Modern Friedel-Crafts chemistry. Part $32 .{ }^{\dagger}$ Facile synthesis of some new fused heteropolycycles via direct intramolecular Friedel-Crafts cyclialkylations of suitable heteroarylalkanols

Ali A. Khalaf,* Ahmed M. El-Khawaga, Ibrahim M. Awad, and Hassan A. K. Abd El-Aal
Chemistry Department, Faculty of Science, Assiut University, Assiut, Egypt E-mail: prof_khalaf@hotmail.com

DOI: http://dx.doi.org/10.3998/ark.5550190.0011.a28

Abstract

This study provides expedient methods for the synthesis of some novel fused heteropolycycles. Thus, a variety of fused di-, tri- and tetracyclic nitrogen and nitrogen-sulfur heteropolycycles $\mathbf{8}$, 9, 11-15 were smoothly synthesized by Friedel-Crafts intramolecular alkylations of heteroarylalkanols 1-7 in the presence of both Brönsted (PPA and PTSA) and Lewis $\left(\mathrm{AlCl}_{3} / \mathrm{CH}_{3} \mathrm{NO}_{2}\right)$ acid catalysts. The precursor alkanols were readily prepared by reaction of the corresponding carboxylic acid esters with methylmagnesium iodide. The structures of the compounds are established using both spectral and analytical data. A plausible carbocation mechanism is proposed to account for the results.

Keywords: Friedel-Crafts cyclialkylation, heteropolycycles, 4,4-dimethyl-5,6-dihydro-4H-pyrido[3,2,1-jk]carbazole, 3,3-dimethyl-2,3-dihydro-1H-benzo[kl$]$ acridine, 5,5-dimethyl-2-phenyl-4,5-dihydrocyclopenta[de]quinoline, 3,3-dimethyl-2,3-dihydro-1H-pyrido[3,2,1$k l]$ phenothiazine

Introduction

A variety of methods have been developed for the synthesis of biologically and pharmacologically active heteropolycycles that bear quinoline or tetrahydroquinoline fragments. ${ }^{1,2}$ Among these methods, intramolecular Friedel-Crafts reactions (called cyclialkylations $)^{3}$ prompted by both Brönsted and Lewis acid catalysts proved to introduce powerful pathways for the facile construction of not only homo- but also heteropolycycles. ${ }^{4,5}$

In this paper, we introduce the construction of seven nitrogen and nitrogen-sulfur polycycles 8, 9, 11-15 containing fused quinoline, tetrahydroquinoline, acridine, phenothiazine and indole moieties via Friedel-Crafts cyclialkylations of seven new heteroarylalkanols 1-7 (Scheme 1). ${ }^{\dagger}$ For preceding paper of the series see ref 19. Part of the Ph.D. Thesis of H. A. K. Abdel-Aal

Compd.
No.

Ar

Scheme 1. Selected heteroarylalkanols 1-7.

Results and Discussion

Synthesis and cyclialkylation of 4-(9H-carbazol-9-yl)-2-methylbutan-2-ol (1). This hitherto unknown 4-(9H-carbazol-9-yl)-2-methylbutan-2-ol 1 was synthesized in two consecutive steps starting from 3-(9H-carbazol-9-yl)propanoic acid ${ }^{6}$ by conversion to ethyl ester followed by reaction with methylmagnesium iodide.

Cyclialkylation of alcohol 1 in the presence of both polyphosphoric acid (PPA) and ptoluenesulfonic acid (PTSA) catalysts gave 4,4-dimethyl-5,6-dihydro-4H-pyrido[3,2,1$j k]$ carbazole $\mathbf{8}$ as sole product. The results are presented in Scheme 2 and Table 1 (Entries 1 and 2).

Scheme 2. Cyclialkylation of 4-(9H-carbazol-9-yl)-2-methylbutan-2-ol 1.
Table 1. Cyclialkyltion conditions and results of heteroarylalkanols 1-7

Entry	Substrate no.	Catalyst type	Solvent	Temp C°	Time hr.	$\begin{gathered} \text { Yield } \\ \% \\ \hline \end{gathered}$	Product composition (\%)
1	1	PPA ${ }^{\text {a }}$	--	250	1	80	8
2	1	PTSA ${ }^{\text {b }}$	PhH	reflux	12	76	8
$3^{\text {c }}$	2	$\mathrm{AlCl}_{3} / \mathrm{CH}_{3} \mathrm{NO}_{2}$	DCM ${ }^{\text {d }}$	RT	2	80	$\begin{aligned} & 9(60), \\ & \mathbf{1 0}(35) \end{aligned}$
4	2	PPA	--	250	24	79	10
5	3	PPA	--	250	1	75	11
6	3	PTSA	PhH	reflux	24	82	11
7	4	PPA	--	250	24	77	12
$8^{\text {e }}$	4	$\mathrm{H}_{3} \mathrm{PO}_{4}$	--	260	24	78	12
9	4	PTSA	PhH	reflux	20	81	12
10	5	PPA	--	250	12	80	13
11	5	PTSA	PhH	reflux	24	78	13
12	6	PPA	--	250	24	80	14
13	6	PTSA	PhH	reflux	24	77	14
14	7	PPA	--	250	24	83	15
15	7	PTSA	PhH	reflux	24	81	15

${ }^{a}$ With PPA catalyst reactant proportions were: carbinol (0.5 g) and PPA (3 g). ${ }^{\mathrm{b}}$ With PTSA catalyst reactant proportions were: carbinol (0.5 g), PTSA (3 g) and solvent (10 ml). ${ }^{\text {c With }}$ $\mathrm{AlCl}_{3} / \mathrm{CH}_{3} \mathrm{NO}_{2}$ catalyst reactant proportions were: carbinol (0.002 mole), AlCl_{3} (0.0024 mole), $\mathrm{CH}_{3} \mathrm{NO}_{2}(0.024$ mole $)$, solvent $(10 \mathrm{ml})$. ${ }^{\text {d }}$ Dichloromethane. ${ }^{e}$ With $\mathrm{H}_{3} \mathrm{PO}_{4}$ catalyst proportions were: carbinol $(0.5 \mathrm{~g})$ and dry $\mathrm{H}_{3} \mathrm{PO}_{4}(4 \mathrm{~g})$.

