Nucleosides. Part LXVI. ${ }^{1}$ Syntheses and properties of pterin ribonucleosides

Werner Pfadler and Wolfgang Pfleiderer*
Fachbereich Chemie, Universität Konstanz, D-78457 Konstanz, Germany
E-mail: wolfgang.pfleiderer@uni-konstanz.de
Dedicated to Professor Harri Lönnberg on the occasion of his $60^{\text {th }}$ birthday

Abstract

Several pterin derivatives (1-8) have been ribosylated in form of their trimethylsilyl derivatives (9) with 1-bromo-(10) and 1-O-acetyl-2,3,5-tri-O-benzoyl-D-ribofuranose (11) under the catalysis of $\mathrm{HgO} / \mathrm{HgBr}_{2}, \mathrm{BF}_{3}$-etherate and trimethylsilyl triflate, respectively. Mixtures of the $\mathrm{N}-1-(19-25)$ and $\mathrm{N}-3$-ribofuranosides (12-18) which are difficult to be separated were obtained. Debenzoylation by the Zemplen method led to the free pterin-nucleosides (28-30). A second approach starting from 2-methylthio-4(3H)pteridinones (31-33) gave again mixtures of the $\mathrm{N}-1$-(35-37) and $\mathrm{N}-3$-ribonucleosides (38-40). The 2-methylthio function in 35-37 can easily be substituted by various amines leading after subsequently debenzoylation to the N-2substituted pterin-ribonucleosides (41-50). The structural assignments were based on comparisons of the UV spectra with the corresponding N-methyl substituted model substances. ${ }^{1}$ H-NMR-spectra functioned as additional structural proof.

Keywords: Pterin ribosylations, silyl methods, UV comparisons, pK -determinations

Introduction

The synthesis of pteridine nucleosides has been a major subject in our laboratory for many years. Lumazine ${ }^{2-11}$ and isopterin nucleosides ${ }^{12}$ can be regarded as structural analogs of the pyrimidine nucleosides whereas the many pteridin-7-one N_{8}-nucleosides ${ }^{13-23}$ are structurally related to the purine nucleosides. The syntheses could be achieved either by a classical Hilbert-Johnson reaction ${ }^{24}$, the mercury salt method by Fox and Davoll ${ }^{25}$, the Hilbert-Johnson-Birkofer silyl procedure ${ }^{26,27}$ or the silyl variant by Vorbrüggen ${ }^{28}$.
Pterin (2-amino-4(3H)pteridone) (1), the basic molecule of most naturally occurring pteridine derivatives, has so far not been included in our investigations. Thin layer chromatographic analysis of the reaction mixture obtained from preliminary experiments with $\mathbf{1}$ suggested that the reaction is not straightforward; formation of a complex mixture of several reactions products was thereby indicated.
${ }^{\circ}$ ARKAT USA, Inc.

Synthesis

Starting with 6,7-diphenylpterin (2) silylation with hexamethyldisilazane took 6 days till all starting material had dissolved to form 2-trimethylsilylamino-4-trimethylsilyloxypteridine (9) which was first treated with 1-bromo-2,3,5-tri-O-benzoyl-D-ribofuranose (10) in presence of HgO and HgBr_{2} in analogy to the conditions of Wittenburg ${ }^{29}$. After a very tedious chromatographic separation by column, low-pressure and preparative thick layer chromatography three compounds 2 -amino-6,7-diphenyl-3-(-(2,3,5-tri-O-benzoyl- β-D-ribofuranosyl) $-4(3 \mathrm{H})$-pteridone (12), the corresponding N^{1}-riboside (19) and the 2 -imino-6,7-diphenyl- N^{1}, O^{4}-bis-(2,3,5-tri-O-benzoyl- β-D-ribofuranosyl)-1,2-dihydropteridine (26) could be isolated in low yields. An analogous reaction with 1-O-acetyl-2,3,5-tri-O-benzoyl- β-Dribofuranose (11) and BF_{3} - etherate as a catalyst gave predominately 2-amino-6,7-diphenyl-1-(2,3,5-tri-O-benzoyl-ß-D-ribofuranosyl)-4(3H)pteridone (19) in 50% yield whereas the isomeric 12 was obtained in only 1% yield.

${ }^{\ominus}$ ARKAT USA, Inc.

Analogously, BF_{3}-catalysis of 7-phenylpterin (7) and 11 gave small amounts of the N_{1} - (23) and N_{3}-nucleoside (17). Similarly 6-phenylpterin (6) and 11 in presence of trimethyl-silyl trifluorosulfonate gave three components $\mathrm{N}_{1}-(22), \mathrm{N}_{3}$-monoriboside (16) and the N_{1}, O^{4} diriboside (27) that were separated from the complex reaction mixture. Ribosylations of 6,7dimethylpterin (3) led with the halosugar $\mathbf{1 0}$ and $\mathrm{HgO} / \mathrm{HgBr}_{2}$ to $3-(2,3,5$-tri-O-benzoyl- β-D-ribofuranosyl)-6,7-dimethylpterin (13) in 14% yield whereas the use of $\mathbf{1 1}$ and BF_{3}-catalysis formed the N_{1}-riboside (20) in 14% as the main reaction product besides 8% of the N_{3}-isomer (13). The ribosylation reaction have also been extended to 6-methylpterin (4) yielding with 11 and BF_{3} small amounts of the $\mathrm{N}_{1}-(21)$ and N_{3}-riboside (14), with 7-methyl-pterin (5) the $\mathrm{N}_{3}-$ riboside ((15) in 6% yield and with 7-tert.butylpterin (8) again a mixture of $\mathrm{N}_{1^{-}}$(24) and $\mathrm{N}_{3}-$ riboside (18). A highly unpleasant reaction was encountered with pterin (1) itself which led after a tedious isolation and purification process only to 10% yield of the $1-(2,3,5$.tri-O-benzoyl- β-Dribofuranosyl)pterin (25). Debenzoylations of the sugar protecting groups can be achieved by the Zemplen ${ }^{30}$ method as demonstrated with 13, 19 and 20, respectively, forming the free pterinnucleosides 28-30.

The encountered difficulties during the ribosylations of the pterin derivatives, in general, force us to search for a more convenient synthetic pathway to this class of pteridine nucleosides. The more soluble 2-methylthio- $4(3 \mathrm{H}$)pteridione (31) and its 6,7-dimethyl-(32) and 6,7-diphenyl(33) derivatives have been chosen as the most likely candidates due to the fact that the methylthio group can be displaced by amino functions nucleophilicly. The ribosylations of 31, 32 and 33 via their O^{4}-trimethylsilyl derivatives (34) with 11 and BF_{3} catalysis led in moderate to good yields in each case to a mixture of the corresponding N_{1}-(35-37), and N_{3}-ribosides (3840).

Treatment of the 2-methylthio-1-(2,3,5-tri-O-benzoyl- β-D-ribofuranosyl)-4(3H)-pteridones 35-37 with a great variety of amines led under displacement of the methylthio group and subsequent cleavage of the benzoyl groups by sodium methoxide to the corresponding pterin- N_{1-} ribofuranosides 41-51.

Similar treatment of 37 with dimethylamine afforded first 2-dimethylamino-6,7-diphenyl-1-(2,3,5-tri-O-benzoyl-ß-D-ribofuranosyl)-4(3H)-pteridone (51) but debenzoylation by the Zemplen method was not successful since sodium methoxide led to the cleavage of the glycosidic linkage forming 2-dimethylamino-6,7-diphenyl-4-(3H)-pteridone (66) (Fig. 1).

Figure 1. Cleavage of 51 at pH 12 to form 66.

Structural assignment

The site of attachment of the sugar moiety to the pterin nucleus can best be assigned by comparison of the UV spectra with those of the corresponding model substances 52-66 most of which are already described in literature. We have determined in several cases also the pK_{a} values ${ }^{31}$ in order to compare the spectra of the cations and the neutral species as an additional structural proof (Tab. 1).

Figure 2. UV spectral comparison of $\mathbf{3 0}$ and 54 as well as 12 and 57.

Table 1. UV-data of pterin nucleosides and model substances

Table 2. UV-data of 2-methylthio-lumazine nucleosides and model substances

Table 3. UV-data of N^{2}-substituted pterin nucleosides

The ${ }^{1} \mathrm{H}$-NMR spectra (experimental part) of the benzoyl protected ribonucleosides have not been very informative since overlapping signals make accurate assignments difficult. The free β -D-ribofuranosylpterin nucleosides (28-30, 41-50) on the other hand showed well separated proton signals of the sugar moieties which are in good agreement with the pattern of the
ribonucleosides, in general. The $\mathrm{H}-\mathrm{C}\left(1^{\prime}\right)$ appears always as doublet at lowest field followed by the $5^{\prime}-\mathrm{OH}, 2^{\prime}-\mathrm{OH}, 3^{\prime} \mathrm{OH}, \mathrm{H}-\mathrm{C}\left(2^{\prime}\right), \mathrm{H}-\mathrm{C}\left(3^{\prime}\right), \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)$ and $\mathrm{H}-\mathrm{C}\left(5^{\prime}\right)$ towards higher fields.

Experimental Section

General Procedures. Products were dried under high vacuum. TLC: precoated cellulose thinlayer sheets F 1440b LS 254 and silica gel thin-layer sheets F 1500 LS 254 from Schleicher and Schüll. Preparative TLC: plates $20 \times 20 \times 0.2 \mathrm{~cm}$ with silica gel 60 PF 254 from Merck. Column chromatograhy (CC): silica gel 60, 70-230 mesh from Merck. Low pressure chromatography ${ }^{32}$ (LPC): LiChroprep Si 60 from Merck according to ${ }^{33}$ under 8-10 atm. Short column chromatography (SCC): silica gel 60 H from Merck. UV/VIS: Perkin-Elmer Lambda 5; $\quad \max$ in $\mathrm{nm}\left(\log (\quad) .{ }^{1} \mathrm{H}\right.$-NMR: Bruker AC 250 ; in CDCl_{3} or $\left(\left(\mathrm{D}_{6}\right) \mathrm{DMSO}\right)$, in ppm rel. to SiMe_{4} as internal standard. M.p.: Büchi apparatus, model Dr. Tottuli; no corrections. The pK_{a} measurements were performed by the spectrophotometric method ${ }^{31}$. Products were dried under high vacuum.

