Studies with 2-arylhydrazono-3-oxopropanals: routes for the synthesis of pyridazine-3,4-dicarboxylate and 3,5-diaroyl pyrazoles

Mariam A. Al-Shiekh, ${ }^{\text {a }}$ Hanady Y. Medrassi, ${ }^{\text {a }}$ Mohamed H. Elnagdi, ${ }^{\text {b }}$ and Ebtisam A. Hafez ${ }^{\text {c }}$ *
${ }^{a}$ Department of Chemistry, Girls College of Education, Jeddah, P. O. Box 138016 Jeddah 21323, Kingdom of Saudi Arabia
${ }^{b}$ Department of Chemistry; Faculty of Science; University of Kuwait , P. O. Box 5969 Safat, 13060 Kuwait
${ }^{c}$ Department of Chemistry; Faculty of Science; Cairo University, Giza-12613 Egypt
E-mail: ebtisam_hafez@hotmail.com

Abstract

The title compounds 3a-j were synthesized via coupling of enaminones 2a-d with aromatic diazonium salts. The reaction of $\mathbf{3 b} \mathbf{- f}, \mathbf{h} \mathbf{- j}$ with dimethyl acetylenedicarboxylate and triphenylphosphine afforded dimethyl 2-aryl-6-aroyl-2,3-dihydropyridazine-3,4-dicarboxylates $\mathbf{7 b} \mathbf{- f}, \mathbf{h} \mathbf{- j}$. The reaction of $\mathbf{3 b}, \mathbf{d}, \mathbf{f}, \mathbf{g}$ with phenacyl bromide afforded 3-aroyl-5-benzoylpyrazoles $\mathbf{9 b}, \mathbf{d}, \mathbf{f}, \mathbf{g}$. ,while compound $\mathbf{3 i}$ condensed with benzoylacetonitrile to yield pyridazin-6-imine 11.Reaction of $\mathbf{3 c} \mathbf{c} \mathbf{e}, \mathbf{h}, \mathbf{j}$ with p-toluidine yielded the enamineazo $\mathbf{1 2} \mathbf{c} \mathbf{- e}, \mathbf{h}, \mathbf{j}$. The structures of $\mathbf{7 b}, \mathbf{d}, \mathbf{i}$ and $\mathbf{9 b}$ were confirmed by X-ray crystal structure determination.

Keywords: 2-Arylhydrazonopropanals, enaminones, pyridazine-3,4-dicarboxylate, 3,5diaroylpyrazoles

Introduction

The coupling reaction of functionally substituted enamines of type $\mathbf{2}$ with aromatic diazonium salts ${ }^{1}$ has opened the route for the synthesis of 2 -arylhydrazonals $\mathbf{3}$. It was shown that derivatives of $\mathbf{3}$ are useful starting materials for a variety of heterocycles. ${ }^{2-6}$ Therefore, in conjunction with this work, we report this study aimed at establishing, with certainty the previous conclusions. Our results were confirmed via X-ray crystal determinations and extended previously reported findings ${ }^{6}$ in order to see if this constitutes a new general route for the preparation of dialkylpyridazine dicarboxylates as well as 3,5-diaroylpyrazoles.

Results and Discussion

Enaminones 2 were previously synthesized by condensing heteroaryl methyl ketones $\mathbf{1 a}, \mathbf{b}$ and arylmethyl ketones $\mathbf{1 c}$-e with dimethylformamide dimethylacetal DMFDMA in xylene following some literature procedures. ${ }^{1,7}$ However, only moderate yields of the desired products 2a-e were obtained. Consequently we have modified this synthetic approach and condensed these ketones with DMFDMA in absence of solvent. In this case, the required enaminones were obtained almost in better yield, and this method is more economic. Yields and reaction times for both methods are reported in Table1.

Table 1. Comparison between reaction time and yields obtained from conventional heating in solvent and without solvent

Sample NO.	Δ in xylene		Δ in excess DMFDMA	
	Time(min.)	Yield \%	Time(min.)	Yield \%
$2 a$	450	70	480	80
$2 b$	450	60	480	77
2 c	450	60	480	85
$2 d$	450	70	480	89
$2 e$	450	61	480	88

Coupling enaminones $\mathbf{2}$ with aromatic diazonium salts afforded the products 3a-j which were previously shown to exist, in the solid state, in the anti form according to the X-ray crystal structure determination of $\mathbf{3 a}, \mathbf{h}$ published recently by our group. ${ }^{8}$ This agrees with a recent observation ${ }^{9}$ that in the 2-arylhydrazonoketones stereoelectronic factors overweigh any possible lock of conformation that may occur due to hydrogen bonding.(Scheme 1). We observed in previous work ${ }^{6}$ that other derivatives of $\mathbf{3}$ reacted with dimethyl acetylene dicarboxylate DMAD in the presence of triphenylphosphine to yield pyridazine-3,4-dicarboxylates. In the present work 3b-f,h-j reacted with DMAD yielding 7b-f,h-j (Scheme 1). Previously the mechanism for the formation of the end products ${ }^{6}$ that was suggested could not be supported by evidence and the proposed structure did not seem completely convincing. By obtaining X-ray crystal structures for $\mathbf{7 b}, \mathbf{d}, \mathbf{i}$ we could confirm our conclusions (cf. Figures 1-4). ${ }^{10}$

