Synthesis of some 3-(1-aryl-9,10-dihydro-4-azaphenanthren-3yl)coumarins

Niraj H Patel, Anil K Patel, Chirag V Patel, Apoorva A Patel, and Dinker I Brahmbhatt*
Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar-388 120, Gujarat, India E-mail: drdibrahmbhatt@gmail.com

DOI: http://dx.doi.org/10.3998/ark.5550190.0011.223

Abstract

Various 3-(1-aryl-9,10-dihydro-4-azaphenanthren-9-yl)coumarins 3a-o were synthesized by reacting various 3 -coumarinoyl methyl pyridinium salts 1a-c with appropriate 2-benzylidene-1tetralone 2a-e in the presence of ammonium acetate and acetic acid under the Kröhnke's reaction condition. The structures of all the synthesized compounds were established on the basis of elemental and spectral analysis.

Keywords: Coumarins, 3-azaphenanthrenyl substituted coumarins, Kröhnke's pyridine synthesis

Introduction

Coumarins (2 H -1-benzopyran-2-ones) and its derivatives are important heterocyclic compounds that are widely distributed in nature. Many compounds containing the coumarin skeleton have shown antihelmintic, hypnotic, insecticidal, anticoagulant and antifungal properties. ${ }^{1}$ Coumarins represent a class of naturally and synthetically obtained compounds that posses a wide variety of biological activities ${ }^{2-3}$ often depending on the substituent they bear on their benzopyran skeleton. The incorporation of heterocyclic ring on to the coumarin nucleus can bring about an extensive modification in the biological activities of the parent compound. Among the heterocyclic substituted coumarins, pyridyl coumarins have a special importance due to their diverse physiological actions. A number of coumarin derivatives having pyridine substituted mainly at 3or 4- position of the coumarin possess CNS depressant activity. ${ }^{4}$ Some of the pyridyl substituted coumarins were reported to have fish toxicity and bactericidal activity. ${ }^{5}$ Considering the importance of pyridyl substituted coumarins, a variety of pyridyl substituted coumarins were synthesized from our laboratory. ${ }^{6}$

Phenanthrene containing one nitrogen atom is known as azaphenanthrene. During our literature search for azaphenanthrene, we came across some azaphenanthrene derivatives having interesting biological activities. 4-Azaphenanthrene derivatives have been reported to possess wound healing, antibacterial, in vitro antioxidant activity. ${ }^{7 a}$ The 1,3 -amino substituted 4 -
azaphenanthrene derivative possesses cytotoxic activity, ${ }^{7 \mathrm{~b}}$ where as 1 -chloro-2-azaphenanthrene was found to be a novel activator of cystic fibrosis transmembrane conductance regulator. ${ }^{7 c}$ A 3-(4-methylsufonylphenyl)-4-azaphenanthren-1-carboxylic acid acts as cyclooxygenase-2 inhibitors. ${ }^{7 \mathrm{~d}}$ Thus considering the importance of above azaphenanthrene derivatives and in continuation of our interest in synthesizing newer modified pyridyl substituted coumarin derivatives it was thought worthwhile to incorporate azaphenanthrene nucleus into coumarin moiety as a substituent group and therefore in the present work we report the synthesis of various 3-(1-aryl-9,10-dihydro-4-azaphenanthren-3-yl)coumarins 3a-o (Scheme 1).

Results and Discussion

The compounds 3a-o have been synthesized in good yield by reacting 3-coumarinoyl methyl pyridinium bromides 1a-c with appropriate 2-arylidene tetralone 2a-e under Kröhnke's reaction condition. The formation of pyridine nucleus in compounds $\mathbf{3 a - o}$ involves Kröhnke's reaction mechanism. ${ }^{8-9}$

1a-c
$+$

2a-e

3a-0

Scheme 1. Synthetic scheme for 3-(1-aryl-9,10-dihydro-4-azaphenanthren-3-yl)coumarins 3a-o.

	$\mathbf{R}_{\mathbf{1}}$	$\mathbf{R}_{\mathbf{2}}$	$\mathbf{R}_{\mathbf{3}}$	$\mathbf{R}_{\mathbf{4}}$	$\mathbf{R}_{\mathbf{5}}$		$\mathbf{R}_{\mathbf{1}}$	$\mathbf{R}_{\mathbf{2}}$	$\mathbf{R}_{\mathbf{3}}$	$\mathbf{R}_{\mathbf{4}}$	$\mathbf{R}_{\mathbf{5}}$
$\mathbf{3 a}$	H	H	H	H	H	$\mathbf{3 i}$	OCH_{3}	H	H	OCH_{3}	OCH_{3}
$\mathbf{3 b}$	H	H	H	H	CH_{3}	$\mathbf{3 j}$	OCH_{3}	H	H	H	Cl
$\mathbf{3 c}$	H	H	H	H	OCH_{3}	$\mathbf{3 k}$	H	Benzo	H	H	
$\mathbf{3 d}$	H	H	H	OCH_{3}	OCH_{3}	$\mathbf{3 l}$	H	Benzo	H	CH_{3}	
$\mathbf{3 e}$	H	H	H	H	Cl	$\mathbf{3 m}$	H	Benzo	H	OCH_{3}	
$\mathbf{3 f}$	OCH_{3}	H	H	H	H	$\mathbf{3 n}$	H	Benzo	OCH_{3}	OCH_{3}	
$\mathbf{3 g}$	OCH_{3}	H	H	H	CH_{3}	$\mathbf{3 o}$	H	Benzo	H	Cl	
$\mathbf{3 h}$	OCH_{3}	H	H	H	OCH_{3}						

The structures of the synthesized compounds 3a-o were established on the basis of IR, ${ }^{1} \mathrm{H}-\mathrm{NMR}$, ${ }^{13} \mathrm{C}$-NMR and mass spectral data.

