Synthesis of 1-substituted cis-bicyclo[3.3.0]octane-3,7-dione derivatives as potential precursors of polyquinanes

Pelayo Camps,* José A. Fernández, and Santiago Vázquez
Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmacia, Universitat de Barcelona, Av. Diagonal 643, E-08028, Barcelona, Spain
E-mail: camps@ub.edu

Dedicated to Prof. James Cook on the occasion of his $65^{\text {th }}$ anniversary

DOI: http://dx.doi.org/10.3998/ark.5550190.0011.407

Abstract

The synthesis of several 1-substituted cis-bicyclo[3.3.0]octane-3,7-dione derivatives as potential precursors of a triquinacene having a pyramidalized $\mathrm{C}=\mathrm{C}$ bond from ethyl cis-3,7-dioxobicyclo-[3.3.0]octane-1-carboxylate is described.

Keywords: 1-Substituted cis-bicyclo[3.3.0]octane-3,7-diones, polycyclic compounds, cisdihydroxylation, Swern oxidation, epoxidation, alkylation

Introduction

For several years, we have been working on the generation, trapping and dimerization of highly pyramidalized alkenes containing the skeleton of tricyclo[3.3.0.0 ${ }^{3,7}$]oct-1(5)-ene 2. ${ }^{1}$ These alkenes are very reactive and can not be isolated, but they can be trapped as Diels-Alder adducts with various dienophiles. In the absence of a dienophile, these pyramidalized alkenes usually dimerize in a $[2+2]$ cycloaddition to give cyclobutane dimers 3, which under the standard reaction conditions of their generation (molten sodium in boiling 1,4-dioxane) are transformed into diene dimers 4 (Scheme 1).

$\mathrm{R}=\mathrm{H}$, Me
$\mathrm{R}, \mathrm{R}=\mathrm{CH}_{2} \mathrm{OCH}_{2}, \mathrm{CH}_{2} \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{OCH}_{2}$
Scheme 1. Generation and dimerization of pyramidalized bicyclo[3.3.0.0 ${ }^{3,7}$]oct-1(5)-ene derivatives 2. (i) Molten Na, 1,4-dioxane, reflux, 3 h. (ii) n-Pentane, hv, 6 h.

Scheme 2. Generation and $[2+2+2+2]$ dimerization of pentacyclo[6.4.0.0 $\left.0^{2,10} \cdot 0^{3,7} \cdot 0^{4,9}\right]$ dodeca-5,8,11-triene (6). (i) Molten Na, 1,4-dioxane, reflux, 3 h.

We were also able to perform [2+2] cross-couplings among different pyramidalized alkenes by simultaneously generating them in the same pot. ${ }^{\text {1d,e,f,j }}$ However, in one case, in which the pyramidalized alkene contained additional, relatively close alkene functionalities, dimerization took place through a $[2+2+2+2]$ process to give a complex polycyclic product 7 (Scheme 2). ${ }^{\text {1h }}$

This observation led us to envision a similar process in a triquinacene derivative containing a pyramidalized $\mathrm{C}=\mathrm{C}$ bond that might lead to a dodecahedrane derivative $\mathbf{1 0}$ (see Scheme 3).

8
9

10

Scheme 3. Potential $[2+2+2+2+2+2]$ dimerization of a bridged triquinacene containing a pyramidalized $\mathrm{C}=\mathrm{C}$ bond to dodecahedrane derivative 10. (i) Molten Na, 1,4-dioxane, reflux.

Scheme 4. Retrosynthetic analysis for compound $11\left(=8, X=\mathrm{CH}_{2} \mathrm{OCH}_{2}\right)$.

The preparation of the precursor $\mathbf{1 1}\left(=\mathbf{8}, \mathrm{X}=\mathrm{CH}_{2} \mathrm{OCH}_{2}\right)$ was envisaged, as shown in Scheme 4, to be formed from dihydroxydione 12. Substitution of two vicinal bridgehead hydroxyl groups by iodine atoms in related systems has been previously described. ${ }^{2}$ Also the conversion of two keto groups into two alkene functions in connection with the preparation of triquinacene derivatives has been described. ${ }^{3}$ We envisaged the preparation of dihydroxydione 12 through a double intramolecular condensation from tetraketone 13, a compound which might be prepared from dimethyl acetonedicarboxylate $\mathbf{1 8}$ and ethyl 2,3-dioxopropanoate $\mathbf{1 7}$ by standard procedures through the shown intermediates and the required protecting group transformations.

Results and Discussion

Compound 17 was prepared as described ${ }^{4}$ from oxalic acid monoethyl ester chloride by reaction with diazomethane, followed by oxidation of the formed α-diazoketone with dimethyldioxirane. Reaction of $\mathbf{1 7}$ with dimethyl acetonedicarboxylate $\mathbf{1 8}$ in water containing sodium bicarbonate gave a mixture of compounds $\mathbf{1 9}$ and $\mathbf{2 0}$ as previously described. ${ }^{5}$ Analytically pure samples of compounds 19 (9%) and 20 (11%) were isolated from the reaction mixture by column chromatography. For the preparation of diketone 22, the reaction mixture obtained from 17 and 18 was directly submitted to hydrolysis and decarboxylation under the Krapcho conditions. Column chromatography of the resulting mixture gave the new diketo ester 22 and a compound that was characterized as ethyl 2-methyl-4-oxocyclopent-2-enecarboxylate 21 (Scheme 5).

Scheme 5. Preparation of intermediates 24 and 25. (i) $\mathrm{NaHCO}_{3}, \mathrm{H}_{2} \mathrm{O}$, r.t., 4 d, 19 (11\%), 20 (9\%). (ii) $\mathrm{NaCl}, \mathrm{H}_{2} \mathrm{O}$, DMSO, $180^{\circ} \mathrm{C}, 4 \mathrm{~h}, 22$ (36\%), 21 (19\%). (iii) 2,2-Dimethylpropane-1,3diol, p - TsOH , toluene, reflux, $2 \mathrm{~h}, 23$ (90\%). (iv) $\mathrm{LAH}, \mathrm{Et}_{2} \mathrm{O}$, rt, $1.5 \mathrm{~h}, 24$ (98\%). (v) TsCl , pyridine, $4^{\circ} \mathrm{C}, 23 \mathrm{~h}, 25$ (100\%).

The keto functions of diketoester 22 were protected with 2,2-dimethylpropane-1,3-diol to give acetal 23 in high yield, which was reduced with lithium aluminum hydride (LAH) to alcohol 24. Tosylation of alcohol 24 gave the corresponding tosylate 25 (Scheme 5).

For the introduction of the (3-cyclopentenyl)methyl group in alcohol 24, (3-cyclopentenyl)methanol 26 and the corresponding tosylate 27 were prepared as described. Reaction of cis-1,4-dichloro-2-butene with the lithium salt of dimethyl malonate gave dimethyl 3-cyclopentene-1,1dicarboxylate. ${ }^{5}$ Hydrolysis and decarboxylation of this diester gave 3-cyclopentenecarboxylic acid, which was reduced with LAH to alcohol $26 .{ }^{6}$ Reaction of alcohol 26 with tosyl chloride gave the corresponding tosylate 27.7

First, we synthesized ether 28 by reaction of alcohol 24 with tosylate 27 . However and to our surprise, the yield of ether $\mathbf{2 8}$ was only 19%, tosylate $\mathbf{2 5}$ was isolated in 27% yield, and a large
amount of alcohol 24 (38\%) was recovered. This means that tosyl transfer between alcohol 24 and tosylate 27 is taking place to a large extent (Scheme 6).

24

27

25

Scheme 6. Preparation of 31. (i) NaH , toluene, reflux, $3.5 \mathrm{~h}, 28$ (19\%), 25 (27\%), 24 (38\% recovered). (ii) NaH , toluene, reflux, $19 \mathrm{~h}, \mathbf{2 8}$ (44%, from 25), 24 (44%, from 25), 29 (52%, from 26). (iii) $\mathrm{K}_{2} \mathrm{OsO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (0.02 equiv), NMO (1.2 equiv), $\mathrm{H}_{2} \mathrm{O} / t-\mathrm{BuOH}, 0{ }^{\circ} \mathrm{C}, 15 \mathrm{~min}$, r.t., $4 \mathrm{~h}, 30$. (iv) Oxalyl chloride, $\mathrm{DMSO}_{2} \mathrm{Et}_{3} \mathrm{~N}, \mathrm{DCM}, 31$ (41% from 28).

Then, we carried out the reaction of alcohol 26 and tosylate 25. In this case, ether 28 was obtained from 25 with an improved yield (44%), although tosyl transfer was also observed; alcohol 24 and ether 29 were obtained from 25 (44\%) and from 26 (52\%), respectively. Dihydroxylation of compound 28 using a catalytic amount of dipotassium osmate and N -methylmorpholine N-oxide (NMO) as the stoichiometric oxidant gave a mixture of stereoisomeric alcohols $(1 r, 2 c, 4 c)$ - and $(1 r, 2 c, 4 t)-\mathbf{3 5}$, which was characterized as such.

Scheme 7. Transformations of 28. (i) MCPBA, DCM, rt, $1 \mathrm{~h}, 32$ (94\%). (ii) $\mathrm{Ce}\left(\mathrm{NH}_{4}\right)_{2}\left(\mathrm{NO}_{3}\right)_{6}$, $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}, 65^{\circ} \mathrm{C}, 5 \mathrm{~min}, 14$ (44%). (iii) $35 \% \mathrm{HCl}, \mathrm{THF}, \mathrm{rt}, 2 \mathrm{~h}, 33$ (61%). (iv) MCPBA, DCM, rt, $1.5 \mathrm{~h}, 34$ (63%). (v) LiHMDS (2.4 equiv), toluene, $-68^{\circ} \mathrm{C}$ to $\mathrm{rt}, 24 \mathrm{~h}$; or LiHMDS (2.4 equiv), toluene, $\mathrm{Sc}(\mathrm{OTf})_{3}$ (1.2 equiv), $-68^{\circ} \mathrm{C}$ to $\mathrm{rt}, 24 \mathrm{~h}$; or LiHMDS (2.4 equiv), THF, $-78{ }^{\circ} \mathrm{C}$ to $\mathrm{rt}, 24 \mathrm{~h}$; or LiHMDS (2.4 equiv), THF, $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ (1.2 equiv), $-78^{\circ} \mathrm{C}$ to rt, 24 h .

