Stereospecific non-decarboxylative 1,3-dipolar cycloaddition as a potential route to proline derivatives, part III ${ }^{1}$

Moustafa F. Aly, ${ }^{*}$ Hussien H. Abbas-Temirek, and Elghareeb E. Elboray
Department of Chemistry, Faculty of Science at Qena, South Valley University, Qena, Egypt

E-mail: mosfaly51@yahoo.com

Dedicated to Professor Benito Alcaide on the occasion of his $60{ }^{\text {th }}$ birthday

DOI: http://dx.doi.org/10.3998/ark.5550190.0011.321

Abstract

Boiling an equimolar mixture of salicylaldehyde 1a, DL-alanine 2a and dimethyl fumarate $\mathbf{3}$ in acidified methanol gives a mixture of three stereoisomers 4a-c. The effect of solvent and temperature on the diastereoselectivity is pronounced. Using fumaronitrile $\mathbf{1 3}$ as dipolarophile gives stereospecifically the fused tricyclic cycloadducts 16a-f.

Keywords: α-Amino acids, 1,3-dipolar cycloaddition, tricyclic fused systems, spiroadducts, nondecarboxylative, thiohydantoine

Introduction

Many naturally occurring products containing the pyrrolidine ring have potent biological activities, e.g. egnicotine and kainic acid. ${ }^{2}$ The antiinfluenza compound A-315675 is also a proline derivative. ${ }^{3}$ During the last decade synthetic chemists have reported various methods for the synthesis of such biologically active proline derivatives. ${ }^{4,5}$ Recently great attention has been paid to the synthesis of pyrrolidine structures, which are constituents of many natural products and pharmaceuticals. ${ }^{6}$ We have previously reported a three component one pot synthesis to construct compounds which are closely related to kainic acid using the non-decarboxylative 1,3dipolar cycloaddition strategy. ${ }^{1,7}$ However, Coldham has recently reported that α-amino acids undergo a decarboxylative 1,3-dipolar cycloaddition in boiling toluene under acidic conditions. ${ }^{8}$

Results and Discussion

We have previously shown that acidified methanol (methanol containing a few drops of acetic acid) serves as a good solvent for non-decarboxylative 1,3-dipolar cycloaddition reactions. Thus, boiling a mixture of salicylaldehyde $\mathbf{1 a}$ ($\mathrm{Ar}=2$-hydroxyphenyl), DL-alanine 2a and dimethyl fumarate $\mathbf{3}$ in acidified methanol afforded a 1.4: 1 mixture of two isomers $\mathbf{4 a}$ and $\mathbf{4 b}$, respectively in 66% combined yield (Scheme 1). ${ }^{1}$

$\mathrm{Ar}=2-\mathrm{HOC}_{6} \mathrm{H}_{4}-$

Scheme 1

Extensive ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopy studies on this reaction using more advanced spectrometers showed a third inseparable isomer $\mathbf{4 c}$ which is probably obtained from the stereomutated antidipole 7, via the transition state 8c, in which both carboxyl/carboxylate and aryl/carboxylate interactions exist (Scheme 2). It seems that temperature affects the stereochemical outcome to some extent. Thus, conducting the same reaction in acidified methanol at room temperature for 2 days afforded nearly a quantitative yield (98%) of an isomeric mixture of the adducts $\mathbf{4 a}, \mathbf{4 b}$ and $\mathbf{4 c}$ in a 41: 47: 12 ratio, respectively (Table 1, entry 2). The major isomer $\mathbf{4 b}$ was obtained through the transition state $\mathbf{8 b}$ in which there is an additional hydrogen bonding between the phenolic group on the dipole and the carboxylate group on the dipolarophile from one side and between the carboxylic group on the dipole and the carboxylate group on the dipolarophile from the other side. Whereas, the second major isomer $\mathbf{4 a}$ arose from the transition state $\mathbf{8 a}$ with only hydrogen bonding between the carboxylic group on the dipole and the carboxylate group on the dipolarophile.

On the other hand, carrying out the same reaction at $0{ }^{\circ} \mathrm{C}$ for 2 days gave a 39% yield (calcd., ${ }^{1} \mathrm{H}$-NMR of the crude reaction mixture) of the adducts $\mathbf{4 a}$ and $\mathbf{4 b}$ as the only products in a $46: 54$ ratio, respectively (Table 1, entry 1). It is believed that, at low temperature the additional hydrogen bonding in the transition state $\mathbf{8 b}$ is more effective which resulted in the formation of the adduct $\mathbf{4 b}$ as the major isomer. At this low temperature the stereomutation of the syn-dipole $\mathbf{6}$ to afford the anti-dipole 7 was suppressed and the third isomer $\mathbf{4 c}$ was not obtained. At higher temperatures, it seems that the carboxyl/carboxylate interaction in the transition state 8a is more favorable than the aryl/carboxylate interaction in the transition state $\mathbf{8 b}$, obviously the additional hydrogen bonding is less effective at such temperature.

Interestingly, the isomeric ratio of the cycloadducts $\mathbf{4 a}, \mathbf{4 b}$ and $\mathbf{4 c}$ has been changed dramatically by using different solvents, (Table 1). Thus, using ethanol as a solvent has slightly
increased the ratio of the isomer $\mathbf{4 a}$ (Table 1, entry 4), this probably in part due to the hydrogen bonding between the solvent and the phenolic group which may restrict the approach of the carboxylate group of the dipolarophile in the transition state $\mathbf{8 b}$. This was clarified by using n propanol as a solvent (Table 1, entry 5), which afforded a 64% yield of the cycloadduct $\mathbf{4 a}$ as the only product. In the latter case the relatively long hydrocarbon side chain of n-propanol has prevented the approach of the carboxylate on the dipolarophile in the transition state $\mathbf{8 b}$. The same effect was observed in $\mathrm{AcOH},{ }^{9}$ THF, THF/ $\mathrm{H}_{2} \mathrm{O}, \mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}$ (Table 2, entries 6-9). The observed modest yields are mainly due to solubility problems in THF, THF/ $\mathrm{H}_{2} \mathrm{O}, \mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}$ and the harsh conditions in the case of AcOH .

$\mathrm{Ar}=2-\mathrm{HOC}_{6} \mathrm{H}_{4}-$

8a

8b

8c

Scheme 2

Table 1. The effect of solvent and temperature

Entry	Solvent $^{\mathrm{a}}$	Time (h)	Yield (\%)	Ratio, 4a: 4b: 4c
1	$\mathrm{MeOH}^{\mathrm{b}}$	48	39	$46: 54: 0$
2	$\mathrm{MeOH}^{\mathrm{c}}$	48	98	$41: 47: 12$
3	MeOH	2	66	$50: 40: 10$
4	EtOH	2	56	$57: 29: 14$
5	${ }^{n-\mathrm{PrOH}}$	2	64	$100: 0: 0$
6	AcOH			
7	THF	1	38	$100: 0: 0$
8	$\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$	18	37	$100: 0: 0$
9	$\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}$	18	27	$100: 0: 0$

${ }^{\text {a }}$ The reaction was conducted in boiling sovent. ${ }^{\text {b }}$ The reaction was conducted at $0{ }^{\circ} \mathrm{C}$. ${ }^{\mathrm{c}}$ The reaction was conducted at $30^{\circ} \mathrm{C}$.

It seems that the bulkiness of the carbonyl component in such reaction affects both the chemical yield and the stereochemical outcome to a greater extent. Thus, using 2-hydroxy-1naphthaldehyde $\mathbf{1 b}$ and 3 -formylchromone $\mathbf{1 c}^{10}$ as carbonyl components afforded the stereospecific cycloadducts $\mathbf{1 0 b}$ and $\mathbf{1 0 c}$ in 40 and 60% yield, respectively, (Scheme 3). The adducts 10b,c were formed through the transition state 11, the other transition state $\mathbf{1 2}$ was ruled out on steric grounds. The stereochemistry of the adducts $\mathbf{1 0 b}, \mathbf{c}$ was assigned on the basis of its spectral and analytical data. Thus, ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of the cycloadducts $\mathbf{1 0 b}, \mathbf{c}$ show coupling constants similar to the well established cycloadduct $\mathbf{4 a}$ (Table 2).

Table 2. Coupling constants for cycloadducts

Cycloadduct	$\mathrm{d}, \mathrm{H}_{3}$	$\mathrm{t}, \mathrm{H}_{4}$	$\mathrm{~d}, \mathrm{H}_{5}$
	$\mathrm{~J}_{3,4}(\mathrm{~Hz})$	$\mathrm{J}_{3,4}, \mathrm{~J}_{4,5}(\mathrm{~Hz})$	$\mathrm{J}_{3,4}(\mathrm{~Hz})$
$\mathbf{4 a}$	9	$9.3,10.8$	10.8
$\mathbf{1 0 b}$	9	$9,10.8$	10.5
10c	9.6	$9.6,10.2$	10.8

(b) $\mathrm{Ar}=$

(c) $\mathrm{Ar}=$

11

12

Scheme 3

Surprisingly, stirring an equimolar ratio mixture of salicylaldehyde 1a, the appropriate α amino acid 2a-e and fumaronitrile $\mathbf{1 3}$ in an acidified methanol at ambient temperature for 48 h
afforded stereospecifically the cycloadducts 16a-e in moderate to reasonable yields 43-68\% (Scheme 4). The stereochemistry of the obtained products 16a-e was established on the basis of spectral data, and by comparison with similar systems. ${ }^{8,11}$ Further more, boiling the cycloadduct 16a in dry methanol saturated with HCl gas for 4 h afforded a quantitative yield of the trimethyl tricarboxylate ester $\mathbf{1 8}$ (Scheme 5). The stereochemistry of $\mathbf{1 8}$ was assigned on the basis of spectral data, and by comparison with similar systems. ${ }^{12}$ It is believed that the cycloaddition process occurs first to give the cycloadducts 14a-e, which simultaneously resulted in 15a-e under the reaction conditions, that finally afforded the fused-tricycles 16a-e. However, treating salicylaldehyde and fumaronitrile under the same reaction conditions for even one week failed to give any products and the unreacted starting materials were totally recovered. In the pyrrolidine derivatives 14a-e, the cyano group at C-4 and the hydroxyphenyl group at C-5 must have a cis relationship to allow the formation of the cyclic intermediates 15a-e. Our results showed that the aryl (dipole)/cyano (dipolarophile) interaction in the transition state $\mathbf{1 7}$ is more effective than the carboxylate (dipole)/cyano (dipolarophile) interaction, which is in contrast with some related work reported by Grigg's group. ${ }^{12}$

15
16
$\mathrm{Ar}=2-\mathrm{HOC}_{6} \mathrm{H}_{4}{ }^{-}$
a, $\mathrm{R}=-\mathrm{CH}_{3},(68 \%)$
b, $\mathrm{R}=-\mathrm{CH}_{2} \mathrm{Ph},(43 \%)$
c, $\mathrm{R}=-\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2},(43 \%)$
$\mathrm{d} \mathrm{R}=-\left(\mathrm{CH}_{2}\right)_{2} \mathrm{SCH}_{3},(54 \%)$
e, $\mathrm{R}=-\mathrm{CH}_{2}(3$-indolyl), (47\%)

Scheme 4

Scheme 5

Interestingly, stirring an equimolar mixture of salicylaldehyde 1a, L-histidine $\mathbf{2 f}$ and fumaronitrile 13 under the same conditions gave the cycloadduct $\mathbf{1 6 f}$ in a 43% yield as the only product, (Scheme 6). The stereochemistry of the cycloadduct $\mathbf{1 6 f}$ was established on the basis of its spectral data, thus the ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3} / \mathrm{TFA}\right)$ spectrum showed down field doublets for both H_{3} and $\mathrm{H}_{9 b}$ compared to the same protons in the other adducts 16a-e (Table 3). We believe that the adduct $\mathbf{1 6 f}$ is obtained via the stereomutated 1,3-dipole 20, in which the imidazolyle nitrogen atom would serve as an excellent candidate for the stabilizing bifocal hydrogen bonding.

Scheme 6

Table 3. ${ }^{1} \mathrm{H}$ NMR data for 16a-f

Cycloadduct	$\mathrm{d}, \mathrm{H}_{3}$		$\mathrm{H}_{3 \mathrm{a}}$		$\mathrm{d}, \mathrm{H}_{9 \mathrm{~b}}$	
	$\delta(\mathrm{ppm})$	$\mathrm{J}_{3,3 \mathrm{a}}(\mathrm{Hz})$	$\delta(\mathrm{ppm})$	$\mathrm{J}_{3,3 \mathrm{a}}, \mathrm{J}_{3 \mathrm{a}, 3 \mathrm{~b}}(\mathrm{~Hz})$	$\delta(\mathrm{ppm})$	$\mathrm{J}_{3 \mathrm{a}, 9 \mathrm{~b}}(\mathrm{~Hz})$
$\mathbf{1 6 a}$	3.96	11.7	4.44	t	5.29	11.4
16b	4.05	11.7	4.33	t	4.59	11.7
$\mathbf{1 6 c}$	3.97	11.7	4.39	t	5.30	12.0
16d	3.95	9.3	4.42	$\mathrm{dd}(9.0,11.4)$	5.17	11.7
16e	4.25	11.1	4.41	t	4.73	11.7
$\mathbf{1 6 f}$	4.83	6.0	4.39	$\mathrm{dd}(6.3,8.1)$	5.66	8.4

3-Formylchromone 1c as a carbonyl component reacted in a similar manner with DL-alanine 2a and fumaronitrile $\mathbf{1 3}$ leads to 61% yield of an isomeric mixture of the corresponding dicyano adducts 21 and 22 in a 4.5: 1 ratio, respectively (Scheme 7). The minor isomer 22 was separated in pure state. The stereochemistry of 21 and 22 was established on spectral data. The cycloaddition process revealed that the carboxylic (dipole)/cyano (dipolarophile) interaction in the transition state is more effective than the chromonyl (dipole)/cyano (dipolarophile) interaction, which is in agreement with the reported hypothesis. ${ }^{12}$ This is probably due to the bulkiness of the chromonyl group.