The IR spectrum of 3a showed a very strong and sharp band at $1716 \mathrm{~cm}^{-1}$ which is due to carbonyl stretching of δ-lactone ring present in coumarin nucleus. The strong bands observed at 1607 and $1454 \mathrm{~cm}^{-1}$ are due to aromatic $\mathrm{C}=\mathrm{C}$ and $\mathrm{C}=\mathrm{N}$ stretching vibrations respectively. The sharp and intense bands observed at 698 and $766 \mathrm{~cm}^{-1}$ are due to $\mathrm{C}-\mathrm{H}$ bending vibrations for mono substituted phenyl ring. The medium bands observed at 2927 and $3057 \mathrm{~cm}^{-1}$ are attributed to aliphatic and aromatic C-H stretching vibrations respectively. Its ${ }^{1} \mathrm{H}$ NMR spectrum showed triplet $(J=7.2 \mathrm{~Hz})$ centered at 2.88δ and poorly resolved triplet centered at 2.99δ each integrating for two protons. This is due to two protons attached at C_{10} ' and two protons attached at C^{\prime} ' respectively. Total fifteen protons were observed in the region 7.26-9.03 δ. The most downfield signal observed at 9.03δ as a singlet is due to $\mathrm{C}_{4}-\mathrm{H}$. The singlet appeared at 8.36δ is due to $\mathrm{C}_{2}{ }^{\prime}-\mathrm{H}$. The $\mathrm{C}_{5}{ }^{\prime}-\mathrm{H}$ appeared as a poorly resolved doublet of doublet centered at 8.54δ. The remaining twelve aromatic protons appeared as a multiplet between $7.26-7.75 \delta$. The $\mathrm{C}_{2}{ }^{\prime}$ proton of pyridine ring appears in the downfield region due to the peri effect of carbonyl group of δ lactone. The ${ }^{13} \mathrm{C}$ NMR spectrum of compound 3a showed twenty five non equivalent carbon signals. However though the compound is having twenty six types of non equivalent carbon atoms, the lack of one signal may be due to overlapping of two carbon signals, which may have identical chemical shifts. The signals observed at 25.5 and 28.1δ are due to $\mathrm{C}_{10}{ }^{\prime}$ and $\mathrm{C}^{\prime}{ }^{\prime}$ respectively. The most downfield signal appeared at 160.0δ can be assigned to the carbonyl carbon of the δ-lactone ring of coumarin. The signal appeared at 142.0δ can be attributed to C_{4} carbon. The aromatic carbons appeared at $116.4,119.8,123.6,124.5,125.5,127.1,127.7,128.1$, $128.4,128.8,129.0,129.3,129.6,131.9,134.9,138.4,139.0,148.4,149.1,152.5$ and 153.9δ. Among these aromatic signals, the most downfield signal at 153.9δ can be assigned to $\mathrm{C}_{8} \mathrm{a}$ carbon as it is attached to the electronegative oxygen atom of δ-lactone ring. The two other downfield signals appearing at 149.1 and 152.5δ can be assigned to $\mathrm{C}_{3}{ }^{\prime}$ and $\mathrm{C}_{4}{ }^{\prime}$ a carbons respectively as they are directly attached to the electronegative nitrogen atom. The DEPT-135 spectrum of compound $\mathbf{3 a}$ showed inverted signals at 25.5 and 28.1δ which confirms $\mathrm{C}_{10}{ }^{\prime}$ and C9' methylene carbons respectively. The spectrum showed total thirteen upward carbon signals at
$116.4,123.6,124.5,125.5,127.1,127.7,128.1,128.4,128.8,129.0,129.3,131.9$ and 142.0δ. This supports the presence of thirteen tertiary carbons in the compound. The mass spectrum of 3a showed molecular ion peak at $\mathrm{m} / \mathrm{z} 401$ along with other fragments peaks. It exactly matches with the molecular weight of compound $\mathbf{3 a}$ and thus confirming the structure of 3a. Similarly all other compounds gave satisfactory spectral analysis.

Experimental Section

General. All the melting points reported are uncorrected. All the IR spectra (KBr disc) were recorded on Shimadzu FT-IR 8400-S spectrometer. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker Avance 400 spectrometer operating at 400 MHz for ${ }^{1} \mathrm{H}$ NMR and 100 MHz for ${ }^{13} \mathrm{C}$ NMR. The chemical shift (δ) is reported in ppm using chloroform-d as a solvent and calibrated standard solvent signal. Mass spectrum was recorded on Shimadzu QP 2010 spectrometer. 3-Coumarinoyl methyl pyridinium bromides 1a-c and 2-benzylidene-1-tetralones 2a-e were prepared according literature procedures. ${ }^{10-12}$

General procedure for the synthesis of 3-(1-aryl-9,10-dihydro-4-azaphenanthren-3-yl) coumarins (3a-o)

