-disubstituted-4,7-dioxatricyclo[3.2.1.0^3,6]octane derivatives starting from readily accessible oxanorbornenic compounds. Different types of substituents have been introduced at position 8 and the final tricyclic systems constitute promising materials on the biological (potentially herbicides by analogy with other previously described) and synthetic point of view. On the other hand, the electrophilic heterocyclization of 2,5-divinyltetrahydrofuran derivatives allows for the preparation of functionalized 2,6-dioxabicyclo[3.2.0]heptane being the oxetane the only product observed. The described reaction also allowed for the chemical differentiation of both double bonds at position 2 and 5 of the starting materials.
Experimental Section

General. All reactions were carried out under an argon atmosphere employing standard techniques. All solvents were reagent grade. Dichloromethane was freshly distilled from calcium hydride. All other reagents and solvents were used as supplied. Flash chromatography was performed with silica gel 60 (230-400 mesh). Yields refer to chromatography and spectroscopically pure compounds. 1H And 13C Nuclear Magnetic Resonance spectra were recorded on a Bruker AM-300 (300 MHz) and a Bruker AVIII-700 (700 MHz) NMR spectrometer in deuterocloroform, deuterated acetone and hexadeuterobenzene. Assignments of proton (1H NMR) and carbon (13C NMR) signals have been secured by DEPT 135, COSY 45, HMQC and HMBC experiments. Coupling constants are given in Hz, and chemical shifts are expressed as δ values in ppm. Melting points are uncorrected and were determined using a Gallenkamp instrument. IR spectra were obtained on a Perkin-Elmer apparatus in solution of CHCl$_3$. Elemental analyses were carried out using a Perkin-Elmer 2400 CHN apparatus at the Complutense University, Madrid.

Starting materials. The synthesis of compounds 10 and 11 have been previously described.20

Synthesis of compounds (14-18). General procedure
To a solution of 1.0 eq. of 10 in acetonitrile (50 mL/mmol) at r.t., 1.1 eq. of the electrophilic reagent was added. The solution was stirred at r.t. during 24 h. After this time the solvent was removed at vacuo and the reaction crude was purified by column chromatography (SiO$_2$, hexane:AcOEt, 7:3).

Compound (14). From 27 mg of 10 (0.16 mmol) and 23 mg of NCS in 8.0 mL anh. CH$_3$CN, 28 mg of 14 (90 %) were obtained as pale yellow oil. 1H NMR (CD$_3$)$_2$CO, 300 MHz: δ = 5.72 (ddd, $J = 4.50, 3.50, 0.90$ Hz, 1 H, H$_6$), 4.96 (dm, $J = 4.40$ Hz, 1 H, H$_1$), 4.89 (m, 1 H, 5-H), 4.75 (m, 1 H, 3-H), 4.67 (m, 1 H, 2-H), 4.64 (s, 1 H, 8-H), 2.10 (s, 3 H, C$_2$H$_5$CO$_2$) ppm. 13C NMR ((CD$_3$)$_2$CO, 75 MHz): δ = 170.55 (CH$_3$CO$_2$), 89.83 (C-5), 81.71 (C-1), 80.83 (C-3), 80.83 (C-6), 76.20 (C-2), 48.98 (C-8), 20.54 (CH$_3$CO$_2$) ppm. MS m/z 225 (M-2 + Na$^+$), 227 (M + Na$^+$).

C$_8$H$_9$ClO$_4$ (305.6): calcd. C 46.96, H 4.43; found C 46.79, H 4.26.