Swern oxidation of this mixture gave the expected product 31, which exists essentially in the enol form, as evidenced by the comparison of significant ${ }^{13} \mathrm{C}$ NMR signals of the 2-hydroxy-cyclopent-2-en-1-one moiety of 31 ($\delta_{1-\mathrm{C}} 203.0, \delta_{2 \text {-c }} 153.2, \delta_{3 \text {-c }} 130.5$) with the corresponding signals of a model compound, 4-(n-hexyl)-2-hydroxycyclopent-2-en-1-one ($\delta_{1-\mathrm{c}}$ 203.3, $\delta_{2-\mathrm{c}}$ $152.0, \delta_{3-\mathrm{c}} 133.3$). ${ }^{8}$ Attempts to convert enol 31 into dihydroxydione $\mathbf{1 2}$ (hydrolysis and two intramolecular aldol condensations) or into the corresponding acetal with $p-\mathrm{TsOH}$ in acetone gave a mixture, in which 31 had disappeared but the expected products were not detected.

Noteworthy, dihydroxydione $\mathbf{1 2}$ is by far the most stable among 12 possible stereoisomers derived from enol $\mathbf{3 1}$ by hydrolysis and double intramolecular aldol condensation, as established by theoretical methods (MM3, ${ }^{9}$ AM1, ${ }^{10}$ and PM3 ${ }^{11}$). However, among the 16 stereoisomers of hydrolysis and monocondensation products derived from enol 31, the precursor of dihydroxydione 12 and several other stereoisomers showed similar stabilities according to the above theoretical methods.

In view of this result and having ether 28 in hand, we attempted an alternative approach to the skeleton of compound $\mathbf{1 2}$ in a stepwise way (Scheme 7). To this end, ether $\mathbf{2 8}$ was epoxidized with m-chloroperoxybenzoic acid (MCPBA) to give a mixture of stereoisomeric epoxides $\mathbf{3 2}$ in a ratio close to 1:3 ($\left.{ }^{1} \mathrm{H} N \mathrm{NM}\right)$. Attempts to hydrolyze this mixture under various acidic conditions ($\mathrm{MsOH}, \mathrm{H}_{2} \mathrm{SO}_{4}, p-\mathrm{TsOH}$) gave complex product mixtures with not only the acetal functions hydrolyzed but also the epoxide reacted. When the hydrolysis was carried out with $35 \% \mathrm{HCl}$ in THF, a stereoisomeric mixture of chlorohydrins $\mathbf{3 3}$ was obtained. In order to obtain epoxide 34, we first carried out the hydrolysis of the acetal functions of compound 28 by reaction with Ce(IV) ammonium nitrate. ${ }^{12}$ Under these conditions, diketone 14 was obtained in 44% yield. Epoxidation of diketone $\mathbf{1 4}$ with MCPBA gave a mixture of stereoisomeric epoxides $\mathbf{3 4}$ in $\mathbf{6 3 \%}$ yield. However, all attempts to transform this compound into the tricyclic derivative 35 on reaction with an excess of lithium hexamethyldisilazide (LiHMDS) in toluene or THF, in the presence of $\mathrm{Sc}\left(\right.$ III) triflate or boron trifluoride etherate ${ }^{13}$ were fruitless, always leading to complex mixtures of unidentified products.

Conclusions

In conclusion we have prepared a series of 1 -substituted cis-bicyclo[3.3.0]octane-3,7-dione derivatives as potential precursors of a triquinacene having a pyramidalized $\mathrm{C}=\mathrm{C}$ bond. In spite of very favorable expectations based on different theoretical calculations, the double aldol condensation of compound 31 that should provide the tetracyclic dihydroxydione $\mathbf{1 2}$ failed to give any defined product. Also, the intramolecular condensation of diketoepoxide 34 to diketoalcohol 35 failed to give any defined product. Work is in progress to prepare a derivative of general structure $\mathbf{8}$ through other synthetic approaches.

Experimental Section

General. Melting points were determined with a MFB 595010 M Gallenkamp melting point apparatus. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on Varian-Gemini 200 (200 MHz), Varian Gemini300 (300 MHz), Varian Mercury-400 (400 MHz), or Varian VXR-500 (500 MHz) spectrometers. ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Varian Gemini-200 (50.3 MHz) and Varian Gemini-300 (75.4 MHz) spectrometers. The ${ }^{1} \mathrm{H} /{ }^{1} \mathrm{H}$ homocorrelation spectra (COSY and NOESY) and the one
bond and long range ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}$ heterocorrelation spectra (gHSQC and gHMBC, respectively) were performed on a Varian VXR-500 spectrometer. Chemical shifts are given in δ scale and the coupling constants in Hz. IR spectra were registered on a FTIR Perkin-Elmer model 1600 or a Perkin-Elmer Spectrum RX1 spectrometer. MS and GC/MS analyses were carried out on a Hewlett-Packard HP-5988A spectrometer, the sample being introduced directly or through a gas chromatograph (Hewlett.Packard model 5890 Series II) using a 30-m column (HP-45, 5\% diphenyl-95\% dimethylpolysiloxane), conditions: 10 psi , initial temperature $100^{\circ} \mathrm{C}(2 \mathrm{~min})$, then heating at a rate of $10^{\circ} \mathrm{C} / \mathrm{min}$ up to $250^{\circ} \mathrm{C}$, then isothermic. The electron impact (EI, 70 eV) or chemical ionization ($\mathrm{CI}, \mathrm{CH}_{4}$) techniques were used. Where not indicated, the electron impact ionization technique was used. Only significant ions are given: those with higher relative ratio, except for the ions with higher m / z values. High resolution MS spectra were performed in an Autospec Micromass spectrometer at the University of Santiago de Compostela. The elemental analyses were determined in a Carlo Erba model 1106 equipment at the IIQAB (CSIC) of Barcelona, Spain. For the column chromatography, silica gel 60 AC $(35-70 \mu \mathrm{M}$, SDS, ref. 2000027 or $70-200 \mu \mathrm{M}$, SDS, ref. 2100027) or neutral aluminum oxide (Macherey-Nagel) were used. Except where otherwise indicated, $35-70 \mu \mathrm{M}$ silica gel was used. Thin-layer chromatography (TLC) was performed on aluminum-backed sheets with silica gel $60 \mathrm{~F}_{254}$ (Merck, ref. 1.05554) and spots were visualized with UV light, a 1% aqueous solution of KMnO_{4} or by placing the sheets in an iodine atmosphere.

Ethyl cis-3,7-dioxobicyclo[3.3.0]octane-1-carboxylate (22) and ethyl 2-methyl-4-oxocyclopent-2-enecarboxylate (21). To a solution of $\mathrm{NaHCO}_{3}(6.41 \mathrm{~g}, 76.3 \mathrm{mmol})$ in water (460 mL), dimethyl acetone-1,3-dicarboxylate $18(23.9 \mathrm{~g}, 137 \mathrm{mmol}$) and ethyl 2,3dioxopropanoate $(\mathbf{1 7} ; 10.2 \mathrm{~g}, 69 \mathrm{mmol})$ were added; the mixture was vigorously stirred at room temperature for 4 d . The mixture was acidified to pH 1 with 6 N HCl and then extracted with DCM $(3 \times 275 \mathrm{~mL})$. The organic extracts were combined, dried (anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$), and concentrated in vacuo to give a residue (30.8 g). Part of this residue (4.9 g) was subjected to column chromatography (silica gel, 100 g ; hexane/EtOAc 85:15); 20 ($0.46 \mathrm{~g}, 9 \%$) and 19 (0.48 $\mathrm{g}, 11 \%$) were eluted in this order. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of compounds $\mathbf{1 9}$ and $\mathbf{2 0}$ matched those previously described. ${ }^{5}$ The rest of the above residue (25.9 g) was taken up in DMSO (47 $\mathrm{mL})$; water (12 mL) and finely ground $\mathrm{NaCl}(3.5 \mathrm{~g})$ were added, the mixture was heated to 180 ${ }^{\circ} \mathrm{C}$ for 4 h , then allowed to cool to room temperature and concentrated in vacuo. The residue (18.9 g) was subjected to column chromagraphy (silica gel, 190 g ; hexane/EtOAc 9:1); $21(1.9 \mathrm{~g}$, 19%) and $22(4.3 \mathrm{~g}, 36 \%)$ were eluted in this order. Analytical samples were obtained as colorless oils by distillation in a rotary microdistillation equipment at $130{ }^{\circ} \mathrm{C} / 0.1$ Torr and 150 ${ }^{\circ} \mathrm{C} / 0.1$ Torr, respectively.
Compound 21. IR (NaCl): v 2982, 2932, 1732, 1625, 1436, 1409, 1369, 1327, 1257, 1230, $1185,1031,857 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.27\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.14$ $\left(\mathrm{s}, 3 \mathrm{H}, 2-\mathrm{CH}_{3}\right), 2.60\left(\mathrm{dd}, J=18.5 \mathrm{~Hz}, J^{\prime}=7.0 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}_{\text {trans }}\right), 2.68\left(\mathrm{dd}, J=18.5 \mathrm{~Hz}, J^{\prime}=2.5\right.$ $\left.\mathrm{Hz}, 1 \mathrm{H}, 5-\mathrm{H}_{c i s}\right), 3.63(\mathrm{dm}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}), 4.19\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 6.00(\mathrm{~s}, 1 \mathrm{H}, 3-\mathrm{H}) .{ }^{13} \mathrm{C}$