In a 100 mL round bottom flask equipped with a dropping funnel, condenser, guard tube and magnetic needle an appropriate 3-coumarinoyl methyl pyridinium salt 1a-c (0.003 mol) in glacial acetic acid (15 mL) was taken. To this ammonium acetate (0.03 mol) was added with stirring at room temperature. Then a solution of an appropriate 2-arylidene-1-tetralone 2a-e (0.003 mol) in glacial acetic acid (15 mL) was added with stirring at room temperature during 15 minutes. The reaction mixture was further stirred for 1 hour and then refluxed for 12 hours at $140^{\circ} \mathrm{C}$. It was then allowed to come to room temperature and was poured into ice-cold water (75 mL). A crude solid obtained was extracted with chloroform (3 x 30 mL). The organic layer was washed with 5% sodium bicarbonate solution ($3 \times 20 \mathrm{~mL}$), water (2 x 20 mL) and dried over anhydrous sodium sulfate. The removal of chloroform under reduced pressure gave crude material which was subjected to column chromatography using silica gel and ethyl acetate-petroleum ether (6080) (1:9) as an eluent to give products 3a-o. The compounds were recrystallized from chloroform-hexane.
3-(1-Phenyl-9,10-dihydro-4-azaphenanthren-3-yl)coumarin (3a). Yield 0.62 g (52\%); mp 194 ${ }^{\circ} \mathrm{C}$; white powder; $\operatorname{IR}(\mathrm{KBr}): 698$ (s), 766 (s), 1454 (s), 1607 (s), 1716 (vs), 2927 (m), 3057 (m) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right)$: $\delta 2.88\left(2 \mathrm{H}, \mathrm{t}\right.$, protons at $\left.\mathrm{C}_{10}{ }^{\prime}, \mathrm{J}=7.2 \mathrm{~Hz}\right), 2.99(2 \mathrm{H}$, poorly resolved triplet, protons at C^{\prime} '), $7.26-7.75(12 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 8.36\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C}_{2}\right.$ '- H of pyridine ring), $8.54(1 \mathrm{H}$, poorly resolved dd, $\left.\mathrm{C}_{5}{ }^{\prime}-\mathrm{H}\right), 9.03\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C}_{4}-\mathrm{H}\right.$ of coumarin); ${ }^{13} \mathrm{C}$ NMR: $\delta 25.5$ ($\left.\mathrm{C}_{10}{ }^{\prime}\right), 28.1$ ($\left.\mathrm{C}_{9}{ }^{\prime}\right)$, $116.4(\mathrm{CH}), 119.8(\mathrm{C}), 123.6(\mathrm{CH}), 124.5(\mathrm{CH}), 125.5(\mathrm{CH}), 127.1(\mathrm{CH}), 127.7(\mathrm{CH}), 128.1$ $(\mathrm{CH}), 128.4(\mathrm{CH}), 128.8(\mathrm{CH}), 129.0(\mathrm{CH}), 129.3(\mathrm{CH}), 129.6(\mathrm{C}), 131.9(\mathrm{CH}), 134.9(\mathrm{C}), 138.4$ (C), $139.0(\mathrm{C}), 142.0\left(\mathrm{C}_{4}\right), 148.4$ (C), 149.1 (C_{3}), 152.5 ($\left.\mathrm{C}_{4}^{\prime} \mathrm{a}\right), 153.9\left(\mathrm{C}_{8} \mathrm{a}\right), 160.0(\mathrm{CO}$ of
carbonyl). Anal. Calcd. for $\mathrm{C}_{28} \mathrm{H}_{19} \mathrm{NO}_{2}$: C, 83.77 ; H, 4.77; N, 3.49\%. Found: C, 83.70; H, 4.87; N, 3.50\%.
3-[1-(4-Methylphenyl)-9,10-dihydro-4-azaphenanthren-3-yl]coumarin (3b). Yield 0.75 g (60\%); mp $203{ }^{\circ} \mathrm{C}$; white powder; IR(KBr): 825 (s), 1492 (s), 1600 (s), 1723 (vs), 2955 (m), $3055(\mathrm{~m}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta 2.46\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.88-2.99\left(4 \mathrm{H}, \mathrm{m}\right.$, protons at $\mathrm{C}_{9}{ }^{\prime}$ and $\left.\mathrm{C}_{10}{ }^{\prime}\right), 7.32-$ $7.73(11 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 8.35\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C}_{2}{ }^{\prime}-\mathrm{H}\right.$ of pyridine ring), $8.53\left(1 \mathrm{H}\right.$, poorly resolved dd, $\left.\mathrm{C}_{5}-\mathrm{H}\right)$, $9.01\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C}_{4}-\mathrm{H}\right.$ of coumarin); ${ }^{13} \mathrm{C}$ NMR: $\delta 21.3\left(\mathrm{CH}_{3}\right), 25.5\left(\mathrm{C}_{10}\right), 28.1\left(\mathrm{C}^{\prime}\right), 116.3(\mathrm{CH})$, 119.8 (C), 123.7 (CH), $124.5(\mathrm{CH}), 125.5(\mathrm{CH}), 125.7(\mathrm{C}), 127.1(\mathrm{CH}), 127.7(\mathrm{CH}), 128.8(\mathrm{CH})$, $128.9(\mathrm{CH}), 129.1(\mathrm{CH}), 129.2(\mathrm{CH}), 129.6(\mathrm{C}), 131.8(\mathrm{CH}), 135.0(\mathrm{C}), 136.0(\mathrm{C}), 137.9(\mathrm{C})$, 138.4 (C), 141.9 (C_{4}), 148.4 (C), 149.1 (C_{3} '), 152.4 ($\left.\mathrm{C}_{4}^{\prime} \mathrm{a}\right), 153.9$ (C), 160.4 (CO of carbonyl). Anal. Calcd. for $\mathrm{C}_{29} \mathrm{H}_{21} \mathrm{NO}_{2}$: C, 83.83; H, 5.09; N, 3.37\%. Found: C, 83.76; H, 5.09; N, 3.34\%.
3-[1-(4-Methoxyphenyl)-9,10-dihydro-4-azaphenanthren-3-yl]coumarin (3c). Yield 0.75 g (58\%); mp 181-182 ${ }^{\circ} \mathrm{C}$; white powder; IR(KBr): 830 (s), 1465 (s), 1610 (s), 1715 (vs), 2960 (m), $3040(\mathrm{~m}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta 2.89\left(2 \mathrm{H}\right.$, poorly resolved triplet, protons at $\left.\mathrm{C}_{10}{ }^{\prime}\right), 3.01(2 \mathrm{H}$, poorly resolved triplet, protons at C_{9} '), $3.90\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 7.02-7.75(11 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 8.34\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C}_{2}{ }^{\prime}-\right.$ H of pyridine ring), $8.52\left(1 \mathrm{H}\right.$, poorly resolved dd, $\left.\mathrm{C}_{5}-\mathrm{H}\right), 9.01\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C}_{4}-\mathrm{H}\right.$ of coumarin) ${ }^{13}{ }^{13} \mathrm{C}$ NMR: $\delta 25.6\left(\mathrm{C}_{10}{ }^{\prime}\right), 28.1\left(\mathrm{C}^{9}\right), 55.4\left(\mathrm{OCH}_{3}\right), 113.8(\mathrm{CH}), 116.3(\mathrm{CH}), 119.8(\mathrm{C}), 123.7(\mathrm{CH})$, $124.5(\mathrm{CH}), 125.5(\mathrm{CH}), 125.7(\mathrm{C}), 127.1(\mathrm{CH}), 127.6(\mathrm{CH}), 128.8(\mathrm{CH}), 129.2(\mathrm{CH}), 129.6(\mathrm{C})$, $130.3(\mathrm{CH}), 131.2(\mathrm{C}), 131.8(\mathrm{CH}), 135.0(\mathrm{C}), 138.4(\mathrm{C}), 141.9\left(\mathrm{C}_{4}\right), 148.4(\mathrm{C}), 148.7\left(\mathrm{C}_{3}\right)$, 152.5 (C_{4}^{\prime} 'a), 153.9 (C), 159.5 (C), 160.4 (CO of carbonyl). Anal. Calcd. for $\mathrm{C}_{29} \mathrm{H}_{21} \mathrm{NO}_{3}$: C, 80.72; H, 4.91; N, 3.25\%. Found: C, 80.85; H, 4.90; N, 3.22\%.

3-[1-(2,4-Dimethoxyphenyl)-9,10-dihydro-4-azaphenanthren-3-yl]coumarin (3d). Yield 0.85 $\mathrm{g}(61 \%)$; mp $178{ }^{\circ} \mathrm{C}$; white powder; $\operatorname{IR}(\mathrm{KBr}): 825$ (s), 1480 (s), 1605 (s), 1720 (vs), 2960 (m), $3050(\mathrm{~m}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta 2.72-2.88\left(4 \mathrm{H}, \mathrm{m}\right.$, protons at C9'and C_{10} '), $3.78\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.91$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 6.58-7.76(10 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 8.29\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C}_{2}{ }^{\prime}-\mathrm{H}\right.$ of pyridine ring $), 8.54\left(1 \mathrm{H}, \mathrm{dd}^{2}, \mathrm{C}_{5}{ }^{\prime}-\right.$ $\mathrm{H}, \mathrm{J}=7.6,1.2 \mathrm{~Hz}), 9.02\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C}_{4}-\mathrm{H}\right.$ of coumarin); ${ }^{13} \mathrm{C}$ NMR: $\delta 25.4\left(\mathrm{C}_{10}{ }^{\prime}\right), 28.0\left(\mathrm{C}^{\prime}\right), 55.4$ $\left(\mathrm{OCH}_{3}\right), 55.5\left(\mathrm{OCH}_{3}\right), 98.6(\mathrm{CH}), 104.5(\mathrm{CH}), 116.3(\mathrm{CH}), 119.9(\mathrm{C}), 120.7(\mathrm{C}), 124.4(\mathrm{CH})$, $124.5(\mathrm{CH}), 125.4(\mathrm{CH}), 125.9(\mathrm{C}), 127.0(\mathrm{CH}), 127.6(\mathrm{CH}), 128.8(\mathrm{CH}), 129.0(\mathrm{CH}), 131.3$ (CH), 131.6 (C), 131.7 (CH), 135.2 (C), 138.6 (C), 141.8 (C_{4}), 146.1 (C), 148.2 ($\left.\left.\mathrm{C}_{3}\right)^{\prime}\right), 151.8$ ($\left.\mathrm{C}_{4}^{\prime} \mathrm{a}\right), 153.9$ (C), 157.5 (C), 160.4 (C), 161.2 (CO of carbonyl). Anal. Calcd. for $\mathrm{C}_{30} \mathrm{H}_{23} \mathrm{NO}_{4}$: C, 78.08 ; H, 5.02; N, 3.03\%. Found: C, 78.17; H, 5.06; N, 3.05\%.