Recently, ${ }^{11}$ it has been reported the first synthesis of 5-acetyl-3-aroylpyrazoles by mixing derivatives of $\mathbf{3}$ with chloroacetone. Now we have found that $\mathbf{3 b}, \mathbf{d}, \mathbf{f}, \mathbf{g}$ also react to yield colored products $\mathbf{9 b}, \mathbf{d}, \mathbf{f}, \mathbf{g}$, of molecular formulae corresponding to their condensation with phenacyl bromide via hydrogen bromide and water elimination thus, the alternative furan structure $\mathbf{1 0}$ could be ruled out. X-ray crystal structure determination confirmed that the reaction products are in fact 9 (Scheme 1, Fig. 4) formed most likely via intermediacy of $\mathbf{8}$. Compound $\mathbf{3 g}$ condensed also with benzoylacetonitrile to yield pyridazin-6-imine 11, based on spectral data.
${ }^{@}$ ARKAT USA, Inc.

2-Arylhydrazono-3-propanals $\mathbf{3 c - e}, \mathbf{h}, \mathbf{j}$ reacted with p-toluidine to yield products of condensation via water elimination. Two tautomeric forms are possible for these condensation products enamineazo 12 or iminohydrazone isomer $\mathbf{1 3} .{ }^{1} \mathrm{H}$ NMR data clearly revealed that this condensation has involved the formyl carbon as the formyl proton has disappeared and also ${ }^{1} \mathrm{H}$ NMR spectra for condensation products of $\mathbf{3 c} \mathbf{c e}, \mathbf{h}, \mathbf{j}$ with p-toluidine revealed a doublet signal at $\delta=8.6 \mathrm{ppm}(\mathrm{J}=7.2 \mathrm{~Hz})$ for $H C N H$ proton and another signal at $\delta=15.4 \mathrm{ppm}$ for NH proton. The fact that the proton attached to the carbon atom linked to the amine nitrogen appeared as a doublet allowed us to suggest the enaminoazo structures $\mathbf{1 2}$ for these products(Scheme 1).

Conclusions

In conclusion, 2-arylhydrazonopropanals can serve as starting materials for the synthesis of a variety of heteroaromatic compounds with an interesting substitution pattern and the efficient synthesis of enaminones achieved in this work makes also these compounds economically acceptable as starting materials. Moreover, previously assigned studies could be unambiguously established.

Crystallographic Analysis

The crystals were mounted on a glass fiber. All measurements were performed on an ENRAF NONIUNS FR 590. The data were collected at temperature of $20 \pm 1^{\circ} \mathrm{C}$ using the ω scanning technique to a maximum of a 20 of 27.12°. The structure was solved by the direct method using SIR 92^{12}. Non-hydrogen atoms were refined anisotropically by full matrix least squares. Hydrogen atoms were located geometrically and were refined isotropically. ${ }^{13}$

Scheme 1

Figure 1. Thermal ellipsoid plots of the X-ray structure of 7b (50 \% probability).

Figure 2. Thermal ellipsoid plots of the X-ray structure of 7d (50 \% probability).

Figure 3. Thermal ellipsoid plots of the X-ray structure of $7 \mathbf{i}$ (50% probability.

Figure 4. Thermal ellipsoid plots of the X-ray structure of $\mathbf{9 b}$ (50 \% probability).

Table 2. Crystal data and structure refinement for compounds 7b,d,i and 9b

	7b CCDC 617787	7d CCDC 617786	7i CCDC 617788	9b CCDC 617777
Empirical Formula	$\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}$	$\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}$	$\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{6}$	$\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$
Formula weight	398.437	414.436	453.407	372.446
Crystal System	Triclinic	Triclinic	Monoclinic	Triclinic
Space group	$\mathrm{P}-1$	$\mathrm{P}-1$	$\mathrm{P} 21 / \mathrm{c}$	$\mathrm{P}-1$
Unit cell parameters				
$\mathrm{a}[\AA]$	$7.9742(2)$	$9.7889(2)$	$8.0662(2)$	$8.5993(3)$
$\mathrm{b}[\AA]$	$9.5600(3)$	$13.3834(3)$	$21.1130(4)$	$10.9802(3)$
$\mathrm{c}[\AA]$	$13.4031(4)$	$16.8502(5)$	$12.3971(3)$	$11.1537(5)$
α°	$79.5153(12)$	$69.6369(8)$	90.00	$116.9690(14)$
β°	$73.4154(13)$	$76.0099(9)$	$95.7775(9)$	$91.8325(14)$
γ°	$89.1275(11)$	$81.6577(8)$	90.00	$95.353(2)$
Unit cell volume	$962.18(5)$	$2003.66(9)$	$2100.52(8)$	$931.25(6)$
Z	2	4	4	2
Temperature (K)	298	298	298	298
Radiation type	MoKá	MoKá	MoKá	MoKá
$\mathrm{F}(000)$	416	864	944	388
Absorption coefficient	0.20	0.20	0.11	0.19
$\left(\mathrm{~mm}^{-1}\right)$		523	280	239
Parameters	253	0.061	0.048	0.089
R factor	0.050			