NMR (50.3 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 14.2\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, $18.0\left(2-\mathrm{CH}_{3}\right), 39.3$ (5-C), 49.9 (1-C), 61.5 $\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 132.1(3-\mathrm{C}), 171.2,173.6(\mathrm{COOEt}, 2-\mathrm{C}), 206.8(4-\mathrm{C}) . \mathrm{GC} / \mathrm{MS}\left(t_{\mathrm{R}}=12.6 \mathrm{~min}\right): \mathrm{m} / \mathrm{z}$ (\%) $168\left(\mathrm{M}^{+}, 38\right), 123$ (15), 122 (54), 96 (43), 95 (95), 94 (51), 67 (100). Anal. calcd. for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}_{3} \cdot 0.2 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 62.92 ; \mathrm{H}, 7.28$. Found: C, $62.83 ; \mathrm{H}, 7.09$.
Compound 22. IR (NaCl): v 2981, 2926, 1744, 1405, 1319, 1289, 1253, 1228, 1178, 1163, $1105,1059,1022 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.29\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right.$), 2.19 [ddd, $\left.J=19.0 \mathrm{~Hz}, J^{\prime}=5.5 \mathrm{~Hz}, J^{\prime \prime}=1.0 \mathrm{~Hz}, 2 \mathrm{H}, 4(6)-\mathrm{H}_{\text {endo }}\right], 2.37\left[\mathrm{dd}, J=19.0 \mathrm{~Hz}, J^{\prime}=1.0 \mathrm{~Hz}\right.$, $2 \mathrm{H}, 2(8)-\mathrm{H}_{\text {endo }}$], 2.79 [ddd, $J=19.0 \mathrm{~Hz}, J^{\prime}=9.0 \mathrm{~Hz}, J^{\prime \prime}=1.5 \mathrm{~Hz}, 2 \mathrm{H}, 4(6)-\mathrm{H}_{\text {exo }}$], 3.05 [dd, $J=$ $\left.19.0 \mathrm{~Hz}, J^{\prime}=1.5 \mathrm{~Hz}, 2 \mathrm{H}, 2(8)-\mathrm{H}_{\text {exo }}\right], 3.19\left(\mathrm{tt}, J=9.0 \mathrm{~Hz}, J^{\prime}=5.5 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}\right), 4.21(\mathrm{q}, J=7.0$ $\left.\mathrm{Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 14.1\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 40.9$ (5-C), 43.7 [4(6)$\mathrm{C}], 46.4$ [2(8)-C], $52.6(1-\mathrm{C}), 62.0\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 174.2(\mathrm{COOEt}), 214.5$ [3(7)-C]. GC/MS $\left(t_{\mathrm{R}}=\right.$ $16.4 \mathrm{~min}): \mathrm{m} / \mathrm{z}(\%) 210\left(\mathrm{M}^{+}, 17\right), 164$ (14), 141 (72), 137 (23), 136 (16), 113 (100), 85 (44). Anal. calcd. for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{4} \cdot 0.1 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 62.31 ; \mathrm{H}, 6.75$. Found: C, 62.23; H, 6.74.
Ethyl 3,3:7,7-bis(2,2-dimethyl-1,3-propylidenedioxy)-cis-bicyclo[3.3.0]octane-1-carboxylate (23). A mixture of diketone $22(2.31 \mathrm{~g}, 11.0 \mathrm{mmol})$, 2,2-dimethyl.1,3-propanediol ($4.44 \mathrm{~g}, 42.6$ $\mathrm{mmol})$ and $p-\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(72 \mathrm{mg})$ in toluene $(100 \mathrm{~mL})$ was heated under reflux for 2 h with continuous removal of the formed water using a Dean-Stark equipment. The cold solution was washed with water ($3 \times 40 \mathrm{~mL}$), dried (anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$) and concentrated in vacuo to give acetal 23 as a white solid ($3.79 \mathrm{~g}, 90 \%$). White crystals (from $\mathrm{Et}_{2} \mathrm{O}$); mp 86.1-87.4 ${ }^{\circ} \mathrm{C}$. IR (KBr): $\tilde{v} 2979,2951,2867,1717,1473,1364,1323,1304,1132,1111,1043 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (500 MHz , CDCl_{3}): $\delta 0.89\left(\mathrm{~s}, 6 \mathrm{H}, 2\right.$ syn $\left.-\mathrm{CH}_{3}\right), 1.01\left(\mathrm{~s}, 6 \mathrm{H}, 2\right.$ anti- $\left.\mathrm{CH}_{3}\right), 1.25\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, 1.99 [ddd, $J=13.0 \mathrm{~Hz}, J^{\prime}=6.0 \mathrm{~Hz}, J^{\prime \prime}=1.0 \mathrm{~Hz}, 2 \mathrm{H}, 4(6)-\mathrm{H}_{\text {endo }}$], $2.02\left[\mathrm{dd}, J=13.5 \mathrm{~Hz}, J^{\prime}=1.0\right.$ $\left.\mathrm{Hz}, 2 \mathrm{H}, 2(8)-\mathrm{H}_{\text {endo }}\right], 2.10$ [ddd, $\left.J=13.0 \mathrm{~Hz}, J^{\prime}=9.0 \mathrm{~Hz}, J^{\prime \prime}=1.5 \mathrm{~Hz}, 2 \mathrm{H}, 4(6)-\mathrm{H}_{\text {exo }}\right], 2.64$ [dd, J $\left.=13.5 \mathrm{~Hz}, J^{\prime}=1.5 \mathrm{~Hz}, 2 \mathrm{H}, 2(8)-\mathrm{H}_{\text {exo }}\right], 3.02\left(\mathrm{tt}, J=9.0 \mathrm{~Hz}, J^{\prime}=6.0 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}\right), 3.39(\mathrm{dd}, J=$ $11.0 \mathrm{~Hz}, J^{\prime}=1.0 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{C} H_{\text {exo,anti }}$ dioxane substructure), $3.46\left(\mathrm{dd}, J=11.0 \mathrm{~Hz}, J^{\prime}=1.0 \mathrm{~Hz}\right.$, $2 \mathrm{H}, 2 \mathrm{C} H_{\text {endo,anti }}$ dioxane substructure), $3.49\left(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{C} H_{\text {endo,syn }}\right.$ dioxane substructure), 3.51 (dd, $J=11.5 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{CH}$ exo,syn dioxane substructure), $4.14(\mathrm{q}, J=7.0 \mathrm{~Hz}$, $\left.2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 14.1\left(\mathrm{CH}_{3}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 22.4\left(\mathrm{CH}_{3}\right.$, syn- $\left.\mathrm{CH}_{3}\right)$, $22.6\left(\mathrm{CH}_{3}\right.$, anti- $\left.\mathrm{CH}_{3}\right), 30.0\left[\mathrm{C}, 2 \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right], 40.6\left[\mathrm{CH}_{2}, 4(6)-\mathrm{C}\right], 40.7(\mathrm{CH}, 5-\mathrm{C}), 42.0\left[\mathrm{CH}_{2}, 2(8)-\right.$ $\mathrm{C}], 55.0(\mathrm{C}, 1-\mathrm{C}), 60.7\left(\mathrm{CH}_{2}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 71.9\left(\mathrm{CH}_{2}\right.$, exo- CH_{2} dioxane substructure $)$, $72.1\left(\mathrm{CH}_{2}\right.$, endo- CH_{2} dioxane substructure), 108.5 [C, 3(7)-C], 176.9 (C, COOEt). GC/MS ($t_{\mathrm{R}}=23.7 \mathrm{~min}$): $\mathrm{m} / \mathrm{z}(\%) 382\left(\mathrm{M}^{+}, 14\right), 309$ (59), 227 (64), 155 (27), 141 (28), 113 (28), 69 (100). Anal. calcd. for $\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{O}_{6}$: C, 65.94; H, 8.96. Found: C, 66.07; H, 9.02.
[3,3:7,7-Bis(2,2-dimethyl-1,3-propylidenedioxy)-cis-bicyclo[3.3.0]oct-1-yl]methanol (24). To a suspension of LAH ($0.36 \mathrm{~g}, 9.5 \mathrm{mmol}$) in anhydrous $\mathrm{Et}_{2} \mathrm{O}(12 \mathrm{~mL})$, a solution of acetal 23 $(1.18 \mathrm{~g}, 3.1 \mathrm{mmol})$ in anhydrous $\mathrm{Et}_{2} \mathrm{O}(40 \mathrm{~mL})$ was added and the mixture was stirred at room temperature for 1.5 h . Water (3 mL) was slowly added and the formed suspension was filtered. Concentration of the filtrate in vacuo gave alcohol 24 ($1.03 \mathrm{~g}, 98 \%$) as white solid. White crystals (from $\mathrm{Et}_{2} \mathrm{O}$); mp 109.5-110.8 ${ }^{\circ} \mathrm{C}$. IR (KBr): v 3495, 2961, 2932, 2858, 1474, 1323, $1308,1145,1108,1084,1073,1042,1011 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.95(\mathrm{~s}, 6 \mathrm{H})$,
$0.97(\mathrm{~s}, 6 \mathrm{H})\left[2 \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.93\left[\mathrm{ddd}, J=13.0 \mathrm{~Hz}, J^{\prime}=6.5 \mathrm{~Hz}, J^{\prime \prime}=1.0 \mathrm{~Hz}, 2 \mathrm{H}, 4(6)-\mathrm{H}_{\text {endo }}\right], 2.01$ $\left(\mathrm{dd}, J=13.5 \mathrm{~Hz}, J^{\prime}=1.0 \mathrm{~Hz}, 2 \mathrm{H}\right)$ and $2.05\left[\mathrm{dd}, J=13.5 \mathrm{~Hz}, J^{\prime}=1.0 \mathrm{~Hz}, 2 \mathrm{H}\right)\left[2(8)-\mathrm{H}_{\text {endo }}\right.$ and $2(8)-\mathrm{H}_{\text {exo }}$], 2.22 [ddd, $\left.J=13.5 \mathrm{~Hz}, J^{\prime}=8.5 \mathrm{~Hz}, J^{\prime \prime}=1.0 \mathrm{~Hz}, 2 \mathrm{H}, 4(6)-\mathrm{H}_{e x o}\right], 2.40(\mathrm{tt}, J=8.5 \mathrm{~Hz}$, $J^{\prime}=6.5 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}$), 2.89 (broad s, $1 \mathrm{H}, \mathrm{OH}$), $3.44-3.50$ (complex signal, $10 \mathrm{H}, 4 \mathrm{CH}_{2}$ of 2 dioxane substructures plus $\left.\mathrm{CH}_{2} \mathrm{OH}\right) .{ }^{13} \mathrm{C}$ NMR $\left(75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 22.4\left(\mathrm{CH}_{3}\right)$ and $22.5\left(\mathrm{CH}_{3}\right)$ [2 C(CH3 $\left.)_{2}\right], 30.0\left[\mathrm{C}, 2 C\left(\mathrm{CH}_{3}\right)\right], 39.5\left[\mathrm{CH}_{2}, 4(6)-\mathrm{C}\right], 39.8(\mathrm{CH}, 5-\mathrm{C}), 44.5\left[\mathrm{CH}_{2}, 2(8)-\mathrm{C}\right], 50.4$ $(\mathrm{C}, 1-\mathrm{C}), 70.4\left(\mathrm{CH}_{2}, \mathrm{CH}_{2} \mathrm{OH}\right), 71.7\left(\mathrm{CH}_{2}\right)$ and $72.1\left(\mathrm{CH}_{2}\right)\left(\mathrm{CH}_{2} 2\right.$ dioxane substructures), 109.1 [C, 3(7)-C]. GC/MS ($\left.t_{\mathrm{R}}=23.5 \mathrm{~min}\right): \mathrm{m} / \mathrm{z}(\%) 340\left(\mathrm{M}^{+}, 5\right), 309(17), 155$ (23), 128 (26), 99 (18), 69 (100). Anal. calcd. for $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{O}_{5}$: C, 67.03; H, 9.47. Found: C, 66.93; H, 9.48.
[3,3:7,7-Bis(2,2-dimethyl-1,3-propylidenedioxy)-cis-bicyclo[3.3.0]oct-1-yl]methyl tosylate (25). To a cold $\left(0{ }^{\circ} \mathrm{C}\right)$ solution of alcohol $24(1.00 \mathrm{~g}, 2.9 \mathrm{mmol})$ in pyridine (3.5 mL), tosyl chloride ($0.71 \mathrm{~g}, 3.7 \mathrm{mmol}$) was added in portions for 15 min . The mixture was stirred at $0^{\circ} \mathrm{C}$ for 1.5 h and then it was kept at $4{ }^{\circ} \mathrm{C}$ for 21 h . The mixture was poured on to a mixture of ice (15 g) and $35 \% \mathrm{HCl}(3 \mathrm{~mL})$ and it was extracted with $\mathrm{DCM}(2 \times 20 \mathrm{~mL})$. The combined organic extracts were dried (anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$) and concentrated in vacuo to give tosylate 25 as white solid (1.46 g , quantitative yield). White crystals (from $\mathrm{Et}_{2} \mathrm{O}$); mp 131.9-132.5 ${ }^{\circ} \mathrm{C} . \mathrm{IR}(\mathrm{KBr}): v 2947$, 2929, 2853, 1472, 1356, 1174, 1105, 928, $668 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.83(\mathrm{~s}, 6 \mathrm{H})$ and $0.94(\mathrm{~s}, 6 \mathrm{H})$ [$2 \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}$], 1.82 [complex signal, $4 \mathrm{H}, 4(6)-\mathrm{H}_{\text {endo }}$ and $2(8)-\mathrm{H}_{\text {endo }}$], $1.98-2.12$ [complex signal, $5 \mathrm{H}, 2(8)-\mathrm{H}_{\text {exo }}, 4(6)-\mathrm{H}_{\text {exo }}$ and $5-\mathrm{H}$), $2.42\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}_{3}\right), 3.26\left(\mathrm{~s}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right)$ and $3.38\left(\mathrm{~s}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right)\left(4 \mathrm{CH}_{2}\right.$ of 2 dioxane substructures), $3.85\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OTs}\right), 7.32$ [d, $J=$ $8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-3(5)-\mathrm{H}], 7.77[\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-2(6)-\mathrm{H}] .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $21.6\left(\mathrm{CH}_{3}, \mathrm{Ar}-\mathrm{CH}_{3}\right), 22.4\left(\mathrm{CH}_{3}\right)$ and $22.6\left(\mathrm{CH}_{3}\right)$ [2 C(CH3$\left.)_{2}\right], 30.0\left[\mathrm{C}, 2 \mathrm{C}\left(\mathrm{CH}_{3}\right)\right], 39.5(\mathrm{CH}, 5-$ C), $40.6\left(\mathrm{CH}_{2}\right)$ and $41.5\left(\mathrm{CH}_{2}\right)$ [2(8)-C and $\left.4(6)-\mathrm{C}\right], 48.9(\mathrm{C}, 1-\mathrm{C}), 71.4\left(\mathrm{CH}_{2}\right)$ and $72.2\left(\mathrm{CH}_{2}\right)$ $\left(2 \times 2 \mathrm{CH}_{2}\right.$ of 2 dioxane substructures), $77.2\left(\mathrm{CH}_{2}, \mathrm{CH}_{2} \mathrm{OTs}\right), 108.7$ [C, $\left.3(7)-\mathrm{C}\right], 128.0[\mathrm{CH}, \mathrm{Ar}$ 2(6)-C], $129.8[\mathrm{CH}, \operatorname{Ar} 3(5)-\mathrm{C}], 132.9(\mathrm{C}, \mathrm{Ar} 1-\mathrm{C}), 144.6$ (C, Ar 4-C). GC/MS ($t_{\mathrm{R}}=21.4 \mathrm{~min}$): $\mathrm{m} / \mathrm{z}(\%) 324$ (20), 323 [(M-TsO) $\left.{ }^{+}, 100\right], 322$ (20), 321 (39), 237 (45), 151 (57). Anal. calcd. for $\mathrm{C}_{26} \mathrm{H}_{38} \mathrm{O}_{7} \mathrm{~S}: \mathrm{C}, 63.13$; H, 7.74, S, 6.48. Found: C, 63.28; H, 7.74, 6.40.