3-[1-(4-Chlorophenyl)-9,10-dihydro-4-azaphenanthren-3-yl]coumarin (3e). Yield 0.63 g (48\%); mp $222^{\circ} \mathrm{C}$; light yellow powder; IR(KBr): 840 (s), 1485 (s), 1610 (s), 1725 (vs), 2940 (m), $3070(\mathrm{~m}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta 2.89-2.95\left(4 \mathrm{H}, \mathrm{m}\right.$, protons at C9'and C_{10} '), 7.37-7.76 (11H, m, Ar-H), $8.33\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C}_{2}{ }^{\prime}-\mathrm{H}\right.$ of pyridine ring $), 8.53\left(1 \mathrm{H}\right.$, poorly resolved dd, $\left.\mathrm{C}_{5}{ }^{\prime}-\mathrm{H}\right), 9.03\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C}_{4}-\right.$ H of coumarin); ${ }^{13} \mathrm{C}$ NMR: $\delta 25.9$ ($\mathrm{C}_{10}{ }^{\prime}$), 28.1 (C9'), 116.4 (CH), 119.7 (C), 123.3 (CH), 124.6 $(\mathrm{CH}), 125.4(\mathrm{C}), 125.6(\mathrm{CH}), 127.2(\mathrm{CH}), 127.7(\mathrm{CH}), 128.7(\mathrm{CH}), 128.9(\mathrm{CH}), 129.4(\mathrm{CH})$, $130.4(\mathrm{CH}), 132.0(\mathrm{CH}), 134.3$ (C), 134.8 (C), 137.4 (C), 138.3 (C), 142.1 (C4), 147.9 (C), 148.6 $\left(\mathrm{C}_{3}{ }^{\prime}\right), 152.4$ ($\left.\mathrm{C}_{4}^{\prime} \mathrm{a}\right), 152.7(\mathrm{C}), 153.9(\mathrm{C}), 160.4$ (CO of carbonyl). Anal. Calcd. for $\mathrm{C}_{28} \mathrm{H}_{18} \mathrm{ClNO}_{2}$: C, 77.15; H, 4.16; N, 3.21\%. Found: C, 77.23; H, 4.12; N, 3.19\%.