2-Amino-3-(2,3,5-tri-O-benzoyl- β-D-ribofuranosyl)-6,7-diphenyl-4(3H)pteridinone (12), 2-Amino-1-(2,3,5-tri-O-benzoyl-ß-D-ribofuranosyl)-6,7-diphenyl-4(3H)pteridinone (19) and 2-Imino-1, O^{4}-bis-(2,3,5-tri-O-benzoyl-ß-D-ribofuranosyl)1,2-dihydropteridine (26).
A mixture of 6,7 -diphenylpterin (2) ${ }^{34}(0.945 \mathrm{~g}, 3 \mathrm{mmol})$ and $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}(0.1 \mathrm{~g})$ was heated in hexamethyldisilazane (HMDS) $(15 \mathrm{ml}) 6$ days under reflux till a clear solution was obtained. The excess of HMDS was removed in vacuum and the resulting 9 dissolved in abs. benzene (15 ml). A solution of 1-bromo-2,3,5-tri-O-benzoyl-D-ribofuranose (10) ${ }^{35}$ ($1.575 \mathrm{~g}, 3 \mathrm{mmol}$) in benzene $(15 \mathrm{ml})$ and each 0.75 g of HgO and HgBr_{2} were added. The mixture was refluxed for 4 h , evaporated and the residue treated with $\mathrm{CHCl}_{3}(100 \mathrm{ml})$. The mercury salts were filtered off and the filtrate shaken with a KJ solution (15\%). The organic phase was tried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, evaporated to a smaller volume, put onto a silica gel column ($7 \times 35 \mathrm{~cm}$) and first developed with CHCl_{3} (4 1). Evaporation of this fraction 1 gave a mixture of 3 nucleosides (1.26 g). The solvents system was changed to $\mathrm{CHCl}_{3} / \mathrm{MeOH}(19: 1,11)$ followed by $(9: 1,11)$ and gave on evaporation fraction $2(0.15 \mathrm{~g})$. Fraction 3 resulted from the elution with $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH} 4: 1(500 \mathrm{ml})\right.$ and $(1: 1,1.5 \mathrm{l})$ to give 0.3 g .
Fraction 1 was further separated by low pressure chromatography on a column type C^{30} (3×50 cm , silica gel Lichroprep Si 60) and a pressure of 10 atm . The eluents n-hexane/ $\mathrm{CHCl}_{3}(7 / 3)$ separated first unreacted sugar and with $6 / 4$ next $26(0.21 \mathrm{~g}, 9 \%)$ and followed by $12(0.675 \mathrm{~g}$, 30%). Fraction 2 was separated by preparative thick-layer chromatography on plates ($40 \times 20 \times$ 0.2 cm) with $\mathrm{CHCl}_{3} / \mathrm{MeOH}$ (19:1). The main band was eluted with $\mathrm{CHCl}_{3} / \mathrm{MeOH}(9: 1)$ to give 12 ($0.12 \mathrm{~g}, 15 \%$). Fraction 3 gave on chromatography on thick-layer plates with $\mathrm{CHCl}_{3} / \mathrm{MeOH}$ (9:1) 19 ($0.165 \mathrm{~g}, 7 \%$).
12. Yield: $0.795 \mathrm{~g}(35 \%)$. M.p. $154-158^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 8.08$ (d, 2 H , arom. H); 7.96-7.90
(dd, 4 H. arom. H); 7.60-7.26 (m, 20 H , arom. H); 7.17 (d, $1 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)$); 6.19 (pt, $1 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)$); 6.12 (bs, $2 \mathrm{H}, \mathrm{NH}_{2}$); 6.02 (m, $1 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)$); 4.88 (d, $2 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(5^{\prime}\right) ; 4.47$ (m, $1 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)$). Anal. Calc. for $\mathrm{C}_{44} \mathrm{H}_{33} \mathrm{~N}_{5} \mathrm{O}_{8}$ (759.6): C, 69.57 ; H, 4.38; N, 9.22. Found: C, 68.99; H, 4.49; N, 9.19.
26. Yield: $0.21 \mathrm{~g}(9 \%)$. M.p. $132-136^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 8.10-7.85(\mathrm{~m}, 14 \mathrm{H}$, arom. H), 7.567.28 (m, 28 H. 26 arom. H, H-N. H-C(1'))); 6.42 (d, 1 H, H-C(1')); 6.26-6.19 (m, 2 H, H-C(2')); 5.99 (m, $\left.2 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 4.73$ (m, $4 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)$); 4.57 (m, $2 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)$). Anal. Calc. for $\mathrm{C}_{70} \mathrm{H}_{53} \mathrm{~N}_{5} \mathrm{O}_{15} \times 2 \mathrm{H}_{2} \mathrm{O}$ (1240.2): C, 67.79; H, 4.63; N, 5.64. Found: C, 67.38; H, 4.87; N, 5.35.

2-Amino-1-(2,3,5-tri-O-benzoyl-ß-D-ribofuranosyl)-6,7-diphenyl-4(3H)pteridinone (19).

Silylation analogous to the preceding procedure with $2(1.265 \mathrm{~g}, 4 \mathrm{mmol})$. The intermediate 9 was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{ml})$, 1-O-acetyl-2,3,5-tri-O-benzoyl- β-D-ribofuranose (11) ${ }^{35}$ (2.01 $\mathrm{g}, 4.1 \mathrm{mmol}$) and BF_{3}-etherate $(4 \mathrm{ml})$ were added and stirred at rt for 4 h . Dilution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(50 \mathrm{ml})$, treatment with saturated NaHCO_{3} solution, drying of the organic layer with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporation to give a crude mixture (3.2 g). Separation by $\mathrm{CC}\left(7 \mathrm{x} 30 \mathrm{~cm}\right.$) first with $\mathrm{CHCl}_{3}(1.5$ 1), then with $\mathrm{CHCl}_{3} / \mathrm{MeOH}(19: 1,500 \mathrm{ml} ; 13: 1,500 \mathrm{ml}$ and 9:1, 1.51$)$ to give the main fraction on evaporation. The mixture was further purified by chromatography on 10 thick-layer plates (40 x 20 x 0.2 cm) with $\mathrm{CHCl}_{3} / \mathrm{MeOH}(19: 1)$. The main band was cut out, eluted with $\mathrm{CHCl}_{3} / \mathrm{MeOH}$ (12:1), evaporated to give 1.535 g of 19. Recrystallization from isopropanol/ $\mathrm{H}_{2} \mathrm{O}(1: 1,40 \mathrm{ml})$ gave $1.47 \mathrm{~g}(50 \%)$ of pure 19 of m.p. $152^{\circ}{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 8.00-7.20\left(\mathrm{~m}, 28 \mathrm{H}, \mathrm{NH}_{2}, 25\right.$ arom. H, H-C(1')); 6.41 (m, 1H, H.C(2')); 5.49 (pt, $1 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)$); 4.70-4.50 (m, $3 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)$, H$\mathrm{C}\left(5^{\prime}\right)$). Anal. Calc. for $\mathrm{C}_{44} \mathrm{H}_{33} \mathrm{~N}_{5} \mathrm{O}_{8} \times \mathrm{H}_{2} \mathrm{O}$ (777.6): C, 67.96; H, 4.53; N, 9.00. Found: C, 67.82; H, 4.43; N, 8.91.
2-Amino-3-(2,3,5-tri-O-benzoyl-ß-D-ribofuranosyl)-6,7-dimethyl-4(3H)pteridinone (13) and 2-Amino-1-(2,3,5-tri-O-benzoyl-ß-D-ribofuranosyl)-6,7-dimethyl-4(3H)pteridinone (20). A mixture of 6,7-dimethylpterin (3) $(0.955 \mathrm{~g}, 5 \mathrm{mmo})$ and $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}(0.1 \mathrm{~g})$ in hexamethyldisilazane (10 ml) was heated under reflux for 5 h to form a clear solution. The excess of HMDS was distilled off, the residue dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{ml}), \mathbf{1 1}(2.52 \mathrm{~g}, 5.1 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{ml})$ and BF_{3}-etherate (5 ml) added. After stirring at rt for 4 h the reaction solution was treated with saturated aqueous NaHCO_{3} solution, the organic layer separated, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to dryness. The residue was dissolved in CHCl_{3}, put onto a silica gel column $(7 \times 30 \mathrm{~cm})$ and developed first with $\mathrm{CHCl}_{3}(1,51)$ to give unreacted sugar and followed by $\mathrm{CHCl}_{3} / \mathrm{MeOH}(19: 1,500 \mathrm{ml} ; 12: 1,1000 \mathrm{ml}$ and $9: 1,1000 \mathrm{ml}$) to give a mixture of 3 substances (1.1 g). This fraction was separated on preparative silica gel plates ($40 \times 20 \times 0.2 \mathrm{~cm}$) with $\mathrm{CHCl}_{3} / \mathrm{MeOH}(9: 1)$. The lower band ($\mathrm{R}_{\mathrm{f}} 0.28$) was eluted with $\mathrm{CHCl}_{3} / \mathrm{MeOH}(9: 1)$ and gave on evaporation pure $20(0.425 \mathrm{~g}, 14 \%)$.
The upper band was still a mixture of two substances and had to be rechromatographed on plates with $\mathrm{CHCl}_{3} / \mathrm{MeOH}(19: 1)$ to get partial separation. The band $\left(\mathrm{R}_{\mathrm{f}} 0.51\right)$ gave after elution with $\mathrm{CHCl}_{3} / \mathrm{MeOH}(9: 1)$, evaporation and recrystallization from i- $\mathrm{PrOH} / \mathrm{H}_{2} \mathrm{O}(1: 1)$
13 ($0.25 \mathrm{~g}, 8 \%$).
20. Yield: 0.425 g , (14%).M.p. $152-154^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$: 7.99-7.26 (m, $17 \mathrm{H}, 15$ arom. H , NH_{2}); 7.05 (d, 1 H, H-C($\left.1^{\prime}\right)$); 6.51-6.30 (m, 2 H, H-C(2', $\left.3^{\prime}\right)$); 4.92-4.71 (d, 3 H, H-C(4', 5'); 2.61,
$2.58\left(2 \mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right)$. Anal. Calc. for $\mathrm{C}_{34} \mathrm{H}_{29} \mathrm{~N}_{5} \mathrm{O}_{8} \times 0.5 \mathrm{H}_{2} \mathrm{O}$ (644.6): C, 63.35; H, 4.69; N, 10.86. Found: C, 63.24; H, 4.53; N, 10.27.