1-[(Cyclopent-3-enyl)methoxymethyl]-3,3:7,7-bis-(2,2-dimethyl-1,3-propylidenedioxy)-cis-

 bicyclo[3.3.0]octane (28). Procedure 1. To a magnetically stirred suspension of NaH (12 mg , 60% content, 0.28 mmol) in anhydrous toluene (0.5 mL) under an argon atmosphere, a solution of alcohol $24(85 \mathrm{mg}, 0.25 \mathrm{mmol})$ in the same solvent $(0.5 \mathrm{~mL})$ was added and the mixture was stirred until no more hydrogen was evolved. Then, a solution of tosylate 27 ($76 \mathrm{mg}, 0.30 \mathrm{mmol}$) in anhydrous toluene $(0.5 \mathrm{~mL})$ was added dropwise and the mixture was heated under reflux for 3.5 h , following the evolution of the reaction by TLC. The mixture was allowed to cool to room temperature, was washed with water $(3 \times 2 \mathrm{~mL})$. The organic phase was dried (anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$) and concentrated in vacuo to give a residue (123 mg) that was subjected to column chromatography (neutral aluminum oxide, 6 g ; hexane). In order of elution, ether 28 (20 mg , 19%), tosylate 25 ($33 \mathrm{mg}, 27 \%$) and starting alcohol 24 ($32 \mathrm{mg}, 38 \%$ recovery) were isolated. 28: White crystals (sublimed); mp 74.8-76.6 ${ }^{\circ} \mathrm{C} . \mathrm{IR}(\mathrm{NaCl}): v 3054,2952,2931,2852,1472$, $1362,1324,1309,1110,1042 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.88(\mathrm{~s}, 6 \mathrm{H})$ and $0.97(\mathrm{~s}, 6 \mathrm{H})$[$2 \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}$], $1.86\left[\mathrm{dd}, J=13.5 \mathrm{~Hz}, J^{\prime}=1.0 \mathrm{~Hz}, 2 \mathrm{H}, 2(8)-\mathrm{H}_{\text {endo }}\right], 1.91$ [ddd, $J=13.0 \mathrm{~Hz}, J^{\prime}=7.0$ $\left.\mathrm{Hz}, J^{\prime \prime}=1.0 \mathrm{~Hz}, 2 \mathrm{H}, 4(6)-\mathrm{H}_{\text {endo }}\right], 2.05\left[\mathrm{ddd}, J=13.0 \mathrm{~Hz}, J^{\prime}=9.0 \mathrm{~Hz}, J^{\prime \prime}=1.0 \mathrm{~Hz}, 2 \mathrm{H}, 4(6)-\right.$ $\left.\mathrm{H}_{\text {exo }}\right], 2.08\left[\mathrm{~m}, 2 \mathrm{H}, 2^{\prime}\left(5^{\prime}\right)-\mathrm{H}_{\text {cis }}\right], 2.15[\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{H}], 2.20\left[\mathrm{dd}, J=13.5 \mathrm{~Hz}, J^{\prime}=1.5 \mathrm{~Hz}, 2 \mathrm{H}, 2(8)-\right.$ $\mathrm{H}_{\text {exo }}$], 2.42 [m, 2H, 2'(5^{\prime})- $\left.\mathrm{H}_{\text {trans }}\right], 2.55\left(\mathrm{~m}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}\right), 3.22\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C} 1-\mathrm{CH}_{2} \mathrm{O}\right), 3.28(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{C1}{ }^{\prime}-\mathrm{CH}_{2} \mathrm{O}$), 3.39-3.47 (m, 8H, $4 \mathrm{CH}_{2}$ of 2 dioxane substructures), $5.62\left[\mathrm{~s}, 2 \mathrm{H}, 3^{\prime}\left(4^{\prime}\right)-\mathrm{H}\right] .{ }^{13} \mathrm{C}$ NMR (75.4 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 22.5\left(\mathrm{CH}_{3}\right)$ and $22.7\left(\mathrm{CH}_{3}\right)\left[2 \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right], 30.0\left[\mathrm{C}, 2 \mathrm{C}\left(\mathrm{CH}_{3}\right)\right], 35.9$ [CH2, 2'(5')-C], $36.5\left(\mathrm{CH}, 1\right.$ '-C), $40.3(\mathrm{CH}, 5-\mathrm{C}), 40.4\left[\mathrm{CH}_{2}, 4(6)-\mathrm{C}\right], 42.5\left[\mathrm{CH}_{2}, 2(8)-\mathrm{C}\right], 49.9$ (C, 1-C), $71.7\left(\mathrm{CH}_{2}\right)$ and $72.1\left(\mathrm{CH}_{2}\right)\left(2 \times 2 \mathrm{CH}_{2}\right.$ of 2 dioxane substructures), $75.5\left(\mathrm{CH}_{2}, 1\right.$ ' $-\mathrm{C}-$ $\left.\mathrm{CH}_{2} \mathrm{O}\right)$, $78.1\left(\mathrm{CH}_{2}, 1-\mathrm{C}-\mathrm{CH}_{2} \mathrm{O}\right), 109.4$ [C, $\left.3(7)-\mathrm{C}\right], 129.5\left[\mathrm{CH}, 3^{\prime}\left(4^{\prime}\right)-\mathrm{C}\right] . \mathrm{GC} / \mathrm{MS}\left(t_{\mathrm{R}}=28.9 \mathrm{~min}\right)$: $m / z(\%) 420\left(\mathrm{M}^{+}, 9\right), 341$ (13), $309\left[\left(\mathrm{M}-\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{CH}_{2} \mathrm{OCH}_{2}\right)^{+}\right.$, 94], 128 (26), 81 (54), 79 (32), 69 (100). Anal. calcd. for $\mathrm{C}_{25} \mathrm{H}_{40} \mathrm{O}_{5}$: C, 71.39; H, 9.59. Found: C, 71.84; H, 9.55.