8-Methoxy-3-(1-phenyl-9,10-dihydro-4-azaphenanthren-3-yl)coumarin (3f). Yield 0.81 g (62\%); mp 270-272 ${ }^{\circ} \mathrm{C}$; white powder; $\operatorname{IR}(\mathrm{KBr}): 710$ (s), 740 (s), 1480 (s), 1605 (s), 1725 (vs), $2940(\mathrm{~m}), 3060(\mathrm{~m}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta 2.89\left(2 \mathrm{H}\right.$, poorly resolved triplet, protons at $\left.\mathrm{C}_{10}{ }^{\prime}\right), 2.98$ $\left(2 \mathrm{H}\right.$, poorly resolved triplet, protons at C_{9} '), $4.02\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 7.12-7.50(11 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 8.38$ $\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C}_{2}{ }^{\prime}-\mathrm{H}\right.$ of pyridine ring), $8.54\left(1 \mathrm{H}\right.$, poorly resolved dd, $\left.\mathrm{C}_{5}-\mathrm{H}\right), 9.01(1 \mathrm{H}, \mathrm{s}, \mathrm{C} 4-\mathrm{H}$ of coumarin); ${ }^{13} \mathrm{C}$ NMR: $\delta 25.5\left(\mathrm{C}_{10}{ }^{\prime}\right), 28.1\left(\mathrm{C}_{9}{ }^{\prime}\right), 56.3\left(\mathrm{OCH}_{3}\right), 113.6(\mathrm{CH}), 120.3(\mathrm{CH}), 120.4(\mathrm{C})$, $123.6(\mathrm{CH}), 124.3(\mathrm{CH}), 125.5(\mathrm{CH}), 125.8(\mathrm{C}), 127.1(\mathrm{CH}), 127.7(\mathrm{CH}), 128.1(\mathrm{CH}), 128.4$ (CH), 129.0 (CH), 129.3 (CH), 129.6 (C), 134.9 (C), 138.4 (C), 138.9 (C), 142.1 (C4), 143.5 (C), 146.9 (C), 148.4 (C), 149.1 ($\mathrm{C}_{3}{ }^{\prime}$), 152.4 ($\left.\mathrm{C}_{4}{ }^{\prime} \mathrm{a}\right), 159.8$ (CO of carbonyl). Anal. Calcd. for $\mathrm{C}_{29} \mathrm{H}_{21} \mathrm{NO}_{3}$: C, 80.72 ; H, 4.91 ; N, 3.25%. Found: C, 80.68 ; H, 4.87; N, 3.23%.
8-Methoxy-3-[1-(4-methylphenyl)-9,10-dihydro-4-azaphenanthren-3-yl]coumarin (3g). Yield 0.76 g (57%); mp $260-262^{\circ} \mathrm{C}$; light yellow powder; $\mathrm{IR}(\mathrm{KBr}): 825$ (s), 1485 (s), 1595 (s), 1715 (vs), $2945(\mathrm{~m}), 3065(\mathrm{~m}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta 2.46\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.88\left(2 \mathrm{H}, \mathrm{t}\right.$, protons at $\mathrm{C}_{10}{ }^{\prime}, \mathrm{J}$ $=7.6 \mathrm{~Hz}), 3.00\left(2 \mathrm{H}, \mathrm{t}\right.$, protons at $\left.\mathrm{C}_{9}{ }^{\prime}, \mathrm{J}=7.6 \mathrm{~Hz}\right), 4.02\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 7.12-7.47(10 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H})$, $8.36\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C}_{2}{ }^{\prime}-\mathrm{H}\right.$ of pyridine ring), $8.52\left(1 \mathrm{H}\right.$, poorly resolved dd, $\left.\mathrm{C}_{5}-\mathrm{H}\right), 9.00\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C}_{4}-\mathrm{H}\right.$ of coumarin); ${ }^{13} \mathrm{C}$ NMR: $\delta 21.3\left(\mathrm{CH}_{3}\right)$, $25.5\left(\mathrm{C}_{10}{ }^{\prime}\right)$, $28.1\left(\mathrm{C}_{9}\right), 56.3\left(\mathrm{OCH}_{3}\right), 113.6(\mathrm{CH}), 120.3$ $(\mathrm{CH}), 120.4(\mathrm{C}), 123.7(\mathrm{CH}), 124.3(\mathrm{CH}), 125.5(\mathrm{CH}), 125.9(\mathrm{C}), 127.1(\mathrm{CH}), 127.6(\mathrm{CH}), 128.9$ $(\mathrm{CH}), 129.1(\mathrm{CH}), 129.2(\mathrm{CH}), 129.6(\mathrm{C}), 135.0(\mathrm{C}), 136.0(\mathrm{C}), 137.9(\mathrm{C}), 138.4(\mathrm{C}), 142.0\left(\mathrm{C}_{4}\right)$, 143.6 (C), 146.9 (C), 148.4 (C), 149.1 ($\left.\left.\mathrm{C}_{3}\right)^{\prime}\right), 152.4$ ($\mathrm{C}_{4}{ }^{\prime} \mathrm{a}$), 159.8 (CO of carbonyl). Anal. Calcd. for $\mathrm{C}_{30} \mathrm{H}_{23} \mathrm{NO}_{3}$: C, $80.88 ; \mathrm{H}, 5.20 ; \mathrm{N}, 3.14 \%$. Found: C, $80.80 ; \mathrm{H}, 5.23 ; \mathrm{N}, 3.16 \%$.
8-Methoxy-3-[1-(4-methoxyphenyl)-9,10-dihydro-4-azaphenanthren-3-yl]coumarin (3h). Yield $0.83 \mathrm{~g}(60 \%) ; \mathrm{mp} 275-276{ }^{\circ} \mathrm{C}$; white powder; $\operatorname{IR}(\mathrm{KBr}): 825$ (s), 1480 (s), 1610 (s), 1720 (vs), $2940(\mathrm{~m}), 3055(\mathrm{~m}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta 2.89\left(2 \mathrm{H}\right.$, poorly resolved triplet, protons at $\left.\mathrm{C}_{10}{ }^{\prime}\right)$, $3.01\left(2 \mathrm{H}\right.$, poorly resolved triplet, protons at $\left.\mathrm{C}_{9}\right), 3.90\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.02\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 7.02-$ $7.47(10 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 8.35\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C}_{2}{ }^{\prime}-\mathrm{H}\right.$ of pyridine ring), $8.52\left(1 \mathrm{H}\right.$, poorly resolved dd, $\left.\mathrm{C}_{5}{ }^{\prime}-\mathrm{H}\right)$, $8.99\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C}_{4}-\mathrm{H}\right.$ of coumarin); ${ }^{13} \mathrm{C}$ NMR: $\delta 25.6\left(\mathrm{C}_{10}{ }^{\prime}\right), 28.1\left(\mathrm{C}_{9}\right), 55.4\left(\mathrm{OCH}_{3}\right), 56.3\left(\mathrm{OCH}_{3}\right)$, $113.6(\mathrm{CH}), 113.8(\mathrm{CH}), 120.3(\mathrm{CH}), 120.4(\mathrm{C}), 123.7(\mathrm{CH}), 124.3(\mathrm{CH}), 125.5(\mathrm{CH}), 125.9(\mathrm{C})$, $127.1(\mathrm{CH}), 127.6(\mathrm{CH}), 129.2(\mathrm{CH}), 129.6(\mathrm{C}), 130.3(\mathrm{CH}), 131.2(\mathrm{C}), 135.0(\mathrm{C}), 138.4(\mathrm{C})$, 142.1 (C_{4}), 143.5 (C), 146.9 (C), 148.4 (C), 148.8 ($\mathrm{C}_{3}{ }^{\prime}$), 152.4 ($\left.\mathrm{C}_{4}{ }^{\prime} \mathrm{a}\right), 159.5$ (C), 159.8 (CO of carbonyl). Anal. Calcd. for $\mathrm{C}_{30} \mathrm{H}_{23} \mathrm{NO}_{4}$: C, 78.08 ; H, 5.02 ; N, 3.03\%. Found: C, 78.19 ; H, 5.04; N, 3.03\%.
8-Methoxy-3-[1-(2,4-dimethoxyphenyl)-9,10-dihydro-4-azaphenanthren-3-yl]coumarin (3i). Yield 0.94 g (64\%); mp $271{ }^{\circ} \mathrm{C}$; white powder; $\operatorname{IR}(\mathrm{KBr}): 830$ (s), 1480 (s), 1600 (s), 1715 (vs), $2940(\mathrm{~m}), 3055(\mathrm{~m}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta 2.73-2.88\left(4 \mathrm{H}, \mathrm{m}\right.$, protons at $\mathrm{C}_{9}{ }^{\prime}$ and $\left.\mathrm{C}_{10}{ }^{\prime}\right), 3.78(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{3}\right), 3.90\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.02\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 6.58-7.45(9 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 8.31\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C}_{2}{ }^{\prime}-\mathrm{H}\right.$ of pyridine ring), $8.53\left(1 \mathrm{H}\right.$, poorly resolved dd, $\left.\mathrm{C}_{5}-\mathrm{H}\right), 9.00\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C}_{4}-\mathrm{H}\right.$ of coumarin); ${ }^{13} \mathrm{C}$ NMR: δ $25.4\left(\mathrm{C}_{10}{ }^{\prime}\right), 28.0\left(\mathrm{C}_{9}\right), 55.4\left(\mathrm{OCH}_{3}\right), 55.5\left(\mathrm{OCH}_{3}\right), 56.3\left(\mathrm{OCH}_{3}\right), 98.6(\mathrm{CH}), 104.5(\mathrm{CH}), 113.4$ $(\mathrm{CH}), 120.2(\mathrm{CH}), 120.5(\mathrm{C}), 120.7(\mathrm{C}), 124.3(\mathrm{CH}), 124.5(\mathrm{CH}), 125.4(\mathrm{CH}), 126.1(\mathrm{C}), 127.0$ $(\mathrm{CH}), 127.6(\mathrm{CH}), 129.0(\mathrm{CH}), 131.4(\mathrm{CH}), 131.6(\mathrm{C}), 135.2(\mathrm{C}), 138.6(\mathrm{C}), 141.9\left(\mathrm{C}_{4}\right), 143.5$
(C), 146.1 (C), 146.9 (C), 148.1 (C_{3} '), 151.7 ($\left.\mathrm{C}_{4}{ }^{\prime} \mathrm{a}\right), 157.5$ (C), 159.8 (C), 161.2 (CO of carbonyl). Anal. Calcd. for $\mathrm{C}_{31} \mathrm{H}_{25} \mathrm{NO}_{5}$: C, 75.75 ; H, 5.13; N, 2.85\%. Found: C, $75.62 ; \mathrm{H}, 5.09$; $\mathrm{N}, 2.83 \%$.
8-Methoxy-3-[1-(4-chlorophenyl)-9,10-dihydro-4-azaphenanthren-3-yl]coumarin (3j). Yield 0.74 g (53\%); mp $292{ }^{\circ} \mathrm{C}$; white powder; $\mathrm{IR}(\mathrm{KBr}): 830$ (s), 1480 (s), 1610 (s), 1725 (vs), 2955 $(\mathrm{m}), 3050(\mathrm{~m}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta 2.88-2.93\left(4 \mathrm{H}, \mathrm{m}\right.$, protons at C_{9} 'and $\left.\mathrm{C}_{10}{ }^{\prime}\right), 4.01\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$, 7.12-7.48 ($10 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 8.34\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C}_{2}{ }^{\prime}-\mathrm{H}\right.$ of pyridine ring), $8.51(1 \mathrm{H}$, poorly resolved dd, $\left.\mathrm{C}_{5}{ }^{\prime}-\mathrm{H}\right), 9.00\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C}_{4}-\mathrm{H}\right.$ of coumarin); ${ }^{13} \mathrm{C}$ NMR: $\delta 25.4\left(\mathrm{C}_{10}{ }^{\prime}\right), 28.0\left(\mathrm{C}_{9}{ }^{\prime}\right), 56.3\left(\mathrm{OCH}_{3}\right), 113.7$ $(\mathrm{CH}), 120.3(\mathrm{CH}), 123.4(\mathrm{CH}), 124.4(\mathrm{CH}), 125.5(\mathrm{CH}), 127.1(\mathrm{CH}), 127.7(\mathrm{CH}), 128.7(\mathrm{CH})$, $129.4(\mathrm{CH}), 130.4(\mathrm{CH}), 134.2$ (C), 134.7 (C), 137.3 (C), 138.3 (C), 142.2 ($\left.\mathrm{C}_{4}\right), 143.5$ (C), 146.9 (C), $147.9(\mathrm{C}), 148.5\left(\mathrm{C}_{3}{ }^{\prime}\right), 152.5\left(\mathrm{C}_{4}{ }^{\prime} \mathrm{a}\right), 159.8\left(\mathrm{CO}\right.$ of carbonyl). Anal. Calcd. for $\mathrm{C}_{29} \mathrm{H}_{20} \mathrm{ClNO}_{3}$: C, 74.76 ; H, 4.33; N, 3.01%. Found: C, 74.68 ; H, 4.37 ; N, 3.01%.
3-(1-Phenyl-9,10-dihydro-4-azaphenanthren-3-yl)benzo[f]coumarin (3k). Yield 0.82 g (61\%); mp $274{ }^{\circ} \mathrm{C}$; yellow powder; IR(KBr): 705 (s), 760 (s), 1480 (s), 1595 (s), 1715 (vs), 2950 $(\mathrm{m}), 3055(\mathrm{~m}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta 2.91\left(2 \mathrm{H}, \mathrm{t}\right.$, protons at $\left.\mathrm{C}_{10}{ }^{\prime}, \mathrm{J}=7.6 \mathrm{~Hz}\right), 3.03(2 \mathrm{H}, \mathrm{t}$, protons at C_{9} ', J $=7.6 \mathrm{~Hz}$), $7.10-8.06(13 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 8.45\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C}_{2}{ }^{\prime}-\mathrm{H}\right.$ of pyridine ring), $8.55(1 \mathrm{H}$, poorly resolved dd, $\mathrm{C}_{5}-\mathrm{H}$ of phenyl ring), $8.62\left(1 \mathrm{H}\right.$, poorly resolved dd, $\left.\mathrm{C}_{5}-\mathrm{H}\right), 9.87\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C}_{4}-\mathrm{H}\right.$ of coumarin); ${ }^{13} \mathrm{C}$ NMR: $\delta 25.5$ ($\left.\mathrm{C}_{10}{ }^{\prime}\right), 28.1$ (C_{9} '), $114.0(\mathrm{C}), 116.7(\mathrm{CH}), 122.0(\mathrm{CH}), 123.6(\mathrm{CH})$, $124.3(\mathrm{C}), 125.5(\mathrm{CH}), 126.1(\mathrm{CH}), 127.2(\mathrm{CH}), 127.7(\mathrm{CH}), 128.1(\mathrm{CH}), 128.4(\mathrm{CH}), 128.5$ $(\mathrm{CH}), 129.0(\mathrm{CH}), 129.1(\mathrm{CH}), 129.3(\mathrm{CH}), 129.5(\mathrm{C}), 129.6(\mathrm{C}), 130.4(\mathrm{C}), 133.4(\mathrm{CH}), 135.0$ (C), 137.7 (C_{4}), 138.5 (C), 139.0 (C), 148.7 (C), 149.2 (C_{3}), 152.5 ($\left.\mathrm{C}_{4}{ }^{\prime} \mathrm{a}\right), 153.7$ (C), 160.5 (CO of carbonyl). Anal. Calcd. for $\mathrm{C}_{32} \mathrm{H}_{21} \mathrm{NO}_{2}$: C, $85.12 ; \mathrm{H}, 4.69 ; \mathrm{N}, 3.10 \%$. Found: C, 85.24; H, 4.66; N, 3.08\%.