Synthesis and cyclialkylation of 4-(acridin-9-yl)-2-methylbutan-2-ol (2)

The title alcohol was synthesized by addition of methymagnesium iodide to methyl 3-(acridin-9yl)propanoate. ${ }^{7}$ Cyclialkylation of carbinol 2 was carried out using PPA and $\mathrm{AlCl}_{3} / \mathrm{CH}_{3} \mathrm{NO}_{2}$ catalysts in methylene chloride solvent. The product from PPA was shown to be pure 3,3-dimethyl-2,3-dihydro- $1 H$-benzo[$k l$]acridine 9. With $\mathrm{AlCl}_{3} / \mathrm{CH}_{3} \mathrm{NO}_{2}$ for 2 hours, however, the
product was shown to be a mixture of tetracyclic product 9 (60\%) and 9-(3-methylbut-2-en-1yl)acridine 10 (35\%) (Scheme 3; Table 1, Entries 3 and 4)

10

Scheme 3. Cyclialkylation of 4-(acridin-9-yl)-2-methylbutan-2-ol 2.

Synthesis and cyclialkylation of 2-methyl-4-(10H-phenothiazin-10-yl)butan-2-ol (3)

Alkanol 3 was synthesized by treatment of ethyl 3-(10H-phenothiazin-10-yl)propanoate ${ }^{8}$ with methylmagnesium iodide in dry ether. Cyclialkylation of $\mathbf{3}$ in the presence of PPA and PTSA catalysts gave 3,3-dimethyl-2,3-dihydro- $1 H$-pyrido[3,2,1-kl] phenothiazine $\mathbf{1 1}$ as a sole product (Scheme 4; Table 1, Entries 5 and 6).

Scheme 4. Cyclialkylation of 2-methyl-4-(10H-phenothiazin-10-yl)butan-2-ol 3.

Synthesis and cyclialkylation of 2-methyl-4-(1,2,3,4-tetrahydro-4H-carbazol-9-yl)butan-2-ol

 (4)This alcohol was obtained in a series of two consecutive steps starting with 3-(1,2,3,4-tetrahydro9 H -carbazol-9-yl)propanoic acid. ${ }^{9}$ This acid was converted to its ethyl ester followed by addition of two equivalents of methylmagnesium iodide.

Cyclialkylation of carbinol 4 was carried out in the presence of PPA, $\mathrm{H}_{3} \mathrm{PO}_{4}$ and PTSA catalysts. The products of reactions with all three catalysts were identical and were shown to be

4,4-dimethyl-5,6,8,9,10,11-hexahydro-4H-pyrido[3,2,1-jk]carbazole 12 (Scheme 5; Table 1, Entries 7-9).

Scheme 5. Cyclialkylation of 2-methyl-4-(1,2,3,4-tetrahydro-4H-carbazol-9-yl)butan-2-ol 4.
Synthesis and cyclialkylation of 2-methyl-1-(2-phenylquinolin-4-yl)propan-2-ol (5)
This alcohol was obtained in a series of five consecutive steps starting with (2-phenylquinolin-4yl)methanol. ${ }^{10}$ A summary of the steps and of the involved product intermediates is given in the experimental section. Reaction of carbinol 5 in the presence of PTSA and PPA catalysts gave 5,5-dimethyl-2-phenyl-4,5-dihydrocyclopenta[de]quinoline $\mathbf{1 3}$ as a sole product (Scheme 6 ; Table 1, Entries 10 and 11).

Scheme 6. Cyclialkylation of 2-methyl-1-(2-phenylquinolin-4-yl)propan-2-ol 5.

Synthesis and cyclialkylation of 4-(diphenylamino)-2-methylbutan-2-ol (6)
This alcohol was obtained by addition of two equivalents of methylmagnesium iodide to ethyl 3(diphenylamino) propanoate. ${ }^{11}$

The cyclialkylation of alcohol 6 was carried out in the presence of both PPA and PTSA catalysts under different reaction conditions. The products with both catalysts were identical and were shown to be 4,4-dimethyl-1-phenyl-1,2,3,4-tetrahydroquinoline $\mathbf{1 4}$ (Scheme 7; Table 1, Entries 12 and 13).

6
14

Scheme 7. Cyclialkylation of 4-(diphenylamino)-2-methylbutan-2-ol 6.

Synthesis and cyclialkylation of 2-methyl-4-(2-phenyl-1H-indol-1-yl)butan-2-ol (7)

The title alcohol was synthesized via two consecutive reaction steps starting from 3-(2-phenyl$1 H$-indol-1-yl)propanoic acid ${ }^{12}$ by esterification to ethyl 3-(2-phenyl- $1 H$-indol-1-yl)propanoate followed by reaction with two equivalents of methylmagnesium iodide. Cyclialkylation of alkanol 7 in the presence of either PPA or PTSA catalyst gave 6,6-dimethyl-2-phenyl-5,6-dihydro-4H-pyrrolo[3,2,1-ij]quinoline 15 as a sole product (Scheme 8; Table 1, Entries 14 and 15).

Scheme 8. Cyclialkylation of 2-methyl-4-(2-phenyl-1H-indol-1-yl)butan-2-ol 7.

Conclusions

In conclusion, we have developed a facile and efficient approach to synthesize seven new heteropolycycles 8, 9, 11-15 via intramolecular Friedel-Crafts cyclialkylations of seven new heteroarylalkanols 1-7. All together, the results of this study proved that Friedel-Crafts cyclialkylation can be considered as one of the most useful pathways to the synthesis of di-, triand higher condensed polycycles enclosing one or more heteroatoms.