Procedure 2. To a magnetically stirred suspension of $\mathrm{NaH}(127 \mathrm{mg}, 55 \%$ content, 2.9 mmol) in anhydrous toluene (1 mL) under an argon atmosphere, a solution of alcohol $26(228 \mathrm{mg}, 2.3$ mmol) in anhydrous toluene (1 mL) was added and the mixture was stirred until no more hydrogen was evolved. Then, a solution of tosylate $25(960 \mathrm{mg}, 1.93 \mathrm{mmol})$ in anhydrous toluene (2 mL) was added dropwise and the mixture was heated under reflux for 19 h , following the evolution of the reaction by TLC. The mixture was allowed to cool to room temperature and was washed with water ($2 \times 10 \mathrm{~mL}$). The organic phase was dried (anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$) and concentrated in vacuo to give a residue (857 mg) that was subjected to column chromatography (neutral aluminum oxide, 35 g ; hexane/EtOAc mixtures). Ether 29 ($106 \mathrm{mg}, 52 \%$ from 26) was eluted with hexane, the expected ether $28(355 \mathrm{mg}, 44 \%$ from 25) was eluted with hexane/EtOAc 95:5 and alcohol 24 ($287 \mathrm{mg}, 44 \%$ from 25) was eluted with EtOAc.
Compound 29. Oil, bp $120{ }^{\circ} \mathrm{C} / 1$ Torr. IR (NaCl): v 2923, 2853, 1459, 1376, $1116 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.04-2.15(\mathrm{~m}, 4 \mathrm{H})$ and 2.42-2.64 (complex signal, 6 H) [2(5)- H_{2} and $1-\mathrm{H}], 3.32\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 5.65[\mathrm{~m}, 4 \mathrm{H}, 3(4)-\mathrm{H}] .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $36.0\left[\mathrm{CH}_{2}, 2(5)-\mathrm{C}\right], 36.6(\mathrm{CH}, 1-\mathrm{C}), 75.3\left(\mathrm{CH}_{2}, \mathrm{CH}_{2} \mathrm{O}\right), 129.5[\mathrm{CH}, 3(4)-\mathrm{C}] . \mathrm{GC} / \mathrm{MS}\left(t_{\mathrm{R}}=12.3\right.$ $\min , \mathrm{CI}): m / z(\%) 179\left([\mathrm{M}+\mathrm{H}]^{+}, 2\right), 177\left([\mathrm{M}-\mathrm{H}]^{+}, 2\right), 111\left(\left[\mathrm{M}-\mathrm{C}_{5} \mathrm{H}_{7}\right]^{+}, 11\right), 81\left(\left[\mathrm{M}-\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{O}\right]^{+}\right.$, 100).

Mixture of $(1 r, 2 c, 4 t)$ - and ($1 r, 2 c, 4 c$)-4-\{[3,3:7,7-bis-(2,2-dimethyl-1,3-propylidenedioxy)-cis-bicyclo[3.3.0]oct-1-yl]methoxymethyl\}cyclopentane-1,2-diol (30). To a cold $\left(0^{\circ} \mathrm{C}\right)$ suspension of $\mathrm{K}_{2} \mathrm{OsO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}(7.6 \mathrm{mg}, 0.02 \mathrm{mmol})$ and N -methylmorpholine N-oxide ($\mathrm{NMO}, 161 \mathrm{mg}, 1.37$ $\mathrm{mmol})$ in a mixture of water $/ t-\mathrm{BuOH}$ 1:1 $(1.3 \mathrm{~mL})$, a solution of ether $28(474 \mathrm{mg}, 1.13 \mathrm{mmol})$ in acetone (3 mL) was added dropwise and the mixture was magnetically stirred for 15 min at $0^{\circ} \mathrm{C}$ and then for 4 h at room temperature. The mixture was concentrated in vacuo and the residue (553 mg), containing mainly one stereoisomeric diol, was used as such in the next step. An analytical sample of diol $\mathbf{3 0}$ was obtained by taking the product in DCM, filtering the solution through a $0.45 \mu \mathrm{~m}$ polytetrafluoroethylene (PTFE) filter and concentrating the filtrate in vacuo. IR (NaCl): v 3435, 2952, 2932, 2855, 1473, 1395, 1362, 1323, 1308, $1107 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) (data of the main diastereomer of $\mathbf{3 0}$): $\delta 0.92(\mathrm{~s}, 6 \mathrm{H})$ and $0.98(\mathrm{~s}, 6 \mathrm{H})$ [2 $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right]$, $1.50-2.60$ [complex signal, $14 \mathrm{H}, 2^{\prime}\left(8^{\prime}\right)-\mathrm{H}_{2}, 4^{\prime}\left(6^{\prime}\right)-\mathrm{H}_{2}, 5^{\prime}-\mathrm{H}, 3(5)-\mathrm{H}_{2}$ and $4-\mathrm{H}$], $3.23\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C} 1^{\prime}-\right.$
$\mathrm{CH}_{2} \mathrm{O}$), 3.27 (d, $J=6.0 \mathrm{~Hz}, \mathrm{C} 4-\mathrm{CH}_{2} \mathrm{O}$), 3.34-3.50 (complex signal, $10 \mathrm{H}, \mathrm{CH}_{2}$ from 2 dioxane substructures and $1(2)-\mathrm{H}, 4.13$ (broad $\mathrm{t}, J=4.2 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR ($75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}$): (data of the main diastereomer of $\mathbf{3 0}$): $\delta 22.4\left(\mathrm{CH}_{3}\right)$ and $22.5\left(\mathrm{CH}_{3}\right)$ [2 $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right], 29.9$ [C, 2 $C\left(\mathrm{CH}_{3}\right)_{2}$], $34.4(\mathrm{CH}, 4-\mathrm{C}), 34.5\left(\mathrm{CH}_{2}\right)$ and $39.9\left(\mathrm{CH}_{2}\right)$ [2' $\left(8^{\prime}\right)-\mathrm{C}$ and $\left.4^{\prime}\left(6^{\prime}\right)-\mathrm{C}\right], 40.3\left(\mathrm{CH}, 5^{\prime}-\mathrm{C}\right)$, $42.7\left[\mathrm{CH}_{2}, 3(5)-\mathrm{C}\right], 49.6\left(\mathrm{C}, 1^{\prime}-\mathrm{C}\right), 71.6\left(\mathrm{CH}_{2}\right)$ and $71.9\left(\mathrm{CH}_{2}\right)\left[1^{\prime}-\mathrm{C}-\mathrm{CH}_{2} \mathrm{O}\right.$ and $\left.4-\mathrm{C}-\mathrm{CH}_{2} \mathrm{O}\right], 73.7$ [$\mathrm{CH}, 1(2)-\mathrm{C}], 75.2\left(\mathrm{CH}_{2}\right)$ and $78.0\left(\mathrm{CH}_{2}\right)\left(4 \mathrm{CH}_{2}\right.$ of 2 dioxane substructures), 109.2 [C, 3' 7^{\prime})C]. GC/MS $\left(t_{\mathrm{R}}=25.8 \mathrm{~min}\right): m / z(\%) 454\left(\mathrm{M}^{+}, 16\right), 351(18), 309\left[\left(\mathrm{M}-\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{2}\right) \mathrm{CH}_{2} \mathrm{OCH}_{2}\right)^{+}\right.$, 100], 267 (19), 223 (20), 128 (19), 69 (56). HRMS: calcd. for $\left[\mathrm{C}_{25} \mathrm{H}_{42} \mathrm{O}_{7}+\mathrm{H}\right]^{+}: 455.3009$. Found: 455.3007.

4-[[3,3:7,7-Bis(2,2-dimethyl-1,3-propylidenedioxy)-cis-bicyclo[3.3.0]oct-1-yl]methoxymethyl]]-2-