$\mathrm{Ar}=3$-chromonyl
(4.5: 1, 61\%)

Scheme 7

Analogously, DL-alanine 2a reacted smoothly with salicylaldehyde 1a in the presence of trans- α-cyanocinnamates ethyl esters 23a-d under the same conditions to afford the endocycloadducts 24a-d in acceptable to good yields $47-71 \%$ together with traces of inseparable isomer in each case (Scheme 8). The stereochemistry of the obtained products was assigned on the basis of spectral data.

$\mathrm{Ar}=2-\mathrm{HOC}_{6} \mathrm{H}_{4}{ }^{-}$
$\mathrm{a}, \mathrm{R}=\mathrm{Me}, \mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{C}_{6} \mathrm{H}_{5}(100: 0,64 \%)$
$\mathrm{b}, \mathrm{R}=\mathrm{Me}, \mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=p-\mathrm{ClC}_{6} \mathrm{H}_{4}(100: 0,61 \%)$
c, $\mathrm{R}=\mathrm{Me}, \mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}(100: 0,71 \%)$
$\mathrm{d}, \mathrm{R}=\mathrm{Me}, \mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=p-\mathrm{MeOC}_{6} \mathrm{H}_{4}(100: 0,47 \%)$
$\mathrm{e}, \mathrm{R}=\mathrm{Me},\left(\mathrm{R}_{2}^{2} \mathrm{R}^{1}\right)$
$\mathrm{f}, \mathrm{R}=\mathrm{CH}_{2} \mathrm{Ph},\left(\mathrm{R}^{2}\right)$

Scheme 8

On the other hand, stirring an equimolar mixture of DL-alanine $\mathbf{2 a}(\mathrm{R}=\mathrm{Me})$ with salicylaldehyde 1a and ethyl (2E)-cyano-(2-oxo-1,2-dihydro-3H-indol-3-ylidene)acetate 23e in acidified methanol afforded a 53% yield of an isomeric mixture of the spiroadducts 24 e and $\mathbf{2 5 e}$ in a 4.5: 1 ratio, respectively. Unfortunately, all attempts to separate this mixture were unsuccessful. It is worth mentioning that the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum $\left(\mathrm{CDCl}_{3} / \mathrm{TFA}\right)$ of the reaction mixture (Figure 1) showed two double quartets for the C-4 ethyl ester methylene protons of the minor isomer 25e at $\delta=4.50$ and 4.30 ppm , whilst the ethyl ester methylene protons at $\mathrm{C}-3 \mathrm{a}$ of the major isomer 24e appeared as two double quartets at $\delta=4.19$ and 4.10 ppm . However, Dphenylalanine $\mathbf{2 b}$ reacted similarly with $\mathbf{1 a}$ and $\mathbf{2 3 e}$ to give stereospecifically the endo-adduct $24 f$ in a 47% yield, whose ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum $\left(\mathrm{CDCl}_{3} / \mathrm{TFA}\right)$ (Figure 2) showed two double quartets at $\delta=4.25$ and 4.14 ppm for the $\mathrm{C}-3 \mathrm{a}$ ethyl ester methylene protons. The stereochemistry of the obtained adducts was confirmed by their spectral data.

Figure 1. ${ }^{1} \mathrm{H}$ NMR spectrum of a reaction mixture containing $\mathbf{2 4 e}$ and $\mathbf{2 5 e}$.

Figure 2. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 4 f}$.

Grigg has reported that heating a mixture of salicylaldehyde 1a, DL-serine $\mathbf{2 g}$ and N phenylmaleimide 26 in acetic acid at $100^{\circ} \mathrm{C}$ for 15 minutes afforded an inseparable mixture of the cycloadducts 27 and 28 in a 8: 3 ratio, respectively (unreported yield), (Scheme 9). ${ }^{13}$ However, conducting the same reaction in boiling methanol containing a few drops of acetic acid
for 10 hours gave a 80% yield of the cycloadduct 27 as the only product. Moreover, the same mixture was boiled in a mixed solvent (methanol/toluene, 1:1) in the presence of acetic acid (catalytic amount) to give stereospecifically the cycloadduct 27, as the sole product in a better yield (86\%) after only 2 hours (Scheme 9).

$\mathrm{Ar}=2-\mathrm{HOC}_{6} \mathrm{H}_{4}{ }^{-}$,
Conditions: (a) $\mathrm{AcOH}, 100^{\circ} \mathrm{C}, 15 \mathrm{~min}, 8: 3$, unreported yield.
(b) $\mathrm{MeOH} / \mathrm{H}^{+}$, reflux $10 \mathrm{~h}, 100: 0,80 \%$.
(c) $\mathrm{MeOH} /$ Toluene + drops of $\mathrm{AcOH}(1: 1)$, reflux $2 \mathrm{~h}, 100: 0,86 \%$.

Scheme 9

It was reported that the Schiff bases of a histadine tethered resin reacted with N substitutedmaleimides to give isomeric mixtures of the corresponding cycloadducts (four isomers) in modest to good yields (31-82\%). ${ }^{14}$ Using our methodology, salicylaldehyde 1a reacted with L-histidine $2\left(\mathrm{R}^{1}=\mathrm{CH}_{2}(4\right.$-imidazolyl)) and N-phenylmaleimide 26 to give the stereospecific endo-adduct 29a in a 79% yield, (Scheme 10). The stereochemistry of 29a was assigned on the basis of the spectral and analytical data and by comparison with related systems. ${ }^{14}$ In this case the N-phenylmaleimide 26 (a very reactive dipolarophile) cycloadded to the kinetically obtained dipole 19 (cf. Scheme 6), meaning that the rate of cycloaddition is much faster than the stereomutation process. Analogously, 2-hydroxy-1-naphthaldehyde 1b reacted smoothly with DL-alanine $2\left(\mathrm{R}^{1}=\mathrm{Me}\right)$ and N-phenylmaleimide 26 under the same conditions to give a 95% yield of the endo-adduct 29b. Similarly, the reaction of 3-formylchromone $\mathbf{1 c}$ with both DL-alanine $2\left(\mathrm{R}^{1}=\mathrm{Me}\right)$ and glycine $2\left(\mathrm{R}^{1}=\mathrm{H}\right)$ in the presence of N-phenylmaleimide 26 gave in a stereospecific manner the cycloadducts 29c and 29d in 72 and 84% yields, respectively. However, 3-formylchromone 1c reacted smoothly with L-cysteine $\mathbf{2}\left(\mathrm{R}^{1}=\mathrm{CH}_{2} \mathrm{SH}\right)$ in the presence of N -phenylmaleimide $\mathbf{2 6}$ to give a 42% yield of the endo-cycloadduct $29 \mathbf{e}$ as the only product. The stereochemistry of the stereospecific endo-cycloadduct 29e was confirmed authentically, thus reacting 3-formylchromone $\mathbf{1 c}$ with L-cystine $\mathbf{2}\left(\mathrm{R}^{1}=\right.$ $\left.\mathrm{CH}_{2} \mathrm{SSCH}_{2} \mathrm{CH}\left(\mathrm{NH}_{2}\right) \mathrm{COOH}\right)$ and N -phenylmaleimide 26 under the same conditions afforded a 49% of the same adduct 29e. It is believed that in case of L-cysteine $2\left(\mathrm{R}^{1}=\mathrm{CH}_{2} \mathrm{SH}\right)$ the cycloaddition occurred first and then the $\left(-\mathrm{CH}_{2} \mathrm{SH}\right)$ at C_{2} in the formed cycloadduct reacted
immediately with another molecule of L-cysteine. The chemical structure of the cycloadduct 29e was established by its spectral and analytical data.

a, $\mathrm{Ar}=$ 2-hydroxyphenyl, $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{CH}_{2}$ (4-imidazolyl) (79\%)
b, $\mathrm{Ar}=2$-hydroxy-1-naphthyl, $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{Me}$ (95\%)
c, $\mathrm{Ar}=3$-chromonyl, $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{Me}(72 \%)$
d, $\mathrm{Ar}=3$-chromonyl, $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}(84 \%)$
e, $\mathrm{Ar}=3$-chromonyl, $\mathrm{R}^{1}=\mathrm{CH}_{2} \mathrm{SH}, \mathrm{R}^{2}=\mathrm{CH}_{2} \mathrm{SSCH}_{2} \mathrm{CH}\left(\mathrm{NH}_{2}\right) \mathrm{COOH}(42 \%)$

Scheme 10

On the other hand, boiling a mixture of L-cysteine $\mathbf{2 h}$, salicylaldehyde $\mathbf{1 a}$ and N phenylmaleimide 26 in acidified methanol afforded a quantitative yield of an isomeric mixture of the thiazolidines $\mathbf{3 0}$ and $\mathbf{3 1}$ in a 1.5: 1 ratio, respectively as the only products and the unreacted N-phenylmaleimide 26 was totally recovered (Scheme 11). Due to some experimental problems, the products $\mathbf{3 0}$ and $\mathbf{3 1}$ were inseparable. The stereochemistry of $\mathbf{3 0}$ and $\mathbf{3 1}$ was assigned on the basis of elemental and spectral data for the reaction mixture, and by comparison with related systems. ${ }^{15}$ The preference of the 1,5-endo-trig-cyclization process over the 1,3-dipolar cycloaddition is mainly attributed to the bigger size and softer sulfur atom.

Scheme 11

It is well known that thiohydantoins containing heterocycles have interesting biological effects. ${ }^{16}$ It seems that the ester derivative 33 would serve well in the thiohydantoin synthesis. Boiling the carboxylic acid derivatives $\mathbf{3 2}^{1}$ in dry MeOH saturated with HCl gas for 5 hours afforded the corresponding methyl ester 33 in a quantitative yield, (Scheme 12). The
stereochemistry of the ester $\mathbf{3 3}$ was established by its spectral and analytical results and by comparison with similar systems. ${ }^{13,17}$ Reacting the obtained ester $\mathbf{3 3}$ with phenylisothiocyanate 34 in dry methanol afforded the thiourea derivative 35, which on treating with pyridine at room temperature gave a quantitative yield of the corresponding thiohydantoin 36. The thiohydantoin 36 was also obtained quantitatively via a one pot reaction by stirring a mixture of the ester 33 with phenylisothiocyanate 34 in pyridine for 24 hours at room temperature. The stereochemistry of compounds $\mathbf{3 5}$ and $\mathbf{3 6}$ was confirmed by their spectral and analytical data.

$$
\mathrm{Ar}=2-\mathrm{HOC}_{6} \mathrm{H}_{4}-
$$

Scheme 12

Nitrostyrenes have been widely used as good dipolarophiles in the $[3+2]$ cycloaddition reactions to give poor to moderate yields of isomeric mixtures (2-4 isomers). ${ }^{4,18}$ Cossio 19 and others ${ }^{20}$ in their concept showed that the adducts are formed via a tandem Michael-Henry reaction (Scheme 13). On the other hand, Grigg has reported that this reaction occurs through a concerted transition state. ${ }^{21}$

38

Scheme 13

However, in our laboratory, the α-amino acids 2a-d readily reacted with salicylaldehyde 1a and β-nitrostyrene $43\left(\mathrm{Ar}^{1}=\mathrm{Ph}\right)$ in boiling acidified methanol to give the stereospecific cycloadducts $\mathbf{4 4 a - d}$ in moderate yields (44-53\%), through the exo-transition state 45 (Scheme 14). The stereochemistry of the obtained adducts $44 a-d$ was confirmed according to the elemental and spectral data, and also by comparison with related systems. ${ }^{4,}{ }^{18-20}$ The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of the cycloadducts $\mathbf{4 4 a - d}$ showed a down field absorption of $\mathrm{H}_{4}(5.29-6.28 \mathrm{ppm})$ due to the deshielding effect of the nitro group (Table 3, entries a-d). However, NOE data of the cycloadduct 44a established the suggested stereochemistry. Thus, irradiating (DMSO- d_{6}) 5-H results in across the ring enhancement of 3-H (3.23\%), whilst irradiation of 4-H causes (1.70\%) enhancement of $3-\mathrm{H}$. On the other hand irradiation of $3-\mathrm{H}$ gives rise (1.70%) enhancement of $4-$ H , whereas it causes across the ring enhancement of $5-\mathrm{H}(3.35 \%)$ and enhancement of $2-\mathrm{Me}$ (0.50%). We believe that this reaction under our conditions undergoes a concerted 1,3-dipolar cycloaddition rather than the stepwise mechanism, as we obtained only one stereospecific adduct in each case.