Experimental Section

General. Melting points were measured on a digital Gallenkamp capillary melting point apparatus and are uncorrected. Infrared spectra were determined with a Shimadzu 470 Infrared spectrophotometer using KBr wafer and thin film techniques $\left(\nu \mathrm{cm}^{-1}\right)$. ${ }^{1} \mathrm{H}$ NMR spectra were recorded by 90 MHz Varian NMR spectrometer using the appropriate deuteriated solvent with TMS as internal standard. Chemical shifts (δ) and J values are reported in ppm and Hz , respectively. Elemental analyses were performed on a Perkin-Elmer 2400 Series II analyzer. The mass spectra were performed by JEOL JMS 600 spectrometer at an ionizing potential of 70 eV using the direct inlet system. Reactions were monitored by thin layer chromatography (TLC) using precoated silica plates (Kieselgel 60, F 254, E. Merck) visualized with UV light. Flash column chromatography (FC) was performed on silica gel (230-400 mesh, E. Merck). All reagents were purchased from Merck, Sigma or Aldrich Chemical Co. and were used without further purification.

4-(9H-Carbazol-9-yl)-2-methylbutan-2-ol (1). Was obtained in a series of two consecutive steps starting with 3-(9H-carbazol-9-yl)propanoic acid. ${ }^{6}$ A summary of the steps and of the involved product intermediates is given in the following:
(i) Esterification of 3-(9H-carbazol-9-yl)propanoic acid with ethanol as usual ${ }^{13}$ in the presence $\mathrm{H}_{2} \mathrm{SO}_{4}$ gave ethyl 3-(9H-carbazol-9-yl)propanoate in the form of pale yellowish oil (79\%): n^{25} 1.5722; IR (KBr) v 3050, 2990, 1730, 1620, 1590, 1480, 1455, 1320, 1180, $745 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($90 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$), $\delta=0.7\left(3 \mathrm{H}, \mathrm{t}, J=9 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.4\left(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.6(2 \mathrm{H}, \mathrm{q}$, $\left.J=9 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.2\left(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right)$ and 6.8-7.8 ($\left.8 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}\right)$; MS (EI, 70 eV$) \mathrm{m} / \mathrm{z}(\%)$, $267\left(\mathrm{M}^{+}, 22.8\right), 252\left(\mathrm{M}^{+}-\mathrm{CH}_{3}, 46.3\right), 239(15.7), 238\left(\mathrm{M}^{+}-\mathrm{C}_{2} \mathrm{H}_{5}, 74.5\right), 222(100), 208(9.6), 194$ (15.7), 166 (45.6), 91 (8.4), 77 (4.2).
(ii) Addition of two equivalents of methylmagnesium iodide to ethyl 3-(9H-carbazol-9yl)propanoate was followed by stirring overnight and decomposition by sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ soln. Extraction of the product with ether, drying over anhydrous magnesium sulfate, decantation and evaporation of the solvent gave (87%) of the crude solid product. Crystallization from methanol gave (83\%) of pure 4-(9H-carbazol-9-yl)-2-methylbutan-2-ol 1 in the form of white crystals: m.p. $82^{\circ} \mathrm{C}$; IR $(\mathrm{KBr}) \vee 3350,3250,3060,2960,2850,1590,1480,1460,1450,1345,1145,915$, $740,670 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right), \delta=1.2\left(6 \mathrm{H}, \mathrm{s}, 2 \mathrm{CH}_{3}\right), 1.6(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}$ exchangeable with $\left.\mathrm{D}_{2} \mathrm{O}\right), 1.8\left(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.3\left(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}_{2} \mathrm{CH}_{2}\right)$ and $7.1-8.2$ (8H, m, Ar-H). Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}$ (253): C, 80.63; H, 7.5; N, 5.53. Found: C, 80.22; H, 7.61; N, 5.82.

4-(Acridin-9-yl)-2-methylbutan-2-ol (2). Addition of two equivalents of methylmagnesium iodide to methyl $3-\left(\right.$ acridin-9-yl)propanoate ${ }^{7}$ was followed by stirring overnight. Decomposition by sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ soln following standard procedure ${ }^{4}$ gave (93%) of crude solid product. Crystallization from methanol gave the product as yellow needles (86%): m.p. $110-11{ }^{\circ} \mathrm{C}$; IR $(\mathrm{KBr}) ~ v 3350,3220,2980,1610,1550,1515,1480,1365,1145,950,740,680 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($90 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$), $\delta=1.2\left(6 \mathrm{H}, \mathrm{s}, 2 \mathrm{CH}_{3}\right), 1.4\left(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}\right.$ exchangeable with $\left.\mathrm{D}_{2} \mathrm{O}\right), 1.7(2 \mathrm{H}$, apparent $\left.\mathrm{m}, J=6 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.6\left(2 \mathrm{H}\right.$, apparent $\left.\mathrm{m}, J=6 \mathrm{~Hz}, \mathrm{CH}_{2}\right)$ and $7.2-8.3(8 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H})$. Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}$ (265): C, 81.5; H, 7.16; N, 5.28. Found: C, 81.77; H, 6.85; N, 5.52.
2-Methyl-4-(10H-phenothiazin-10-yl)butan-2-ol (3). Addition of two equivalents of methylmagnesium iodide to ethyl 3-(10 H -phenothiazin-10-yl)propanoate ${ }^{8}$ was followed by stirring for 15 hours and decomposition by sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ soln. Extraction following the standard procedure ${ }^{4}$ gave (78%) of the crude product which on crystallization from methanol gave (70%) of pure 2-methyl-4-(10 H -phenothiazin-10-yl)butan-2-ol 3 in the form of pale brown crystals: m.p. $70-71^{\circ} \mathrm{C}$; IR (KBr) v 3280, 3070, 2980, 1590, 1565, 1445, 1370, 1220, 1120, 1030, 720 cm^{-1}; ${ }^{1} \mathrm{H}$ NMR ($90 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$), $\delta=1.15\left(6 \mathrm{H}, \mathrm{s}, 2 \mathrm{CH}_{3}\right), 1.7\left(2 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.3$ $\left(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}\right.$ exchangeable with $\left.\mathrm{D}_{2} \mathrm{O}\right), 3.75\left(2 \mathrm{H}, \mathrm{t}, J=9 \mathrm{~Hz}, \mathrm{CH}_{2}\right)$ and $6.7-7.3(8 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H})$. Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NOS}$ (285): C, 71.57; H, 6.66; N, 4.91; S, 11.22. Found: C, 71.92; H, 6.25; N, 5.2; S, 11.31.