2-Amino-3-(2,3,5-tri-O-benzoyl-ß-D-ribofuranosyl)-6,7-dimethyl-4(3H)pteridinone (13).
Silylation of $3(0.955 \mathrm{~g}, 5 \mathrm{mmol})$ was performed analogous to the preceding procedure. The silylated intermediate $\mathbf{9}$ was dissolved in abs. $\mathrm{C}_{6} \mathrm{H}_{6}(35 \mathrm{ml})$, then $\mathbf{1 0}(2.27 \mathrm{~g}, 4.5 \mathrm{mmol}), \mathrm{HgO}$ $(1.25 \mathrm{~g})$ and $\mathrm{HgBr}_{2}(1.25 \mathrm{~g})$ added. The mixture was heated under reflux for 4 h . After cooling $\mathrm{MeOH}(2 \mathrm{ml})$ was added, the mixture evaporated to dryness, the residue dissolved in $\mathrm{CHCl}_{3}(50$ $\mathrm{ml})$ and then shaken several times with 15% aqueous KJ solution to remove the mercury salts. The organic layer was separated, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and again evaporated. The residue was dissolved in CHCl_{3}, put onto a silica gel column ($4.5 \times 45 \mathrm{~cm}$) and developed with $\mathrm{CHCl}_{3} / \mathrm{MeOH}$ (19:1). After 1.51 elution the next fraction $(400 \mathrm{ml})$ was collected, evaporated to give 0.6 g . This mixture was further purified on 5 preparative thick layer plates ($40 \times 20 \times 0.2 \mathrm{~cm}$) with CHCl_{3}, MeOH (19:1). The main band was cut out, eluted by $\mathrm{CHCl}_{3} / \mathrm{MeOH}(15: 1)$ to give after evaporation $13(0.425 \mathrm{~g}, 14 \%)$ of m.p. $168^{\circ} \mathrm{C}$ (decomp.). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 8.06-7.92(\mathrm{~m}, 5 \mathrm{H}$, arom. H); 7.55-7.20 (10 H, arom. H); 7.18 (d, $\left.1 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 6.20$ (bs, $2 \mathrm{H}, \mathrm{NH}_{2}$); 6.18 (m, 1 H , H-C(2')); 6.08 (m, $\left.1 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 4.91$ (m, $2 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(5^{\prime}\right) ; 4.72$ (m, $1 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)$); 2.61 ($\mathrm{s}, 3 \mathrm{H}$, CH_{3}); $2.57\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$), Anal. Calc. for $\mathrm{C}_{34} \mathrm{H}_{29} \mathrm{~N}_{5} \mathrm{O}_{8} \times 0.5 \mathrm{H}_{2} \mathrm{O}$ (644.6): C, 63.35; H, 4.69; N, 10.86. Found: C, 63.15; H, 4.78; N, 10.71.

2-Amino-3-(2,3,5-tri-O-benzoyl-ß-D-ribofuranosyl)-6-methyl-4(3H)pteridinone (14) and 2-Amino-1-(2,3,5-tri-O-benzoyl-ß-D-ribofuranosyl)-6-methyl-4(3H)pteridinone (21). A mixture of 6-methylpterin (4) ${ }^{36}(0.709 \mathrm{~g}, 4 \mathrm{mmol})$ and $\left(\mathrm{NH}_{4}\right){ }_{2} \mathrm{SO}_{4}(0.1 \mathrm{~g})$ in HMDS $(30 \mathrm{ml})$ was refluxed for 24 h , then evaporate, the residue dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{ml}), \mathbf{1 1}(2.01 \mathrm{~g}, 4 \mathrm{mmol})$ and BF_{3}-etherate $(4 \mathrm{ml})$ added and then stirred at rt for 4 h . The reaction solution was treated with saturated aqueous NaHCO_{3} solution, the organic phase separated and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. The residue was dissolved in CHCl_{3}, put onto a silica gel column ($8 \times 30 \mathrm{~cm}$) and developed first with $\mathrm{CHCl}_{3}(21)$ to give unreacted sugar. Extended elution with $\mathrm{CHCl}_{3} / \mathrm{MeOH}(19: 1,2.5 \mathrm{l})$ and $\mathrm{CHCl}_{3} / \mathrm{MeOH}(14: 1,500 \mathrm{ml})$ gave on evaporation a mixture of 14 and $21(0.745 \mathrm{~g})$. Its difficult separation was performed on preparative thick-layer silica gel plates ($40 \times 20 \times 0.2 \mathrm{~cm}$) by repeated development with $\mathrm{CHCl}_{3} / \mathrm{MeOH}(19: 1)$ to get separation of 2 main bands. Elution of the faster moving band yielded after evaporation $0.18 \mathrm{~g}(6 \%)$ of 14 and from the lower moving band $0.27 \mathrm{~g}(9 \%)$ of 21.
14: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 8.30(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}(7)) ; 8.20-7.20(\mathrm{~m}, 15 \mathrm{H}$, arom. H); 7.15 (d, $1 \mathrm{H}, \mathrm{H}-$ $\mathrm{C}\left(1^{\prime}\right)$); 6.17 (bs, $2 \mathrm{H}, \mathrm{NH}_{2}$); 6.15-5.82 (m, $2 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(2^{\prime}, 3^{\prime}\right)$); 4.93-4.62 (m, $3 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(4^{\prime}, 5^{\prime}\right) ; 2.65$ (s, $3 \mathrm{H}, \mathrm{CH}_{3}$). Anal. Calc. for $\mathrm{C}_{33} \mathrm{H}_{27} \mathrm{~N}_{5} \mathrm{O}_{8} \times 0.5 \mathrm{H}_{2} \mathrm{O}$ (630.6): C, 62.85 ; H, 4.32; N, 11.10. Found: C, 62.85; H, 4.31; N, 10.57.
21: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 8.53$ ($\left.\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}(7)\right) ; 8.10-7.20$ (m, $17 \mathrm{H}, 15$ arom. $\mathrm{H}, \mathrm{NH}_{2}$); 7.05 (d, 1 H, H-C(1^{\prime})); 6.30-6.05 (m, $2 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(2^{\prime}, 3^{\prime}\right)$); 4.93-4.44 (m, $3 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(4^{\prime}, 5 '\right) ; 2.62\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$. Anal. Calc. for $\mathrm{C}_{33} \mathrm{H}_{27} \mathrm{~N}_{5} \mathrm{O}_{8} \times 0.5 \mathrm{H}_{2} \mathrm{O}$ (630.6): C, 62.85; H, 4.32; N, 11.10. Found: C, 62.63; H, 4.20; N, 11.27.