(a) $\mathrm{Ar}=2-\mathrm{HOC}_{6} \mathrm{H}_{4}, \mathrm{Ar}^{1}=\mathrm{Ph}, \mathrm{R}=\mathrm{Me},(53 \%)$
(b) $\mathrm{Ar}=2-\mathrm{HOG}_{6} \mathrm{H}_{4}, \mathrm{Ar}^{1}=\mathrm{Ph}, \mathrm{R}=-\mathrm{CH}_{2} \mathrm{Ph},(57 \%)$
(c) $\mathrm{Ar}=2-\mathrm{HOC}_{6} \mathrm{H}_{4}, \mathrm{Ar}^{1}=\mathrm{Ph}, \mathrm{R}=-\mathrm{CH}_{2} \mathrm{CHMe}_{2},(44 \%)$
(d) $\mathrm{Ar}=2-\mathrm{HOC}_{6} \mathrm{H}_{4}, \mathrm{Ar}^{1}=\mathrm{Ph}, \mathrm{R}=-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SMe},(44 \%)$
(e) $\mathrm{Ar}=2-\mathrm{HOC}_{6} \mathrm{H}_{4}, \mathrm{Ar}^{1}=2$-furyl, $\mathrm{R}=\mathrm{Me},(45 \%)$
(f) $\mathrm{Ar}=2-\mathrm{HOC}_{6} \mathrm{H}_{4}, \mathrm{Ar}^{1}=2$-furyl, $\mathrm{R}=-\mathrm{CH}_{2} \mathrm{Ph}$, (30\%)
(g) $\mathrm{Ar}=2-\mathrm{HOC}_{6} \mathrm{H}_{4}, \mathrm{Ar}^{1}=2$-furyl, $\mathrm{R}=-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SMe}$, (33\%)

45

Scheme 14

Similarly, α-amino acids $2\left(\mathrm{R}=\mathrm{Me},-\mathrm{CH}_{2} \mathrm{Ph},-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SMe}\right)$ reacted with salicylaldehyde $\mathbf{1 a}$ and 2-[(E)-2-nitrovinyl]furan $43\left(\mathrm{Ar}^{1}=\right.$ Furyl) as a dipolarophile under the same conditions to give moderate yields ($30-45 \%$) of the corresponding adducts $44 \mathrm{e}-\mathrm{g}$. The stereochemistry of the
cycloadducts 44e-g was confirmed by their spectral and analytical data (Table 4, entries e-g), and by comparison with related systems. The structure of the cycloadduct $44 \mathbf{e}$ was assigned in an analogous fashion based on NOE experiments, thus irradiating (DMSO- d_{6}) of $5-\mathrm{H}$ causes across ring enhancement of $3-\mathrm{H}(4.00 \%)$ and $2-\mathrm{Me}(0.22 \%)$. Irradiation of $4-\mathrm{H}$ results in enhancement of $3-\mathrm{H}(1.34 \%)$ and $2-\mathrm{Me}(1.18 \%)$. Finally irradiation of $3-\mathrm{H}$ affords enhancement of $4-\mathrm{H}$ (1.43\%) and across ring enhancement of 5-H (2.49) and (0.75\%) enhancement for the 2-Me. In general the low yields in such reactions may be attributed to the lower stability of nitrostyrenes under the acidic conditions. Attempts to use benzaldehyde, 2-methoxybenzaldehyde, pnitrobenzaldehyde as carbonyl components in the above reaction failed to give the corresponding cycloadducts, and a messy complex mixture of decomposition products was obtained in each case. We still believe that the phenolic -OH group of salicylaldehyde affects greatly the cycloaddition process, due to the formation of the bifocal hydrogen bonded azomethine ylide 42.

Table 4. ${ }^{1} \mathrm{H}$ NMR data for 44a-g

Entry	H_{3}		H_{4}	H_{5}	
	$\delta(\mathrm{ppm})$	$\mathrm{J}_{3,4}(\mathrm{~Hz})$	$\delta(\mathrm{ppm})$	$\delta(\mathrm{ppm})$	$\mathrm{J}_{4,5}(\mathrm{~Hz})$
a^{*}	$\mathrm{~d}, 4.32$	7.8	$\mathrm{t}, 5.29$	$\mathrm{~d}, 5.04$	8.1
b	d, 4.79	10.2	$\mathrm{t}, 6.28$	$\mathrm{~d}, 5.46$	10.2
c	d, 4.60	10.5	$\mathrm{t}, 6.11$	$\mathrm{~d}, 5.47$	10.5
d	d, 4.71	10.5	$\mathrm{t}, 6.24$	$\mathrm{~d}, 5.55$	10.5
e	d, 4.79	9.0	$\mathrm{t}, 6.19$	$\mathrm{~d}, 5.54$	9.6
f	d, 4.85	9.0	t $, 6,17$	d, 5.42	10.5
g	d, 4.83	9.3	t, 6.18	d, 5.56	10.2

${ }^{1} \mathrm{H}$-NMR solvent is $\mathrm{CDCl}_{3} / \mathrm{TFA} ;{ }^{* 1} \mathrm{H}$-NMR solvent is DMSO- d_{6}

Conclusions

We present herein a convenient method for the synthesis of some proline derivatives including the fused-tricyclic compounds. We have also demonstrated the effect of solvent and temperature on the diastereoselectivity.

Experimental Section

General Procedures. Proton nmr spectra were recorded at 300 MHz using Oxford nmr instrument and Varian mercury 300 MHz instrument and $\mathrm{CDCl}_{3} / \mathrm{TFA}$ was used as a solvent in all cases, otherwise it is mentioned, the chemical shifts are given on the δ scale; in all cases TMS served as the internal standard. The IR spectra were measured on Shimadzu IR instrument. MS
spectra were recorded at 70 ev using GCMS-QP1000EX mass spectrometer. Elemental analyses were performed on a Perkin-Elmer 240C microanalyser. Melting points (mp) were determined on a Kofler hot-stage apparatus and are uncorrected. The starting materials were commercially available from either Aldrich or Fluka Chemical Companies.

Method A. Heating under reflux an equimolar mixture (10 mmol) of the carbonyl component, α amino acid and dipolarophile in acidified methanol (10 mL) for the proper time. The corresponding cycloadducts precipitated out of the hot solution. The solvent was evaporated under reduced pressure and to the obtained residue was added chloroform (10 mL) and the resulting solid was filtered off and crystallized from aqueous methanol $\left(\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}, 3: 2\right)$.
Method B. Stirring at room temperature an equimolar mixture (10 mmol) of the carbonyl component, α-amino acid and dipolarophile in acidified methanol (10 mL) for 2 days during which time the corresponding cycloadducts precipitated out of solution. The solvent was evaporated under reduced pressure and to the obtained product was added chloroform (10 mL), and the resulting solid was filtered off and crystallized from aqueous methanol $\left(\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}\right.$, 3:2). The cycloadducts prepared by this method were heated at $95{ }^{\circ} \mathrm{C}$ to get rid of the solvent (MeOH); in some cases we could not remove MeOH commpletely at this degree, e.g. the cycloadducts 16a-e, 21, 22 and 24e. However, either heating at $95^{\circ} \mathrm{C}$ for a prolonged period of time or at higher temperatures resulted in decomposition.
Method C. An equimolar mixture (10 mmol) of salicylaldehyde 1a, DL-alanine 2a and dimethyl fumarate 3 in acidified methanol $(10 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ for 2 days, by which time the corresponding cycloadducts precipitated out of solution. The solvent was evaporated under vacuum and to the obtained precipitate was added chloroform $(10 \mathrm{~mL})$ and the resulting solid was filtered off and crystallized from the proper solvent.

5-(2-Hydroxy-1-naphthyl)-3,4-bis(methoxycarbonyl)-2-methylpyrrolidine-2-carboxylic acid

 (10b). According to the general procedure (method A) using 2-hydroxy-1-naphthaldehyde 1b as carbonyl component, DL-alanine 2a as α-amino acid and dimethyl fumarate $\mathbf{3}$ as a dipolarophile, the corresponding cycloadduct $\mathbf{1 0 b}$ was obtained after 12 hours as colorless needles $(0.155 \mathrm{~g}$, 40%), mp 204-206 ${ }^{\circ} \mathrm{C}$. IR (KBr) 3737, 3373 (broad), 2370, 1700 (broad), and $1630 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-$ NMR ($\mathrm{CDCl}_{3} / \mathrm{TFA}$) $\delta: 7.93-7.12(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}), 6.06$ (d, $\left.1 \mathrm{H}, J=10.5 \mathrm{~Hz}, \mathrm{H}_{5}\right), 4.34\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{H}_{4}\right)$, $3.97\left(\mathrm{~d}, 1 \mathrm{H}, J=9 \mathrm{~Hz}, \mathrm{H}_{3}\right), 3.90$ and $3.62\left(2 \mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{CO}_{2} \underline{\mathrm{Me}}\right.$) and $2.15(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}-\mathrm{Me})$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NO}_{7}$: C, 62.01 ; H, 5.46; N, 3.62. Found: C, 62.03; H, 5.44; N, 3.59.3,4-Bis(methoxycarbonyl)-2-methyl-5-(4-oxo-4H-chromen-3-yl)pyrrolidine-2-carboxylic acid (10c). The reaction was carried out according to the general procedure (method A) using 3formylchromone 1c as carbonyl component, DL-alanine 2a as α-amino acid and dimethyl fumarate $\mathbf{3}$ as a dipolarophile, the adduct 10c was obtained after 1 hour as white powder, crystallization from aqueous methanol gave colorless fine needles ($0.237 \mathrm{~g}, 61 \%$), mp 228$230{ }^{\circ} \mathrm{C} . \mathrm{IR}(\mathrm{KBr}) 3000$ (broad), 1740 (broad), and $1635 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3} / \mathrm{TFA}\right) \delta: 8.54$ (s, 1 H , chromonyl, $-\mathrm{OCH}-$), 8.23-7.68 (m, 4H, Ar- \underline{H}), $5.25\left(\mathrm{~d}, 1 \mathrm{H}, J=10.5 \mathrm{~Hz}, \mathrm{H}_{5}\right), 4.24(\mathrm{t}, 1 \mathrm{H}$,
$\left.\mathrm{H}_{4}\right), 3.84\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{3}\right), 3.93,3.84\left(2 \mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{x} \mathrm{CO}_{2} \mathrm{Me}\right)$ and $2.04(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}-\mathrm{Me}) . \mathrm{MS}(\mathrm{m} / \mathrm{z} \%): 388$ (M-1, 6), 344 (M-45, 12), 252 (99), 244 (100), 225 (51), 186 (24), 159 (26), 115 (68), 84 (27), 77 (29) and 51 (37). Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{8}$: C, 58.61 ; H, 4.92; N, 3.60. Found: C, 58.59; H, 4.94; N, 3.62.

3-Cyano-2-methyl-4-oxo-1,2,3,3a,4,9b-hexahydro-chromeno[4,3-b]pyrrole-2-carboxylic
acid (16a). The reaction was carried out according to the general procedure (method B) using salicylaldehyde 1a, DL-alanine 2a and fumaronitrile $\mathbf{1 3}$ to afford $\mathbf{1 6 a}(0.21 \mathrm{~g}, 68 \%)$, mp 202$204{ }^{\circ} \mathrm{C}$. IR (KBr): 3750, 3446-2657 (broad), 2362, 2250, 1745, $1615 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3} / \mathrm{TFA}\right) \delta: 7.15-7.00(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}), 5.29\left(\mathrm{~d}, 1 \mathrm{H}, J=11.4 \mathrm{~Hz}, \mathrm{H}_{9 \mathrm{~b}}\right), 4.44\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{H}_{3 \mathrm{a}}\right), 3.98$ (s, $3 \mathrm{H}, \mathrm{MeOH}$, solvent), $3.96\left(\mathrm{~d}, 1 \mathrm{H}, J=11.7 \mathrm{~Hz}, \mathrm{H}_{3}\right.$) and 2.18 ($\left.\mathrm{s}, 3 \mathrm{H}, \mathrm{C}-\mathrm{Me}\right) . \mathrm{MS}(\mathrm{m} / \mathrm{z} \%): 304$ $\left(\mathrm{M}^{+}, 10\right), 259$ (75), 231 (82), 216 (46), 200 (100), 183 (34), 172 (39), 147 (55), 80 (50) and 52 (23). ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (DMSO- d_{6} / TFA) 169.74, 167.47, 156.15, 131.50, 129.65, 119.44, 116.27, 115.94, 115.74, 67.95, 58.17, 54.06, 52.75, 34.39, 21.51. DEPT (DMSO-d $/$ TFA) 131.52, $129.66,119.42,115.72,58.10,54.03,52.76,34.37,21.51$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{4} . \mathrm{MeOH}:$ C, 59.2; H, 5.3; N, 9.21. Found: C, 58.6; H, 5.2; N, 9.15.
2-Benzyl-3-cyano-4-oxo-1,2,3,3a,4,9b-hexahydrochromeno[4,3-b]pyrrole-2-carboxylic acid (16b). The reaction was carried out according to the general procedure (method B) using salicylaldehyde 1a, D-phenylalanine 2b and fumaronitrile $\mathbf{1 3}$ to afford $\mathbf{1 6 b}(0.16 \mathrm{~g}, 43 \%)$, mp $200-202{ }^{\circ} \mathrm{C}$. IR (KBr): 3737, 3609-2947 (broad), 2357, 2250, 1738, $1643 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3} / \mathrm{TFA}\right) \delta: 7.48-6.93(\mathrm{~m}, 9 \mathrm{H}, \operatorname{Ar}-\underline{\mathrm{H}}), 4.59\left(\mathrm{~d}, 1 \mathrm{H}, J=11.7 \mathrm{~Hz}, \mathrm{H}_{9 \mathrm{~b}}\right), 4.33\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{H}_{3 \mathrm{a}}\right), 4.05$ (d, $1 \mathrm{H}, J=11.7 \mathrm{~Hz}, \mathrm{H}_{3}$), 4.01(s, 3 H , MeOH, solvent), $3.84\left(\mathrm{~d}, 1 \mathrm{H}, J=15.3 \mathrm{~Hz}, \mathrm{H}_{\mathrm{A}}, \mathrm{C}-\mathrm{CH}_{2} \mathrm{Ph}\right)$ and $3.69\left(\mathrm{~d}, 1 \mathrm{H}, J=15.0 \mathrm{~Hz}, \mathrm{H}_{\mathrm{B}}, \mathrm{C}-\mathrm{CH}_{2} \mathrm{Ph}\right) . \mathrm{MS}(\mathrm{m} / \mathrm{z} \%): 275$ (M-45-60, 28), 223 (19), 185 (29), 159(16), 133 (10), 106 (15), 91 (100), 77 (26), 64 (26) and 51 (22). Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4}$.MeOH: C, 66.3; H, 5.3; N, 7.37. Found: C, 65.9; H, 5.00; N, 7.29.
3-Cyano-2-isobutyl-4-oxo-1,2,3,3a,4,9b-hexahydrochromeno[4,3-b]pyrrole-2-carboxylic acid (16c). The general procedure (method B) was applied using salicylaldedyde 1a, L-leucine 2c and fumaronitrile 13 to afford 16c ($0.15 \mathrm{~g}, 43 \%$), mp 204-206 ${ }^{\circ} \mathrm{C}$. IR (KBr): 3728, 3438-2961 (broad), 2355, 2253, 1730, $1622 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3} / \mathrm{TFA}\right) ~ \delta: 7.51-7.00(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}), 5.3$ $\left(\mathrm{d}, 1 \mathrm{H}, J=12 \mathrm{~Hz}, \mathrm{H}_{9 \mathrm{~b}}\right), 4.39\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{H}_{3 \mathrm{a}}\right), 4.01(\mathrm{~s}, 3 \mathrm{H}, \underline{\mathrm{MeOH}}$, solvent), $3.97(\mathrm{~d}, 1 \mathrm{H}, J=11.7 \mathrm{~Hz}$, $\left.\mathrm{H}_{3}\right), 2.64\left(\mathrm{dd}, 1 \mathrm{H}, J=7.5\right.$ and $\left.15.3 \mathrm{~Hz}, \mathrm{H}_{\mathrm{A}}, \mathrm{C}-\mathrm{CH}_{2} \mathrm{CH}\right), 2.37\left(\mathrm{dd}, 1 \mathrm{H}, J=6.0\right.$ and $15.3 \mathrm{~Hz}, \mathrm{H}_{\mathrm{B}}$, C- $\underline{C H}_{2} \mathrm{CH}$), 1.91 ($\mathrm{m}, 1 \mathrm{H},-\mathrm{CHMe}_{2}$), 1.06 and $1.03(2 \mathrm{~d}, 6 \mathrm{H}, J 6.6 \mathrm{~Hz},-\mathrm{CHMe} 2)$. $\mathrm{MS}(\mathrm{m} / \mathrm{z} \%): 301$ (M-44, 95), 300 (100), 241 (18), 198 (34), 191 (57), 145 (29), 115 (28), 105 (16), 77 (35) and 51 (23). Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4}$.MeOH: C, 62.41; H, 6.40; N, 8.09. Found: C, 62.3; H, 6.35; N, 8.00.