2-Methyl-4-(1,2,3,4-tetrahydro-9H-carbazol-9-yl)butan-2-ol (4). Was obtained in two steps starting from 3-(1,2,3,4-tetrahydro-9H-carbazol-9-yl)propanoic acid ${ }^{9}$ as follows:
(i) Esterification of the above acid with ethanol and $\mathrm{H}_{2} \mathrm{SO}_{4}$ following the literature procedure ${ }^{13}$ gave (91%) of crude solid ester. Crystallization from n-hexane/benzene ($7: 3$) mixture gave (86%) of pure ethyl 3-(1,2,3,4-tetrahydro- 9 H -carbazol-9-yl)propanoate as pale yellow crystals m.p. $54^{\circ} \mathrm{C}$; IR (KBr) v 3050, 2995, 2910, 1725, 1610, 1463, 1440, 1420, 1375, 1180, $735 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right), \delta=1.2\left(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.8\left(4 \mathrm{H}\right.$, d, cyclic $\left.2 \mathrm{CH}_{2}\right), 2.7$ $\left(6 \mathrm{H}, \mathrm{m}\right.$, cyclic $2 \mathrm{CH}_{2}$ and $\left.\mathrm{C}^{2} \mathrm{H}_{2}\right), 4.2\left(2 \mathrm{H}, \mathrm{q}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.2\left(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{C}^{3} \mathrm{H}_{2}\right)$ and 6.9-7.4 (4H, m, Ar-H); MS (EI, 70 eV) m/z (\%), $272\left(\mathrm{M}^{+}+1,9.2\right), 271\left(\mathrm{M}^{+}, 20.3\right), 256\left(\mathrm{M}^{+}-\mathrm{CH}_{3}\right.$, 31.7), $242\left(\mathrm{M}^{+}-\mathrm{C}_{2} \mathrm{H}_{5}, 12.9\right), 226\left(\mathrm{M}^{+}-\mathrm{OC}_{2} \mathrm{H}_{5}, 100\right), 198$ (43.4), 184 (24.3), 170 (39.2), 166 (33.5), 158 (5.3), 91 (4.9), 77 (3.5).
(ii) Addition of two equivalents of methylmagnesium iodide to ethyl 3-(1,2,3,4-tetrahydro-9H-carbazol-9-yl)propanoate followed by stirring for ten hours and decomposition by sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ soln following the standard procedure ${ }^{4}$ gave (95%) of crude solid product. Crystallization from methanol gave (87\%) of 2-methyl-4-(1,2,3,4-tetrahydro-9H-carbazol-9-yl)butan-2-ol 4 in the form of brown crystals: m.p. $68^{\circ} \mathrm{C}$; $\mathrm{IR}(\mathrm{KBr})$ v 3380, 3040, 2970, 2910, 1610, 1465, 1438, 1370, $1210,1210,1140,740 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($90 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$), $\delta=1.3\left(6 \mathrm{H}, \mathrm{s}, 2 \mathrm{CH}_{3}\right), 1.5(1 \mathrm{H}, \mathrm{s}$, OH exchangeable with $\left.\mathrm{D}_{2} \mathrm{O}\right), 2.6-2.9\left(6 \mathrm{H}, \mathrm{m}\right.$, cyclic $2 \mathrm{CH}_{2}$ and $\left.\mathrm{C}^{3} \mathrm{H}_{2}\right), 2.7(4 \mathrm{H}$, apparent s, unresolved cyclic $2 \mathrm{CH}_{2}$), 4.0-4.3 $\left(2 \mathrm{H}, \mathrm{t}, J=9 \mathrm{~Hz}, \mathrm{C}^{4} \mathrm{H}_{2}\right)$ and 7.0-7.6 $(4 \mathrm{H}, \mathrm{d}, \mathrm{Ar}-\mathrm{H})$. Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}$ (257): C, 79.37; H, 8.94; N, 5.44. Found: C, 79.1; H, 8.57; N, 5.72.
2-Methyl-1-(2-phenylquinolin-4-yl)propan-2-ol (5) was obtained in a series of five consecutive steps starting with (2-phenylquinolin-4-yl)methanol. ${ }^{10} \mathrm{~A}$ summary of the steps and of the involved product intermediates is given in the following:
(i) Following standard literature procedure and reactant ratios, ${ }^{14}$ a solution of thionyl chloride in dry benzene was added dropwise to an ice cooled stirred solution of (2-phenylquinolin-4yl)methanol in dry benzene over a period of five minutes. The reaction mixture was left to stir for ten more minutes, treated with aqueous ammonia until alkaline then the precipitated hydrochloride was decomposed by water to give (88%) of a crude solid product. Crystallization from petroleum ether ($60-80{ }^{\circ} \mathrm{C}$) gave (83%) of pure 4 -(chloromethyl)-2-phenylquinoline as white needles: m.p. $112{ }^{\circ} \mathrm{C}$; IR (KBr) v 3070, 2920, 2890, 1595, 1550, 1490, 1350, 1080, 765, $697 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($90 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$), $\delta=4.7\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right)$ and $7.4-8.5(10 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H})$; MS (EI, 70 eV) m/z (\%), $255.6\left(\mathrm{M}^{+}+2,7.3\right), 253.4\left(\mathrm{M}^{+}, 15.6\right), 218(100), 217\left(\mathrm{M}^{+}-\mathrm{HCl}, 45.8\right)$, 203 (17.9), 176 (77.6), 166 (18.5), 141 (12.4), 127 (9.8), 90 (14.2), 77 (4.6).
(ii) A solution of 4-(chloromethyl)-2-phenylquinoline in ethanol was added during 30 minutes to a refluxing solution of potassium cyanide in water and ethanol mixture (1:3). After refluxing for four hours, excess alcohol was evaporated and the residue was diluted with water. Extraction of the product with ether, drying over anhydrous magnesium sulfate, decantation and evaporation of the solvent gave (84%) of crude solid product. Crystallization from acetone gave (75%) of pure (2-phenylquinolin-4-yl)acetonitrile in the form of white needles: m.p. $139^{\circ} \mathrm{C}$; IR (KBr) v 3050, 2920, 2350, 1595, 1510, 1410, 1360, 1160, 1085, $785 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($90 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$), δ $=5.3\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right)$ and $7.4-8.5(10 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}) ; \mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}) \mathrm{m} / \mathrm{z}(\%), 244\left(\mathrm{M}^{+}, 7.2\right), 217$ ($\mathrm{M}^{+}-\mathrm{HCN}, 53.7$), 203 (100), 166 (23.5), 140 (13.1), 126 (3.3), 90 (5.2), 77 (3.6).
(iii) Hydrolysis of (2-phenylquinolin-4-yl)acetonitrile to (2-phenylquinolin-4-yl)acetic acid was carried out by refluxing with ethanolic sodium hydroxide solution according to the literature procedure ${ }^{13}$ to give (91%) of crude solid product. Crystallization from aqueous ethanol gave (81%) of pure (2-phenylquinolin-4-yl)acetic acid as white needles: m.p. $188-9{ }^{\circ} \mathrm{C}$; IR (KBr) v 3060, 2900, 2370-2700, 1690, 1595, 1510, 1410, 1215, $785 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, $\mathrm{ppm}), \delta=3.9\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right) 7.2-8.0 \mathrm{ppm}(10 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H})$ and $10.4(1 \mathrm{H}, \mathrm{s}, \mathrm{COOH})$; MS (EI, 70 $\mathrm{eV}) \mathrm{m} / \mathrm{z}(\%), 263\left(\mathrm{M}^{+}, 12.5\right), 246$ (100), 218 (43.2), 204 (29.3), 169 (18.5), 166 (23.4), 90 (4.1), 77 (5.2).
(iv) Esterification of the above acid with methanol and $\mathrm{H}_{2} \mathrm{SO}_{4}$ following the standard method ${ }^{13}$ gave (83%) of crude ester. Crystallization from methanol gave (71\%) of pure methyl (2-phenylquinolin-4-yl)acetate: m.p. $93-4{ }^{\circ} \mathrm{C}$; IR (KBr) v 3055, 2950, 1740, 1595, 1510, 1430, $1260,1160,787 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($90 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$), $\delta=3.5\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 4\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right)$ and 7.2-8.2 (10H, m, Ar-H); MS (EI, 70 eV) m/z (\%), $278\left(\mathrm{M}^{+}+1,2.7\right.$), 277 ($\mathrm{M}^{+}, 16.5$), 262 $\left(\mathrm{M}^{+}-\mathrm{CH}_{3}, 100\right), 246(12.4), 234\left(\mathrm{M}^{+}-\mathrm{COCH}_{3}, 100\right), 204$ (39.4), 169 (8.4), 166 (18.2), 127 (5.4), 90 (4.2), 77 (2.4).
(v) Finally alcohol was prepared by addition of two equivalents of methylmagnesium iodide to methyl (2-phenylquinolin-4-yl)acetate in dry ether. The reaction mixture was left to stir overnight at room temperature then treated as usual ${ }^{4}$ to give (87%) of crude product which on purification by FC (basic alumina, benzene eluent) gave (82\%) of pure 2-methyl-1-(2-phenylquinolin-4-yl)propan-2-ol 5 as a yellowish liquid: $\mathrm{n}_{\mathrm{D}}{ }^{25} 1.6512$; IR (Film) v 3590, 3430, 3030, 2985, 1590, 1510, 1460, 1375, 1200, 1140, 1020, 900, $780 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (90 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right), \delta=1\left(6 \mathrm{H}, \mathrm{s}, 2 \mathrm{CH}_{3}\right), 2.2\left(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}\right.$ exchangeable with $\left.\mathrm{D}_{2} \mathrm{O}\right), 3\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right)$ and 6.9-8.1 (10H, m, Ar-H). Anal. Calcd. for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}$ (277): C, 82.31 ; H, 6.86; N, 5.05. Found: C, 81.92; H, 7.26; N, 5.17.