2-Amino-3-(2,3,5-tri-O-benzoyl-ß-D-ribofuranosyl)-7-methyl-4(3H)pteridinone (15).
Analogous to the preceding procedure with 7 -methylpterin (5) ${ }^{37}(0.886 \mathrm{~g}, 5 \mathrm{mmol})$ and 11 ($2.52 \mathrm{~g}, 5 \mathrm{mmol}$) and BF_{3}-etherate (4 ml). The reaction product was purified by short column chromatography with $\mathrm{CHCl}_{3} /$ n-hexane ($4: 1$). The main fraction was collected, evaporated and the residue recrystallized from $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}$ to give $0.186 \mathrm{~g}(6 \%)$ of 15. M.p. $122-124^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 8.39$ (s, $\left.1 \mathrm{H}, \mathrm{H}-\mathrm{C}(6)\right) ; 8.20-7.22\left(\mathrm{~m}, 15 \mathrm{H}\right.$, arom. H,); $7.20\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right)$; 6.11 (bs, $2 \mathrm{H}, \mathrm{NH}_{2}$); 6.30-5.90 (m, $2 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(2^{\prime}, 3^{\prime}\right)$); 5.00-4.44 (m, $3 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(4^{\prime}, 5^{\prime}\right) ; 2.62$ (s, 3 H , CH_{3}). Anal. Calc. for $\mathrm{C}_{33} \mathrm{H}_{27} \mathrm{~N}_{5} \mathrm{O}_{8}$ (621.6): C, 63.76; H, 4.38; N, 11.27. Found: C, 63.78; H, 4.27; N, 10.93.
2-Amino-3-(2,3,5-tri-O-benzoyl-ß-D-ribofuranosyl)-6-phenyl-4(3H)pteridinone (16), 2-Amino-1-(2,3,5-tri-O-benzoyl-ß-D-ribofuranosyl)-6-phenyl-4(3H)pteridinone (22) and 2-Imino-1, O^{4}-bis-(2,3,5-tri- O-benzoyl- $\left.ß-D-r i b o f u r a n o s y l\right) 1,2-d i h y d r o p t e r i d i n e ~(27) . ~$
Analogous to the preceding procedure with 6-phenylpterin (6) ${ }^{38}(0.957 \mathrm{~g}, 4 \mathrm{mmol}), \mathbf{1 1}(2.01 \mathrm{~g}$, 4 mmol) and trimethylsilyl trifluormethanesulfonate ($2.6 \mathrm{~g}, 1.2 \mathrm{mmol}$) as catalyst. After stirring at rt for 24 h was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$, treated with cold aqueous $\mathrm{Na}_{2} \mathrm{HPO}_{4}$ solution, the organic phase separated, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to give a crude mixture (2.46 g). This mixture was put onto a silica gel column $(9 \times 15 \mathrm{~cm})$ for chromatography with CHCl_{3} (31 , 1. fraction, unreacted sugar), then with $\mathrm{CHCl}_{3} / \mathrm{MeOH}(19: 1,21,2$. fraction). The second fraction was further separated on preparative thick layer silica gel plates ($40 \times 20 \times 0.2 \mathrm{~cm}$) by repeated development with $\mathrm{CHCl}_{3} / \mathrm{MeOH}$ (19:1) to give 3 main bands which were cut out and eluted separately with $\mathrm{CHCl}_{3}\left(\mathrm{MeOH}(12: 1)\right.$. The fastest moving band $\left(\mathrm{R}_{\mathrm{f}} 0.82\right)$ gave $27(0.08 \mathrm{~g},(8 \%)$, the middle band $16(0.09 \mathrm{~g}, 6 \%)$ and the lowest band $22(0.04 \mathrm{~g}, 2 \%)$.
16. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 9.14$ (s, $\left.1 \mathrm{H}, \mathrm{H}-\mathrm{C}(7)\right)$; 8.20-7.20 (m, $22 \mathrm{H}, 20$ arom. $\mathrm{H}, \mathrm{NH}_{2}$); 7.18 (d, 1 H, H-C(1')); 6.24 (bs, $2 \mathrm{H}, \mathrm{NH}_{2}$); 6.30-6.00 (m, $2 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(2^{\prime}, 3{ }^{\prime}\right)$); 5.00-4.60 (m, $3 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(4^{\prime}, 5^{\prime}\right)$. Anal. Calc. for $\mathrm{C}_{38} \mathrm{H}_{29} \mathrm{~N}_{5} \mathrm{O}_{8}$ (683.7): C, 66.76; H, 4.28; N, 10.24. Found: C, 66.53; H, 4.28; N, 10.00.
22. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 8.96(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}(7)) ; 8.20-7.20\left(\mathrm{~m}, 22 \mathrm{H}, 20\right.$ arom. $\left.\mathrm{H}, \mathrm{NH}_{2}\right) ; 6.82(\mathrm{~d}, 1$ H, H-C($\left.1^{\prime}\right)$); 6.50-6.25 (m, $2 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(2^{\prime}, 3^{\prime}\right)$); 5.40-5.00 (m, $3 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(4^{\prime}, 5^{\prime}\right)$). Anal. Calc. for $\mathrm{C}_{38} \mathrm{H}_{29} \mathrm{~N}_{5} \mathrm{O}_{8} \times \mathrm{H}_{2} \mathrm{O}$ (701.7):C, 64.47; H, 4.45; N, 9.98. Found: C, 64.47; H, 4.23; N, 9.91.
27: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 8.51(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}(7)) ; 8.20-7.20\left(\mathrm{~m}, 37 \mathrm{H}, 35\right.$ arom. $\left.\mathrm{H}, \mathrm{NH}_{2}\right) ; 7.00-6.30$ (m, 6 H, H-C(1', 2', 3'); 4.90-4.50 (m, $6 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(4^{\prime}, 5^{\prime}\right)$. Anal. Calc. for $\mathrm{C}_{64} \mathrm{H}_{49} \mathrm{~N}_{5} \mathrm{O}_{15}$ (1128.1): C, 68.14; H, 4.38; N, 6.21. Found: C, 67.89; H, 4.48; N, 5.89.

2-Amino-3-(2,3,5-tri-O-benzoyl-ß-D-ribofuranosyl)-7-phenyl-4(3H)pteridinone(17) and 2-Amino-1-(2,3,5-tri-O-benzoyl- β-D-ribofuranosyl)-7-phenyl-4(3H)pteridinone (23).

Analogous to the preceding procedure with 7 -phenylpterin $(7)^{38}(0.957 \mathrm{~g}, 4 \mathrm{mmol}), 11(2.01 \mathrm{~g}$, 4 mmol) and BF_{3}-etherate (4 ml) as catalyst. After stirring at rt for 4 h was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(20 \mathrm{ml})$, treated with cold aqueous $\mathrm{Na}_{2} \mathrm{HPO}_{4}$ solution, the organic phase separated, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to give a crude mixture (2.35 g). This mixture was put onto a silica gel column ($9 \times 15 \mathrm{~cm}$) for chromatography with $\mathrm{CHCl}_{3}(31,1$. fraction, unreacted sugar), then with $\mathrm{CHCl}_{3} / \mathrm{MeOH}(19: 1,3.5 \mathrm{l})$. This fraction was evaporated and separated on 6 preparative thick-
layer silica gel plates ($40 \times 20 \times 0.2 \mathrm{~cm}$) by repeated development with CHCl_{3}. The faster moving main band was cut out, eluted with $\mathrm{CHCl}_{3}, \mathrm{MeOH}(9: 1)$ to give $60 \mathrm{mg}(2 \%)$ of $\mathbf{1 7}$. The slower moving band gave $0.12 \mathrm{~g}(4 \%)$ of 23.
17. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 9.16$ (s, $\left.1 \mathrm{H}, \mathrm{H}-\mathrm{C}(7)\right) ; 8.20-7.20(\mathrm{~m}, 21 \mathrm{H}, 20$ arom. H, H-C(1')); $6.18(\mathrm{~m}$, $\left.1 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right) ; 6.06$ (m, $\left.1 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 6.04\left(\mathrm{bs}, 2 \mathrm{H}, \mathrm{NH}_{2}\right) ; 4.75\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right) ; 4.88(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{H}-\mathrm{C}\left(4^{\prime}\right)\right)$. Anal. Calc. for $\mathrm{C}_{38} \mathrm{H}_{29} \mathrm{~N}_{5} \mathrm{O}_{8} \times \mathrm{H}_{2} \mathrm{O}$ (701.7): C, 65.04; H, 4.45; N, 9.98. Found: C, 64.85; H, 3.97; N, 9.96.
23. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 9.14$ (s, $\left.1 \mathrm{H}, \mathrm{H}-\mathrm{C}(7)\right)$; 8.20-7.20 (m, $21 \mathrm{H}, 20$ arom. H, H-C(1')); 6.42 (bs, $2 \mathrm{H}, \mathrm{NH}_{2}$); 6.17 (m, $1 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)$); 5.99 (m, $1 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)$); 6.04 (bs, $2 \mathrm{H}, \mathrm{NH}_{2}$); 5.00-4.70 (m, 3 $\mathrm{H}, \mathrm{H}-\mathrm{C}\left(4^{\prime}, 5^{\prime}\right)$). Anal. Calc. for $\mathrm{C}_{38} \mathrm{H}_{29} \mathrm{~N}_{5} \mathrm{O}_{8} \times 0.5 \mathrm{H}_{2} \mathrm{O}$ (692.7): C, 65.89 ; H, 4.36; N, 10.11 . Found: C, 65.74; H, 4.17; N, 9.89.
2-Amino-3-(2,3,5-tri-O-benzoyl-ß-D-ribofuranosyl)-7-tert.butyl-4(3H)pteridinone (18) and 2-Amino-1-(2,3,5-tri-O-benzoyl-ß-D-ribofuranosyl)-7-tert.butyl-4(3H)pteridinone (24). Silylation and ribosylation was performed analogous to the preceding procedures with 7-tert.butyl-pterin (8) ${ }^{39}(0.877 \mathrm{~g}, 4 \mathrm{mmol}), \mathbf{1 1}(2.01 \mathrm{~g}, 4 \mathrm{mmol})$ and BF_{3}-etherate (4 ml). Work-up was done after 5 days stirring at rt . The crude product mixture was separated on 10 preparative thick-layer plates with $\mathrm{CHCl}_{3} / \mathrm{MeOH}(11: 1)$ to give two main bands. The faster moving band gave after elution, evaporation and recrystallization from i-PrOH $/ \mathrm{H}_{2} \mathrm{O} 0.24 \mathrm{~g}(10 \%)$ of 18 and from the slower moving band were $0.363 \mathrm{~g}(14 \%)$ of 24 isolated.
18. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 8.62(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}(6)) ; 8.20-7.20(\mathrm{~m}, 16 \mathrm{H}, 15$ arom. H, H-C(1')); 5.95 (bs, $2 \mathrm{H}, \mathrm{NH}_{2}$); 6.16 (m, $\left.1 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right) ; 5.93$ (m, $\left.1 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 5.00-4.70\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(4^{\prime}, 5^{\prime}\right)\right) ; 1.43$ (s, $\left.9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3}\right)$. Anal. Calc. for $\mathrm{C}_{36} \mathrm{H}_{33} \mathrm{~N}_{5} \mathrm{O}_{8}$ (663.7): C, 65.15; H, 5.01; N, 10.55. Found: C, 65.24; H, 5.00; N, 10.19.
24. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 8.76$ (s, $\left.1 \mathrm{H}, \mathrm{H}-\mathrm{C}(6)\right) ; 8.20-7.10(\mathrm{~m}, 16 \mathrm{H}, 15$ arom. H, H-C(1')); 6.15 (m, $1 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)$); 6.08 (bs, $2 \mathrm{H}, \mathrm{NH}_{2}$); 4.93-4.44 (m, $3 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(4^{\prime}, 5^{\prime}\right)$); $1.39\left(\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3}\right)$. Anal. Calc. for $\mathrm{C}_{36} \mathrm{H}_{33} \mathrm{~N}_{5} \mathrm{O}_{8} \times 0.5 \mathrm{H}_{2} \mathrm{O}$ (672.7): C, 64.34 ; H, 5.10 ; N, 10.41. Found: C, 64.35; H, 5.04; N, 10.26.
2-Amino-1-(2,3,5-tri-O-benzoyl-ß-D-ribofuranosyl)-4(3H)pteridinone (25). A mixture of pterin (1) $(1.63 \mathrm{~g}, 10 \mathrm{mmol})$ and $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}(0.1 \mathrm{~g})$ in HMDS $(50 \mathrm{ml})$ was heated under reflux for 20 h . The excess of HMDS was distilled off under high vacuum and the residue dissolved in abs. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{ml})$. To the solution was added $11(5.5 \mathrm{~g}, 11 \mathrm{mmol})$ and trimethylsilyl triflate ($2.6 \mathrm{~g}, 12 \mathrm{mmol}$) and then stirred at rt for 24 h . The solution was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{ml})$, treated with saturated aqueous NaHCO_{3}, the layers separated and the organic phase dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After evaporated the resulting residue was dissolved in CHCl_{3} and put onto a silica gel column ($3.5 \times 29 \mathrm{~cm}$) for elution first with $\mathrm{CHCl}_{3}(1 \mathrm{l})$, followed by $\mathrm{CHCl}_{3} / \mathrm{MeOH}(100: 1$, $500 \mathrm{ml}),(100: 3,500 \mathrm{ml}),(100: 4,500 \mathrm{ml})$ and $(100: 5,11)$. These 4 fractions were evaporated to give 3.2 g crude product. Recrystallization from i- $\mathrm{PrOH} / \mathrm{H}_{2} \mathrm{O}$ gave $1.2 \mathrm{~g}(24 \%)$ of $25 .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (CDCl_{3}): 8.84-8.66 (m, 6 H , arom. H); 8.29 (d, $1 \mathrm{H}, \mathrm{H}-\mathrm{C}(7)$); 8.07 (d, $1 \mathrm{H}, \mathrm{H}-\mathrm{C}(6)$); 8.00-7.26 (m, 11 H , arom. $\mathrm{H}, \mathrm{NH}_{2}$); 7.05 (d, $1 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)$); 6.11 (m, $1 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)$); 4.99-4.58 (m, $3 \mathrm{H}, \mathrm{H}-$ $\mathrm{C}\left(4^{\prime}, 5^{\prime}\right)$). Anal. Calc. for $\mathrm{C}_{32} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{O}_{8}$ (607.6): C, 63.26; H, 4.15; N, 11.53. Found: C, 63.11; H,
4.25; N, 11.36.