3-Cyano-2-[2-(methylthio)ethyl]-4-oxo-1,2,3,3a,4,9b-hexahydrochromeno[4,3-b]-pyrrole-2carboxylic acid (16d). The reaction was conducted according to the general procedure (method B) using salicylaldehyde 1a, DL-methionine 2d and fumaronitrile $\mathbf{1 3}$ to give $\mathbf{1 6 d}$ ($0.2 \mathrm{~g}, 54 \%$), mp 218-220 ${ }^{\circ} \mathrm{C}$. IR (KBr): 3734, 3366-2650 (broad), 2352, 2255, 1734, $1620 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ ($\left.\mathrm{CDCl}_{3} / \mathrm{TFA}\right) \delta: 7.52-7.02(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}), 5.17\left(\mathrm{~d}, 1 \mathrm{H}, J=11.7 \mathrm{~Hz}, \mathrm{H}_{9 \mathrm{~b}}\right), 4.42(\mathrm{dd}, 1 \mathrm{H}, J=9$ and $11.4, \mathrm{H}_{3 \mathrm{a}}$), 3.96 ($\mathrm{s}, 3 \mathrm{H}, \underline{\mathrm{MeOH}}$, solvent), $3.95\left(\mathrm{~d}, 1 \mathrm{H}, J=9.3 \mathrm{~Hz}, \mathrm{H}_{3}\right.$), 2.99-2.66 (m, 4H, C-$\left.\left(\mathrm{CH}_{2}\right)_{2}-\mathrm{S}-\right)$ and $2.23(\mathrm{~s}, 3 \mathrm{H},-\mathrm{SMe}) . \mathrm{MS}(\mathrm{m} / \mathrm{z} \%): 319$ (M-45, 8), 242 (37), 212 (21), 198 (26), 159 (80), 145 (21), 133 (17), 90 (21), 75 (22), 61 (100) and 51 (23). Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S} . \mathrm{MeOH}: \mathrm{C}, 56.03$; H, 5.53 ; N, 7.69; S, 8.80. Found: C, 56.00; H, 5.50; N, 7.65; S, 8.5.

3-Cyano-2-(1H-indol-3-ylmethyl)-4-oxo-1,2,3,3a,4,9b-hexahydrochromeno[4,3-b]-pyrrole-2carboxylic acid (16e). The reaction was carried out according to the general method (method B) using salicylaldehyde 1a, L-tryptophane $\mathbf{2 e}$ and fumaronitrile $\mathbf{1 3}$ to produce $\mathbf{1 6 e}(0.2 \mathrm{~g}, 47 \%)$, mp 236-238 ${ }^{\circ} \mathrm{C}$. IR (KBr): 3737, 3359 (broad), 2357, 2268, 1740-, $1630 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3} / \mathrm{TFA}\right) \delta: 7.74-6.96(\mathrm{~m}, 10 \mathrm{H}, \operatorname{Ar-H}$ and NH$), 4.73\left(\mathrm{~d}, 1 \mathrm{H}, J=11.7 \mathrm{~Hz}, \mathrm{H}_{9 \mathrm{~b}}\right), 4.41(\mathrm{t}, 1 \mathrm{H}$, $\mathrm{H}_{3 \mathrm{a}}$), $4.25\left(\mathrm{~d}, 1 \mathrm{H}, J=11.1 \mathrm{~Hz}, \mathrm{H}_{3}\right) 4.1(\mathrm{~s}, 3 \mathrm{H}, \underline{\mathrm{MeOH}}$, solvent), and $4.05(\mathrm{~d}, 2 \mathrm{H}, J=3.6 \mathrm{~Hz}, \mathrm{C}-$ CH_{2}-indolyl). MS ($\mathrm{m} / \mathrm{z} \%$): 374(M-45, 0.6), 372 (2), 315 (6), 130 (100), 116 (13), 102 (7), 76 (10) and 51 (4). Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{4} . \mathrm{MeOH}: \mathrm{C}, 65.86$; H, 5.05 ; N, 10.02. Found: C, 65.43; H, 5.00; N, 9.88.

3-Cyano-2-(1H-imidazol-4-ylmethyl)-4-oxo-1,2,3,3a,4,9b-hexahydrochromeno[4,3-b]-pyrrole-2-carboxylic acid (16f). The general procedure (method B) was applied using salicylaldehyde 1a, L-histidine $\mathbf{2 f}$ and fumaronitrile 13 to give $\mathbf{1 6 f}$ ($0.15 \mathrm{~g}, 43 \%$), mp 230$232{ }^{\circ} \mathrm{C}$. IR (KBr): 3600-2700 (broad), 2350, 2243, 1720, $1600 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3} / \mathrm{TFA}\right) \delta$: 8.57 and 7.73 ($2 \mathrm{~s}, 2 \mathrm{H}$, imidazolyl- \underline{H}), 7.48-6.98 (m, 4H, Ar- $\underline{\mathrm{H}}$), $5.66\left(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}, \mathrm{H}_{3}\right.$), $4.83\left(\mathrm{~d}, 1 \mathrm{H}, J=6.0 \mathrm{~Hz}, \mathrm{H}_{9 \mathrm{~b}}\right), 4,39\left(\mathrm{dd}, 1 \mathrm{H}, J=6.3\right.$ and $\left.8,1 \mathrm{~Hz}, \mathrm{H}_{3 \mathrm{a}}\right), 4.04(\mathrm{~d}, 1 \mathrm{H}, J=16.2 \mathrm{~Hz}$, $\mathrm{H}_{\mathrm{A}}, \mathrm{C}-\mathrm{CH}_{2}$-imidazolyl), $3.90\left(\mathrm{~d}, 1 \mathrm{H}, J=15.9 \mathrm{~Hz}, \mathrm{H}_{\mathrm{B}}, \mathrm{C}-\mathrm{CH}_{2}\right.$-imidazolyl). MS ($\mathrm{m} / \mathrm{z} \%$): 293 (M45, 18), 275 (100), 207 (41), 184 (18), 137 (12), 82 (32), 63 (13) and 51 (11). Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{4}$: C, 50.35 ; H, 4.17; N, 16.56. Found: C, 49.99; H, 4.12; N, 16.45.
5-(2-Hydroxyphenyl)-2,3,4-tri(methoxycarbonyl)-2-methylpyrrolidine (18). In two necked flask containing dry $\mathrm{MeOH}(20 \mathrm{~mL})$ was added the cycloadduct $16 \mathbf{a}(0.304 \mathrm{~g}, 10 \mathrm{mmol})$ then dry HCl gas was passed through the obtained suspension for 1 h , and finally the solution was refluxed for 4 h . The reaction mixture was allowed to reach room temperature, The solvent was removed under reduced pressure and the formed amino ester hydrochloride was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(20 \mathrm{~mL})$ and neutralized by aqueous $\mathrm{NaHCO}_{3}(5 \%)$. The organic layer was separated and washed by water and saturated sodium chloride solution then dried over MgSO_{4}. The solvent was evaporated under reduced pressure to afford the trimethyl ester $\mathbf{1 8}$ in quantitative yield (0.35 g , 100%). Colourless needels, mp $134-136{ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ pet-ether $\left.40-60\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3} / \mathrm{TFA}\right) \delta$: 9.28 (s brad, $1 \mathrm{H}, \mathrm{NH}$), 7.39-6.9 (m, 4H, Ar- $\underline{\mathrm{H}}$), 5.19 (d, $1 \mathrm{H}, J=10.8 \mathrm{~Hz}, \mathrm{H}_{5}$), 4.15 (t, 1H, H4), 3.88-3.76 ($3 \mathrm{~s}, 9 \mathrm{H}, 3 \times \mathrm{CO}_{2} \underline{\mathrm{Me}}$), $3.77\left(\mathrm{~d}, 1 \mathrm{H}, J=9.9 \mathrm{~Hz}, \mathrm{H}_{3}\right.$), 1.98 (s, $3 \mathrm{H}, \mathrm{C}-\underline{\mathrm{Me}) \text {. Anal. Calcd for }}$ $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{7}: \mathrm{C}, 58.11 ; \mathrm{H}, 6.02 ; \mathrm{N}, 3.99$. Found: C, $58.09 ; \mathrm{H}, 6.00 ; \mathrm{N}, 3.05$.