Table 3. Selected bond length $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for compounds $\mathbf{7 b}, \mathbf{d}, \mathbf{i}$ and $9 \mathbf{~} \mathbf{b}$

Bond lengths 7b			Bond lengths 7d			Bond lengths 7i			Bond lengths 9b		
N3 N8	1.332(3)		N8 N11	1.335(3)		N3 N8		1.328(2)	N2 N4	1.337(5)	
N3 C15	1.313(3)		N8 C44	1.319(3)		N3 C6		1.468(2)	N2 C11	1.335(6)	
N8 C10	1.474(3)		C44 C38	1.426(4)		C6 C19		1.503(3)	N4 C14	1.366 (6)	
C10 C14	1.504(3)		N11 C23	1.431(3)		N3 C9		1.426(2)	C6 C7	1.375(6)	
C10 H10	0.960(2)		C20 C47	1.518(3)		C13 C24		1.432(3)	C9 C14	1.485(6)	
C13 C15	1.434(3)		N11 C20	1.464(3)		C9 C14		1.378(2)	C11 C18	1.394(7)	
C13 C9	1.343(3)		C38 C47	1.336(3)		C14 C16		1.395(3)	C14 C18	1.363(6)	
Bond angles 7b			Bond angles 7d				Bond angles 7i			Bond angles 9b	
N8 N3 C15		118.4(2)	N8 N11 C20		121.6(2)		N8 N3 C9		116.13(14)	N4 N2 C11	105.1(4)
C9 C10 C14		111.1(2)	N11 C20 C22			110.3(2)	C6 N3 N8		120.95(14)	N2 N4 C14	112.1(4)
N8 C10 C9		108.5(2)	N11 C20 C47		109.1(2)		N3 C6 C19		107.3(13)	N4 C6 C7	121.0(4)
C10 C9 C13		117.7(2)	C44 C38 C47		120.3(2)		C25 C24 N8		116.8(2)	C7 C6 C13	119.6(4)
N8 C10 C14		110.6(2)	N8 C44 C38		121.9(2)		N3 N8 C24		117.6(2)	N2 C11 C18	110.9(4)
N3 N8 C10		121.8(2)	C20 C38 C47		120.3(2)					N2 C11 C20	124.0(4)

Experimental Section

All melting points were measured on Gallenkamp electrothermal melting point apparatus and are uncorrected. IR spectra were recorded as KBr pellets on a Pye Unicam SP 3-300 Spectrophotometer. ${ }^{1} \mathrm{H}$ NMR spectra were recorded in deuterated dimethylsulfoxide (DMSO- d_{6}) or deuterated chloroform $\left(\mathrm{CDCl}_{3}\right)$ at $\mathbf{3 0 0} \mathrm{MHz}$ on a Varian Gemini NMR spectrometer using tetramethylsilane (TMS) as an internal reference and results are expressed as δ values. Mass spectra were performed on a Shimadzu GCMS-QP 1000 Ex mass spectrometer at 70 eV . Elemental analyses were carried out at the Micro analytical center of Cairo University. Compounds 3a-j has been prepared as previously reported. ${ }^{8}$

General procedure for preparation of enaminones 2a-d

A mixture of heteroaryl ketones and methylaryl ketones 1a-d (10 mmol) and dimethylformamide dimethylacetal DMFDMA (10 mmol) with little excess, or in xylene was heated under reflux for 8 hours, and then left to cool at room temperature. The solid products 2a-d were collected by filtration, and then recrystallized form xylene.
3-Dimethylamino-1-(2-thienyl) propenone (2a), mp 122-124 ${ }^{\circ} \mathrm{C}\left(\mathrm{Lit}^{1} 132^{\circ} \mathrm{C}\right)$.
3-Dimethylamino-1-(2-pyridyl) propenone (2b), mp 135-136 ${ }^{\circ} \mathrm{C}\left(\mathrm{Lit}^{1} 134^{\circ} \mathrm{C}\right)$.
3-Dimethylamino-1- \boldsymbol{p}-tolyl propenone (2c), mp 94-96 ${ }^{\circ} \mathrm{C}\left(\mathrm{Lit}^{14} 93-95^{\circ} \mathrm{C}\right)$.
3-Dimethylamino-1-(4-nitrophenyl) propenone (2d), mp 152-154 ${ }^{\circ} \mathrm{C}\left(\mathrm{Lit}^{14} 153^{\circ} \mathrm{C}\right)$.