4-(Diphenylamino)-2-methylbutan-2-ol (6). This alcohol was prepared by addition of two equivalents of methylmagnesium iodide to ethyl 3-(diphenylamino)propanoate. ${ }^{11}$ The reaction mixture was left to stir overnight and then decomposed with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ soln and the product was extracted with ether following the literature method ${ }^{4}$ to give (81%) of the crude oily product. Purification by flash chromatography (FC) of the liquid product [neutral alumina, $8: 2$, petroleum ether $\left(60-80^{\circ} \mathrm{C}\right) /$ benzene eluent] gave (79%) of pure 4-(diphenylamino)-2-methylbutan-2-ol 6 in the form of a colorless viscous oil: $\mathrm{n}^{25} 1.5426$; IR (Film) v 3400, 3060, 2990, 1585, 1480, 1360, $1220,1055,1020,745,692 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($90 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$), $\delta=1.3\left(6 \mathrm{H}, \mathrm{s}, 2 \mathrm{CH}_{3}\right), 1.7$ $\left(2 \mathrm{H}, \mathrm{t}, J=9 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.7\left(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}\right.$ exchangeable with $\left.\mathrm{D}_{2} \mathrm{O}\right), 3.8\left(2 \mathrm{H}, \mathrm{t}, J=9 \mathrm{~Hz}, \mathrm{CH}_{2}\right)$ and $6.9-$ 7.5 (10H, m, Ar-H). Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}$ (255): C, 80.0; H, 8.23; N, 5.49. Found: C, 79.7; H, 8.3; N, 5.62.
2-Methyl-4-(2-phenyl-1H-indol-1-yl)butan-2-ol (7). This alcohol was synthesized in two consecutive reaction steps starting from 3-(2-phenyl- 1 H -indol-1-yl)propanoic acid. ${ }^{12}$
(i) Esterification of this acid by ethyl alcohol following the standard procedure ${ }^{13}$ gave (90%) of crude oily ester. Purification of the ester by FC (basic alumina, benzene eluent) gave (86%) of pure ester in the form of yellowish liquid: $\mathrm{n}_{\mathrm{D}}{ }^{25} 1.485$; \mathbb{R} (Film) v 3050, 2910, 1700, 1600, 1570,