Compound (15). From 28 mg of 10 (0.16 mmol) and 32 mg of NBS in 8.2 mL anh. CH$_3$CN, 35 mg of 15 (89 %) were obtained as pale yellow oil. 1H RMN ((CD$_3$)$_2$CO, 300 MHz): δ = 5.71 (ddd, $J = 4.40, 3.70, 0.90$ Hz, 1 H, 6-H), 4.93 (ddd, $J = 4.40, 2.60, 1.70, 0.90$ Hz, 1 H, 1-H), 4.79 (m, 1 H, 5-H), 4.72 (m, 1 H, 3-H), 4.67 (dd, $J = 4.40, 3.70$ Hz, 1 H, 2-H), 4.60 (broad s, 1 H, 8-H), 2.11 (s, 3 H, C$_2$H$_5$CO$_2$) ppm. 13C NMR ((CD$_3$)$_2$CO, 75 MHz): δ = 170.63 (CH$_3$CO$_2$), 89.37 (C-5), 81.04 (C-1), 80.84 (C-3), 80.23 (C-6), 75.14 (C-2), 57.89 (C-8), 20.03 (CH$_3$CO$_2$) ppm. IR (CHCl$_3$): ν = 2926, 1745, 1233 cm$^{-1}$. Anal. Calcd for C$_8$H$_9$BrO$_4$: C, 38.58; H, 3.64. Found: C, 38.43; H, 3.49.
Compound (16). From 25 mg of 10 (0.15 mmol) and 31 mg of p-NO2-C6H4-SeCl in 7.3 mL anh. CH3CN, 31 mg of 16 (48 %) were obtained as pale yellow oil. 1H NMR (C6D6, 300 MHz): δ = 7.66-7.60 (m, 2 H, Ar-H), 6.80-6.76 (m, 2 H, Ar-H), 4.27-4.13 (m, 3 H, 1-H, 3-H and 5-H), 4.01 (ddd, J = 6.80, 4.40, 0.90 Hz, 1 H, 6-H), 3.97 (broad s, 1 H, 8-H), 5.21 (m, 1 H, 2-H), 1.66 (s, 3 H, CH3CO2) ppm. 13C NMR (C6D6, 75 MHz): δ = 171.20 (CH3CO2), 145.60 (Ar-C), 126.59 (2 x Ar-CH), 124.41 (2 x Ar-CH), 121.49 (Ar-C), 83.18, 81.53 and 78.69 (C-1, C-3 and C-5), 77.18 (C-6), 67.62 (C-2), 53.95 (C-8), 21.14 (CH3CO2) ppm. IR (CHCl3): ν = 2923, 1740, 1319 cm⁻¹. MS m/z 346 (M + Na⁺). Anal. Calcd for C14H13NO6S (323.05): C, 52.01; H, 4.05. Found C, 52.20; H, 4.33.

Compound (17). From 25 mg of 10 (0.15 mmol) and 31 mg of C6H5-SeCl in 7.3 mL anh. CH3CN, 26 mg of 17 (55 %) were obtained as pale yellow oil. 1H NMR (C6D6, 300 MHz): δ = 7.49-7.44 (m, 2 H, Ar-H), 6.97 - 6.90 (m, 3 H, Ar-H), 4.67 (ddd, J = 5.10, 1.60, 1.00 Hz, 1 H, 1-H), 4.37 (ddd, J = 4.40, 1.60, 1.00 Hz, 1 H, 5-H), 4.24 (ddd, J = 6.10, 4.40, 1.00 Hz, 1 H, 3-H), 4.15 (s, 1 H, 8-H), 4.02 (ddd, J = 6.10, 4.40, 1.00 Hz, 1 H, 6-H), 3.85 (ddd, J = 5.10, 4.40, 1.00 Hz, 1 H, 2-H), 1.59 (s, 3 H, CH3CO2) ppm. 13C NMR (C6D6, 75 MHz): δ = 174.20 (CH2CO2), 133.27 (2 x Ar-CH), 129.73 (2 x Ar-CH), 127.53 (CH), 121.36 (Ar-C), 84.83 (C-5), 83.01 (C-1), 78.72 (C-3), 77.58 (C-6), 67.87 (C-2), 51.45 (C-8), 21.39 (CH3CO2) ppm. IR (CHCl3): ν = 2953, 1727, 1399 cm⁻¹. MS m/z 349 (M + Na⁺). Anal. Calcd for C14H14O4Se (326.01): C, 51.70; H, 4.34. Found: C, 51.53; H, 4.21.