3-[1-(4-Methylphenyl)-9,10-dihydro-4-azaphenanthren-3-yl]benzo[f]coumarin (31). Yield $0.90 \mathrm{~g}(64 \%) ; \mathrm{mp} 296^{\circ} \mathrm{C}$; yellow powder; $\mathrm{IR}(\mathrm{KBr})$: 820 (s), 1475 (s), 1600 (s), 1715 (vs), 2960 $(\mathrm{m}), 3060(\mathrm{~m}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta 2.47\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.91\left(2 \mathrm{H}, \mathrm{m}\right.$, protons at $\left.\mathrm{C}_{10}{ }^{\prime}\right), 3.03(2 \mathrm{H}, \mathrm{m}$, protons at C^{\prime} '), $7.29-8.06(12 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 8.44\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C}_{2}{ }^{\prime}-\mathrm{H}\right.$ of pyridine ring), $8.55(1 \mathrm{H}$, poorly resolved dd, $\mathrm{C}_{5}-\mathrm{H}$ of phenyl ring), $8.61\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{C}_{5}-\mathrm{H}, \mathrm{J}=7.6,0.8 \mathrm{~Hz}\right), 9.86\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C}_{4}-\mathrm{H}\right.$ of coumarin); ${ }^{13} \mathrm{C}$ NMR: $\delta 21.3\left(\mathrm{CH}_{3}\right), 25.6\left(\mathrm{C}_{10}{ }^{\prime}\right), 28.2\left(\mathrm{C}_{9}\right), 114.0(\mathrm{C}), 116.7(\mathrm{CH}), 122.0(\mathrm{CH})$, $123.7(\mathrm{CH}), 124.4(\mathrm{C}), 125.5(\mathrm{CH}), 126.1(\mathrm{CH}), 127.2(\mathrm{CH}), 127.7(\mathrm{CH}), 128.4(\mathrm{CH}), 128.9$ $(\mathrm{CH}), 129.0(\mathrm{CH}), 129.1(\mathrm{CH}), 129.2(\mathrm{CH}), 129.6(\mathrm{C}), 130.4(\mathrm{C}), 133.3(\mathrm{CH}), 135.0(\mathrm{C}), 136.0$ (C), 137.7 (C4), 138.0 (C), 138.5 (C), 148.7 (C), 149.2 (C_{3}), 152.5 (C4'a), 153.7 (C), 160.5 (CO of carbonyl). Anal. Calcd. for $\mathrm{C}_{33} \mathrm{H}_{23} \mathrm{NO}_{2}$: C, $85.14 ; \mathrm{H}, 4.98 ; \mathrm{N}, 3.01 \%$. Found: C, 85.22; H, 4.95; N, 3.02\%.