1540, 1445, 1010, 745, $695 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($90 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$), $\delta=1.0(3 \mathrm{H}, \mathrm{t}, J=6 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3}\right), 2.5\left(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{C}^{2} \mathrm{H}_{2}\right), 3.9\left(2 \mathrm{H}, \mathrm{q}, J=6 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.4\left(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{C}^{3} \mathrm{H}_{2}\right), 6.5$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{CH})$ and 7.0-7.6 (9H, m, Ar-H); MS (EI, 70 eV$) \mathrm{m} / \mathrm{z}(\%), 293\left(\mathrm{M}^{+}, 13.9\right), 278\left(\mathrm{M}^{+}-\mathrm{CH}_{3}\right.$, 21.5), $264\left(\mathrm{M}^{+}-\mathrm{C}_{2} \mathrm{H}_{5}, 15.2\right.$), 248 (100), 220 (17.3), 187 (6.4), 166 (11.6), 90 (6.8), 77 (4.4).
(ii) The title alcohol was prepared by addition of two equivalents of methylmagnesium iodide to ethyl 3-(2-phenyl-1H-indol-1-yl)propanoate in dry ether followed by stirring for 20 hours and decomposition by sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ soln. Separation of the product following literature procedure ${ }^{4}$ gave (84%) of crude solid product. Crystallization from petroleum ether $\left(60-80{ }^{\circ} \mathrm{C}\right) /$ benzene mixture gave (82%) of pure 2-methyl-4-(2-phenyl-1 H -indol-1-yl)butan-2-ol 7 in the form of buff plates: m.p. $76-77^{\circ} \mathrm{C}$; IR (KBr) v 3550, 3480, 3050, 2995, 1700, 1600, 1465, 1445, 1345, 1180, $920,740,695 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($90 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$), $\delta=1.25\left(6 \mathrm{H}, \mathrm{s}, 2 \mathrm{CH}_{3}\right), 1.7(2 \mathrm{H}, \mathrm{t}, J=$ $\left.9 \mathrm{~Hz}, \mathrm{C}^{3} \mathrm{H}_{2}\right), 4.2\left(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}\right.$ exchangeable with $\left.\mathrm{D}_{2} \mathrm{O}\right), 4.4\left(2 \mathrm{H}, \mathrm{t}, J=9 \mathrm{~Hz}, \mathrm{C}^{4} \mathrm{H}_{2}\right), 6.6(1 \mathrm{H}, \mathrm{s}, \mathrm{CH})$ and 7.0-7.7 (9H, m, Ar-H). Anal. Calcd. for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}$ (279): C, 81.72; H, 7.52; N, 5.01. Found: C, 81.52; H, 7.74; N, 4.83.

Cyclialkylation procedures

The procedures described earlier for cyclialkylation of arylalkanols with $\mathrm{AlCl}_{3} / \mathrm{CH}_{3} \mathrm{NO}_{2}{ }^{15}$, PPA ${ }^{16}$, p-toluenesulfonic acid 17 (PTSA) and $\mathrm{H}_{3} \mathrm{PO}_{4}{ }^{18}$ were essentially followed.
4,4-Dimethyl-5,6-dihydro-4H-pyrido[3,2,1-jk]carbazole (8). Greenish plates: m.p. $65{ }^{\circ} \mathrm{C}$; IR (KBr) v 3050, 2975, 1620, 1580, 1490, 1445,1430, 1330, 1060, $1025 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $(90 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right), \delta=1.2\left(6 \mathrm{H}, \mathrm{s}, 2 \mathrm{CH}_{3}\right), 1.9\left(2 \mathrm{H}, \mathrm{t}, J=6 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.1\left(2 \mathrm{H}, \mathrm{t}, J=6 \mathrm{~Hz}, \mathrm{CH}_{2}\right)$ and $7.0-$ 8.2 (7H, d, Ar-H); MS (EI, 70 eV) $m / z(\%), 235\left(\mathrm{M}^{+}, 85.8\right), 219\left(\mathrm{M}^{+}-\mathrm{CH}_{3}-\mathrm{H}, 100\right), 205$ (0.8), $204\left(\mathrm{M}^{+}-2 \mathrm{CH}_{3}-\mathrm{H}, 25.1\right), 191$ (5.7), 177 (1.4), 166 (12.5), 151 (1.6), 109 (5.3), 90 (0.3), 77 (0.1), 66 (0.2). Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}$ (235): C, 86.8; H, 7.23; N, 5.95. Found: C, 86.59; H, 7.05; N, 6.2.

3,3-Dimethyl-2,3-dihydro-1H-benzo[kl]acridine (9). Faint yellow oil: $\mathrm{n}^{25} 1.6344, \mathrm{R}_{\mathrm{F} 2} 0.26$ (7.2:2.8, n-hexane/benzene eluent); IR (Film) v 3050, 2910, 1600, 1540, 1520, 1460, 1340, 742 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($90 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$), $\delta=1.45\left(6 \mathrm{H}, \mathrm{s}, 2 \mathrm{CH}_{3}\right), 2.0\left(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.5$ $\left(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right)$ and $7.35-8.4(7 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}) ; \mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}) \mathrm{m} / \mathrm{z}(\%), 247\left(\mathrm{M}^{+}, 20.1\right)$, $245\left(\mathrm{M}^{+}-2 \mathrm{H}, 68.5\right), 232\left(\mathrm{M}^{+}-\mathrm{CH}_{3}, 3.4\right), 217\left(\mathrm{M}^{+}-2 \mathrm{CH}_{3}, 39.1\right), 203$ (49.1), 191 (100), 189 (9.4), 178 (23.4), 166 (17.7), 151 (9.0), 90 (11.4), 77 (2.5), 66 (2.1). Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}$ (247): C, 87.44; H, 6.88; N, 5.66. Found: C, 87.2; H, 6.95; N, 5.46.