Reaction of compound (10) with NIS
A solution of 25 mg of 10 (0.15 mmol) and 36 mg of NIS in 7.3 mL anh. CH3CN was stirred during 24 h. at r.t. After this time the solvent was removed at vacuo and the reaction crude was purified by column chromatography (SiO2, hexane:AcOEt, 7:3).

Compound (18). Yield, 15 mg (34 %). White solid. Mp 111-117 °C. 1H NMR (CDCl3, 300 MHz): δ = 5.67 (ddd, J = 4.40, 3.70, 0.9 Hz, 1 H, 6-H), 5.09 (ddd, J = 4.40, 2.80, 1.60 Hz, 1 H, 5-H), 4.98 (dm, J = 4.40 Hz, 1 H, 1-H), 4.88 (dm, J = 4.40 Hz, 1 H, 3-H), 4.73 (dd, J = 4.40, 3.70 Hz, 1 H, 2-H), 4.62 (s, 1 H, 8-H), 2.17 (s, 3 H, CH3CO2) ppm. 13C NMR (CDCl3, 75 MHz): δ = 170.44 (CH2CO2), 90.65 (C-5), 82.84 (C-1), 80.76 (C-3), 80.61 (C-6), 75.66 (C-2), 24.51 (C-8), 20.04 (CH3CO2) ppm. IR (CHCl3): ν = 2957, 2923, 2852, 1742, 1259, 1230, 1055, 797 cm⁻¹. MS m/z (%) 170 (M), 111 (10), 97 (18), 83 (18), 71 (31), 57 (55), 43 (100). Anal. Calcd for C8H9IO4 (296.0): C, 32.45; H, 3.06. Found: C, 32.69; H, 3.24.

Compound (20). Yield, 25 mg (58 %). White solid. Mp 84-89 °C. 1H NMR (C6D6, 700 MHz): δ = 4.59 (dm, J = 5.10 Hz, 1 H, H-6), 4.43 (s, 1 H, H-7), 4.12 (dd, J = 6.30, 4.20 Hz, 1 H, H-2), 4.02 (d, J = 4.20 Hz, 1 H, H-1), 3.77 (dd, J = 6.30, 4.20 Hz, 1 H, H-4), 3.66 (dd, J = 5.10, 4.20 Hz, 1 H, H-5), 1.54 (s, 3 H, CH3CO2) ppm. 13C NMR (C6D6, 175 MHz): δ = 120.50 (CH2CO2-), 85.82 (C-1), 83.94 (C-6), 78.03 (C-2), 76.25 (C-4), 67.43 (C-5), 28.31 (C-7), 20.87 (CH3CO2) ppm. IR (CHCl3): ν = 2957, 2923, 2853, 1735, 1448, 1124, 1058, 860 cm⁻¹. MS m/z 319 (M + Na⁺). Anal. Calcd for C8H9IO4 (296.0): C, 32.45; H, 3.06. Found C, 32.61; H 3.19.
Reaction of compound (10) with m-CPBA
To a solution of 27 mg of 10 (0.16 mmol) in 1.6 mL CH₂Cl₂, 54 mg of m-CPBA (0.32 mmol) was added. The mixture was stirred at r.t. during 24 h. After this time the reaction crude was treated with 6 mL NaHCO₃ (5 %) and extracted with CH₂Cl₂ (5 x 10 mL). The organic extracts were dried with MgSO₄, filtered and the solvent was removed at vacuo affording 24 mg (89 %) of 19 as colourless oil. \(^1\)H NMR (CDCl₃, 300 MHz): \(\delta = 4.81\) (dd, \(J = 7.25, 4.80\) Hz, 1 H, H-6), 4.62 (d, \(J = 4.80\) Hz, 1 H, H-5), 4.55 (d, \(J = 4.80\) Hz, 1 H, H-1), 4.46 (dd, \(J = 7.25, 4.80\) Hz, 1 H, H-7), 3.71 (d, \(J = 3.40\) Hz, 1 H, H-2), 3.63 (d, \(J = 3.40\) Hz, 1 H, H-4), 2.17 (s, 3 H, \(\text{CH}_2\text{CO}_2\)) ppm. \(^{13}\)C NMR (CDCl₃, 75 MHz): \(\delta = 171.48\) (\(\text{CH}_3\text{CO}_2\)), 75.67 (C-1), 74.62 (C-5), 72.65 (C-6), 70.31 (C-7), 48.14, 48.04 (C-2, C-4), 20.04 (\(\text{CH}_3\text{CO}_2\)) ppm. IR (CHCl₃): \(\nu = 34556, 2922, 2851, 1731, 1239, 861\) cm\(^{-1}\). MS m/z 209 (M + Na)\(^+\). Anal. Calcd for C₈H₁₀O₅ (186.16): C, 51.61; H, 5.41. Found: C, 51.76; H, 5.54.