3,4-Dicyano-2-methyl-5-(4-oxo-4H-chromen-3-yl)pyrrolidine-2-carboxylic acid (21) and its isomer (22). The reaction was conducted according to the general procedure (method B) using 3formylchromone 1c, DL-alanine 2a and fumaronitrile 13 to give a 61% total yield of an isomeric mixture of the cycloadducts 21 and 22 in 4.5: 1 ratio, respectively. Fractional crystallization from aqueous methanol $\left(\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}, 3: 2\right)$ afforded the minor isomer 22 in a pure state. The minor isomer 22, mp 224-226 ${ }^{\circ} \mathrm{C}$. IR (KBr): 3450 (broad), 2358, 2255, 1720, $1625 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3} / \mathrm{TFA}\right) \delta: 8.61(\mathrm{~s}, 1 \mathrm{H}$, chromonyl-OCH-$), 8.24-7.68(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}), 5.35(\mathrm{~d}, 1 \mathrm{H}, J=11.7$ $\left.\mathrm{Hz}, \mathrm{H}_{5}\right), 4.43\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{H}_{4}\right), 4.13\left(\mathrm{~d}, 1 \mathrm{H}, J=11.46, \mathrm{H}_{3}\right), 3.89(\mathrm{~s}, 3 \mathrm{H}, \mathrm{MeOH}$, solvent), and $2.1(\mathrm{~s}$, 3H, C-Me). MS ($\mathrm{m} / \mathrm{z} \%$): 323 (M-MeOH, 6.6), 251 (100), 211 (93), 198 (47), 172 (58), 120 (42), 114 (36), 104 (33), 91 (38), 77 (40) 63 (58) and 51 (36). The major isomer 21, The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ was recorded from the spectrum of the reaction mixture. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3} / \mathrm{TFA}\right) \delta: 8.59(\mathrm{~s}, 1 \mathrm{H}$, chromonyl-OCH-), 8.21-7.7 (m, 4H, Ar- $-\mathbf{H}$), $5.92\left(\mathrm{~d}, 1 \mathrm{H}, J=10.5 \mathrm{~Hz}, \mathrm{H}_{5}\right), 5.1(\mathrm{~d}, 1 \mathrm{H}, J=10.5$, H_{3}), 4.63 (t, 1H, H4), 3.97 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{MeOH}$, solvent), and 2.1 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{C}-\mathrm{Me}$).
3a-(Ethoxycarbonyl)-2-methyl-4-oxo-3-phenyl-1,2,3,3a,4,9b-hexahydrochromeno[4, 3-b]pyrrole-2-carboxylic acid (24a). The reaction was carried out according to the general procedure (method B) using salicylaldehyde 1a, DL-alanine 2a and ethyl (2E)-2-cyano-3phenylacrylate 23a to produce the corresponding tricyclic compound $\mathbf{2 4 a}(0.25 \mathrm{~g}, 64 \%), \mathrm{mp} 166-$ $168{ }^{\circ} \mathrm{C}$. IR (KBr): 3736, 3443 (broad), 2933 (broad), 2358, 1747, 1710, $1647 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3} / \mathrm{TFA}\right) \delta: 7.57-7.05(\mathrm{~m}, 9 \mathrm{H}, \operatorname{Ar}-\underline{\mathrm{H}}), 5.72\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{9 \mathrm{~b}}\right), 4.29\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{3}\right), 4.27(\mathrm{q}, 2 \mathrm{H}$, $\mathrm{CO}_{2} \underline{\mathrm{CH}}_{2} \mathrm{Me}$), 2.11 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{C}-\underline{\mathrm{Me}}$) and $1.1\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \underline{\mathrm{Me}}\right)$. MS ($\mathrm{m} / \mathrm{z} \%$): 374(M-44, 48), 242 (27), 197 (74), 172 (36), 147 (78), 127 (56), 101 (48), 76 (100) and 51 (88). Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{NO}_{6}$: C, 66.82; H, 5.35; N, 3.54. Found: C, 66.12; H, 5.15; N, 3.33.
3-(4-Chlorophenyl)-3a-(ethoxycarbonyl)-2-methyl-4-oxo-1,2,3,3a,4,9b-hexahydro-chromeno[4,3-i]pyrrole-2-carboxylic acid (24b). According to the general procedure (method B) using salicylaldehyde 1a, DL-alanine 2a and ethyl (2E)-3-(4-Chlo-rophenyl)-2-cyanoacrylate 23b to afford 24b ($0.26 \mathrm{~g}, 61 \%$), mp 176-178 ${ }^{\circ} \mathrm{C}$. IR (KBr): 3600-2800 (broad), 2356, 1745, $1705,1617 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3} / \mathrm{TFA}\right) \delta: 7.56-7.08(\mathrm{~m}, 8 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}), 5.73\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{9 \mathrm{~b}}\right), 4.34(\mathrm{~s}$, $\left.1 \mathrm{H}, \mathrm{H}_{3}\right), 4.31\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CO}_{2} \underline{\mathrm{CH}}_{2} \mathrm{Me}\right), 2.14(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}-\underline{\mathrm{Me}})$ and $1.15\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \underline{\mathrm{Me}}\right) . \mathrm{MS}(\mathrm{m} / \mathrm{z}$ \%): 383 (M-44, 35), 234 (90), 206 (48), 190 (69), 161 (54), 147 (100), 131 (54), 121 (57), 107 (74), 76 (81), 68 (45) and 50 (100). Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{NO}_{6} \mathrm{Cl}: \mathrm{C}, 61.47$; H, 4.69; N, 3.26; Cl, 8.25. Found: C, 60.99 ; H, 4.66 ; N, 3,13; Cl, 8.00.

3a-(Ethoxycarbonyl)-2-methyl-3-(4-nitrophenyl)-4-oxo-1,2,3,3a,4,9b-

hexahydrochromeno[4,3-b]pyrrole-2-carboxylic acid (24c). Applying the general procedure (method B) using salicylaldehyde 1a, DL-alanine $\mathbf{2 a}$ and ethyl (2E)-2-cyano-3-(4nitrophenyl)acrylate 23c gave $24 \mathrm{c}(0.31 \mathrm{~g}, 71 \%)$, mp 160-162 ${ }^{\circ} \mathrm{C}$. IR (KBr): 3500-2300 (broad), 2357, 1748, 1710, $1616 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3} / \mathrm{TFA}\right) \delta: 8.43-7.11$ (m, 8H, Ar-H), $5.78(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{H}_{9 \mathrm{~b}}$), $4.57\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{3}\right), 4.31\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}\right), 2.19(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}-\mathrm{Me})$ and $1.15(\mathrm{t}, 3 \mathrm{H}$, $\mathrm{CO}_{2} \mathrm{CH}_{2} \underline{\mathrm{Me}}$). MS ($\mathrm{m} / \mathrm{z} \%$): 395 (M-45, 30), 246 (22), 218 (32), 193 (42), 148 (100), 131 (52), 103 (16), 77 (48) and 51 (54). Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{8}: \mathrm{C}, 60.00$; H, 4.58; N, 6.36. Found: C, 59.45; H, 4.43; N, 6.28.

3a-(Ethoxycarbonyl)-3-(4-methoxyphenyl)-2-methyl-4-oxo-1,2,3,3a,4,9b-hexahydro-chromeno[4,3-b]pyrrole-2-carboxylic acid (24d). According to the general procedure (method B) using salicylaldehyde 1a, DL-alanine 2a and ethyl (2E)-2-cyano-3-(4-methoxyphenyl)acrylate 23d formed 24d ($0.2 \mathrm{~g}, 47 \%$), mp 166-168 ${ }^{\circ} \mathrm{C}$. IR (KBr): 3737, 3442-2500 (broad), 2360, 1748, $1710,1644 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3} / \mathrm{TFA}\right) \delta: 7.56-7.10(\mathrm{~m}, 8 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}), 5.72\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{9 \mathrm{~b}}\right), 4.31(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{H}_{3}$), $4.30\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CO}_{2} \underline{\mathrm{CH}}_{2} \mathrm{Me}\right), 4.00(\mathrm{~s}, 3 \mathrm{H}, \mathrm{O}-\mathrm{Me}), 2.14(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}-\mathrm{Me})$ and $1.16(\mathrm{t}, 3 \mathrm{H}$, $\mathrm{CO}_{2} \mathrm{CH}_{2} \underline{\mathrm{Me}}$). MS ($\mathrm{m} / \mathrm{z} \%$): 380 (M-45, 100), 273 (40), 227 (97), 186 (34), 148 (56), 131 (26), 107 (33), 77 (61) and 51 (26). Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{NO}_{7}$: C, 64.93; H, 5.45; N, 3.29. Found: C, 64.62; H, 5.35; N, 3.22.

3a-(Ethoxycarbonyl)-2-methyl-4-oxo-3-spiro(3-indolyl-2-one)-1,2,3,3a,4,9b-hexa-

 hydrochromeno[4,3-b]pyrrole-2-carboxylic acid (24e) and 4-Cyano-4-(ethoxycarbonyl)-5-(2-hydroxyphenyl)-2-methyl-3-spiro-(3-indolyl-2-one)-pyrrolidine-2-carboxylic acid (25e). According to the general procedure (method B) using salicylaldehyde 1a, DL-alanine 2a and ethyl (2E)-cyano-(2-oxo-1,2-dihydro-3H-indol-3-ylidene)acetate $\mathbf{2 3 e}$ gave an inseparable isomeric mixture of the cycloadducts $\mathbf{2 4 e}$ and $25 e$ in a 4.5 : 1 ratio ($0.23 \mathrm{~g}, 53 \%$ total yield), mp $148-150{ }^{\circ} \mathrm{C}$. IR (KBr): 3737,3400 (broad), 2357, 1741, 1700, $1630 \mathrm{~cm}^{-1} . \mathrm{MS}(\mathrm{m} / \mathrm{z} \%): 261(\mathrm{M}-$ 131-44, 39), 244 (41), 175 (35), 171 (42), 157 (35), 148 (65.7), 145 (100), 129 (47), 118 (42), 89 (39), 77 (57), and 51 (45). The ${ }^{1} \mathrm{H}$-NMR data for the isomers $\mathbf{2 4 e}$ and $\mathbf{2 5 e}$ was recorded from the spectrum of the reaction mixture. The major spiroadduct 24 e . ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3} / \mathrm{TFA}\right) \delta: 9.34$ (s, $1 \mathrm{H}, \mathrm{NH}), 7.95-7.03(\mathrm{~m}, 8 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}), 6.44\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{9 \mathrm{~b}}\right), 4.19\left(2 \mathrm{q}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{A}},-\mathrm{OCH}_{2} \mathrm{Me}\right), 4.10(2 \mathrm{q}$, $\left.1 \mathrm{H}, \mathrm{H}_{\mathrm{B}},-\mathrm{OCH}_{2} \mathrm{Me}\right), 4.02\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{MeOH}\right.$, solvent), $2.51(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}-\mathrm{Me}), 0.96\left(\mathrm{t}, 3 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{Me}\right)$. The minor spiroadduct 25e. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3} / \mathrm{TFA}\right) \delta: 9.58(\mathrm{~s}, 1 \mathrm{H}, \underline{\mathrm{NH}})$, 7.95-7.03 (m, $8 \mathrm{H}, \mathrm{Ar}-$ $\underline{H}), 6.35\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{5}\right), 4.50\left(2 \mathrm{q}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{A}},-\mathrm{OCH}_{2} \mathrm{Me}\right), 4.30\left(2 \mathrm{q}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{B}},-\mathrm{OCH}_{2} \mathrm{Me}\right), 2.13(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}-$ Me), $1.22\left(\mathrm{t}, 3 \mathrm{H},-\mathrm{OCH}_{2} \underline{\mathrm{Me}}\right)$.2-Benzyl-3a-(ethoxycarbonyl)-4-oxo-3-spiro(3-indolyl-2-one)-1,2,3,3a,4,9bhexahydrochromeno [4,3-b]pyrrole-2-carboxylic acid (24f). Conducting the reaction according to the general procedure (method B) using salicylaldehyde 1a, D-phenylalanine 2d and ethyl (2E)-cyano-(2-oxo-1,2-dihydro-3H-indol-3-ylidene) acetate $\mathbf{2 3 f}$ afforded $\mathbf{2 4 f}$ (0.24 g , 47%), mp 202-204 ${ }^{\circ} \mathrm{C}$. IR (KBr): 3737, 3253-2631 (broad), 2361, 1749, 1715, 1689, $1608 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3} / \mathrm{TFA}\right) \delta: 9.51(\mathrm{~s}, 1 \mathrm{H}, \underline{\mathrm{NH}}), 8.14-7.12(\mathrm{~m}, 13 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}), 6.58\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{9 \mathrm{~b}}\right), 4.30(\mathrm{~d}$, $\left.1 \mathrm{H}, J=14.1 \mathrm{~Hz}, \mathrm{H}_{\mathrm{A}}, \mathrm{C}-\mathrm{CH}_{2} \mathrm{Ph}\right), 4.25\left(2 \mathrm{q}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{C}},-\mathrm{OCH}_{2} \mathrm{Me}\right), 4.14\left(2 \mathrm{q}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{D}},-\mathrm{OCH}_{2} \mathrm{Me}\right)$, $3.92\left(\mathrm{~d}, 1 \mathrm{H}, J=14.1 \mathrm{~Hz}, \mathrm{H}_{\mathrm{B}}, \mathrm{C}-\mathrm{CH}_{2} \mathrm{Ph}\right)$, and $1.01\left(\mathrm{t}, 3 \mathrm{H},-\mathrm{OCH}_{2} \underline{\mathrm{Me}}\right)$. Anal. Calcd for $\mathrm{C}_{29} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{7}$: C, 67.96; H, 4.72; N, 5.47. Found: C, 67.66; H, 4,47; N, 5.34.
2-Hydroxymethyl-4-(2-hydroxyphenyl)-6,8-dioxo-7-phenyl-3,7-diazabicyclo[3.3.0] octane-2-carboxylic acid (27). According to the general procedure (method A) using salicylaldehyde 1a as a carbonyl component, DL-serine $\mathbf{2 g}$ as α-amino acid and N-phenylmaleimide $\mathbf{2 6}$ as a dipolarophile, the endo-adduct 27 was obtained after 10 hours in a ($0.31 \mathrm{~g}, 80 \%$). However, using mixed solvent (methanol/toluene, 1: 1) containing a few drops of AcOH afforded a better yield of the endo-adduct $27(0.33 \mathrm{~g}, 86 \%)$ after 2 hours. Colourless crystals from aqueous methanol, mp 238-240 ${ }^{\circ} \mathrm{C}$. IR (KBr) 3500, 3000 (broad), 2361, 1785, 1710, and $1650 \mathrm{~cm}^{-1} .1 \mathrm{H}-$

NMR (DMSO- d_{6}) $\delta: 7.46-6.68(\mathrm{~m}, 9 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}), 4.89\left(\mathrm{~d}, 1 \mathrm{H}, J=9.3 \mathrm{~Hz}, \mathrm{H}_{4}\right), 3.84(\mathrm{~d}, 1 \mathrm{H}, J=$ $\left.11.1 \mathrm{~Hz}, \mathrm{H}_{\mathrm{A}},-\mathrm{CH}_{2} \mathrm{OH}\right), 3.71\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{H}_{5}\right), 3.74\left(\mathrm{~d}, 1 \mathrm{H}, J=11.7 \mathrm{~Hz}, \mathrm{H}_{\mathrm{B}},-\mathrm{CH}_{2} \mathrm{OH}\right)$, and $3.46(\mathrm{~d}$, $\left.1 \mathrm{H}, J=7.8 \mathrm{~Hz}, \mathrm{H}_{1}\right) . \mathrm{MS}(\mathrm{m} / \mathrm{z} \%): 351$ (M-31, 69), 336 (M-45, 22), 320 (73), 186 (60), 160 (100), 132 (92), 120 (60), 93 (82), 77 (87) and 52 (78). Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{6}$: C, 62.82; H, 4.74; N, 7.33. Found: C, 62.80; H, 4.76; N, 7.31.