3-Dimethylamino-1-(4-chlorophenyl) propenone (2e), $\mathrm{mp} 86-88^{\circ} \mathrm{C}\left(\mathrm{Lit}^{14} 81-83^{\circ} \mathrm{C}\right)$.

General procedure for preparation of pyridazine derivatives 7b-f,h-j

To a solution of $\mathrm{Ph}_{3} \mathrm{P}(10 \mathrm{mmol})$ and each of hydrazones $\mathbf{3 b - f} \mathbf{~} \mathbf{h}-\mathbf{j}(10 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathrm{Cl}$ $(10 \mathrm{ml})$ was added drop wise to a solution of dimethylacetylene dicarboxylate (10 mmol). The mixture was left standing at room temperature for 24 hrs and then treated with ethanol. The solid product was collected by filtration, then recrystallized from ethanol.
6-(Thiophene-2-carbonyl)-2-p-tolyl-2,3-dihydro-pyridazine-3,4-dicarboxylic acid dimethyl ester (7b). Orange crystals, yield (89\%); mp 184-185 ${ }^{\circ} \mathrm{C}$. IR (KBr): $v=1676$ (CO), 1651 (CO) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DMSO}_{-} \mathrm{d}_{6}\right): \delta=2.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.66\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.26$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{HC}-\mathrm{NAr}$) , 7.34-7.85(m, 7H, Ar-H), 7.81(s, 1H, H-5). MS (EI, 70eV): $m / z=398\left(\mathrm{M}^{+}\right)$. Anal. calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}$ (398.43): C, 60.29; H, 4.55; N, 7.03. Found: C, 60.30; H, 4.56; N, 7.20 .

2-(4-Bromophenyl)-6-(thiophene-2-carbonyl)-2,3-dihydropyridazine-3,4-dicarboxylic acid dimethyl ester (7c). Yellow crystals, yield (86\%); mp 172-174 ${ }^{\circ} \mathrm{C}$. IR (KBr): $v=1690$ (CO), $1620(\mathrm{CO}) \mathrm{cm}^{-1} ;-{ }^{1} \mathrm{H}$ NMR ($\mathrm{DMSO}_{\mathrm{d}}$): $\delta=3.66\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.26(\mathrm{~s}, 1 \mathrm{H}$, HC-NAr), 7.30-8.13 (m, 7H, Ar-H), 7.59 (s, 1H, H-5). - MS (EI, 70eV): $m / z=464\left(\mathrm{M}^{+}+1\right)$. Anal. calcd for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{BrN}_{2} \mathrm{O}_{5} \mathrm{~S}$ (463.30): C, 49.26; H, 3.26; N, 6.05. Found: C, 49.31; H, 3.25; N, 6.22 .

2-(4-Methoxyphenyl)-6-(thiophene-2-carbonyl)-2,3-dihydro-pyridazine-3,4-dicarboxylic acid dimethyl ester (7d). Orange crystals, yield (85\%); mp 168-170 ${ }^{\circ} \mathrm{C}$, $\operatorname{IR}(\mathrm{KBr}): v=1695$ (CO), $1628(\mathrm{CO}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{DMSO}-\mathrm{d}_{6}$): $\delta=3.68\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.90$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.26(\mathrm{~s}, 1 \mathrm{H}, \mathrm{HC}-\mathrm{NAr}), 6.99(\mathrm{~d}, 2 \mathrm{H}, J=9 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.09(\mathrm{~d}, 2 \mathrm{H}, J=9 \mathrm{~Hz}, \mathrm{Ar}-$ H), $7.63(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5), 7.71(\mathrm{~m}, 1 \mathrm{H}$, thiophene $\mathrm{H}-4), 8.01(\mathrm{~d}, 1 \mathrm{H}$, thiophene $\mathrm{H}-3), 8.40(\mathrm{~d}, 1 \mathrm{H}$, thiophene $\mathrm{H}-5)$; - MS (EI, 70 eV): $m / z=414\left(\mathrm{M}^{+}\right)$. Anal. calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}$ (414.43): C, 57.96; H, 4.38; N, 6.76. Found: C, 58.00; H, 4.36; N, 6.83.