3-[1-(4-Methoxyphenyl)-9,10-dihydro-4-azaphenanthren-3-yl]benzo[f]coumarin (3m). Yield 0.86 g (60\%); mp $235^{\circ} \mathrm{C}$; yellow powder; IR(KBr): 830 (s), 1470 (s), 1603 (s), 1717 (vs), 2940 $(\mathrm{m}), 3060(\mathrm{~m}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta 2.91\left(3 \mathrm{H}, \mathrm{t}\right.$, protons at $\left.\mathrm{C}_{10}{ }^{\prime}, \mathrm{J}=7.6 \mathrm{~Hz}\right), 3.04(2 \mathrm{H}, \mathrm{t}$, protons at C^{\prime}, $\left.\mathrm{J}=7.6 \mathrm{~Hz}\right), 3.91\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 7.04-8.05(12 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 8.43\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C}_{2}{ }^{\prime}-\mathrm{H}\right.$ of pyridine ring), $8.54\left(1 \mathrm{H}\right.$, poorly resolved dd, $\mathrm{C}_{5}-\mathrm{H}$ of phenyl ring), $8.61\left(1 \mathrm{H}\right.$, poorly resolved dd, $\left.\mathrm{C}_{5}{ }^{\prime}-\mathrm{H}\right)$, $9.86\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C}_{4}-\mathrm{H}\right.$ of coumarin); ${ }^{13} \mathrm{C}$ NMR: $\left.\delta 25.6\left(\mathrm{C}_{10}{ }^{\prime}\right), 28.2\left(\mathrm{C}_{9}\right)^{\prime}\right), 55.4\left(\mathrm{OCH}_{3}\right), 113.9(\mathrm{CH})$, $114.0(\mathrm{C}), 116.6(\mathrm{CH}), 122.0(\mathrm{CH}), 123.7(\mathrm{CH}), 124.3(\mathrm{C}), 125.5(\mathrm{CH}), 126.1(\mathrm{CH}), 127.2(\mathrm{CH})$,
$127.7(\mathrm{CH}), 128.3(\mathrm{CH}), 129.0(\mathrm{CH}) 129.2(\mathrm{CH}), 129.5(\mathrm{C}), 129.6(\mathrm{C}), 130.3(\mathrm{CH}), 130.4(\mathrm{C})$, 131.3 (CH), 133.3 (C), 135.1 (C), 137.6 (C4), 138.4 (C), 148.6 (C), 148.8 (C3'), 152.5 (C4'a), 153.7 (C), 159.5 (C), 160.5 (CO of carbonyl). Anal. Calcd. for $\mathrm{C}_{33} \mathrm{H}_{23} \mathrm{NO}_{3}$: C, 82.31; H, 4.81; N, 2.91%. Found: C, 82.21 ; H, 4.84 ; N, 2.92%.
3-[1-(2,4-Dimethoxyphenyl)-9,10-dihydro-4-azaphenanthren-3-yl]benzo[f]coumarin (3n). Yield 0.90 g (59\%); mp 292-294 ${ }^{\circ} \mathrm{C}$; yellow powder; $\operatorname{IR}(\mathrm{KBr}): 820$ (s), 1470 (s), 1590 (s), 1720 (vs), $2940(\mathrm{~m}), 3060(\mathrm{~m}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta 2.76-2.91\left(4 \mathrm{H}, \mathrm{m}\right.$, protons at C9'and C C_{10} '), $3.79(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{OCH}_{3}\right), 3.91\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 6.59-8.05(11 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 8.37\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C}_{2}{ }^{\prime}-\mathrm{H}\right.$ of pyridine ring), $8.55\left(1 \mathrm{H}\right.$, poorly resolved dd, $\mathrm{C}_{5}-\mathrm{H}$ of phenyl ring), $8.62\left(1 \mathrm{H}\right.$, poorly resolved dd, $\left.\mathrm{C}_{5}-\mathrm{H}\right), 9.86$ $\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C}_{4}-\mathrm{H}\right.$ of coumarin); ${ }^{13} \mathrm{C}$ NMR: $\delta 25.4\left(\mathrm{C}_{10}{ }^{\prime}\right), 28.1\left(\mathrm{C}_{9}\right), 55.4\left(\mathrm{OCH}_{3}\right), 55.5\left(\mathrm{OCH}_{3}\right), 98.6$ $(\mathrm{CH}), 104.6(\mathrm{CH}), 114.0(\mathrm{C}), 116.6(\mathrm{CH}), 120.8(\mathrm{C}), 122.0(\mathrm{CH}), 124.5(\mathrm{CH}), 124.6(\mathrm{C}), 125.4$ $(\mathrm{CH}), 126.1(\mathrm{CH}), 127.1(\mathrm{CH}), 127.7(\mathrm{CH}), 128.3(\mathrm{CH}), 129.0(\mathrm{CH}), 129.1(\mathrm{CH}), 129.6(\mathrm{C})$, 130.4 (C), 131.4 (CH), 131.6 (C), 133.1 (CH), 135.2 (C), 137.4 (C4), 138.7 (C), 146.2 (C), 148.4 ($\mathrm{C}_{3}{ }^{\prime}$), 151.8 ($\left.\mathrm{C}_{4}^{\prime} \mathrm{a}\right), 153.6$ (C), 157.6 (C), 160.5 (C), 161.2 (CO of carbonyl). Anal. Calcd. for $\mathrm{C}_{34} \mathrm{H}_{25} \mathrm{NO}_{4}$: C, 79.83 ; H, 4.94; N, 2.74\%. Found: C, 79.85 ; H, 4.98; N, 2.73\%.
3-[1-(4-Chlorophenyl)-9,10-dihydro-4-azaphenanthren-3-yl]benzo[f]coumarin (30). Yield 0.75 g (51%); mp $249{ }^{\circ} \mathrm{C}$; yellow powder; $\mathrm{IR}(\mathrm{KBr}): 830$ (s), 1475 (s), 1600 (s), 1725 (vs), 2950 (m), $3055(\mathrm{~m}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta 2.90-3.01\left(4 \mathrm{H}, \mathrm{m}\right.$, protons at C9'and $\left.\mathrm{C}_{10}{ }^{\prime}\right), 7.29-8.06(12 \mathrm{H}, \mathrm{m}$, Ar-H), $8.42\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C}_{2}-\mathrm{H}\right.$ of pyridine ring), $8.54\left(1 \mathrm{H}\right.$, poorly resolved dd, $\mathrm{C}_{5}-\mathrm{H}$ of phenyl ring $)$, $8.61\left(1 \mathrm{H}\right.$, poorly resolved dd, $\left.\mathrm{C}_{5}-\mathrm{H}\right), 9.87\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C}_{4}-\mathrm{H}\right.$ of coumarin); ${ }^{13} \mathrm{C}$ NMR: $\left.\delta 25.5\left(\mathrm{C}_{10}\right)^{\prime}\right)$, $28.1\left(\mathrm{C}_{9}\right)$, $114.0(\mathrm{C}), 116.7(\mathrm{CH}), 122.0(\mathrm{CH}), 123.3(\mathrm{CH}), 124.1(\mathrm{C}), 125.5(\mathrm{CH}), 126.2(\mathrm{CH})$, $127.3(\mathrm{CH}), 127.8(\mathrm{CH}), 128.4(\mathrm{CH}), 128.7(\mathrm{CH}), 129.1(\mathrm{CH}), 129.3(\mathrm{C}), 129.4(\mathrm{CH}), 129.6(\mathrm{C})$, $130.3(\mathrm{CH}), 130.4(\mathrm{C}), 133.5(\mathrm{CH}), 134.3(\mathrm{C}), 134.8(\mathrm{C}), 137.4(\mathrm{C}), 137.8\left(\mathrm{C}_{4}\right), 138.4(\mathrm{C}), 148.0$ (C), $148.8\left(\mathrm{C}_{3}\right), 152.6\left(\mathrm{C}_{4}^{\prime} \mathrm{a}\right), 153.8(\mathrm{C}), 160.5\left(\mathrm{CO}\right.$ of carbonyl). Anal. Calcd. for $\mathrm{C}_{32} \mathrm{H}_{20} \mathrm{ClNO}_{2}$: C, 79.09; H, 4.15; N, 2.88\%. Found: C, 79.03; H, 4.13; N, 2.89\%.
It is important to note that in case of compounds $\mathbf{3 j}$ and $\mathbf{3 1}$, the number of non equivalent carbon signals in ${ }^{13} \mathrm{C}$ NMR spectra are less than expected (in case of compound $\mathbf{3 j}$, three signals and in case of compound 3l, one signal). This may be due to identical chemical shifts of certain carbons which may appear at the same position.