9-(3-Methylbut-2-en-1-yl)acridine (10). Yellow plates: $\mathrm{R}_{\mathrm{F} 1} 0.31$ (7.2:2.8, n-hexane/benzene eluent); m.p. $61-62{ }^{\circ} \mathrm{C}$; IR (KBr) v 3050, 2910, 1460, $755 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, $\mathrm{ppm}), \delta=1.6\left(6 \mathrm{H}, 2 \mathrm{~s}, 2 \mathrm{CH}_{3}\right), 2.6\left(2 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 5.0(1 \mathrm{H}, \mathrm{t}, J=6 \mathrm{~Hz}, \mathrm{CH})$ and $7.0-8.3$ ($8 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}$); MS (EI, 70 eV) m/z (\%), $247\left(\mathrm{M}^{+}, 6.6\right), 245\left(\mathrm{M}^{+}-2 \mathrm{H}, 100\right), 232\left(\mathrm{M}^{+}-\mathrm{CH}_{3}, 9.3\right)$, 231 (25.9), $217\left(\mathrm{M}^{+}-2 \mathrm{CH}_{3}, 57.3\right), 205$ (18.0), 203 (32.8), 192 (49.5), 177 (6.0), 166 (5.4), 150 (7.4), 91 (2.5), 77 (5.8), 66 (1.3). Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}$ (247): C, 87.44; H, 6.88; N, 5.66. Found: C, 87.53; H, 6.74; N, 5.52.

3,3-Dimethyl-2,3-dihydro-1H-pyrido[3,2,1-kl]phenothiazine (11). Yellowish viscous oil: $\mathrm{n}_{\mathrm{D}}{ }^{25}$ 1.644; IR (Film) v 3070, 2985, 1600, 1570, 1460, 1430, 1320, $740 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (90 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right), \delta=1.25\left(6 \mathrm{H}, \mathrm{s}, 2 \mathrm{CH}_{3}\right), 1.7\left(2 \mathrm{H}, \mathrm{t}, J=6 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.4\left(2 \mathrm{H}, \mathrm{t}, J=6 \mathrm{~Hz}, \mathrm{CH}_{2}\right)$ and $6.6-7.4(7 \mathrm{H}, \mathrm{d}, \mathrm{Ar}-\mathrm{H})$; MS (EI, 70 eV$) \mathrm{m} / \mathrm{z}(\%), 267\left(\mathrm{M}^{+}, 100\right), 252\left(\mathrm{M}^{+}-\mathrm{CH}_{3}, 8.2\right), 251$ $\left(\mathrm{M}^{+}-\mathrm{CH}_{3}-\mathrm{H}, 42.6\right), 236\left(\mathrm{M}^{+}-2 \mathrm{CH}_{3}-\mathrm{H}, 15.5\right), 223$ (16.2), 203 (15.2), 191 (2.6), 177 (2.8), 166 (9.1), 91 (0.5), 77 (2.1), 65 (0.2). Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NS}$ (267): C, 76.4; H, 6.36; N, 5.24; S, 11.98. Found: C, 76.21 ; H, 6.52; N, 5.14; S, 11.7.

4,4-Dimethyl-5,6,8,9,10,11-hexahydro-4H-pyrido[3,2,1-jk]carbazole (12). Yellowish viscous oil: n^{25} 1.6352; IR (Film) v 3050, 2910, 1610, 1490, 1450, 1320, $740 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (90 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right), \delta=1.25\left(6 \mathrm{H}, 2 \mathrm{~s}, 2 \mathrm{CH}_{3}\right), 1.8\left(6 \mathrm{H}\right.$, unresolved $\mathrm{m}, \mathrm{CH}_{2}$ and $2 \mathrm{CH}_{2}$ of tetrahydrocarbazole ring), $2.6\left(4 \mathrm{H}\right.$, broad $\left.\mathrm{m}, 2 \mathrm{CH}_{2}\right), 3.8\left(2 \mathrm{H}, \mathrm{t}, J=6 \mathrm{~Hz}\right.$, cyclic $\left.\mathrm{NCH}_{2}\right)$ and 6.6$7.3(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H})$; MS (EI, 70 eV$) \mathrm{m} / \mathrm{z}(\%), 241\left(\mathrm{M}^{+}+2,4.9\right), 240\left(\mathrm{M}^{+}+1,26.5\right), 239\left(\mathrm{M}^{+}, 100\right)$, $223\left(\mathrm{M}^{+}-\mathrm{CH}_{3}-\mathrm{H}, 31.8\right), 209\left(\mathrm{M}^{+}-2 \mathrm{CH}_{3}, 12.9\right), 195$ (81.5), 181 (87.7), 166 (38.8), 90 (11.1), 77 (41.6), 66 (2.5). Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}$ (239): C, 85.35; H, 8.78; N, 5.85. Found: C, 85.11; H, 8.72; N, 5.84.

5,5-Dimethyl-2-phenyl-4,5-dihydrocyclopenta[de]quinoline (13). Yellowish viscous oil: $\mathrm{n}_{\mathrm{D}}{ }^{25}$ 1.634; IR (Film) v 3050, 2900-2980, 1590, 1510, 1450, 1355, 1170, $760 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (90 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right), \delta=1.7\left(6 \mathrm{H}, \mathrm{s}, 2 \mathrm{CH}_{3}\right), 4.6\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right)$ and 7.4-8.3 $(9 \mathrm{H}, \mathrm{d}, \mathrm{Ar}-\mathrm{H})$; MS (EI, $70 \mathrm{eV}) \mathrm{m} / \mathrm{z}(\%), 261\left(\mathrm{M}^{+}+2,58.6\right), 259\left(\mathrm{M}^{+}, 6.6\right), 244\left(\mathrm{M}^{+}-\mathrm{CH}_{3}, 3.1\right), 228\left(\mathrm{M}^{+}-2 \mathrm{CH}_{3}-\mathrm{H}, 6.0\right)$, 215 (11.5), 201 (65.3), 177 (100), 166 (7.3), 90 (0.1), 77 (1.2), 66 (0.6). Anal. Calcd. for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~N}$ (259): C, 88.03; H, 6.56; N, 5.4. Found: C, 87.68; H, 6.54; N, 5.27.
4,4-Dimethyl-1-phenyl-1,2,3,4-tetrahydroquinoline (14). White crystals: m.p. $82{ }^{\circ} \mathrm{C}$ from methanol; IR (KBr) v 3040, 2950, 1590, 1490, 1310, 755, $690 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($90 \mathrm{MHz}, \mathrm{CDCl}_{3}$, $\mathrm{ppm}), \delta=1.3\left(6 \mathrm{H}, \mathrm{s}, 2 \mathrm{CH}_{3}\right), 1.7\left(2 \mathrm{H}, \mathrm{t}, J=6 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.5\left(2 \mathrm{H}, \mathrm{t}, J=6 \mathrm{~Hz}, \mathrm{CH}_{2}\right)$ and $6.6-7.3$ (9H, d, Ar-H); MS (EI, 70 eV$) \mathrm{m} / \mathrm{z}(\%), 237\left(\mathrm{M}^{+}, 5.9\right), 236\left(\mathrm{M}^{+}-\mathrm{H}, 39.4\right), 221\left(\mathrm{M}^{+}-\mathrm{CH}_{3}-\mathrm{H}\right.$, 56.9), $207\left(\mathrm{M}^{+}-2 \mathrm{CH}_{3}, 3.6\right), 193$ (11.6), 179 (18.2), 168 (100), 166 (34.1), 90 (16.0), 77 (4.9), 65 (5.7). Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}$ (237): C, 86.07; H, 8.01; N, 5.9. Found: C, 85.85; H, 7.92; N, 6.1.