2-(4-Nitrophenyl)-6-(thiophene-2-carbonyl)-2,3-dihydro-pyridazine-3,4-dicarboxylic acid dimethyl ester (7e). Orange crystals, yield (90\%); mp 286-288 ${ }^{\circ} \mathrm{C}$, IR (KBr): $v=1708$ (CO), $1635(\mathrm{CO}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DMSO}_{\mathrm{d}}^{6}\right): \delta=3.65\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.87\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) 6.38(\mathrm{~s}, 1 \mathrm{H}$, HC-NAr), 7.29-7.32 (m, 1H, thiophene H-4), 7.71 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-5$), $7.90(\mathrm{~d}, 2 \mathrm{H}, J=9 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H})$, 8.10-8.14 (m, 2H, thiophene H-3,5), $8.35(\mathrm{~d}, 2 \mathrm{H}, J=9 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO-d d_{6}): $\delta=$ $52.76\left(\mathrm{CH}_{3}\right), 53.30\left(\mathrm{CH}_{3}\right), 88.50(\mathrm{C}-3), 118.04\left(\mathrm{C}-2^{`}, 6{ }^{`}, \mathrm{Ar}\right), 125.22\left(\mathrm{C}-3^{`}, 5{ }^{\prime}, \mathrm{Ar}\right), 128.95(\mathrm{C}-4$, thiophene), 133.20 (C-5, thiophene), 135.64 (C-3, thiophene), 136.88 (C-4, Ar), 143.56 (C-2, thiophene), 144.60 (C-4), 146.05 (C-1`, Ar), 149.20 (C-5), 162.56 (CO), 168.90 (CO), 175.60 (CO). - MS (EI, 70eV): $m / z=429\left(\mathrm{M}^{+}\right)$. Anal. calcd for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{~S}$ (429.40): C, 53.14; H, 3.52; N, 9.79. Found: C, 53.18; H, 3.50; N, 9.82.

6-(4-Methylbenzoyl)-2-phenyl-2,3-dihydro-pyridazine-3,4-dicarboxylic acid dimethyl ester (7f). Orange crystals, yield (81\%); mp 156-157 ${ }^{\circ} \mathrm{C}$; IR (KBr): $v=1700(\mathrm{CO}), 1624(\mathrm{CO}) \mathrm{cm}^{-1}$;${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DMSO}_{6}\right): \delta=2.39\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.67\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.85\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.25(\mathrm{~s}$, 1H, HC-NAr), 7.22-7.89 (m, 9H, Ar-H) and 7.60 (s, 1H, H-5). - MS (EI, 70eV): m/z =333 (M ${ }^{+}$
59). Anal. calcd for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{5}$ (392.40): C, 67.34; H, 5.14; N, 7.14. Found: C, 67.70; H, 5.20; N, 7.22.
2-(4-Bromophenyl)-6-(4-methylbenzoyl)-2,3-dihydro-pyridazine-3,4-dicarboxylic acid dimethyl ester (7h). Orange crystals, yield (82\%); mp 201-203 ${ }^{\circ} \mathrm{C}$; IR (KBr): $v=1699$ (CO), $1629(\mathrm{CO}) \mathrm{cm}^{-1} ;-{ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$): $\delta=2.41\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.67\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.86(\mathrm{~s}, 3 \mathrm{H}$, OCH_{3}), 6.26 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{HC}-\mathrm{NAr}$), 7.34-7.85 (m, 8H, Ar-H), 7.81(s, 1H, H-5). - MS (EI, 70eV): m/z $=413\left(\mathrm{M}^{+}-58\right)$. Anal. calcd for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{BrN}_{2} \mathrm{O}_{5}$ (471.30): C, 56.07 ; H, 4.06; N, 5.94. Found: C, 56.20; H, 4.00; N, 6.00.

2-(4-Methoxyphenyl)-6-(4-methylbenzoyl)-2,3-dihydro-pyridazine-3,4-dicarboxylic acid dimethyl ester (7i). Orange crystals, yield (79\%); mp 212-214 ${ }^{\circ} \mathrm{C}$; IR (KBr): $v=1690$ (CO), $1635(\mathrm{CO}) \mathrm{cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR (DMSO-d d_{6}): $\delta=2.39\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.65\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.76(\mathrm{~s}, 3 \mathrm{H}$, OCH_{3}), $3.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.24(\mathrm{~s}, 1 \mathrm{H}, \mathrm{HC}-\mathrm{NAr}), 6.96(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.22(\mathrm{~d}, 2 \mathrm{H}, J$ $=8.4 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.27(\mathrm{~d}, 2 \mathrm{H}, J=9 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.59(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5), 7.85(\mathrm{~d}, 2 \mathrm{H}, J=9 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H})$, MS (EI, 70eV): $m / z=422\left(\mathrm{M}^{+}\right)$. Anal. calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{6}$ (422.43): C, 65.39; H, 5.25; N, 6.63. Found: C, 65.45; H, 5.32; N, 6.45.
2-(4-Bromophenyl)-6-(4-nitrobenzoyl)-2,3-dihydro-pyridazine-3,4-dicarboxylic acid dimethyl ester (7j). Yellow crystals, yield (91\%); mp 204-206 ${ }^{\circ} \mathrm{C}$; IR (KBr): $v=1705$ (CO), $1638(\mathrm{CO}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR; (DMSO-d $\left.\mathrm{d}_{6}\right): 3.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.25(\mathrm{~s}, 1 \mathrm{H}$, HC-NAr), 7.04-8.75 (m, 8H, Ar-H), 7.07 (s, 1H, H-5). MS; m/z $503\left(\mathrm{M}^{+}+1\right)$. Anal. calcd for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{BrN}_{3} \mathrm{O}_{7}$ (502.27): C, 50.22; H, 3.21; N, 8.37. Found: C, 50.23; H, 3.22; N, 8.24.