4-(2-Hydroxyphenyl)-2-(1H-imidazol-4-ylmethyl)-6,8-dioxo-7-phenyl-3,7-diaza-

bicyclo[3.3.0]octane-2-carboxylic acid (29a). According to the general procedure (method A) using salicylaldehyde 1a as carbonyl component, L-histidine $2 f\left(\mathrm{R}^{1}=\mathrm{CH}_{2}\right.$ (4-imidazolyl)) as α amino acid and N-phenylmaleimide 26 as a dipolarophile, compound 29a was obtained after 3 hours as white powder. Crystallization from aqueous methanol gave colorless crystals in (0.17 g , 79%), mp 210-212 ${ }^{\circ} \mathrm{C}$. IR (KBr) 3821, 3618, 3472-3155 (broad), 2356, 1701, and $1616 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3} / \mathrm{TFA}\right) \delta: 8.68$ and $7.77(2 \mathrm{~s}, 2 \mathrm{H}$, imidazolyl- $\underline{\mathrm{H}}), 7.53-6.93(\mathrm{~m}, 9 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}), 5.72$ $\left(\mathrm{d}, 1 \mathrm{H}, J=10.5 \mathrm{~Hz}, \mathrm{H}_{4}\right), 4.55\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{H}_{5}\right), 4.16\left(\mathrm{~d}, 1 \mathrm{H}, J=9 \mathrm{~Hz}, \mathrm{H}_{1}\right), 4.01\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C}-\mathrm{CH}_{2}-\right.$ imidazolyl). MS ($\mathrm{m} / \mathrm{z} \%$): 415 (M - 17, 3), 398 (M-34, 36), 350 (16), 159 (17), 131 (14), 93 (100), 83 (37), 77 (42), 66 (33) and 51 (36). Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{5}$: C, 63.88; H, 4.66; N, 12.96. Found: C, 63.86; H, 4.64; N, 12.98 .

4-(2-Hydroxy-1-naphthyl)-2-methyl-6,8-dioxo-7-phenyl-3,7-diazabicyclo[3.3.0]octane -2carboxylic acid (29b). Conducting the general procedure (method A) using 2-hydroxy-1naphthaldehyde 1b as carbonyl component, DL-alanine $\mathbf{2 a}\left(\mathrm{R}^{1}=\mathrm{Me}\right)$ as α-amino acid and N phenylmaleimide 26 as a dipolarophile, the endo-adduct 29b was obtained after 6 hours as white powder, crystallization from aqueous methanol gave colorless needles ($0.395 \mathrm{~g}, 95 \%$), m.p. 208$210^{\circ} \mathrm{C}$. IR (KBr) 3737, 3440 (broad), 2357, 1780, 1710, and $1637 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO- d_{6}) δ : 8.16-6.90 (m, 11H, Ar-H), $5.65\left(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}, \mathrm{H}_{4}\right), 4.10\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{H}_{5}\right), 3.59(\mathrm{~d}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}$, H_{1}), 1.65 (s, 3H, C-Me). MS ($\mathrm{m} / \mathrm{z} \%$) 382 (M-18-16, 40), 381 (100), 233 (44), 206 (38), 182 (35), 144 (41), 115 (41) and 51 (21). Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{5}$: C, 69.22; H, 4.84; N, 6.73. Found: C, 69.00; H, 4.86; N, 6.71.
2-Methyl-6,8-dioxo-4-(4-oxo-4H-chromen-3-yl)-7-phenyl-3,7-diazabicyclo[3.3.0]-octane-2carboxylic acid (29c). The reaction was carried out according to the general procedure (method A) using 3-formylchromone $\mathbf{1 c}$ as carbonyl component, DL-alanine $\mathbf{2 a}\left(\mathrm{R}^{1}=\mathrm{Me}\right)$ as α-amino acid and N-phenylmaleimide 26 as a dipolarophile, the corresponding compound 29c was obtained after 30 minutes as white powder. Crystallization from aqueous methanol as a colorless fine needles ($0.3 \mathrm{~g}, 72 \%$), m.p. $280-282{ }^{\circ} \mathrm{C}$. IR (KBr) 3471 (broad), 2355, 1741, and $1621 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-$ NMR ($\left.\mathrm{CDCl}_{3} / \mathrm{TFA}\right) \delta: 8.54(\mathrm{~s}, 1 \mathrm{H}$, chromonyl, $-\mathrm{OCH}-), 8.21-7.24(\mathrm{~m}, 9 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}), 5.86(\mathrm{~d}, 1 \mathrm{H}, J$ $\left.=10.2 \mathrm{~Hz}, \mathrm{H}_{4}\right), 4.40\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{H}_{5}\right), 4.14\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9 \mathrm{~Hz}, \mathrm{H}_{1}\right)$, and $2.10(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}-\mathrm{Me}) . \mathrm{MS}(\mathrm{m} / \mathrm{z} \%)$ 418 ($\mathrm{M}^{+}, 53$), 373 (M-45, 100), 252 (38), 214 (89), 199 (59), 172 (35), 121 (33), 104 (33), 91 (35), 77 (57), 64 (36) and 51 (32). Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{6}$: C, 66.02; H, 4.34; N, 6.70. Found: C, 66.22; H, 4.31; N, 6.72.
6,8-Dioxo-4-(4-oxo-4H-chromen-3-yl)-7-phenyl-3,7-diazabicyclo[3.3.0]octane-2-carboxylic acid (29d). According to the general procedure (method A) using 3-formylchromone 1c as carbonyl component, glycine $2\left(\mathrm{R}^{1}=\mathrm{H}\right)$ as α-amino acid and N-phenylmaleimide $\mathbf{2 8}$ as a
dipolarophile, compound 29d was obtained after 30 minutes as white amorphous, crystallization from aqueous methanol as a colorless fine needles $(0.339 \mathrm{~g}, 84 \%)$, m.p. $266-268{ }^{\circ} \mathrm{C}$. IR (KBr) 3736, 3450-3236 (broad), 2356, 1713, and $1621 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO- d_{6}) $\delta: 8.3$ (s, 1 H , chromonyl, -OCH-), $8.10-7.15(\mathrm{~m}, 9 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}), 4.38\left(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}, \mathrm{H}_{4}\right), 3.98(\mathrm{~d}, 1 \mathrm{H}, J=6.9$ $\mathrm{Hz}, \mathrm{H}_{2}$), $3.77\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{H}_{5}\right), 3.69\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{H}_{1}\right) . \mathrm{MS}(\mathrm{m} / \mathrm{z} \%) 404\left(\mathrm{M}^{+}, 22\right), 359(\mathrm{M}-45,36), 255$ (27), 237 (51), 211 (100), 184 (86), 162 (61), 103 (36), 90 (45), 76 (56), 64 (56) and 51 (44). Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{6}$: C, 65.34; H, 3.99; N, 6.93. Found: C, $65.31 ; \mathrm{H}, 4.00 ; \mathrm{N}, 6.90$.
2-\{[(2-Amino-2-carboxyethyl)dithio]methyl\}-6,8-dioxo-4-(4-oxo-4H-chromen-3-yl)-7-phenyl-3,7-diazabicyclo[3.3.0]octane-2-carboxylic acid (29e). According to the general procedure (method A) using 3-formylchromone $\mathbf{1 c}$ as carbonyl component, L-cysteine $2\left(\mathrm{R}^{1}=\right.$ $\mathrm{CH}_{2} \mathrm{SH}$) as α-amino acid and N -phenylmaleimide 26 as a dipolarophile, gave after 2 hours a $(0.239 \mathrm{~g}, 42 \%)$ of the corresponding endo-cycloadduct 29e. Compound 29e was obtained authentically in a 49% yield after 20 hours according to the general procedure (method A) using L-cystine $2\left(\mathrm{R}^{1}=\mathrm{CH}_{2} \mathrm{SSCH}_{2} \mathrm{CH}\left(\mathrm{NH}_{2}\right) \mathrm{COOH}\right)$ as α-amino acid. Colourless crystals from methanol, mp 256-258 ${ }^{\circ} \mathrm{C}$. IR (KBr) 3736, 3446 (broad), 1780, 1710, and $1636 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ ($\left.\mathrm{CDCl}_{3} / \mathrm{TFA}\right) \delta: 8.49$ (s, 1H, chromonyl, $\left.-\mathrm{OCH}-\right), 8.20-7.19(\mathrm{~m}, 9 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}) 5.82(\mathrm{~d}, 1 \mathrm{H}, J=10.2$ $\left.\mathrm{Hz}, \mathrm{H}_{4}\right), 4.54-4.34\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{5}+-\mathrm{SCH}_{2} \mathrm{CH}-\mathrm{H}_{1}\right), 4.4\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=15.30 \mathrm{~Hz}, \mathrm{H}_{\mathrm{A}},-\mathrm{CH}_{2} \mathrm{~S}-\right), 3.9(\mathrm{~d}$, $\left.1 \mathrm{H}, J=15.9 \mathrm{~Hz}, \mathrm{H}_{\mathrm{B}},-\mathrm{CH}_{2} \mathrm{~S}-\right), 3.7\left(\mathrm{dd}, 1 \mathrm{H}, J=9.90\right.$ and $\left.19.50 \mathrm{~Hz}, \mathrm{H}_{\mathrm{A}},-\mathrm{SCH}_{2}-\right)$ and $2.9(\mathrm{dd}, 1 \mathrm{H}, J$ $=5.40$ and $\left.19.20 \mathrm{~Hz}, \mathrm{H}_{\mathrm{B}},-\mathrm{SCH}_{2}-\right)$. $\mathrm{MS}(\mathrm{m} / \mathrm{z} \%): 373$ (M-152-44, 11), 371 (46), 277 (13), 251 (36), 206 (33), 173 (95), 172 (100), 119 (52), 104 (34), 90 (36), 76 (44), 63(61) and 50 (67). Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{8} \mathrm{~S}_{2}$: C, 54.82; H, 4.07; N, 7.38; S, 11.26. Found: C, 54.80; H, 4.00; N, 7.20; S, 11.27.

2-(2-Hydroxyphenyl)-1,3-thiazolidine-4-carboxylic acid (30) and (31). According to the general procedure (method A) using salicylaldehyde $\mathbf{1 a}$ as carbonyl component, L-cysteine $\mathbf{2 h}$ as α-amino acid and N-phenylmaleimide 26 as a dipolarophile. An isomeric mixture of the corresponding cyclization products $\mathbf{3 0}$ and $\mathbf{3 1}$ was obtained after 15 minutes in a 1.5: 1 ratio, respectively in almost quantitative yield ($0.22 \mathrm{~g}, 98 \%$) and the unreacted N-phenylmaleimide 26 was recovered. Crystallization from aqueous methanol as a colourless crystals, mp $160-162{ }^{\circ} \mathrm{C}$. IR (KBr) 3737, 3437 (broad), 3100, 2364, $1623 \mathrm{~cm}^{-1}$: MS ($\mathrm{m} / \mathrm{z} \%$): 225 ($\mathrm{M}^{+}, 40$), 180 (M-45, 13), 153 (48), 137 (53), 132 (99), 120 (37), 91 (40), 77 (100), 65 (39) and 51 (88). Due to solubility difficulties many attempts failed to give the two isomers $\mathbf{3 0}$ and $\mathbf{3 1}$ in pure states, and the spectral data was assigned for the crude reaction mixture. The major isomer $\mathbf{3 0}:{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3} / \mathrm{TFA}\right) \delta: 7.69-6.93(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}), 6.12\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{2}\right), 5.1\left(\mathrm{dd}, 1 \mathrm{H}, J=6.3\right.$ and $\left.7.2 \mathrm{~Hz}, \mathrm{H}_{4}\right)$, $3.81\left(\mathrm{dd}, 1 \mathrm{H}, J=8.4\right.$ and $\left.8.1 \mathrm{~Hz}, \mathrm{H}_{\mathrm{A}}, \underline{\mathrm{CH}_{2}} \mathrm{~S}\right)$, and $3.67\left(\mathrm{dd}, 1 \mathrm{H}, J=5.7 \mathrm{~Hz}, \mathrm{H}_{\mathrm{B}}, \underline{\mathrm{CH}_{2}} \mathrm{~S}\right)$. The minor isomer (31): ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3} / \mathrm{TFA}\right) \delta: 7.69-6.93(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}), 6.20\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{2}\right), 5.15(\mathrm{t}$, $\left.1 \mathrm{H}, \mathrm{H}_{4}\right), 3.89\left(\mathrm{~d}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{H}_{\mathrm{A}}, \underline{\mathrm{CH}_{2}} \mathrm{~S}\right)$, and $3.85\left(\mathrm{~d}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{H}_{\mathrm{B}}, \underline{\mathrm{CH}_{2}} \mathrm{~S}\right)$.