2-Amino-6,7-dimethyl-3-ß-D-ribofuranosyl-4(3H)pteridinone (28). A solution of 13 (0.2 g , $0.3 \mathrm{mmol})$ in abs. $\mathrm{MeOH}(100 \mathrm{ml})$ was treated with $0.2 \% \mathrm{CH}_{3} \mathrm{ONa}$ solution $(2 \mathrm{ml})$ with stirring for 18 h . Little DOWEX 50×4 (H^{+}-form, 200-400 mesh) and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{ml})$ was added to bring the pH to 5 . After filtration was evaporated, the residue dissolved in $\mathrm{CHCl}_{3} / \mathrm{MeOH}(4: 1,10 \mathrm{ml})$, ether (10 ml) added and after cooling for 2 h the precipitate collected by centrifugation to give $44 \mathrm{mg}(43 \%)$ of 28. M.p. $161^{\circ} \mathrm{C}$ (decomp.).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\left(\mathrm{D}_{6}\right) \mathrm{DMSO}\right): 7.49$ (bs, $2 \mathrm{H}, \mathrm{NH}_{2}$); 6.51 (d, $1 \mathrm{H}, \mathrm{H}-\mathrm{C}(1 ')$); 5.62(t, $\left.1 \mathrm{H}, 5 \mathrm{~S}^{\prime}-\mathrm{OH}\right)$); 5.28 (d, $\left.1 \mathrm{H}, 2^{\prime} \mathrm{OH}\right)$); 5.15 (d, $\left.1 \mathrm{H}, 3^{\prime}-\mathrm{OH}\right)$); 4.47 (dd, $1 \mathrm{H} ; \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)$); 4.10-3.90 (m, $2 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(3^{\prime}, 4^{\prime}\right)$); 3.64 (m, $2 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)$); $2.51\left(2 \mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right.$). Anal. Calc. for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}_{5} \times 2 \mathrm{H}_{2} \mathrm{O}$ (359.3): C, 43.45; H, 5.89; N, 19.49. Found: C, 43.89; H, 5.82; N, 19.09.
2-Amino-6,7-dimethyl-1-ß-D-ribofuranosyl-4(3H)pteridinone (29). To a solution of 20 $(0.15 \mathrm{~g}, 0.24 \mathrm{mmol})$ in abs. $\mathrm{MeOH}(5 \mathrm{ml})$ was added $1 \mathrm{M} \mathrm{CH}_{3} \mathrm{ONa}(0.25 \mathrm{ml})$ and stirred for 2 h . The pH was brought to 5 by AcOH and the solution kept overnight in the icebox. The precipitate was collected and recrystallized from i-PrOH $/ \mathrm{H}_{2} \mathrm{O}(4: 1,15 \mathrm{ml})$ to give $53 \mathrm{mg}(69 \%)$ of 29. M.p. $170^{\circ} \mathrm{C}$ (decomp.). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\left(\mathrm{D}_{6}\right) \mathrm{DMSO}\right): 7.70\left(\mathrm{bs}, 2 \mathrm{H}, \mathrm{NH}_{2}\right) ; 6.68$ (d, $\left.1 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 5.78$ (t, 1 H, $5^{\prime}-\mathrm{OH}$); 5.35 (d, $1 \mathrm{H}, 2^{\prime}-\mathrm{OH}$); 5.18 (d, $1 \mathrm{H}, 3^{\prime}-\mathrm{OH}$); 4.56 (dd, 1 H ; H-C($\left.2^{\prime}\right)$); 4.10-3.90 (m, 2 $\mathrm{H}, \mathrm{H}-\mathrm{C}\left(3^{\prime}, 4^{\prime}\right)$); $3.65\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right)$; $2.55\left(2 \mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right)$. Anal. Calc. for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}_{5} \times 0.5$ $\mathrm{H}_{2} \mathrm{O}$ (332.3): C, 46.98; H, 5.45; N, 21.07. Found: C, 46.64; H, 5.54; N, 20.48.
2-Amino-6,7-diphenyl-1-ß-D-ribofuranosyl-4(3H)pteridinone (30). (a). Analogous to the preceding procedure with $19(0.15 \mathrm{~g}, 0.2 \mathrm{mmol})$. After stirring for $2 \mathrm{~h}, \mathrm{H}_{2} \mathrm{O}(3 \mathrm{ml})$ was added and the pH adjusted to 5 by AcOH . The precipitate was collected after cooling and recrystallized from i- $\mathrm{PrOH} / \mathrm{H}_{2} \mathrm{O}(1: 1,15 \mathrm{ml})$ to give $53 \mathrm{mg}(60 \%)$ of 30. M.p. $180^{\circ} \mathrm{C}$ (decomp.). (b). A solution of 2-methylthio-6,7-diphenyl-1-(2,3,5-tri-O-benzoyl- 3 -D-ribofuranosyl)-4(3H)pteridinone (37) $(0.158 \mathrm{~g}, 0.2 \mathrm{mmol})$ in abs. dioxane $(5 \mathrm{ml})$ was treated with conc. $\mathrm{NH}_{3}(5 \mathrm{ml})$ for 3 days stirring in a closed flask. After evaporation the residue was dissolved in little $\mathrm{H}_{2} \mathrm{O}$ and acidified by AcOH . On cooling the precipitate was collected and recrystallized from $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}(1: 1)$ to give $60 \mathrm{mg}(70 \%)$ of 30. M.p. $180^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\left(\mathrm{D}_{6}\right) \mathrm{DMSO}\right)$: $7.90\left(\mathrm{bs}, 2 \mathrm{H}, \mathrm{NH}_{2}\right) ; 7.50-7.30(\mathrm{~m}, 10$ H, arom. H); 6.99 (d, 1 H, H-C(1')); 5.98 (t, 1 H, 5’-OH); 5.42 (d, 1 H, 2’-OH); 5.25 (d, 1 H, 3’OH); 4.58 (dd, $1 \mathrm{H} ; \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)$); 4.12 (m, $\left.1 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right)$; 4.00 (m, $1 \mathrm{NH}, \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)$); 3.67 (m, $2 \mathrm{H}, \mathrm{H}-$ $\left.\mathrm{C}\left(5^{\prime}\right)\right)$. Anal. Calc. for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}_{5} \times 0.5 \mathrm{H}_{2} \mathrm{O}$ (456.4): C, 60.52; H, 4.95; N, 15.34. Found: C, 60.75; H, 4.73; N, 15.46.
 2-Methylthio-3-(2,3,5-tri-O-benzoyl- β-D-ribofuranosyl)-4(3H)pteridinone (38). A mixture of 2-methylthio-4(3H)pteridinone $(31)^{40}(1.36 \mathrm{~g}, 7 \mathrm{mmol})$ and $\left(\mathrm{NH}_{4}\right){ }_{2} \mathrm{SO}_{4}(0.1 \mathrm{~g})$ in hexamethyldisilazane (HMDS) (30 ml) was refluxed for $2 \mathrm{~h} .(30 \mathrm{ml})$. The excess of HMDS was distilled off, the residue dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$, then $11(3.52 \mathrm{~g}, 7 \mathrm{mmol})$ and $\mathrm{BF}_{3}{ }^{-}$ etherate (7 ml) added. The reaction solution was stirred at rt for 1 day, then treated with a mixture of $\mathrm{CHCl}_{3} / \mathrm{H}_{2} \mathrm{O} / \mathrm{NEt}_{3}(5: 5: 1,40 \mathrm{ml})$, the organic phase separated, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to give 3.3 g crude product. The mixture was separated by short column
chromatography $(\mathrm{SCC})^{41}$ with $\mathrm{CHCl}_{3} / \mathrm{n}$-hexane (3:2) to give as the first fraction 38 and followed by 35. The fractions were evaporated and the residues recrystallized from $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}$.
38. Yield: $1.95 \mathrm{~g}(44 \%)$. M.p. $105-108^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 8.89(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}(7)) ; 8.76$ (d, 1 H , H-C(6)); 8.10-7.20 (m, 15 H, arom. H); 6.40 (d, 1 H, H-C(1')); 6.32-6.20 (m, 2 H, H-C(2', 3')); 4.90-4.60 (m, $3 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(44^{\prime}, 5^{\prime}\right)$); 2.74 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{S}-\mathrm{CH}_{3}$). Anal. Calc. for $\mathrm{C}_{33} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{~S}$ (638.6): C, 62.06; H, 4.10; N, 8.77. Found: C, 61.75; H, 4.15; N, 8.62.
35. Yield: $0.95 \mathrm{~g}(24 \%)$. M.p. $135^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 8.75$ (d, $1 \mathrm{H}, \mathrm{H}-\mathrm{C}(7)$); 8.48 (d, $1 \mathrm{H}, \mathrm{H}-$ C(6)); 8.00-7.20 (m, 15 H, arom. H); 6.64 (d, 1 H, H-C(1')); 6.39 (m, 1 H, H-C(2')); 6.26 (m, 1 H, H-C($\left.3^{\prime}\right)$); 5.00-4.60 (m, $3 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(4^{\prime}, 5^{\prime}\right)$); 2.68 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{S}-\mathrm{CH}_{3}$). Anal. Calc. for $\mathrm{C}_{33} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{~S}$ x $0.5 \mathrm{H}_{2} \mathrm{O}$ (647.6): C, 61.20; H, 4.20; N, 8.65. Found: C, 61.49; H, 3.91; N, 8.68.
6,7-Dimethyl-2-methylthio-1-(2,3,5-tri-O-benzoyl- β-D-ribofuranosyl)-4(3H)pteridinone (36) and 6,7-Dimethyl-2-methylthio-3-(2,3,5-tri-O-benzoyl-ß-D-ribofuranosyl)-4(3H)pteridinone (39). Analogous to the preceding procedure with 6,7-dimethyl-2-methylthio$4(3 \mathrm{H})$ pteridinone $(32)^{40}(1.11 \mathrm{~g}, 6 \mathrm{mmol}), \mathbf{1 1}(3.02 \mathrm{~g}, 6 \mathrm{mmol})$ and BF_{3}-etherate $(6 \mathrm{ml})$ for 3 days. After work-up the crude material (3.85 g) was separated and purified by SSC with CHCl_{3} / n-hexane (4:1). The first main fraction gave 39 followed by 36 . Recrystallizsation from $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}$.
39. Yield: $1.82 \mathrm{~g}(42 \%)$. M.p. $113^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$: 8.10-7.20 (m, 15 H , arom. H$) ; 6.33(\mathrm{~d}$, $\left.1 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 6.50-6.40\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(2^{\prime}, 3^{\prime}\right)\right) ; 4.90-4.70\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(4^{\prime}, 5^{\prime}\right)\right.$); 2.69 (s, $3 \mathrm{H}, \mathrm{S}-$ CH_{3}); 2.75 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}(7)$); 2.73 (s, $3 \mathrm{H}, \mathrm{CH}_{3}(6)$). Anal. Calc. for $\mathrm{C}_{35} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{~S}$ (666.7): C, 63.05; H, 4.54; N, 8.40. Found: C, 63.26; H, 4.49; N, 8.35.
36. Yield: $1.08 \mathrm{~g}(32 \%)$. M.p. $110^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 8.00-7.20(\mathrm{~m}, 15 \mathrm{H}$, arom. H); $6.59(\mathrm{~d}$, 1 H, H-C(1')); 6.50-6.40 (m, 2 H, H-C(2', 3')); 4.90-4.70 (m, 3 H, H-C(4', 5')); 2.69 (s, H, SCH_{3}); $2.68\left(2 \mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right)$. Anal. Calc. for $\mathrm{C}_{35} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{~S}$ (666.7): C, 63.05; H, 4.54; N, 8.40. Found: C, 63.01; H, 4.66; N, 8.37.
2-Methylthio-6,7-diphenyl-1-(2,3,5-tri-O-benzoyl-ß-D-ribofuranosyl)-4(3H)pteridinone (37) and 2-Methylthio-6,7-diphenyl-1-(2,3,5-tri-O-benzoyl- $ß-D-r i b o f u r a n o s y l)-4(3 H)-$ pteridinone (40). Analogous to the preceding procedure first silylation with 2-methylthio-6,7.diphenyl-4 $(3 \mathrm{H})$ pteridinone $(33)^{40}(1.386 \mathrm{~g}, 4 \mathrm{mmol})$ and HMDS under reflux for 1 day. After evaporation and solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml}) \mathbf{1 1}(2.01 \mathrm{~g}, 4 \mathrm{mmol})$ and BF_{3}-etherate (5 ml) were added and stirred for day. After work-up the crude material (3.36 g) was separated and purified by SSC with $\mathrm{CHCl}_{3} / \mathrm{n}$-hexane (3:2). The first main fraction gave 39 followed by 37. Recrystallizsation from $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}$.
40. Yield: $1.636 \mathrm{~g}(52 \%)$. M.p. $213^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 8.20-7.20(\mathrm{~m}, 25 \mathrm{H}$, arom. H); 6.506.30 (m, $3 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(1^{\prime}, 2^{\prime}, 3^{\prime}\right)$); 5.00-4.70 (m, $3 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(4^{\prime}, 5^{\prime}\right)$); 2.77 (s, $3 \mathrm{H}, \mathrm{S}-\mathrm{CH}_{3}$). Anal. Calc. for $\mathrm{C}_{45} \mathrm{H}_{34} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{~S}$ (790.8): C, 68.35; H, 4.33; N, 7.08. Found: C, 68.05; H, 4.36; N, 7.02.
37. Yield: $0.81 \mathrm{~g}(26 \%)$. M.p. $169-171^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 8.10-7.20(\mathrm{~m}, 15 \mathrm{H}$, arom. H$) ; 6.77$ (d, 1 H, H-C(1')); 6.60 (dd, 1 H, H-C(2')); 5.97 (m, 1 H, H-C(3')); 4.72 (m, 1 H, H-C(4')); 4.35 (m, $2 \mathrm{H}, \mathrm{H} . \mathrm{C}\left(5^{\prime}\right)$); 2.69 (s, H, S-CH3$)$. Anal. Calc. for $\mathrm{C}_{45} \mathrm{H}_{34} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{~S}$ (790.8): C, 68.35; H, 4.33; N, 7.08. Found: C, 68.17; H, 4.41; N, 7.04.