Synthesis of compounds (23-26). General procedure
To a solution of 1.0 eq. of 11 in 6.5 mL of acetonitrile, 1.1 eq. of the electrophilic reagent was added. The mixture was stirred under Ar at r.t. After the reaction time, the solvent was removed under reduced pressure and the crude product was purified by column chromatography (SiO₂, hexane: AcOEt 7:3).

Compound (23). From 25 mg of 11 (0.13 mmol) and 18 mg of NCS (0.14 mmol) in 6.3 mL anh. CH₃CN, after 9 days of reaction 20 mg of 23 (69 %) were obtained as pale yellow oil. \(^1\)H NMR (CDCl₃, 300 MHz): \(\delta = 6.07\) (ddd, \(J = 17.20, 10.20, 7.40\) Hz, 1 H, \(\text{CH} = \text{CH}_2\)), 5.40 (dm, \(J = 17.20\) Hz, 1 H, \(\text{CH} = \text{CH}_{2\text{trans}}\)), 5.38 (dm, \(J = 10.20\) Hz, 1 H, \(\text{CH} = \text{CH}_{2\text{cis}}\)), 5.28 (d, \(J = 2.60\) Hz, 1 H, H-5), 4.47 (d, \(J = 7.40\) Hz, 1 H, H-4), 4.42 (m, 2 H, H-2, H-5a), 4.35 (s, 1 H, H-2a), 3.93 (dd, \(J = 10.50, 8.70\) Hz, 1 H, \(\text{CH}_2\text{Cl}\)), 3.79 (dd, \(J = 10.50, 5.90\) Hz, 1 H, \(\text{CH}_2\text{Cl}\)), 2.16 (s, 3 H, \(\text{CH}_3\text{CO}_2\)) ppm. \(^{13}\)C NMR (CDCl₃, 75MHz): \(\delta = 170.18\) (\(\text{CH}_3\text{CO}_2\)), 132.89 (\(\text{CH} = \text{CH}_2\)), 120.99 (\(\text{CH} = \text{CH}_2\)), 83.70 (C-4), 82.41 (C-2 or C-5a), 79.63 (C-2a), 76.23, 75.99 (C-5, C-2 or C-5a), 40.21 (CH₂Cl), 20.85 (\(\text{CH}_3\text{CO}_2\)) ppm. IR (CHCl₃): \(\nu = 2925, 2853, 1744, 1230, 1084, 1046, 737\) cm\(^{-1}\). MS m/z 255 (M + Na)\(^+\). Anal. Calcd for C₁₀H₁₃ClO₄ (232.05): C, 51.62; H, 5.63. Found: C, 51.39; H, 5.38.