Methyl-4-(2-hydroxyphenyl)-2-methyl-6,8-dioxo-7-phenyl-3,7-diazabicyclo[3.3.0]-octane-2-

 carboxylate (33). In tow nicked flask containing dry methanol (20 ml) was added the acid 32 $(0.37 \mathrm{~g}, 0.001 \mathrm{~mol})$ and then dry HCl gas was passed through the reaction mixture for 1 hour,and finally the solution was refluxed for 5 hours. The reaction mixture was allowed to reach to room temperature and the solvent was removed under reduced pressure. The formed amino ester hydrochloride was dissolved in methylene chloride and neutralized by sodium bicarbonate solution (5\%). The organic layer was separated and washed with water and saturated sodium chloride solution then dried over MgSO_{4}. the solvent was evaporated under reduced pressure to afford nearly a quantitative yield ($0.38 \mathrm{~g}, 100 \%$) of the corresponding ester 33. Colourless needles $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ pet-ether $\left.40-60\right)$, m.p. $190-192{ }^{\circ} \mathrm{C}$. IR $(\mathrm{KBr}) 3550,3350,1780,1740$, and 1710 $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 7.45-6.84(\mathrm{~m}, 9 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}), 4.99\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9.9 \mathrm{~Hz}, \mathrm{H}_{4}\right), 3.83(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{CO}_{2} \underline{\mathrm{Me}}$), $3.72\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{H}_{5}\right), 3.48\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.1 \mathrm{~Hz}, \mathrm{H}_{1}\right), 1.73(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}-\mathrm{Me})$, and 1.57 (s broad, $1 \mathrm{H}, \mathrm{NH})$. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{5}$: C, 66.3; H, 5.3; N, 7.37. Found: C, 65.30; H, 4.99; N, 7.20 .

Methyl 3-(anilinocarbonothioyl)-4-(2-hydroxyphenyl)-2-methyl-6,8-dioxo-7-phenyl-3,7-diazabicyclo[3.3.0]octane-2-carboxylate (35). An equimolar mixture of the ester 33 (0.38 g , $0.001 \mathrm{~mol})$ and phenylisothiocyanate $34(0.12 \mathrm{ml}, 0.001 \mathrm{~mol})$ in methanol $(5 \mathrm{ml})$ in the presence of catalytic amount of HCl , was stirred at room temperature for 10 minutes, by which time the reactants went into the solution and a white precipitate came out of solution on cold. The obtained thiourea derivative 35 was filtered off as off-white solid (0.5 g , 97%), crystallized from $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ pet-ether 40-60) as a colourless crystals, m.p. 230-232 ${ }^{\circ} \mathrm{C}$. IR (KBr) 3650, 1790, 1770, and $1715 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 7.54-6.90(\mathrm{~m}, 14 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 5.75\left(\mathrm{~d}\right.$ broad, $\left.1 \mathrm{H}, \mathrm{H}_{4}\right), 4.54(\mathrm{t}$ broad, $1 \mathrm{H}, \mathrm{H}_{5}$), 4.10 ($\mathrm{s}, 3 \mathrm{H}, \underline{\mathrm{MeOH}}$, solvent), $4.08\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{1}\right), 4.06$ (s, $3 \mathrm{H}, \mathrm{CO}_{2} \underline{\mathrm{Me}}$), 2.18 ($\mathrm{s}, 3 \mathrm{H}$, C-Me). Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}$: C, 65.22; H, 4.89; N, 8.15; S, 6.22. Found: C, 64.58; H, 4.65; N, 7.99; S, 6.09.

5-(2-hydroxyphenyl)-8b-methyl-2,7-diphenyl-3-thioxohexahydropyrrolo[3',4':3,4]-

 pyrrolo[1,2-c]imidazole-1,6,8(7H)-trione (36). Stirring the thiourea derivative 35 ($0.52 \mathrm{~g}, 0.001$ mol) in pyridine (5 ml) at room temperature for 24 hour, and the solvent was evaporated under vacuum to give ($0.458 \mathrm{~g}, 95 \%$) of the corresponding thiohydantoin 36. However the thiohydantoin 36 was obtained by stirring a mixture of the amino ester 33 ($0.38 \mathrm{~g}, 0.001 \mathrm{~mol}$) and phenylisothiocyanate $34(0.12 \mathrm{ml}, 0.001 \mathrm{~mol})$ in pyridine $(5 \mathrm{ml})$ at room temperature for 24 hours. Removing the solvent under reduced pressure afforded ($0.473 \mathrm{~g}, 98 \%$) of the corresponding thiohydantoin derivative 36. Crystallization from $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ pet-ether $\left.40-60\right)$ to give colourless crystals, m.p. 294-296 ${ }^{\circ} \mathrm{C}$. IR (KBr) 3600-3500 (broad), 1790, 1750, and $1715 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3} / \mathrm{TFA}\right) \delta: 8.88-8.12(\mathrm{~m}, 5 \mathrm{H}$, pyridine $), 7.53-6.81(\mathrm{~m}, 14 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}), 5.84(\mathrm{~d}, 1 \mathrm{H}$, H_{5}), 4.84(t, 1H, H5a), 4.23 (d, 1H, J = $8.4 \mathrm{~Hz}, \mathrm{H}_{8 \mathrm{a}}$), 2.12 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{C}-\mathrm{Me}$). MS ($\mathrm{m} / \mathrm{z} \%$) $483\left(\mathrm{M}^{+}\right.$, 47), 450 (21), 319 (44), 278 (19), 172 (49), 146 (18), 130 (26), 92 (100), 76 (83) and 50 (30). Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}$ requires C, 67.06; H, 4.38; N, 8.69; S, 6.63. Found: C, 66.58; H, 4.08; N, 8.28; S, 6.39.5-(2-hydroxyphenyl)-2-methyl-4-nitro-3-phenylpyrrolidine-2-carboxylic acid (44a). The cycloadduct 44a was obtained in a ($0.181 \mathrm{~g}, 53 \%$) after 3 hours according to the general procedure (method A) using salicylaldehyde 1a as carbonyl component, DL-alanine 2a as α amino acid and β-nitrostyrene $\mathbf{4 3}\left(\mathrm{Ar}^{1}=\mathrm{Ph}\right)$ as a dipolarophile. Colourless crystals from aqueous
methanol, mp 204-206 ${ }^{\circ} \mathrm{C}$. IR (KBr) 3600-2943 (broad), 2356, and $1617 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO$\left.d_{6}\right) \delta: 7.54-6.80(\mathrm{~m}, 9 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}), 5.29\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{H}_{4}\right), 5.04\left(\mathrm{~d}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}, \mathrm{H}_{5}\right), 4.32(\mathrm{~d}, 1 \mathrm{H}, J=7.8$ $\mathrm{Hz}, \mathrm{H}_{3}$) and 0.95 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{C}-\mathrm{Me}$). MS ($\mathrm{m} / \mathrm{z} \%$): 342 ($\mathrm{M}^{+}, 18$), 297 (M-45, 30), 250 (87), 210 (100), 146 (33), 115 (29), 91 (34), 77 (27) and 51 (21). Stereochemistry was assigned based on NOE difference spectroscopy (DMSO- $d_{6}, 300 \mathrm{MHz}$). Thus irradiation of 3-H affect enhancements in 4$\mathrm{H}(1.70 \%), 5-\mathrm{H}(3.35 \%), 2-\mathrm{Me}(0.50 \%)$ and $\mathrm{Ar}(8.83 \%$ at $\delta=7.65 \mathrm{ppm})$, whilst irradiation of $4-$ H resulted in enhancement of $3-\mathrm{H}(1.70 \%)$ and $\operatorname{Ar}(9.75 \%$ at $\delta=7.30 \mathrm{ppm}$ and 2.86% at $\delta=7.65$ ppm). Irradiation of $5-\mathrm{H}$ caused enhancement in $3-\mathrm{H}(3.23 \%)$ and $\operatorname{Ar}(3.81 \%$ at $\delta=7.65 \mathrm{ppm})$. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{5}$: C, 63.16; H, 5.30; N, 8.18. Found: C, 63.19; H, 5.10; N, 8.21.
2-benzyl-5-(2-hydroxyphenyl)-4-nitro-3-phenylpyrrolidine-2-carboxylic acid (44b). The reaction was conducted according to the general procedure (method A) using salicylaldehyde $\mathbf{1 a}$ as carbonyl component, D-phenylalanine $\mathbf{2 b}$ as α-amino acid and β-nitrostyrene $\mathbf{4 3}\left(\mathrm{Ar}^{1}=\mathrm{Ph}\right)$ as a dipolarophile to afford the adduct $\mathbf{4 4 b}$ in a $(0.238 \mathrm{~g}, 57 \%)$ after 5 h . Colourless crystals from aqueous methanol, mp 216-218 ${ }^{\circ} \mathrm{C}$. IR (KBr) 3736, 3443 (broad), 2300, and $1616 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ ($\left.\mathrm{CDCl}_{3} / \mathrm{TFA}\right) ~ \delta: ~ 7.62-7.10(\mathrm{~m}, 14 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}), 6.28\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{H}_{4}\right), 5.46\left(\mathrm{~d}, 1 \mathrm{H}, J=10.2 \mathrm{~Hz}, \mathrm{H}_{5}\right), 4.79$ (d, $1 \mathrm{H}, J=10.2 \mathrm{~Hz}, \mathrm{H}_{3}$) and 3.11 (s, 2H, C-CH2 Ph$) . \mathrm{MS}(\mathrm{m} / \mathrm{z} \%): 340$ (M-77-1, 29), 220 (30), 173 (25), 132 (25), 117 (36), 104 (35), 90 (97), 77 (100) and 51 (80). Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{5}$: C, 68.88; H, 5.30; N, 6.70. Found: C, 68.85; H, 5.33; N, 6.73.
5-(2-hydroxyphenyl)-2-isobutyl-4-nitro-3-phenylpyrrolidine-2-carboxylic acid (44c). Application of the general procedure (method A) using salicylaldehyde 1a as carbonyl component, L-leucine 2c as α-amino acid and β-nitrostyrene $\mathbf{4 3}\left(\mathrm{Ar}^{1}=\mathrm{Ph}\right)$ as a dipolarophile. The cycloadduct $\mathbf{4 4 c}$ was obtained after 4 hours as a white powder. Crystallization from aqueous methanol gave colourless crystals in a ($0.169 \mathrm{~g}, 44 \%$), mp 200-202 ${ }^{\circ} \mathrm{C}$. IR (KBr) 3448-3146 (broad), 2350, and $1615 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3} / \mathrm{TFA}\right) \delta: ~ 7.52-6.99(\mathrm{~m}, 9 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.11(\mathrm{t}, 1 \mathrm{H}$, $\left.\mathrm{H}_{4}\right), 5.47\left(\mathrm{~d}, 1 \mathrm{H}, J=10.5 \mathrm{~Hz}, \mathrm{H}_{5}\right), 4.60\left(\mathrm{~d}, 1 \mathrm{H}, J=10.5 \mathrm{~Hz}, \mathrm{H}_{3}\right), 1.93(\mathrm{dd}, 1 \mathrm{H}, J=4.2$ and 15.0 $\mathrm{Hz}, \mathrm{H}_{\mathrm{A}}, \mathrm{C}-\mathrm{CH}_{2} \mathrm{CHMe}_{2}$), $1.76\left(\mathrm{~m}, 1 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CHMe}_{2}\right), 1.59\left(\mathrm{dd}, 1 \mathrm{H}, J=8.1\right.$ and $15.0 \mathrm{HZ}, \mathrm{H}_{\mathrm{B}}, \mathrm{C}-$ $\left.\mathrm{CH}_{2} \mathrm{CHMe}_{2}\right), 0.93\left(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz}, \mathrm{CHMe}_{\mathrm{A}}\right)$ and $0.82\left(\mathrm{~d}, 3 \mathrm{H}, J=6.3 \mathrm{~Hz}, \mathrm{CHMe} \mathrm{B}_{\mathrm{B}}\right) . \mathrm{MS}(\mathrm{m} / \mathrm{z}$ \%): 384 ($\mathrm{M}^{+}, 11$), 339 (M-45, 15), 292 (42), 236 (15), 209 (100), 131 (17), 115 (24), 91 (28), 77 (20) and 51 (12). Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{5}$: C, 65.61 ; H, 6.29; N, 7.29. Found: C, 65.58; H, 6.32; N, 7.26.