2-Methylamino-1-ß-D-ribofuranosyl-4(3H)pteridinone (41). A solution of $35(0.128 \mathrm{~g}$, $0.2 \mathrm{mmol})$ in abs. tetrahydrofurane (THF) (5 ml) was treated with methanolic $\mathrm{CH}_{3} \mathrm{NH}_{2}$-solution $(20 \%, 3 \mathrm{ml})$ in a closed flask for 2 days. It was evaporated, the residue dissolved in abs. MeOH $(5 \mathrm{ml}), 1 \mathrm{~N}-\mathrm{CH}_{3} \mathrm{ONa}(0.2 \mathrm{ml})$ added and 1 day stirred at rt . The solution was acidified by AcOH to pH 5 , evaporated and the residue purified by chromatography on a preparative thick layer plate ($40 \times 20 \times 0.2 \mathrm{~cm}$) with $\mathrm{CHCl}_{3} / \mathrm{MeOH}(4: 1)$ to give after recrystallization from $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}$ $46 \mathrm{mg}(74 \%)$ of 41. M.p. $170^{\circ} \mathrm{C}$ (decomp.). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\left(\mathrm{D}_{6}\right) \mathrm{DMSO}\right): 8.67$ (d, $\left.1 \mathrm{H}, \mathrm{H}-\mathrm{C}(7)\right) ; 8.63$ (d, 1 H, H-C(6)); 7.99 (bs, H, NH); 6.92 (d, 1 H, H-C(1')); 5.95 (bs, 1 H, 5'-OH); 5.41 (d, 1 H, $2^{\prime}-\mathrm{OH}$); 5.21 (d, $\left.1 \mathrm{H}, 3^{\prime}-\mathrm{OH}\right) ; 4.49$ (dd, $1 \mathrm{H} ; \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)$); 4.11 (m, $\left.1 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 4.07$ (m, $1 \mathrm{H}, \mathrm{H}-$ $\mathrm{C}\left(4^{\prime}\right)$); 3.71 (m, $2 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)$); 2.85 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}-\mathrm{NH}$). Anal. Calc. for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{O}_{5} \times \mathrm{H}_{2} \mathrm{O}$ (327.3): C, 44.03; H, 5.23; N, 21.40. Found: C, 44.09; H, 5.25; N, 21.29.