 hydroxycyclopent-2-en-1-one (31). To a magnetically stirred cold ($-70^{\circ} \mathrm{C}$, acetone/ CO_{2} bath) solution of oxalyl chloride ($270 \mu \mathrm{~L}, 3.1 \mathrm{mmol}$) in DCM (7 mL) under an argon atmosphere, a solution of anhydrous DMSO ($470 \mu \mathrm{~L}, 6.6 \mathrm{mmol}$) in DCM (1.5 mL) was added. The mixture was stirred for 30 min and then a solution of diol $\mathbf{3 0}(451 \mathrm{mg}, 1.0 \mathrm{mmol})$ in DCM (2 mL) was added dropwise keeping the temperature below $-65^{\circ} \mathrm{C}$. The mixture was stirred for 2 h at -65 ${ }^{\circ} \mathrm{C}$, then anhydrous $\mathrm{Et}_{3} \mathrm{~N}(1.5 \mathrm{~mL})$ was added and stirring was continued for 1.5 h at this temperature. The reaction mixture was allowed to warm to room temperature, was acidified with cold $1 \mathrm{~N} \mathrm{HCl}(20 \mathrm{~mL})$ and was diluted with $\mathrm{DCM}(20 \mathrm{~mL})$. The organic phase was separated and the aqueous phase was extracted with DCM (20 mL). The organic phase and extracts were combined, washed with brine ($2 \times 20 \mathrm{~mL}$), dried (anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$) and concentrated in vacuo to give a residue (364 mg) that was subjected to column chromatography (silica gel, 70-200 $\mu \mathrm{m}$; hexane/EtOAc mixtures). Upon elution with hexane/EtOAc 8:2, slightly impure enol 31 (182 $\mathrm{mg}, 41 \%$) was isolated as an oil. IR (NaCl): v 3448, 2953, 2924, 2859, 1736, 1400, 1267, 1111, $1080,1045 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.93(\mathrm{~s}, 6 \mathrm{H}), 0.97(\mathrm{~s}, 6 \mathrm{H})\left[2 \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.8-2.2$ [complex signal, $12 \mathrm{H}, 2^{\prime}\left(8^{\prime}\right)-\mathrm{H}_{2}, 4^{\prime}\left(6^{\prime}\right)-\mathrm{H}_{2}, 5^{\prime}-\mathrm{H}, 4-\mathrm{H}$ and $5-\mathrm{H}_{2}$], $3.27(\mathrm{~s}, 2 \mathrm{H})$ and $3.45(\mathrm{~s}, 10 \mathrm{H})$ ($4 \mathrm{CH}_{2}$ of 2 dioxane substructures, $\mathrm{C} 1{ }^{\prime}-\mathrm{CH}_{2} \mathrm{O}$ and $\left.\mathrm{C} 4-\mathrm{CH}_{2} \mathrm{O}\right), 6.50(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.50.3 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 22.5\left(\mathrm{CH}_{3}\right)$ and $22.6\left(\mathrm{CH}_{3}\right)$ [2 C(CH3$\left.)_{2}\right], 30.0\left[2 \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right], 35.1$ (CH, 5’-C), $36.4\left[\mathrm{CH}_{2}, 4^{\prime}\left(6^{\prime}\right)-\mathrm{C}\right], 39.9\left[\mathrm{CH}_{2}, 2^{\prime}\left(8^{\prime}\right)-\mathrm{C}\right], 40.4(\mathrm{CH}, 4-\mathrm{C}), 42.8\left(\mathrm{CH}_{2}, 5-\mathrm{C}\right), 49.6$ (C, 1' -C), $71.7\left(\mathrm{CH}_{2}\right)$ and $72.0\left(\mathrm{CH}_{2}\right)\left(4 \mathrm{CH}_{2}\right.$ of 2 dioxane substructures), $74.2\left(\mathrm{CH}_{2}, 4-\mathrm{C}-\mathrm{CH}_{2} \mathrm{O}\right)$, $78.4\left(\mathrm{CH}_{2}, 1^{\prime}-\mathrm{C}-\mathrm{CH}_{2} \mathrm{O}\right), 109.2\left[\mathrm{C}, 3^{\prime}\left(7^{\prime}\right)-\mathrm{C}\right], 130.5(\mathrm{CH}, 3-\mathrm{C}), 153.2(\mathrm{C}, 2-\mathrm{C}), 203.1(\mathrm{C}, 1-\mathrm{C})$.
Attempted conversion of (31) into (12)

To a solution of enol $\mathbf{3 1}(45 \mathrm{mg}, 0.1 \mathrm{mmol})$ in acetone (1.4 mL), $p-\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(5 \mathrm{mg})$ was added and the mixture was magnetically stirred at room temperature for 24 h . The solution was concentrated in vacuo, water (5 mL) and EtOAc were added, the organic phase was separated and the aqueous one was extracted with EtOAc $(2 \times 2 \mathrm{~mL})$. The combined organic phases were dried (anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$) and concentrated in vacuo to give and oily residue in which no defined product could be detected (${ }^{1} \mathrm{H}$ NMR).

Mixture of 3,3:7,7-bis(2,2-dimethyl-1,3-propylidenedioxy)-1-[(trans-3,4-epoxycyclopentyl) methoxymethyl]-cis-bicyclo[3.3.0]octane (trans-32) and its stereoisomer (cis-32). To a magnetically stirred solution of ether $28(420 \mathrm{mg}, 1.0 \mathrm{mmol})$ in $\mathrm{DCM}(10 \mathrm{~mL})$ at room temperature, MCPBA ($449 \mathrm{mg}, 77 \%$ content, 2.0 mmol) was added portionwise in 5 min and stirring was continued for 1 h . The organic solution was washed with saturated aqueous NaHCO_{3} solution ($3 \times 10 \mathrm{~mL}$), was dried (anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$) and concentrated in vacuo to give an oily residue of the mixture of epoxides $32(412 \mathrm{mg}, 94 \%)$ in a ratio close to $1: 3\left({ }^{1} \mathrm{H}\right.$ and ${ }^{13} \mathrm{C}$ NMR). IR (NaCl): $v 2951,2857,1473,1395,1362,1308,1108,838 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ (data of the main diastereomer of 32): $\delta 0.91(\mathrm{~s}, 6 \mathrm{H})$ and $0.92(\mathrm{~s}, 6 \mathrm{H})$ [$\left.2 \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.83-2.22$ [complex signal, $14 \mathrm{H}, 2(8)-\mathrm{H}_{2}, 4(6)-\mathrm{H}_{2}, 5-\mathrm{H}, 1^{\prime}-\mathrm{H}$ and $2^{\prime}\left(5^{\prime}\right)-\mathrm{H}_{2}$], 3.21 (s, $2 \mathrm{H}, \mathrm{C} 1-\mathrm{CH}_{2} \mathrm{O}$), 3.34 (broad d, $J=4.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} 1^{\prime}-\mathrm{CH}_{2} \mathrm{O}$), 3.45 (broad $\mathrm{s}, 10 \mathrm{H}, 3^{\prime}\left(4^{\prime}\right)$ - H and $4 \mathrm{CH}_{2}$ of 2 dioxane substructures). ${ }^{13} \mathrm{C}$ NMR ($75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}$): (data of the main diastereomer of 32): $\delta 22.5$ $\left(\mathrm{CH}_{3}\right)$ and $22.6\left(\mathrm{CH}_{3}\right)$ [2 $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right], 30.0\left[\mathrm{C}, 2 \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right], 31.1\left[\mathrm{CH}_{2}, 2^{\prime}\left(5^{\prime}\right)-\mathrm{C}\right], 33.1\left(\mathrm{CH}, 1^{\prime}-\mathrm{C}\right)$, $40.1\left[\mathrm{CH}_{2}, 4(6)-\mathrm{C}\right], 40.4(\mathrm{CH}, 5-\mathrm{C}), 42.8\left[\mathrm{CH}_{2}, 2(8)-\mathrm{C}\right], 49.7\left(\mathrm{C}, 1-\mathrm{C} 57.0\left[\mathrm{CH}, 3{ }^{\prime}\left(4{ }^{\prime}\right)-\mathrm{C}\right), 71.7\right.$ $\left(\mathrm{CH}_{2}\right)$ and $72.0\left(\mathrm{CH}_{2}\right)\left(4 \mathrm{CH}_{2}\right.$ of 2 dioxane substructures), $73.4\left(1{ }^{\prime}-\mathrm{C}-\mathrm{CH}_{2} \mathrm{O}\right)$, $78.2\left(1-\mathrm{C}-\mathrm{CH}_{2} \mathrm{O}\right)$, $109.3[\mathrm{C}, 3(7)-\mathrm{C}] . \mathrm{GC} / \mathrm{MS}\left(t_{\mathrm{R}}=28.7 \mathrm{~min}\right): \mathrm{m} / \mathrm{z}(\%) 436\left(\mathrm{M}^{+}, 2\right), 309\left(\left[\mathrm{M}-\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{O}\right) \mathrm{CH}_{2} \mathrm{OCH}_{2}\right]^{+}\right.$, 22), 128 (33), 69 (100). HRMS (ESI-TOF): calcd. for $\left[\mathrm{C}_{25} \mathrm{H}_{40} \mathrm{O}_{6}+\mathrm{H}\right]^{+}: 437.2898$. Found: 437.2895.

Mixture of ($1 r, 3 c, 4 t)$ - and ($1 r, 3 t, 4 c$)-1-[(3-chloro-4-hydroxycyclopentyl)methoxymethyl]-cis-bicyclo[3.3.0]octane-3,7-dione (33). To a solution of the stereoisomeric mixture of epoxides $\mathbf{3 2}$ ($77 \mathrm{mg}, 0.18 \mathrm{mmol}$) in THF (5 mL), $35 \% \mathrm{HCl}(50 \mu \mathrm{~L})$ was added and the mixture was stirred for 2 h at room temperature. After diluting with water (5 mL), the mixture was extracted with EtOAc $(3 \times 10 \mathrm{~mL})$. The combined organic extracts were washed with saturated aqueous NaHCO_{3} solution ($2 \times 5 \mathrm{~mL}$) and brine ($2 \times 5 \mathrm{~mL}$), dried (anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$) and concentrated in vacuo to give an oily residue (67 mg) that was subjected to column chromatography (silica gel, 7 g ; hexane/EtOAc mixtures). Upon elution with hexane/EtOAc 2:3 a slightly impure stereoisomeric mixture of chlorohydrins 33 was isolated ($51 \mathrm{mg}, 61 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.6-3.0$ [complex signal, $14 \mathrm{H}, 2(8)-\mathrm{H}_{2}, 4(6)-\mathrm{H}_{2}, 5-\mathrm{H}, 1^{\prime}-\mathrm{H}, 2^{\prime}-\mathrm{H}_{2}$ and $5^{\prime}-\mathrm{H}_{2}$], $3.41(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}$, C 1 ' $-\mathrm{CH}_{2} \mathrm{O}$), $3.47\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C} 1-\mathrm{CH}_{2} \mathrm{O}\right), 3.51(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{O}-\mathrm{H}), 3.95\left(\mathrm{~m}, 1 \mathrm{H}, 4{ }^{\prime}-\mathrm{H}\right), 4.20(\mathrm{~m}$, $1 \mathrm{H}, 3^{\prime}-\mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($50.3 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (data of the main diastereomer of $\mathbf{3 3}$) $\delta 34.5\left(\mathrm{CH}_{2}, 2^{\prime}\right.$ C), $34.9\left(\mathrm{CH}, 1^{\prime}-\mathrm{C}\right), 36.8\left(\mathrm{C}, 5^{\prime}-\mathrm{C}\right), 39.7(\mathrm{CH}, 5-\mathrm{C}), 44.8\left[\mathrm{CH}_{2}, 4(6)-\mathrm{C}\right], 46.7\left[\mathrm{CH}_{2}, 2(8)-\mathrm{C}\right], 47.9$ (C, 1-C), $64.3\left(\mathrm{CH}, 3^{\prime}-\mathrm{C}\right), 75.7\left(\mathrm{CH}_{2}, 1\right.$ ' $\left.-\mathrm{C}-\mathrm{CH}_{2} \mathrm{O}\right), 77.3\left(1-\mathrm{C}-\mathrm{CH}_{2} \mathrm{O}\right], 79.4\left(\mathrm{CH}, 4^{\prime}-\mathrm{C}\right), 217.0$ [C, $3(7)-\mathrm{C}] . \mathrm{GC} / \mathrm{MS}\left(t_{\mathrm{R}}=25.0 \mathrm{~min}\right): \mathrm{m} / \mathrm{z}(\%) 264\left([\mathrm{M}-\mathrm{HCl}]^{+}, 3\right), 151(27), 150(26), 137(100), 83$ (53), 79 (82), 69 (64), 55 (65).