5-(2-hydroxyphenyl)-2-[2-(methylthio)ethyl]-4-nitro-3-phenylpyrrolidine-2-carboxylic acid (44d). The reaction was carried out According to the general procedure (method A) using salicylaldehyde 1a as carbonyl component, DL-methionine $\mathbf{2 d}$ as α-amino acid and β-nitrostyrene $43\left(\mathrm{Ar}^{1}=\mathrm{Ph}\right)$ as a dipolarophile. The cycloadduct 44 d was obtained after 4 hours as white amorphous. Colourless crystals was obtained from aqueous methanol in a ($0.177 \mathrm{~g}, 44 \%$), mp 204-206 ${ }^{\circ} \mathrm{C}$. IR (KBr) 3438-3136 (broad), 2350, and $1616 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3} / \mathrm{TFA}\right) \delta: 7.56-$ $7.06(\mathrm{~m}, 9 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}), 6.24\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{H}_{4}\right), 5.55\left(\mathrm{~d}, 1 \mathrm{H}, J=10.5 \mathrm{~Hz}, \mathrm{H}_{5}\right), 4.71\left(\mathrm{~d}, 1 \mathrm{H}, J=10.5 \mathrm{~Hz}, \mathrm{H}_{3}\right)$, $2.62\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2} \underline{\mathrm{CH}}_{2} \mathrm{~S}\right), 2.28\left(\mathrm{dd}, 1 \mathrm{H}, J=7.8\right.$ and $\left.15.3 \mathrm{~Hz}, \mathrm{H}_{\mathrm{A}}, \underline{\mathrm{CH}}_{2} \mathrm{CH}_{2} \mathrm{~S}\right), 2.08$ (dd, $1 \mathrm{H}, J=6.6$ and $15.6 \mathrm{~Hz}, \mathrm{H}_{\mathrm{B}}, \underline{\mathrm{CH}_{2}} \mathrm{CH}_{2} \mathrm{~S}$), $2.04(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SMe}) . \mathrm{MS}(\mathrm{m} / \mathrm{z} \%): 402\left(\mathrm{M}^{+}, 7\right), 357(\mathrm{M}-45,36), 310$
(38), 281 (24), 262 (59), 209 (100), 131 (22), 115 (28), 75 (45) and 51 (16). Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}: \mathrm{C}, 59.68$; H, 5.51; N, 6.96; S, 7.97. Found: C, 59.70; H, 5.53; N, 6.93; S, 7.99. 3-(2-furyl)-5-(2-hydroxyphenyl)-2-methyl-4-nitropyrrolidine-2-carboxylic acid (46e). Application of the general procedure (method A) using salicylaldehyde 1a as carbonyl component, DL-alanine 2a as α-amino acid and 2-[(E)-2-nitrovinyl]furan $43\left(\mathrm{Ar}^{1}=\right.$ furyl) as a dipolarophile, the corresponding compound $\mathbf{4 4 e}$ was obtained after 5 hours. Crystallization from aqueous methanol yielded ($0.15 \mathrm{~g}, 45 \%$), mp 198-200 ${ }^{\circ} \mathrm{C}$. IR (KBr) 3467-3100 (broad), 2361, and $1617 \mathrm{~cm}^{-1}:{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3} / \mathrm{TFA}\right) \delta: 7.58-6.53(\mathrm{~m}, 7 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}), 6.19\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{H}_{4}\right), 5.54(\mathrm{~d}, 1 \mathrm{H}$, $\left.J=9.6 \mathrm{~Hz}, \mathrm{H}_{5}\right), 4.79\left(\mathrm{~d}, 1 \mathrm{H}, J=9.0 \mathrm{~Hz}, \mathrm{H}_{1}\right)$ and $1.76(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}-\mathrm{Me}) . \mathrm{MS}(\mathrm{m} / \mathrm{z} \%): 332\left(\mathrm{M}^{+}, 5\right)$, 239 (15), 198 (100), 148 (21), 130 (26), 120 (19), 91 (16), 77 (32) and 50 (35). Stereochemistry was assigned by NOE difference spectroscopy (DMSO- $d_{6}, 300 \mathrm{MHz}$). Irradiation of $3-\mathrm{H}$ affect enhancements in the signals for $4-\mathrm{H}(1.43 \%)$, $5-\mathrm{H}(2.50 \%), 2-\mathrm{Me}(0.75 \%)$ and $\mathrm{Ar}(1.94 \%$ at $\delta=$ 6.45 ppm), whilst irradiation of $4-\mathrm{H}$ resulted in enhancement of $3-\mathrm{H}(1.34 \%), 2-\mathrm{Me}(1.18 \%)$ and $\operatorname{Ar}(3.84 \%$ at $\delta=6.45 \mathrm{ppm}$ and 2.52% at $\delta=7.45 \mathrm{ppm})$. Irradiation of $5-\mathrm{H}$ caused enhancement in $3-\mathrm{H}(4.00 \%), 2-\mathrm{Me}(0.22 \%)$ and $\mathrm{Ar}(0.22 \%$ at $\delta=7.45 \mathrm{ppm})$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{6}$: C, 57.83; H, 4.85; N, 8.43. Found: C, 57.85; H, 4.83; N, 8.40.

2-benzyl-3-(2-furyl)-5-(2-hydroxyphenyl)-4-nitropyrrolidine-2-carboxylic acid (44f). The reaction was carried out according to the general procedure (method A) using salicylaldehyde 1a as carbonyl component, D-phenylalanine 2b as α-amino acid and 2-[(E)-2-nitrovinyl]furan 43 $\left(\mathrm{Ar}^{1}=\right.$ furyl $)$ as a dipolarophile to afford the cycloadduct $\mathbf{4 4 f}$ after 5 hours as white amorphous in a ($0.122 \mathrm{~g}, 30 \%$). Crystallization from aqueous methanol gave colourless crystals, mp 196$198{ }^{\circ} \mathrm{C}$. IR (KBr) 3600-3109 (broad), 2350, and $1615 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3} / \mathrm{TFA}\right) ~ \delta: ~ 7.64-6.55$ $(\mathrm{m}, 12 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}), 6.17\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{H}_{4}\right), 5.42\left(\mathrm{~d}, 1 \mathrm{H}, J=10.5 \mathrm{~Hz}, \mathrm{H}_{5}\right), 4.85\left(\mathrm{~d}, 1 \mathrm{H}, J=9 \mathrm{~Hz}, \mathrm{H}_{3}\right)$ and 3.26 (q, 2H, C-CH2 Ph$) . \mathrm{MS}(\mathrm{m} / \mathrm{z} \%): 408\left(\mathrm{M}^{+}, 4\right), 363$ (M-45, 3), 317(11), 270 (12), 225 (16), 199 (100), 131 (15), 91 (48), 77 (14), 65 (18) and 51 (11). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right)$ 175.12, 155.52, $149.46,143.45,135.99,129.61,128.97,128.00,127.53,126.59,124.21,119.13,115.17,110.78$, 109.86, 92.44, 69.95, 60.06, 50.62, 41.96. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{6}$: C, 64.70; H, 4.93; N, 6.86. Found: C, 64.72; H, 4.96; N, 6.89.

3-(2-furyl)-5-(2-hydroxyphenyl)-2-[2-(methylthio)ethyl]-4-nitropyrrolidine-2-carboxylic acid $\mathbf{(4 4 g})$. The mixture was carried out according to the general procedure (method A) using salicylaldehyde 1a as carbonyl component, DL-methionine 2d as α-amino acid and 2-[(E)-2nitrovinyl]furan $43\left(\mathrm{Ar}^{1}=\right.$ furyl $)$ as dipolarophile, the corresponding adduct $\mathbf{4 4 g}$ was obtained after 3 hours ($0.129 \mathrm{~g}, 33 \%$). Crystallization from aqueous methanol, mp 210-212 ${ }^{\circ} \mathrm{C}$. $\mathrm{IR}(\mathrm{KBr})$ $3735,3600-3133$ (broad), 2353, and $1618 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3} / \mathrm{TFA}\right) \delta: 7.59-6.53(\mathrm{~m}, 7 \mathrm{H}, \mathrm{Ar}-$ $\underline{H}), 6.18\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{H}_{4}\right), 5.56\left(\mathrm{~d}, 1 \mathrm{H}, J=10.2 \mathrm{~Hz}, \mathrm{H}_{5}\right), 4.83\left(\mathrm{~d}, 1 \mathrm{H}, J=9.3 \mathrm{~Hz}, \mathrm{H}_{3}\right), 2.65(\mathrm{~m}, 2 \mathrm{H},-$ $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}$), 2.38-2.27 ($2 \mathrm{~m}, 2 \mathrm{H}, \mathrm{C}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}$), 2.08 ($\mathrm{s}, 3 \mathrm{H},-\mathrm{SMe}$). Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}$: C, 55.09; H, 5.14; N, 7.14; S, 8.17. Found: C, 55.10; H, 5.17; N, 7.16; S, 8.15.

Acknowledgements

We thank the South Valley University for support, and we are also very grateful to Professor C.

Bardo of Universidad Complutense de Madrid, Spain, for her very fruitful discussions.

References

1. Part (I): Aly, M. F.; Younes, M. I.; Metwally, S. A. M. Tetrahedron 1994, 50, 3159. (Part of this work was used as a model for teaching the three-component one pot synthesis in the Department of Chemistry in The Imperial College, London, UK, 1998-2002). Part (II): Aly, M. F. Bull. Fac. Sci. Assuit University 1995, 24(2-B), 75; C.A., 1996, vol. 125, No. 19, 248382q, p. 1214.
2. Pinder, A. R. In The Alkaloids, Grundon, M. F., Ed.; Chemical Society: London, 1982, Vol. 12.
3. DeGoey, D. A.; Chen, H. -J.; Flosi, W. J.; Grampovnik, D. J.; Yeung, C. M.; Klein, L. L.; Kempf, D. J. Org. Chem. 2002, 67, 5445.
4. (a) Nyerges, M.; Bendell, D.; Arany, A.; Hibbs, D. E.; Coles, S. J.; Hursthouse, M. B.; Groundwater, P. W.; Meth-Cohn, O. Tetrahedron 2005, 61, 3745. (b) Lu, X.; He, X.; Feng, L.; Shi, Z.; Gu, Z. Tetrahedron 2004, 60, 3713. (c) Li, G. -Y.; Chen, J.; Yu, W. -Y.; Hong, W.; Che, C. -M. Org. Lett. 2003, 5, 2153. (d) Chen, C.; Li, X.; Schreiber, S. L. J. Am. Chem. Soc. 2003, 125, 10174. (e) Merino, I.; Laxmi, S. Y. R.; Florez J.; Barluenga, J. J. Org. Chem. 2002, 67, 648. (f) Longmire, J. M.; Wang, B.; Zhang, X. J. Am. Chem. Soc. 2002, 124, 13400. (g) Gothelf, A. S.; Gothelf, K. V.; Hazell, R. G.; Jorgensen, K. A. Angew. Chem. Int. Ed. 2002, 41, 4236. (h) Alcaide, B.; Almendros, P.; Alonso J. M.; Aly, M. F.; J. Org. Chem. 2001, 66, 1351. (i) Casas, J.; Grigg, R.; Najera, C.; Sansano, J. M. Eur. J. Org. Chem. 2001, 1971.
5. Vicario, J. L.; Reboredo, S.; Badia, D.; Carrillo, L. Angew. Chem. Int. Ed. 2007, 46, 5168.
6. Pandey, G.; Banerjee, P.; Garde, S. R. Chem. Rev. 2006, 106, 4484.
7. Aly, M. F.; Abbas-Temirek, H. H.; Elghareeb, E. E. $9^{\text {th }}$ Ibn-Sina International Conference on Pure and Applied Heterocyclic Chemistry, December 2004, Sharm El-Shekh, Egypt.
8. Coldham, I.; Burrell, A. J. M.; White, L. E.; Adams, H.; Oram, N. Angew. Chem. Int. Ed. 2007, 46, 6159.
9. (a) Aly, M. F.; The Decarboxylative Route To Azomethine Ylides, The Queen's University of Belfast 1987. (b) Aly, M. F.; Ardill, H.; Grigg, R.; Leong-Ling, S.; Rajviroongit, S.; Surendrakumar, S. Tetrahedron Lett., 1987, 28, 6077.
10. Nohara, A.; Umetani, T.; Sanno, Y. Tetrahedron Lett. 1973, 14, 1995.
11. (a) Zhang, W.; Lu, Y.; Geib, S. Org. Lett. 2005, 7, 2269. (b) Bashiardes, G.; Safir, I.; Mohamed, A. S.; Barbot, F.; Laduranty, J. Org. Lett. 2003, 5, 4915. (c) Oderraotoshi, Y.; Cheng, W.; Fujitomi, S.; Kasano, Y.; Minakata, S.; Komatsu, M. Org. Lett. 2003, 5, 5043. (d) Pospisil, J.; Potacek, M. Tetrahedron 2007, 63, 337 (e) Bakthadoss, M.; Sivakumar, N.; Sivakumar, G.; Murugan, G. Tetrahedron Lett. 2008, 49, 820.
12. Grigg, R.; Kemp, J.; Warnock, W. J. J. Chem. Soc. Perkin Trans. I 1987, 2275.
13. (a) Grigg, R.; Gunaratane, H. Q. N., Tetrahedron Lett. 1983, 24, 4457. (b) Amornraksa, K.; Grigg, R.; Gunaratne, H. Q. N.; Kemp, J.; Sridharan, V., J. Chem. Soc. Perkin Trans 1 1987, 2285.
14. Henkel, B.; Stenzel, W.; Schotten, T., Bioorg. Med. Chem. Lett. 2000, 10, 975.
15. (a) Refouvelt, B.; Pellegrini, N.; Robert, J. J. Heterocyclic Chem. 2000, 37, 1425. (b) Fernandez, X.; Fellous, R.; Lizzani-Cuvelier, L.; Loiseau, M.; Danach, E. Tetrahedron Lett. 2001, 42, 1519.
16. Najdi, S.; Park, K-. H.; Olmestead, M. M.; Kurth, M. Tetrahedron Lett. 1998, 39, 1685.
17. Grrig, R.; Gunaratne, H. Q. N.; Kemp, J. J. Chem. Soc., Perkin Trans. 1 1984, 41.
18. (a) Fejes, I.; Toke, L.; Nyrges, M.; Pak, C. S. Tetrahedron 2000, 56, 639. (b) Nyrges, M.; Pak, C. S. Bull. Korean Chem. Soc. 1999, 20, 633. (c) Fejes, I.; Toke, L.; Blasko, G.; Nyrges, M.; Pak, C. S. Tetrahedron 2000, 56, 8545. (d) Nyrges, M.; Rudas, M.; Toth, G,; Hereyi, B.; Kadas, I.; Bitter, I.; Toke, L. Tetrahedron 1995, 51, 13321.
19. Ayerbe, M.; Arrieta, A.; Cossio, F. B. J. Org. Chem. 1998, 63, 1795.
20. Xie, J.; Yoshida, K.; Takasu, K.; Takemoto, Y. Tetrahedron Lett. 2008, 49, 6910.
21. Grigg, R.; Kilner, C.; Sarker, M. A. B.; de la Cierva, C. O.; Dondas, H. A. Tetrahedron 2008, 64, 8974.