General procedure for preparation of pyrazole derivatives $\mathbf{9 b}, \mathbf{d}, \mathbf{f}, \mathbf{g}$

Each of 2-arylazopropanals $\mathbf{3 b , d , f , g}(10 \mathrm{mmol}), \mathrm{PhCOCH}_{2} \mathrm{Br}(10 \mathrm{mmol})$ and potassium carbonate anhydrous (10 mmol) in acetone was heated under reflux for 6 hrs in water bath. The reaction mixture was filtered, and then left to cool at room temperature. The solid product was collected by filtration and crystallized from ethanol.
(5-Benzoyl-1-p-tolyl-1H-pyrazol-3-yl)-thiophen-2-yl-methanone (9b). Orange crystals, yield (88%); mp 206-208 ${ }^{\circ} \mathrm{C}$; IR (KBr): $v=1680(\mathrm{CO}), 1648(\mathrm{CO}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO-d d_{6}): $\delta=$ $2.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.29-7.32(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.38(\mathrm{~s}, 1 \mathrm{H}$, pyrazole $\mathrm{H}-4), 7.44(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}$, Ar-H), $7.59(\mathrm{t}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.71-7.77(\mathrm{~m}, 1 \mathrm{H}$, thiophene H-4), $7.94(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}$, Ar-H), $8.11(\mathrm{~d}, 1 \mathrm{H}$, thiophene $\mathrm{H}-3), 8.48(\mathrm{~d}, 1 \mathrm{H}$, thiophene $\mathrm{H}-5) ;{ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): $\delta=$ $20.59\left(\mathrm{CH}_{3}\right)$, $114.21(\mathrm{C}-4), 120.81(\mathrm{C}-5), 124.62,128.25,128.86,129.53,129.65(\mathrm{C}-4$, thiophene), 134.17, 136.04 (C-3, thiophene), 136.25, 136.96, 138.54 (C-5, thiophene), 140.26, 141.32 (C-2, thiophene), 149.21 (C-3), 177.47 (CO), 184.82 (CO). MS (EI, 70 eV): $m / z=372$ $\left(\mathrm{M}^{+}\right)$. Anal. calcd for $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$ (372.44): C, $70.95 ; \mathrm{H}, 4.33$; N, 7.52. Found: C, 71.00; H, 4.35; N, 7.55.

15-Benzoyl-1-(4-methoxyphenyl)-1H-pyrazol-3-yll-thiophen-2-yl-methanone (9d). Orange crystals, yield (81%); mp $237-239^{\circ} \mathrm{C}$; IR (KBr): $v=1671(\mathrm{CO}), 1639(\mathrm{CO}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DMSO}_{6}\right): \delta=3.71\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.91(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4$ pyrazole $), 7.57-8.21(\mathrm{~m}, 12 \mathrm{H}, 9 \mathrm{Ar}-\mathrm{H}$ and