2-Methylamino-6,7-dimethyl-1-ß-D-ribofuranosyl-4(3H)pteridinone (42). Analogous to the preceding procedure with $36(0.133 \mathrm{~g}, 0.2 \mathrm{nmmol})$ to give after recrystallization from $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}$ (7:3) $59 \mathrm{mg}(88 \%)$ of 42. M.p. $205^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\left(\mathrm{D}_{6}\right) \mathrm{DMSO}\right): 7.85$ (bs, H, NH); 6.87 (d, 1 H , H-C(1')); 5.95 (bs, $1 \mathrm{H}, 5^{\prime}-\mathrm{OH}$); 5.45 (d, $\left.1 \mathrm{H}, 2^{\prime}-\mathrm{OH}\right) ; 5.30$ (bs, $\left.1 \mathrm{H}, 3{ }^{\prime}-\mathrm{OH}\right) ; 4.49$ (dd, $1 \mathrm{H} ; \mathrm{H}-$ $\mathrm{C}\left(2^{\prime}\right)$); 4.10 (m, $\left.1 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 4.02\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)\right.$); 3.70 (m, $2 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)$); 2.84 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}-$ NH); 2.55, $2.53\left(2 \mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right.$). Anal. Calc. for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}_{5} \times 0.5 \mathrm{H}_{2} \mathrm{O}$ (346.3): C, 48.66; H, 5.82; N, 20.22. Found: C, 48.95; H, 5.88; N, 20.30.

2-Ethylamino-6,7-dimethyl-1-ß-D-ribofuranosyl-4(3H)pteridinone (43). A solution of 36 $(0.133 \mathrm{~g}, 0.2 \mathrm{mmol})$ in abs. THF (5 ml) was cooled to $-15^{\circ} \mathrm{C}$, then saturated with $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}$-gas and kept in the icebox for 2 days. It was evaporated, the residue dissolved in abs. $\mathrm{MeOH}(10 \mathrm{ml})$, $1 \mathrm{~N} \mathrm{CH}_{3} \mathrm{ONa}(0.2 \mathrm{ml})$ added and stirred for 1 day. The solution was acidified by AcOH to pH 5 , again evaporated and the residue purified by chromatography on a preparative thick layer silica gel plate ($40 \times 20 \times 0.2 \mathrm{~cm}$) with $\mathrm{CHCl}_{3} / \mathrm{MeOH}(4: 1)$. The main band was cut out, eluted, evaporated and the residue recrystallized from little from $\mathrm{H}_{2} \mathrm{O}$ to give $64 \mathrm{mg}(91 \%)$ of 43. M.p. $167-168^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\left(\mathrm{D}_{6}\right) \mathrm{DMSO}\right): 7.85$ (bs, H, NH); 6.82 (d, $\left.1 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 5.82$ (t, $3 \mathrm{H}, 5^{\prime}$ $\mathrm{OH}) ; 5.40\left(\mathrm{~d}, 1 \mathrm{H}, 2^{\prime}-\mathrm{OH}\right) ; 5.20\left(\mathrm{~d}, 1 \mathrm{H}, 3^{\prime}-\mathrm{OH}\right) ; 4.48$ (dd, $\left.1 \mathrm{H} ; \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right) ; 4.11$ (m, $\left.1 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right)$; 4.04 (m, $1 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)$); 3.69 (m, $2 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)$); $3.40\left(\mathrm{q}, 2-\mathrm{H}, \mathrm{HNCH}_{2} \mathrm{CH}_{3}\right) ; 2.55(2 \mathrm{~s}, 6 \mathrm{H}, 2$ CH_{3}); 1.18 (t, $3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}$). Anal. Calc. for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}_{5}$ (351.4): C, 51.27; H, 6.08; N, 19.93. Found: C, 50.94; H, 5.88; N, 19.52.

2-Ethanolamino-6,7-dimethyl-1-ß-D-ribofuranosyl-4(3H)pteridinone (44). Analogous to the preceding procedure with $36(0.133 \mathrm{~g}, 0.2 \mathrm{nmmol})$ and methanolic ethanolamine ($10 \%, 3 \mathrm{ml}$) and keeping in the icebox for 1 day. It was evaporated, the residue dissolved in abs. $\mathrm{MeOH}(10 \mathrm{ml}), 1$ $\mathrm{N} \mathrm{CH}_{3} \mathrm{ONa}(0.2 \mathrm{ml})$ added and stirred at rt for 1 day. Again evaporation and purification on a preparative thick layer silica gel plate ($40 \times 20 \times 0.2 \mathrm{~cm}$) with $\mathrm{CHCl}_{3}, \mathrm{MeOH}(4: 1)$ to give 25 mg (34\%) of 44. M.p. $161^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\left(\mathrm{D}_{6}\right) \mathrm{DMSO}\right): 7.79$ (bs, H, NH); 6.84 (d, $1 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)$); 5.79 (t, $\left.1 \mathrm{H}, 5^{\prime}-\mathrm{OH}\right) ; 5.45\left(\mathrm{~d}, 1 \mathrm{H}, 2^{\prime}-\mathrm{OH}\right) ; 5.21\left(\mathrm{~d}, 1 \mathrm{H}, 3^{\prime}-\mathrm{OH}\right) ; 4.83\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right) ; 4.50(\mathrm{dd}$, $\left.1 \mathrm{H} ; \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right) ; 4.12$ (m, $\left.1 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 3.98$ (m, $\left.1 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)\right) ; 3.71$ (m, $\left.2 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right) ; 3.55$ (bs, 2 H. $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right) ; 3.40\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{NH}\right) ; 2.55,2.53\left(2 \mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right)$. Anal. Calc. for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}_{6} \times \mathrm{H}_{2} \mathrm{O}$ (385.4): C, 46.74; H, 6.02; N, 18.17. Found: C, 46.95; H, 5.63; N, 17.82.

2-Methylamino-6,7-diphenyl-1-ß-D-ribofuranosyl-4(3H)pteridinone (45). A solution of 37 $(0.158 \mathrm{mg}, 0.2 \mathrm{mmol})$ in abs. THF was cooled to $-15^{\circ} \mathrm{C}$, then methanolic $\mathrm{CH}_{3} \mathrm{NH}_{2}(5 \%, 2 \mathrm{ml})$ added and kept in the icebox for 1 day. It was evaporated, the residue dissolved in abs. MeOH $(10 \mathrm{ml}), 1 \mathrm{~N} \mathrm{CH}_{3} \mathrm{ONa}(0.2 \mathrm{ml})$ added and stirred at rt for 1 day. The solution was acidified by AcOH to pH 5 , evaporated and purified on a preparative thick layer silica gel plate ($40 \times 20 \mathrm{x}$ 0.2 cm) with $\mathrm{CHCl}_{3} / \mathrm{MeOH}(4: 1)$ to give after recrystallization from $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}(2: 3) 62 \mathrm{mg}$ (70\%) of 45. M.p. $189^{\circ} \mathrm{C}$ (decomp.). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\left(\mathrm{D}_{6}\right) \mathrm{DMSO}\right): 8.02$ (bs, $\left.1 \mathrm{H}, \mathrm{NH}\right) ; 7.40-7.20$ (m, 10 H , arom. H); 6.98 (d, $\left.1 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 5.02$ (bs, $\left.1 \mathrm{H}, 5^{\prime}-\mathrm{OH}\right) ; 5.40$ (d, ,1 H, 2'-OH); 5.21 (d, 1 H , $\left.3^{\prime}-\mathrm{OH}\right) ; 4.52$ (dd, $1 \mathrm{H} ; \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)$); 4.15 (m, $\left.1 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 4.05$ (m, $1 \mathrm{NH}, \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)$); 3.72 (m, 2 H , $\mathrm{H}-\mathrm{C}\left(5^{\prime}\right)$); 2.91 (s, $3 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}-\mathrm{NH}$). Anal. Calc. for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}_{5} \times 0.5 \mathrm{H}_{2} \mathrm{O}$ (470.4): C, 61.16; H , 5.14; N, 14.88. Found: C, 60.84; H, 5.02; N, 14.82.

2-Ethylamino-6,7-diphenyl-1-ß-D-ribofuranosyl-4(3H)pteridinone (46). Analogous to the preceding procedure with $37(0.158 \mathrm{~g}, 0.2 \mathrm{mmol})$ and $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}$-gas for 3 days in the icebox. Treatment with $\mathrm{CH}_{3} \mathrm{ONa}$ and purification on a silica gel plate to give after recrystallization from $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}(2: 3) 65 \mathrm{mg}(78 \%)$ of 46. Mp. $177^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\left(\mathrm{D}_{6}\right) \mathrm{DMSO}\right): 8.07$ (bs, $\left.1 \mathrm{H}, \mathrm{NH}\right)$; 7.50-7.30 (m, 10 H , arom. H); 6.95 (d, $1 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)$); 5.89 (t, $1 \mathrm{H}, 5^{\prime}$ '-OH); 5.46 (d, $1 \mathrm{H}, 2^{\prime}$ '-OH); 5.24 (d, $\left.1 \mathrm{H}, 3^{\prime}-\mathrm{OH}\right) ; 4.52$ (dd, $1 \mathrm{H} ; \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)$); 4.14 (m, $\left.1 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 4.03$ (m, $\left.1 \mathrm{NH}, \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)\right)$; 3.71 (m, $2 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)$); 3.45 (q, $2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{3}$); ; 1.29 (t, $3 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{3}$). Anal. Calc. for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{O}_{5} \times \mathrm{H}_{2} \mathrm{O}$ (493.5): C, 60.84; H, 5.51; N, 14.09. Found: C, 60.58; H, 5.32; N, 13.61.
2-Ethanolamino-6,7-diphenyl-1-ß-D-ribofuranosyl-4(3H)pteridinone (47). Analogous to the preceding procedure with $37(0.158 \mathrm{~g}, 0.2 \mathrm{mmol})$ and methanolic ethanolamine $(10 \%, 3 \mathrm{ml})$ for 2 days in the icebox. Treatment with $\mathrm{CH}_{3} \mathrm{ONa}$ and purification on a silica gel plate gave after recrystallization from $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}(2: 3) 65 \mathrm{mg}(66 \%)$ of 47. M.p. $177^{\circ} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\left(\mathrm{D}_{6}\right) \mathrm{DMSO}\right)$: 7.98 (bs, $1 \mathrm{H}, \mathrm{NH}$); 7.50-7.30 (m, 10 H , arom. H); 6.96 (d, $1 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)$); 5.78 (t, $1 \mathrm{OH}, 5^{\prime}-\mathrm{OH}$); 5.38 (d, $\left.1 \mathrm{H}, 2^{\prime}-\mathrm{OH}\right) ; 5.21\left(\mathrm{~d}, 1 \mathrm{H}, 3^{\prime}-\mathrm{OH}\right) ; 4.87\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right) ; 4.56$ (dd, $\left.1 \mathrm{H} ; \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right)$; 4.14 (m, $1 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)$); 4.01 (m, $1 \mathrm{NH}, \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)$); 3.71 (m, $2 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)$); 3.55 (bs, 2 H , $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$); $3.41\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right.$). Anal. Calc. for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{O}_{6}$ (491.5): C, 61.09; H, 5.13; N, 14.26. Found: C, 60.60; H, 5.36; N, 14.16.