Compound (24). From 25 mg of 11 (0.13 mmol) and 35 mg of NBS (0.14 mmol) in 6.3 mL anh. CH₃CN, after 9 days of reaction 25 mg of 24 (72 %) were obtained as pale yellow oil. \(^1\)H NMR (CDCl₃, 300 MHz): \(\delta = 6.08\) (ddd, \(J = 17.20, 10.40, 7.50\) Hz, 1 H, \(\text{CH} = \text{CH}_2\)), 5.40 (dm, \(J = 17.20\) Hz, 1 H, \(\text{CH} = \text{CH}_{2\text{trans}}\)), 5.37 (dm, \(J = 10.40\) Hz, 1 H, \(\text{CH} = \text{CH}_{2\text{cis}}\)), 5.29 (d, \(J = 2.60\) Hz, 1 H, H-5), 4.57 (broad d, \(J = 7.60\) Hz, 1 H, H-4), 4.46 (broad d, \(J = 2.60\) Hz, 1 H, H-5a), 4.45 (dd, \(J = 8.70, 5.70\) Hz, 1 H, H-2), 4.38 (s, 1 H, H-2a), 3.77 (dd, \(J = 9.90, 8.70\) Hz, 1 H, \(\text{CH}_2\text{Br}\)), 3.61 (dd, \(J = 9.90, 5.70\) Hz, 1 H, \(\text{CH}_2\text{Br}\)), 2.15 (s, 3 H, \(\text{CH}_3\text{Br}\) ppm. \(^{13}\)C NMR (CDCl₃, 75MHz): \(\delta = 170.61\) (\(\text{CH}_3\text{CO}_2\)), 133.32 (\(\text{CH} = \text{CH}_2\)), 121.49 (\(\text{CH} = \text{CH}_2\)), 84.14 (C-4), 82.68 (C-2 or C-5a), 80.30 (C-2a), 76.78, 76.67 (C-5, C-2 or C-5a), 28.59 (\(\text{CH}_2\text{Br}\)), 21.29 (\(\text{CH}_3\text{CO}_2\)) ppm. IR (CHCl₃): \(\nu = 2920, 1743, 1230, 1087, 1043, 736\) cm\(^{-1}\). MS m/z 299 (M + Na)\(^+\). Anal. Calcd for C₁₀H₁₃BrO₄ (276.00): C, 43.44; H, 4.73. Found: C, 43.51; H, 4.97.
Compound (25). From 25 mg of 11 (0.13 mmol) and 32 mg of NIS (0.14 mmol) in 6.5 mL anh. CH3CN, after 6 days of reaction 30 mg of 25 (73%) were obtained as pale yellow oil. 1H NMR (CDCl3, 300 MHz): δ = 6.10 (ddd, J = 17.20, 10.30, 7.50 Hz, 1 H, CH=CH2), 5.38 (ddd, J = 17.20, 1.50, 0.90 Hz, 1 H, CH=CH2trans), 5.37 (ddd, J = 10.30, 1.50, 0.90 Hz, 1 H, CH=CH2cis), 5.29 (d, J = 2.70 Hz, 1 H, H-5), 4.56 (d, J = 7.50 Hz, 1 H, H-4), 4.49 (dd, J = 9.00, 5.70 Hz, 1 H, H-2), 4.48 (d, J = 2.70, 1 H, H-5a), 4.47 (s, 1 H, H-2a), 3.56 (dd, J = 9.90, 9.00 Hz, 1 H, CH2I), 3.42 (dd, J = 9.90, 5.70 Hz, 1 H, CH2I), 2.15 (s, 3 H, CH3COO) ppm. 13C NMR (CDCl3, 75MHz): δ = 170.55 (CH3CO2), 133.36 (CH=CH2), 121.45 (CH=CH2), 84.12 (C-4), 83.17 (C-2), 80.66 (C-2a), 77.09, 77.7 (C-5, C-5a), 28.59 (CH2Br), 21.23 (CH3CO2), 1.82 (CH3I) ppm IR (CHCl3): ν = 2929, 2851, 1744, 1232, 1047 cm⁻¹. MS m/z 347 (M + Na)⁺. Anal. Calcd for C10H13IO4 (323.99): C, 37.06; H, 4.04. Found: C, 37.31; H, 4.29.