3H-thienyl). - MS (EI, 70eV): $m / z=388\left(\mathrm{M}^{+}\right)$. Anal. calcd for $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$ (388.44): C, 68.02; H, 4.15; N, 7.21. Found: C68.21; H, 4.16; N, 7.33
(5-Benzoyl-1-phenyl-1H-pyrazol-3-yl)-p-tolylmethanone (9f). Yellow crystals, yield (90 \%); $\mathrm{mp} 158-159^{\circ} \mathrm{C}$; IR (KBr): $v=1675(\mathrm{CO}), 1625(\mathrm{CO})^{-1} \mathrm{~cm}^{-1}$;- ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$): $\delta=2.40(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{CH}_{3}$), $7.36(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4$ pyrazole), $7.39-8.19(\mathrm{~m}, 14 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$. MS (EI, 70 eV): $\mathrm{m} / \mathrm{z}=366$ $\left(\mathrm{M}^{+}\right)$. Anal. calcd for $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$ (366.41): C, 78.67 ; H, 4.95; N, 7.65 Found: C, 78.60; H, 5.00; N, 7.50.
(5-Benzoyl-1-p-tolyl-1 \boldsymbol{H}-pyrazol-3-yl)-p-tolylmethanone(9g). Orange crystals, yield (89\%); $\mathrm{mp} 164-166^{\circ} \mathrm{C}$; IR (KBr): $v=1679(\mathrm{CO}), 1629(\mathrm{CO}) \mathrm{cm}^{-1} ;-{ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$): $\delta=2.36(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{CH}_{3}$), $2.41\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$), 7.28 (s, 1H, H-4 pyrazole), 7.30-8.19 (m, 13H, Ar-H). - MS (EI, $70 \mathrm{eV}): m / z=380\left(\mathrm{M}^{+}\right)$. Anal. calcd for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}$ (380.44): C, 78.93; H, 5.30; N, 7.36. Found: C, 78.81; H, 5.47; N, 7.12.
5-(Benzoyl-6-imino-1-p-tolyl-1,6-dihydropyridazin-3-yl)-p-tolyl-methanone (11).
To a solution of $\mathbf{3 g}(10 \mathrm{mmol})$ and benzoylacetonitrile (10 mmol) in ethanol $(50 \mathrm{ml})$ were added a few drops of piperidine. The reaction mixture was heated under reflux for 2 hours. Then the solvent was evaporated and the solid so formed, was collected by filtration and then recrystallized from ethanol. Orange crystals, yield (89%); mp 213-215 ${ }^{\circ} \mathrm{C}$; $\mathrm{IR}(\mathrm{KBr}): v=3244$ $(\mathrm{NH}), 1660(\mathrm{CO}), 1625(\mathrm{CO}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.\mathrm{d}_{6}\right): \delta=2.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.44(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}), 7.22-8.01 (m, 14H, Ar-H, NH and 4H pyridazine). - MS (EI, 70eV): $m / z=407\left(\mathrm{M}^{+}\right)$. Anal. calcd for $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{2}$ (407.46): C, 76.64; H, 5.19; N, 10.31. Found: C, 76.60; H, 5.25; N, 10.44.

General method for preparation of $12 \mathrm{c}-\mathrm{e}, \mathrm{h}, \mathrm{j}$ via reaction with \boldsymbol{p}-toluidine
A mixture of compound $\mathbf{3 c} \mathbf{c}, \mathbf{h}, \mathbf{j}(10 \mathrm{mmol})$ and p-toluidine ($10 \mathrm{mmol}, 1.07 \mathrm{~g}$) in ethanol was refluxed for 3 hours. The solvent was evaporated and the solid so formed, was collected by filtration and then recrystallized from ethanol.
2-(4-Bromophenylazo)-1-thiophen-2-yl-3-p-tolylaminopropenone (12c). Orange crystals, yield (34%), mp. 197-199 ${ }^{\circ} \mathrm{C}$. IR (KBr): $v=3258(\mathrm{NH}), 1626(\mathrm{CO}) \mathrm{cm}^{-1}$;- ${ }^{1} \mathrm{H}$ NMR (DMSO-d d_{6}): $\delta=2.35\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.25-8.09(\mathrm{~m}, 11 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 8.76(\mathrm{~d}, 1 \mathrm{H}, J=6.9 \mathrm{~Hz}, H \mathrm{C}-\mathrm{NH}), 15.14(\mathrm{~d}, 1 \mathrm{H}$, $J=6.9 \mathrm{~Hz}, \mathrm{NH})$. MS (EI, 70 eV): $m / z=425\left(\mathrm{M}^{+}-1\right)$. - Anal. calcd for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{BrN}_{3} \mathrm{OS}$ (426.33): C 56.34, H 3.78, N 9.86. Found C 56.33, H 3.79, N 9.65.

2-(4-Methoxyphenylazo)-1-thiophen-2-yl-3-p-tolylaminopropenone (12d). Orange crystals, yield (40%), mp. 164-166 ${ }^{\circ} \mathrm{C}$; IR (KBr): $v=3263(\mathrm{NH}), 1651(\mathrm{CO}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$): $\delta=2.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.08-8.08(\mathrm{~m}, 11 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 8.63(\mathrm{~d}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}$, $H \mathrm{C}-\mathrm{NH}), 14.73(\mathrm{~d}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{NH})-\mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}): m / z=377\left(\mathrm{M}^{+}\right)$. Anal. calcd for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$ (377.46): C 66.82, H 5.07, N 11.13. Found C 66.59, H 5.06, N 11.27.
2-(4-Nitrophenylazo)-1-thiophen-2-yl-3-p-tolylaminopropenone (12e). Orange crystals, yield (43%), mp. 225-227 ${ }^{\circ} \mathrm{C}$; IR (KBr): $v=3297(\mathrm{NH}), 1652(\mathrm{CO}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$): $\delta=$ $2.38\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.31-8.37(\mathrm{~m}, 11 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 8.90(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}, H \mathrm{C}-\mathrm{NH}), 15.56(\mathrm{~d}, J=6.9$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{NH})-\mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}): m / z=392\left(\mathrm{M}^{+}\right)$. Anal. calcd for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}$ (392.43): C 61.21, H 4.11, N 14.28. Found C 61.34, H 4.10, N 14.33.