6,6-Dimethyl-2-phenyl-5,6-dihydro-4H-pyrrolo[3,2,1-ij]quinoline (15). Reddish viscous oil: $\mathrm{n}_{\mathrm{D}}{ }^{25} 1.624$; IR (Film) v 3060, 2970, 1600, 1568, 1480, 1440, 1360, 1070, 740, $695 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right), \delta=1.25\left(6 \mathrm{H}, 2 \mathrm{~s}, 2 \mathrm{CH}_{3}\right), 1.8\left(2 \mathrm{H}, \mathrm{t}, J=6 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.1(2 \mathrm{H}, \mathrm{t}$, $\left.J=6 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 6.35(1 \mathrm{H}, \mathrm{s}, \mathrm{CH})$ and 6.7-7.5 $(8 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}) ; \mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}) \mathrm{m} / \mathrm{z}(\%), 262\left(\mathrm{M}^{+}+1\right.$, 22.9), $261\left(\mathrm{M}^{+}, 86.8\right), 246\left(\mathrm{M}^{+}-\mathrm{CH}_{3}, 100\right), 231\left(\mathrm{M}^{+}-2 \mathrm{CH}_{3}, 10.3\right), 217(10.9), 192$ (84.0), 177 (5.7), 167 (6.4), 166 (7.2), 90 (5.8), 77 (74.2), 66 (1.7). Anal. Calcd. for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}$ (261): C, 87.35; H, 7.27; N, 5.36. Found: C, 87.57; H, 7.44; N, 5.06.

Acknowledgements

The authors wish to thank Assiut University, Assiut, Egypt for all the facilities and support received while performing and writing this work.

References

1. Kouznetsov, V.; Palma, A. R.; Ewert, C. A.; Varlamov, A.V. J. Heterocycl. Chem. 1998, 35, 761.
2. Katritzky, A. R.; Rachwal, S.; Rachwal, B. Tetrahedron 1996, 52, 15031.
3. (a) Roberts, R. M.; Khalaf, A. A. Friedel-Crafts Alkylation Chemistry. A Century of Discovery; Marcel Dekker: New York, 1984. (b) Olah, G. A.; Krishnamurti, R.; Prakash, G. K. S. In Comprehensive Organic Synthesis; Trost, B. M.; Fleming, I. Eds.; Pergamon Press: Oxford, 1991; Vol. 3, Chapter 1.8, p 293. (c) Barclay, L. R. C. In Friedel-Crafts and Related Reactions; Olah, G. A. Ed.; Interscience: New York, 1964; Vol. II, Chap. 22 and references therein.
4. (a) Khalaf, A. A.; Roberts, R. M. J. Org. Chem. 1969, 34, 3571; ibid, 1966, 31, 89; ibid, 1972, 37, 4227; ibid, 1971, 36, 1040 and references therein. (b) Khalaf, A. A., Rev. Roum Chim. 1973, 18, 297; ibid, 1974, 19, 1373.
5. (a) Beck, J. B.; Booher, R. N.; Brown, A. C.; Kwok, R.; Pohland, A. J. Am. Chem. Soc. 1967, 89, 3934. (b) Conley, R. T.; Knopka, W. N. J. Org. Chem. 1964, 29, 496. (c) Plostnieks, J. U. S. Patent 3,706,522, 1973; Chem. Abstr. 1973, 78, 29641 f.
6. Smith, P. A. S. J. Am. Chem. Soc. 1952, 74, 1096.
7. Howland, L.; Jensen, H. J. Am. Chem. Soc. 1926, 48, 1988.
8. Cauquil, G.; Cassadevall, A. Compt. Rend. 1947, 225, 578.
9. Smith, N. L. J. Am. Chem. Soc. 1950, 72, 4313.
10. Rosenmund, K. W.; Zymalkowski, F. Chem. Ber. 1952, 85, 152.
11. Amacker, T. M., Brit. Patent 653,452, May 16, 1951.
12. Farbenind, I. G. A. -G., Fr. Patent 47,563, June 4, 1937.
13. Jones, R. G.; Soper, Q. F.; Behrens, O. K.; Corse, J. W. J. Am. Chem. Soc. 1948, 70, 2843.
14. Brown, B. R.; Hammick, D. L.; Thewlis, B. H. J. Chem. Soc. 1951, 1145.
15. Khalaf, A. A.; Makki, M. S. I. T.; Kabli, R. A. J. Indian Chem.Soc. 1997, 74, 148.
16. Khalaf, A. A.; Awad, I. M.; El-Emary, T. I.; Abd El-Aal, H. A. K. J. Indian Chem. Soc. 2008, 85, 6.
17. Khalaf, A. A.; Makki M. S. I. T.; Kabli, R. A. J. Indian Chem. Soc. 1997, 74, 148.
18. Khalaf, A. A.; Awad, I. M.; El-Emary, T. I.; Abd El-Aal, H. A. K. J. Indian Chem. Soc. 2006, 83, 10.
19. Khalaf, A. A.; El-Khawaga, A. M.; Awad, I. M.; Abd El-Aal, H. A. K. Arkivoc 2009, (xiv), 314.