Compound (26). From 30 mg of 11 (0.15 mmol) and 32 mg p-NO2C6H4-SCl (0.17 mmol) in 7.6 mL anh. CH3CN, after 9 days of reaction 17 mg of 26 (32%) were obtained as pale yellow oil. 1H NMR (CDCl3, 300 MHz): δ = 8.11-8.05 (m, 2 H, 2 x CHAr), 7.38-7.32 (m, 2 H, 2 x CHAr), 6.07 (ddd, J = 17.30, 10.50, 7.70 Hz, 1 H, CH=CH2), 5.36 (dm, J = 17.30 Hz, 1 H, CH=CH2trans), 5.33 (dm, J = 10.50 Hz, 1 H, CH=CH2cis), 5.19 (d, J = 2.50 Hz, 1 H, H-5), 4.51 (broad d, J = 7.70 Hz, 1 H, H-4), 4.29 (dd, J = 8.80, 5.90 Hz, 1 H, H-2), 4.28 (s, 1 H, H-2a), 4.24 (d, J = 2.50 Hz, 1 H, H-5a), 3.48 (dd, J = 13.60, 8.80 Hz, 1 H, CH2-S), 3.38 (dd, J = 13.60, 5.90 Hz, 1 H, CH2-S), 2.04 (s, 3 H, CH3COO) ppm. 13C NMR (CDCl3, 75 MHz): δ = 170.68 (CH3CO2), 146.92 (S-CAr), 145.57 (CAr-NO2), 133.41 (CH=CH2), 126.93 (2 x CHAr), 124.50 (2 x CHAr), 121.53 (CH=CH2), 84.94 (C-4), 81.78, 80.00, 77.61 (C-2, C-2a, C-5a), 76.74 (C-5), 30.52 (CH2S), 21.33 (CH3COO) ppm. IR (CHCl3): ν = 3100, 2925, 2854, 1745, 1595, 1341, 1188, 1092, 991 cm⁻¹. MS m/z 374 (M + Na)⁺. Anal. Calcd for C16H17NO6S (351.08): C, 54.69; H 4.88. Found: C, 54.93; H, 5.12.

Acknowledgements

Ministerio de Educación y Ciencia, Spain (Project CTQ-2006-15279-03-01) is gratefully thanked for financial support. One of us (A.A.) thanks Ministerio de Educación y Ciencia for a Grant.

References

also: (c) Eicher, T.; Hauptman, S.; Speicher, A. In Four-Membered Heterocycles; Wiley-VCH, 2003, Chapter 4: The Chemistry of Heterocycles.

2. For a short, illustrative article on the history, chemistry and biological aspects of taxoids, see:
(a) Nicolau, K. C.; Guy, R. K.; Potier, P. In Taxoids: New Weapons against Cancer; Scientific American, June 1996; pp 94-97. In this article taxoids were defined as “Taxol-like compounds”. For a review considering the importance of the oxetane ring on the bioactivity of taxol, see: (b) Kinston, D. D. J. Nat. Prod. 2000, 63, 726.

3. For a review on physiology and pharmacology of TXA2, see: Nakahata, N. Pharmacology and Therapeutics 2008, 118, 18.

13. For a general review on transformation of oxiranes into other oxygen-containing heterocycles, see: Kas’yan, L. I.; Tarabara, I. N.; Kas’yan, A. O. *Russ. J. Org. Chem.* 2004, 40, 1227. For the transformation of oxiranes into oxetanes see pp 1238-1239.

22. Intramolecular 1,3-migration of the 2-endo-substituents in 5-exo-6-exo-epoxy- and aziridinyl derivatives of 7-oxanorbornanic compounds have been observed, rationalized and synthetically exploited. For dealing references see the following reviews: (a) Vogel, P.; Cossy, J.; Plumet, J.; Arjona, O. Tetrahedron 1999, 55, 13521 (see pp 1385). (b) Vogel, P.; Fattori, D.; Gasparini, F.; LeDrian, C. Synlett 1990, 173 (see pp 180-183).