2-(4-Bromophenylazo)-1-p-tolyl-3-p-tolylaminopropenone (12h). Orange crystals, yield (66%), mp. $166-168^{\circ} \mathrm{C}$. IR (KBr): $v=3417(\mathrm{NH}), 1635(\mathrm{CO}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$): $\delta=$ $2.35\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2,41\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.28-8.30(\mathrm{~m}, 12 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 8.79(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}, H \mathrm{C}-\mathrm{NH})$, $15.14(\mathrm{~d}, 1 \mathrm{H}, J=6.7 \mathrm{~Hz}, \mathrm{NH})-\mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}): m / z=434\left(\mathrm{M}^{+}\right)$. - Anal. calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{BrN}_{3} \mathrm{O}$ (434.33): C 63.60, H 4.64, N 9.67. Found C 63.61, H 4.62, N 9.49.

2-(4-Bromophenylazo)-1-(4-nitrophenyl)-3-p-tolylaminopropenone (12j). Orange crystals, yield (40%), mp. 234-236 ${ }^{\circ} \mathrm{C}$. IR (KBr): $v=3417(\mathrm{NH}), 1643(\mathrm{CO}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): δ $=2.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.27(\mathrm{~d}, 2 \mathrm{H}, J=8.1 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.44(\mathrm{~d}, 2 \mathrm{H}, J=8.1 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.52(\mathrm{~d}, 2 \mathrm{H}$, $J=8.4 \mathrm{~Hz}$, Ar-H), $7.69(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}, \operatorname{Ar}-\mathrm{H}), 8.05(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 8.36(\mathrm{~d}, 2 \mathrm{H}, J$ $=8.7 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 8.77(\mathrm{~d}, J=7 \mathrm{~Hz}, 1 \mathrm{H}, H \mathrm{C}-\mathrm{NH}), 14.94(\mathrm{~d}, 1 \mathrm{H}, J=7 \mathrm{~Hz}, \mathrm{NH})-\mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV})$: $m / z=464\left(\mathrm{M}^{+}-1\right)$. - Anal. calcd for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{BrN}_{4} \mathrm{O}_{3}$ (465.30): C 56.79, H 3.68, N 12.04. Found C 56.88, H 3.67, N 12.30.

References

1. Al-Omran, F.; Abdel-Khalik, M. M.; El-Khair, A. A.; Elnagdi, M. H. Synthesis 1997, 91.
2. Ghozlan, S. A .S; Abdelhamid, I. A.; Elnagdi, M. H. Arkivoc 2006, 147.
3. Al-Awadi, N. A.; Elnagdi, M. H.; Ibrahim, Y. A.; Kaul, K.; Kumar, A. Tetrahedron 2001, 57, 1609.
4. Al-Zaydi, K. M.; Hafez, E. A.; Elnagdi, M. H. J. Chem. Res. (S), 2000, 154; (M) 2000, 510.
5. Al-Shiekh, M. A.; Salaheldin, A. M.; Hafez, E. A.; Elnagdi, M. H. J. Chem. Res. 2004, 3, 174.
6. Al-Shiekh, M. A.; Salaheldin, A. M.; Hafez, E. A.; Elnagdi, M. H. J. Heterocyclic Chem. 2004, 41, 647.
7. Tseng, S.; Esptein, J. W.; Brbaander, H. J.; Francisco, G. J. Heterocyclic Chem. 1987, 24, 837.
8. Al-Shiekh, M. A.; Medrassi, H. Y.; Elnagdi, M. H.; Hafez, E. A. J. Chem. Res. 2007, 432.
9. Kenawi,I. M.; Elnagdi, M. H. Spectrochim. Acta (A) 2006, 65, 805.
10. CCDC $617786,617787,617788$ and 617777 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Center via. http://www.ccdc.ac.uk/data request/cif.
11. Al-Saleh, B.; El-Apassery, M. A.; Elnagdi, M. H. J. Chem. Res.. 2004, 578.
12. Altomare, A.; Cascarano, G.; Giacorazzo, C.; Guaghardi, A.; Burla, M. C.; Polidori, G.; Camalli, M. J. Appl. Cryst. 1994, 27, 435.
13. Johnson, C. K. ORTEP-11, Oak Ridge National Laboratory, Tennessee, USA, 1976.
14. Almazroa, S.; Elnagdi, M. H.; Salaheldin, A. M. J. Heterocyclic Chem. 2004, 41, 267.