1-[(Cyclopent-3-enyl)methoxymethyl]-cis-bicyclo[3.3.0]octane-3,7-dione (14). To a warm (70 ${ }^{\circ} \mathrm{C}$), magnetically stirred solution of ether $28(119 \mathrm{mg}, 0.28 \mathrm{mmol})$ in acetonitrile (4 mL), a solution of $\mathrm{Ce}\left(\mathrm{NH}_{4}\right)_{2}\left(\mathrm{NO}_{3}\right)_{6}(769 \mathrm{mg}, 1.4 \mathrm{mmol})$ in water $(4 \mathrm{~mL})$ was added. The stirred mixture was heated to $65^{\circ} \mathrm{C}$ for 5 min and was then allowed to cool to room temperature. The mixture was extracted with DCM ($3 \times 15 \mathrm{~mL}$), the organic extracts were combined, dried (anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$) and concentrated in vacuo to give a residue (54 mg) that was subjected to column
chromatography (silica gel, 5.4 g ; heptane/EtOAc mixtures). Upon elution with heptane/EtOAc, diketone 14 ($31 \mathrm{mg}, 44 \%$) was isolated. An analytical sample was obtained by distillation in a rotary microdistillation equipment. Colorless oil, bp $175{ }^{\circ} \mathrm{C} / 0.1$ Torr. IR (KBr): v 3052, 2925, $2891,1740,1403,1114 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.02\left[\operatorname{broad} \mathrm{dd}, J=13.5 \mathrm{~Hz}, J^{\prime}=\right.$ $5.5 \mathrm{~Hz}, 2 \mathrm{H}, 2^{\prime}\left(5^{\prime}\right)-\mathrm{H}_{\text {cis }}$], 2.09 [dd, $J=19.0 \mathrm{~Hz}, J^{\prime}=5.5 \mathrm{~Hz}, 2 \mathrm{H}, 4(6)-\mathrm{H}_{\text {endo }}$], 2.25 [dd, $J=18.5$ $\mathrm{Hz}, J^{\prime}=1.0 \mathrm{~Hz}, 2 \mathrm{H}, 2(8)-\mathrm{H}_{\text {endo }}$, $2.39\left[\mathrm{dd}, J=18.5 \mathrm{~Hz}, J^{\prime}=1.5 \mathrm{~Hz}, 2 \mathrm{H}, 2(8)-\mathrm{H}_{\text {exo }}\right], 2.38-2.45$ $\left[\mathrm{m}, 2 \mathrm{H}, 2^{\prime}\left(5^{\prime}\right)-\mathrm{H}_{\text {trans }}\right], 2.47-2.54\left[\mathrm{~m}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}\right], 2.72\left[\mathrm{ddd}, J=19.0 \mathrm{~Hz}, J^{\prime}=9.0 \mathrm{~Hz}, J^{\prime \prime}=1.5 \mathrm{~Hz}\right.$, $2 \mathrm{H}, 4(6)-\mathrm{H}_{\text {exo }}$], $2.85\left(\mathrm{tt}, J=9.0 \mathrm{~Hz}, J^{\prime}=5.5 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}\right), 3.32\left(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Cl}^{\prime}{ }^{\prime}-\mathrm{CH}_{2} \mathrm{O}\right)$, 3.43 (s, 2H, C1-CH2O), 5.62 [s, 2H, $\left.3^{\prime}\left(4^{\prime}\right)-\mathrm{H}\right] .{ }^{13} \mathrm{C}$ NMR ($75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 35.8\left[\mathrm{CH}_{2}\right.$, $\left.2^{\prime}\left(5^{\prime}\right)-\mathrm{C}\right], 36.5\left(\mathrm{CH}, 1\right.$ '-C), $39.7(\mathrm{CH}, 5-\mathrm{C}), 44.8\left[\mathrm{CH}_{2}, 4(6)-\mathrm{C}\right], 46.7$ [$\left.\mathrm{CH}_{2}, 2(8)-\mathrm{C}\right], 47.9$ (C, 1C), $75.8\left(\mathrm{CH}_{2}, 1^{\prime}-\mathrm{C}-\mathrm{CH}_{2} \mathrm{O}\right), 77.1\left(\mathrm{CH}_{2}, 1-\mathrm{C}-\mathrm{CH}_{2} \mathrm{O}\right), 129.4$ [CH, $3^{\prime}(4$ ')-C], 216.8 [C, 3(7)-C]. MS (CI): m / z (\%): 250 (30), 249 ([M+H] ${ }^{+}$, 67), 201 (69), 199 (88), 179 (80), 169 (65), 151 (100), 137 (39), 109 (54), 81 (99), 80 (75). Anal. calcd. for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{3} \cdot 0.2 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 71.52$; H, 8.16. Found: C, 71.61; $\mathrm{H}, 8.20$. HRMS: calcd. for $\left[\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{3}+\mathrm{H}\right]^{+}: 249.1491$. Found: 249.1492.

1-[(trans-3,4-Epoxycyclopentyl)methoxymethyl]-cis-bicyclo[3.3.0]octane-3,7-dione (trans-
34). To a magnetically stirred solution of diketone $\mathbf{1 4}(99 \mathrm{mg}, 0.40 \mathrm{mmol})$ in $\mathrm{DCM}(6 \mathrm{~mL})$ at room temperature, MCPBA ($359 \mathrm{mg}, 77 \%$ content, 1.6 mmol) was added portionwise within 5 min and stirring was continued for 1.5 h . The organic solution was washed with 10% aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution ($3 \times 5 \mathrm{~mL}$) and saturated aqueous NaHCO_{3} solution ($3 \times 5 \mathrm{~mL}$), dried (anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$) and concentrated in vacuo to give an oily residue of the mixture of epoxides cis- and trans-34 (96 mg), which was subjected to column chromatography (silica gel, 10 g ; heptane/EtOAc mixtures). Upon elution with heptane/EtOAc 1:1, pure epoxide trans-34 (13 mg, 12%) and a mixture of epoxides trans- $\mathbf{3 4} /$ cis- $\mathbf{3 4}$ in a ratio close to $1: 3(38 \mathrm{mg}, 36 \%)$ were isolated. The analytical samples of epoxide trans-34 and of the mixture of epoxides trans-34/cis34 were obtained by distillation in a rotary microdistillation equipment at $200{ }^{\circ} \mathrm{C} / 0.1 \mathrm{Torr}$.
trans-34. IR (NaCl): v 2924, 2854, 1738, 1401, 1101, $839 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $1.76-1.84\left[\mathrm{~m}, 4 \mathrm{H}, 2^{\prime}\left(5^{\prime}\right)-\mathrm{H}_{2}\right], 2.10\left[\mathrm{dd}, J=19.0 \mathrm{~Hz}, J^{\prime}=5.5 \mathrm{~Hz}, 2 \mathrm{H}, 4(6)-\mathrm{H}_{\text {endo }}\right.$], 2.24 [dd, $J=$ $\left.19.0 \mathrm{~Hz}, J^{\prime}=0.5 \mathrm{~Hz}, 2 \mathrm{H}, 2(8)-\mathrm{H}_{\text {endo }}\right], 2.22-2.32\left(\mathrm{~m}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}\right), 2.38\left[\mathrm{dd}, J=19.0 \mathrm{~Hz}, J^{\prime}=1.5\right.$ $\mathrm{Hz}, 2 \mathrm{H}, 2(8)-\mathrm{H}_{\text {exo }}$], 2.71 [ddd, $\left.J=19.0 \mathrm{~Hz}, J^{\prime}=9.0 \mathrm{~Hz}, J^{\prime \prime}=1.5 \mathrm{~Hz}, 2 \mathrm{H}, 4(6)-\mathrm{H}_{\text {exo }}\right], 2.85$ (tt, $J=$ $\left.9.0 \mathrm{~Hz}, J^{\prime}=5.5 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}\right), 3.23\left(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} 1{ }^{\prime}-\mathrm{CH}_{2} \mathrm{O}\right), 3.39\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C} 1-\mathrm{CH}_{2} \mathrm{O}\right), 3.45$ [s, 2H, 3'(4')-H]. ${ }^{13} \mathrm{C}$ NMR ($75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 30.3\left[\mathrm{CH}_{2}, 2^{\prime}\left(5^{\prime}\right)-\mathrm{C}\right], 35.0\left(\mathrm{CH}, 1^{\prime}-\mathrm{C}\right), 39.7$ $(\mathrm{CH}, 5-\mathrm{C}), 44.8\left[\mathrm{CH}_{2}, 4(6)-\mathrm{C}\right], 46.8\left[\mathrm{CH}_{2}, 2(8)-\mathrm{C}\right], 48.0(\mathrm{C}, 1-\mathrm{C}), 58.5\left[\mathrm{CH}, 3{ }^{\prime}\left(4{ }^{\prime}\right)-\mathrm{C}\right], 76.9$ $\left(\mathrm{CH}_{2}, 1\right.$ ' $\left.-\mathrm{C}-\mathrm{CH}_{2} \mathrm{O}\right), 77.8\left(\mathrm{CH}_{2}, 1-\mathrm{C}-\mathrm{CH}_{2} \mathrm{O}\right), 216.9[\mathrm{C}, 3(7)-\mathrm{C}] . \mathrm{MS}(\mathrm{CI}): m / z(\%) 265\left([\mathrm{M}+\mathrm{H}]^{+}\right.$, 25), 199 (14), 191 (13), 179 (51), 169 (21), 151 (100), 97 (38), 79 (66). HRMS (CI): calcd. for $\left[\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{4}+\mathrm{H}\right]^{+}: 265.1440$. Found: 265.1440.
Mixture of epoxide stereoisomers trans-34/cis-34 (ratio of 1:3). IR (NaCl): v2926, 2855, 1739, 1402, 1120, $837 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): (data of cis- $\mathbf{3 4}$ epoxide from the mixture): δ $1.37\left[\mathrm{dd}, J=13.0 \mathrm{~Hz}, J^{\prime}=9.0 \mathrm{~Hz}, 2 \mathrm{H}, 2^{\prime}\left(5^{\prime}\right)-\mathrm{H}_{c i s}\right], 2.01(\mathrm{~m}, 1 \mathrm{H}, 1$ '-H), 2.04-2.12 [m, 4H, $2^{\prime}\left(5^{\prime}\right)-\mathrm{H}_{\text {trans }}$ and $\left.4(6)-\mathrm{H}_{\text {endo }}\right], 2.24\left[\mathrm{~d}, J=19.0 \mathrm{~Hz}, 2 \mathrm{H}, 2(8)-\mathrm{H}_{\text {endo }}\right], 2.35\left[\mathrm{dd}, J=19.0 \mathrm{~Hz}, J^{\prime}=1.5\right.$ $\left.\mathrm{Hz}, 2 \mathrm{H}, 2(8)-\mathrm{H}_{\text {exo }}\right], 2.69\left[\mathrm{ddd}, J=19.0 \mathrm{~Hz}, J^{\prime}=8.5 \mathrm{~Hz}, J^{\prime \prime}=1.5 \mathrm{~Hz}, 2 \mathrm{H}, 4(6)-\mathrm{H}_{\text {exo }}\right], 2.83(\mathrm{tt}, J=$
$\left.9.0 \mathrm{~Hz}, J^{\prime}=6.0 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}\right), 3.36\left(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} 1{ }^{\prime}-\mathrm{CH}_{2} \mathrm{O}\right), 3.41\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C} 1-\mathrm{CH}_{2} \mathrm{O}\right), 3.43$ [s, 2H, $\left.3^{\prime}\left(4^{\prime}\right)-\mathrm{H}\right] .{ }^{13} \mathrm{C}$ NMR ($75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}$): (data of epoxide cis- $\mathbf{3 4}$ from the spectrum of the mixture) $\delta 31.0\left[\mathrm{CH}_{2}, 2^{\prime}\left(5^{\prime}\right)-\mathrm{C}\right], 32.9\left(\mathrm{CH}, 1^{\prime}-\mathrm{C}\right), 39.8(\mathrm{CH}, 5-\mathrm{C}), 44.8\left[\mathrm{CH}_{2}, 4(6)-\mathrm{C}\right], 46.7$ $\left[\mathrm{CH}_{2}, 2(8)-\mathrm{C}\right], 47.9(\mathrm{C}, 1-\mathrm{C}), 56.9\left[\mathrm{CH}, 3^{\prime}\left(4^{\prime}\right)-\mathrm{C}\right], 73.9\left(\mathrm{CH}_{2}, 1^{\prime}-\mathrm{C}-\mathrm{CH}_{2} \mathrm{O}\right), 77.3\left(\mathrm{CH}_{2}, 1-\mathrm{C}-\right.$ $\mathrm{CH}_{2} \mathrm{O}$), 216.5 [C, 3(7)-C]. HRMS (CI): calcd. for [$\left.\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{4}+\mathrm{H}\right]^{+}$: 265.1440. Found: 265.1443. Anal. calcd. for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{4}$: C, 68.16; H, 7.63. Found: C, 67.77; H, 7.84.