Acknowledgements

The authors NHP, CVP and AAP are thankful to UGC for meritorious research fellowship under RFSMS. The authors are also thankful to the Head, Department of Chemistry, Sardar Patel University for providing research facilities and Vaibhav Laboratory, Ahmedabad for recording IR spectra.

References

1. (a) Dean, F. M. Naturally Occurring Oxygen Ring Compounds; Butterworths: London, 1963.
(b) Lauger, V. P., Motrin H Helv. Chem.Acta. 1944, 27, 892. (c) Soine, T. O. J. Pharm. Soc. 1964, 53, 231.
2. (a) Murray, R. D. H.; Mendez, J.; Brown, R. A. The Natural Coumarins; John Wiley \& Sons: New York, 1982. (b) Fylaktakidou, K. C.; Hadjipaylou-Litina, D. J.; Litinas, K. E.; Nicolaides, D. N. Curr. Pharm. Des. 2004, 10, 3813.
3. (a) Sanata, L.; Uriarte, E.; Roleira, F.; Milhazes, N.; Borges, F. Curr. Med.Chem. 2004, 11, 3239. (b) Massimo, C.; Gianearlo, C.; Francesco, E; Giovanni G. Curr. Med.Chem. 2006, 13, 199.
4. (a) Moffett, R. B. J. Med. Chem. 1964, 7, 446. (b) Moffett, R. B. U. S. Patent, 3156 697, 1964; Chem. Abstr. 1965, 62, 5257f. (c) Moffett, R. B. U. S. Patent, 3201 406, 1965; Chem. Abstr. 1965, 63, 13220f.
5. Sreenivasulu, B.; Sundaramurthy, V.; Rao, N. V. S. Proc. Ind. Acad. Sci., Sec. A, 1974, 79, 41.
6. (a) Brahmbhatt, D. I.; Raolji, G. B.; Pandya S. U.; Pandya U. R.; Ind. J. Chem. 1999, 38B, 212. (b) Brahmbhatt, D. I.; Pandya U. R. Ind. J. Chem. 2001, 40B, 419. (c) Brahmbhatt, D. I.; Pandya U. R. Ind. J. Chem. 2003, 42B, 145. (d) Brahmbhatt, D. I.; Patel, C. N.; Pandya, V. P.; Patel, M. A. Ind. J. Chem. 2004, 43B, 2228. (e) Brahmbhatt, D. I.; Pandya, V. P.; Patel, C. N.; Patel, M. A. Ind. J. Chem. 2005, 44B, 1863. (f) Brahmbhatt, D. I.; Gajera, J. M.; Pandya, V. P.; Patel, M. A. Ind. J. Chem. 2007, 46B, 869.
7. (a) Naik, H. R. P.; Naik, H. S. B.; Naik, T. R. R.; Naika, H. R.; Gouthamchandra, K.; Mahmood, R.; Ahamed, B. M. K.Eur. J. Med. Chem. 2009, 44, 981. (b) Willemann, C.; Grunert, R.; Bednarski, P. J.; Troschutz, R. Bioorg. Med. Chem. 2009, 17, 4406. (c) Murthy, M.; Pedemonte, N.; Vinish, L. M.; Galietta, L.; Cuthbert, A. Eur. J. Pharmacol. 2005, 516, 118. (d) Zarghi, A.; Ghodsi, R.; Azizi, E.; Daraie, B.; Hedayati M.; Dadrass O. G. Bioorg. Med. Chem. 2009, 17, 5312.
8. Kröhnke, F.; Zecher, W. Chem. Ber. 1961, 94, 690.
9. Kröhnke, F.; Synthesis 1976, 1, 1.
10. Koelsch, C. F. J. Am. Chem. Soc. 1950, 72, 2993.
11. Rao, T. V. P.; Rao, V. R. Ind. J. Chem. 1986, 25B, 413.
12. Rao, C. J.; Reddy, K. M.; Murthy, A. K. Ind. J. Chem. 1981, 20B, 282.