Attempted conversion of epoxide (34) into alcohol (35)

Procedure 1. A solution of (LHMDS) was prepared by adding a solution of $n-\mathrm{BuLi}(2.5 \mathrm{M}$ in hexanes, $90 \mu \mathrm{~L}, \quad 0.23 \mathrm{mmol})$ to a cold $\left(-68{ }^{\circ} \mathrm{C}\right.$, acetone $/ \mathrm{CO}_{2}$ bath) solution of hexamethyldisilazane (HMDS, $56 \mu \mathrm{~L}, 0.27 \mathrm{mmol}$) in anhydrous toluene (0.5 mL). After stirring for 10 min , a solution of the stereoisomeric mixture of epoxide $34(24 \mathrm{mg}, 0.09 \mathrm{mmol})$ in anhydrous toluene (0.5 mL) was added dropwise. The reaction mixture was stirred at $-68{ }^{\circ} \mathrm{C}$ for 1 h and then allowed to warm to room temperature for 24 h . The reaction mixture was quenched by addition of saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(1 \mathrm{~mL})$ and was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10$ mL). The combined organic extracts were dried (anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$) and concentrated in vacuo to give a residue (12 mg) containing mainly epoxide $\mathbf{3 4}\left({ }^{1} \mathrm{H} \mathrm{NMR}\right.$) The aqueous phase was acidified with $1 \mathrm{~N} \mathrm{HCl}(5 \mathrm{~mL})$ and was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The combined organic extracts were dried (anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$) and concentrated in vacuo to give a residue (19 mg) consisting mainly of epoxide 34 .
Procedure 2. The reaction was carried out as in procedure 1 and after the addition of 34, $\mathrm{Sc}(\mathrm{OTf})_{3}$ (1.2 equiv) was added. Epoxide 34 was the main component of the crude product.
Procedure 3. The reaction was carried out as in procedure 1 using THF instead of toluene as the solvent, with similar result.
Procedure 4. The reaction was carried out as in procedure 3 and after the addition of 34, $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ in THF (1.2 equiv) was added. Epoxide 34 was the main component of the crude product.

Acknowledgements

Financial support from Ministerio de Educación y Ciencia (MEC) (CTQ2008-03768) and Comissionat per a Universitats i Recerca (2005-SGR-00180) is gratefully acknowledged.

Supplementary Materials

Possible pathways from 17 and 18 to the side product 21 (Scheme S1) can be found as supplementary material.

References

1. (a) Camps, P.; Font-Bardía, M.; Pérez, F.; Solans, X.; Vázquez, S. Angew. Chem. Int. Ed. 1995, 34, 912; Angew. Chem. 1995, 107, 1011. (b) Camps, P.; Font-Bardia, M.; Pérez, F.; Solà, L.; Solans, X.; Vázquez, S. Tetrahedron Lett. 1996, 37, 8601. (c) Camps, P.; Luque, J.F.; Orozco, M.; Pérez, F.; Vázquez, S. Tetrahedron Lett. 1996, 37, 8605. (d) Camps, P.; Font-Bardia, M.; Méndez, N.; Pérez, F.; Pujol, X.; Solans, X.; Vázquez, S.; Vilalta, M. Tetrahedron 1998, 54, 4679. (e) Camps, P.; Pujol, X.; Vázquez, S. Org. Lett. 2000, 2, 4225. (f) Camps, P.; Pujol, X.; Vázquez, S.; Pericàs, M. A.; Puigjaner, C.; Solà, L. Tetrahedron 2001, 57, 8511. (g) Camps, P.; Pujol, X.; Vázquez, S. Tetrahedron 2002, 58, 10081. (h) Camps, P.; Fernández, J. A.; Vázquez, S.; Font-Bardia, M.; Solans, X. Angew. Chem. Int. Ed. 2003, 42, 4049; Angew. Chem. 2003, 115, 4183. (h) Camps, P.; Fernández, J. A.; FontBardia, M.; Solans, X.; Vázquez, S. Tetrahedron 2005, 61, 3593. (i) Camps, P.; Muñoz, M. R.; Vázquez, S. J. Org. Chem. 2005, 70, 1945. (j) Vázquez, S.; Camps, P. Tetrahedron 2005, 61, 5147. (k) Camps, P.; Muñoz, M. R.; Vázquez, S. Tetrahedron 2006, 62, 7645. (l) Ayats, C.; Camps, P.; Fernández, J. A.; Vázquez, S. Chem. Eur. J. 2007, 13, 1522. (m) Camps, P.; Colet, G.; Delgado, S.; Muñoz, M. R.; Pericàs, M. A.; Solà, L.; Vázquez, S. Tetrahedron 2007, 63, 4669.
2. (a) Renzoni, G. E.; Yin, T.-K.; Borden, W. T. J. Am. Chem. Soc. 1986, 108, 7121. (b) Ioannou, S.; Nicolaides, A. V. Tetrahedron Lett. 2009, 50, 6938.
3. (a) Deslongchamps, P.; Cheriyan, U. O.; Lambert, Y.; Mercier, J.-C.; Ruest, L.; Russo, R.; Soucy, P. Can. J. Chem. 1978, 56, 1687. (b) Bertz, S. H.; Lannoye, G.; Cook, J. M.; Tetrahedron Lett. 1985, 26, 4695. (c) Gupka, A. K.; Lannoye, G. S.; Kubiak, G.; Schkeyantz, J.; Wherli, S.; Cook, J. M. J. Am. Chem. Soc. 1989, 111, 2169. (d) Fu, X.; Cook, J. M. Tetrahedron Lett. 1990, 31, 3409. (e) Fu, X.; Cook, J. M. J. Org. Chem. 1992, 57, 5121.
4. Ihmels, H.; Maggini, M.; Prato, M.; Scorrano, G. Tetrahedron Lett. 1991, 32, 6215.
5. Deprés, J. P.; Greene, A. E. J. Org. Chem. 1984, 49, 928.
6. Pérez, N.; Gordillo, B. Tetrahedron 2003, 59, 671.
7. Olah, G. A.; Prakash, G. K. S.; Arvanaghi, M.; Anet, F. A. L. J. Am. Chem. Soc. 1982, 104, 7105.
8. Peng, Y.; Cui, L.; Zhang, G.; Zhang, L. J. Am. Chem. Soc. 2009, 131, 5062.
9. Allinger, N. L.; Yuh, Y. H.; Lii, J. H. J. Am. Chem. Soc. 1989, 111, 8551.
10. Dewar, M. J. S.; Zoebisch, E. G.; Healy, E. F.; Stewart, J. P. P. J. Am. Chem. Soc. 1985, 107, 3902.
11. Stewart, J. P. P.; O’Connor, B. M. Chem. Phys. Lett. 1987, 138, 141.
12. Ates, A.; Gautier, A.; Leroy, B.; Plancher, J.; Quesnel, Y.; Vanherck, J.; Markó, I. E. Tetrahedron 1996, 61, 9548.
13. (a) Crotti, P.; Di Bussolo, V.; Favero, L.; Pineschi, M.; Pasero, M. J. Org. Chem. 1996, 61, 9548. (b) Posner, G. H.; Maxwell, J. P.; Kahraman, M. J. Org. Chem. 2003, 68, 3049.