2-Isopropylamino-6,7-diphenyl-1-ß-D-ribofuranosyl-4(3H)pteridinone (48). Analogous to the preceding procedure with $37(0.158 \mathrm{~g}, 0.2 \mathrm{mmol})$ and methanolic isopropylamine $(10 \%, 3$ $\mathrm{ml})$ for 2 days in the icebox. Treatment with $\mathrm{CH}_{3} \mathrm{ONa}$ and purification on a silica gel plate gave after recrystallization from $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}(2: 3) 31 \mathrm{mg}(32 \%)$ of 48. M.p. 190°. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ((D. D_{6} DMSO): 7.85 (bs, $\left.1 \mathrm{H}, \mathrm{NH}\right) ; 7.50-7.30\left(\mathrm{~m}, 10 \mathrm{H}\right.$, arom. H); 6.93 (d, $\left.1 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 5.75$ (t, 1 H, $5^{\prime}-\mathrm{OH}$); 5.45 (d, $\left.1 \mathrm{H}, 2^{\prime}-\mathrm{OH}\right) ; 5.23\left(\mathrm{~d}, 1 \mathrm{H}, 3^{\prime}-\mathrm{OH}\right) ; 4.46$ (m, $\left.2 \mathrm{H} ; \mathrm{H}-\mathrm{C}\left(2^{\prime}\right), \mathrm{Me}_{2} \mathrm{CH}\right) ; 4.15(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)$); 3.98 (m, $1 \mathrm{NH}, \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)$); 3.71 (bs, $\left.2 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right) ; 1.25$ (d, $\left.6 \mathrm{H},\left(\mathrm{H}_{3} \mathrm{C}\right)_{2} \mathrm{CH}\right)$. Anal. Calc. for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{~N}_{5} \mathrm{O}_{5} \times \mathrm{H}_{2} \mathrm{O}$ (507.5): C, 61.43; H, 5.41; N, 13.45. Found: C, 61.04; H, 5.75; N, 13.79 .

2-n-Butylamino-6,7-diphenyl-1-ß-D-ribofuranosyl-4(3H)pteridinone (49). Analogous to the preceding procedure with $37(0.158 \mathrm{~g}, 0.2 \mathrm{mmol})$ and methanolic n-butylamine $(10 \%, 3 \mathrm{ml})$ for 2 days in the icebox. Treatment with $\mathrm{CH}_{3} \mathrm{ONa}$ and purification on a silica gel plate gave after
recrystallization from $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}(3: 7) 68 \mathrm{mg}(68 \%)$ of 49. M.p. $193^{\circ} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\left(\mathrm{D}_{6}\right) \mathrm{DMSO}\right)$: 8.03 (bs, $1 \mathrm{H}, \mathrm{NH}) ; 7.50-7.30\left(\mathrm{~m}, 10 \mathrm{H}\right.$, arom. H); 6.98 (d, $\left.1 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 5.88$ (t, $1 \mathrm{H}, 5 \#-\mathrm{OH}$); 5.46 (d, $\left.1 \mathrm{H}, 2^{\prime}-\mathrm{OH}\right) ; 5.25$ (d, $\left.1 \mathrm{H}, 3^{\prime}-\mathrm{OH}\right) ; 4.52$ (dd, $\left.1 \mathrm{H} ; \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right) ; 4.14$ (m, $\left.1 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 4.03$ ($\mathrm{m}, 1 \mathrm{NH}, \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)$); $3.70\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right.$); $3.42\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}\right) ; 1.60(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}$); 1.35 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}$); 0.95 (t, $3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}$). Anal. Calc. for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{~N}_{5} \mathrm{O}_{5}$ (503.5): C, 64.40; H, 5.80; N, 13.90. Found: C, 64.21; H, 5.82; N, 13.65.

2-Isobutylamino-6,7-diphenyl-1-ß-D-ribofuranosyl-4(3H)pteridinone (50). Analogous to the preceding procedure with $37(0.158 \mathrm{~g}, 0.2 \mathrm{mmol})$ and methanolic isobutylamine $(10 \%, 3 \mathrm{ml})$ for 3 days in the icebox. Treatment with $\mathrm{CH}_{3} \mathrm{ONa}$ and purification on a silica gel plate gave after recrystallization from $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}(3: 7) 63 \mathrm{mg}(63 \%)$ of 50. M.p. $140-143^{\circ}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ((D_{6})DMSO): 8.08 (bs, $\left.1 \mathrm{H}, \mathrm{NH}\right) ; 7.50-7.30\left(\mathrm{~m}, 10 \mathrm{H}\right.$, arom. H); 7.03 (d, $\left.1 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 5.85$ (t, 1 H, 5’-OH); 5.51 (d, 1 H, 2’-OH); 5.23 (d, 1 H, 3'-OH); 4.56 (dd, 1 H; H-C(2')); 4.14 (m, 1 H, HC(3^{\prime})); 4.05 (m, $\left.1 \mathrm{NH}, \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)\right) ; 3.73$ (m, $2 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)$); 3.25 (m, $\left.2 \mathrm{H}, \mathrm{HNCH}_{2}\right) ; 2.05(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{Me}_{2} \mathrm{CH}\right) ; 0.92\left(\mathrm{HC}\left(\mathrm{CH}_{3}\right)_{2}\right)$. Anal. Calc. for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{~N}_{5} \mathrm{O}_{5} \times \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ (549.5): C, 63.39; H, 6.20; N, 12.74. Found: C, 63.57; H, 5.70; N, 12.44.

2-Dimethylamino-6,7-diphenyl-1-(2,3,5-tri-O-benzoyl- $\Omega-D-r i b o f u r a n o s y l)-4(3 H)-$

pteridinone (51). A solution of $37(0.158 \mathrm{~g}, 0.2 \mathrm{mmol})$ in abs. THF (5 ml) was cooled to $-15^{\circ} \mathrm{C}$ and then methanolic dimethylamine $(115 \%, 2 \mathrm{ml})$ added. After storage in the icebox for 2 days was evaporated and the residue purified on a preparative silica gel plate with $\mathrm{CHCl}_{3} / \mathrm{MeOH}$ (19:1). The main band was eluted, evaporated and the residue recrystallized from $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}$ (1:1) to give $0.135 \mathrm{~g}(86 \%)$ of 51. M.p. $130^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$: 7.93-7.22 (m, 25 H , arom. H); 6.70 (d, 1 H, H-C(1')); 6.11 (dd, 1 H, H-C(2')); 5.83 (m, $1 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)$); 4.64 (m, $\left.1 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)\right)$; 4.25 (m, $2 \mathrm{H}, \mathrm{H} . \mathrm{C}\left(5^{\prime}\right)$); $4.10\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right)$. Anal. Calc. for $\mathrm{C}_{46} \mathrm{H}_{37} \mathrm{~N}_{5} \mathrm{O}_{8}$ x $0.5 \mathrm{H}_{2} \mathrm{O}$ (796.8): C, 69.34; H, 4.81; N, 8.79. Found: C, 69.08; H, 5.03; N, 8.80.
1-Methyl-2-methylamino-6,7-diphenyl-4(3H)pteridinone (64). To a solution of ethanolic methylamine $(50 \%, 30 \mathrm{ml})$ was added 1-methyl-2-methyltio-6.7-diphenyl-4(3H)pteridone $(\mathbf{6 1})^{40}$ $(0.12 \mathrm{~g}, 0.33 \mathrm{mmol})$ and the mixture stirred for 1 h and then evaportated. The residue was purified by preparative thick layer chromatography on a silica gel plate ($40 \times 20 \times 02 \mathrm{~cm}$) with $\mathrm{CHCl}_{3} / \mathrm{MeOH}(9: 1)$, The main band was eluted, evaporated and the solid recry-stallized from $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}$ to give $98 \mathrm{mg}(86 \%)$ of 65. M.p. $299^{\circ} \mathrm{C}$. Anal. Calc. for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O} \times \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ (389.4): C, 67.85; H, 5.85; N, 17.98. Found: C, 67.67; H, 5.56; N, 18.28.

1-Methyl-2-dimethylamino-6,7-diphenyl-4(3H)pteridinone (65). Analogous to the preceding procedure with $61(0.12 \mathrm{~g}, 0.33 \mathrm{mmol})$ in methanolic dimethylamine solution (20 ml) and stirring for 1 day. Work-up and recrystallization from $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}$ gave $57 \mathrm{mg}(71 \%)$ of 66. M.p. 229° C. Anal. Calc. for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}$ (357.4): C, 70.57 ; H, 5.36 ; N, 19.59. Found: C, 70.43; H, 5.29; N, 19.34.

References

1. LCV: Matysiak, S.; Waldscheck, B.; Pfleiderer, W. Nucleosides, Nucleotides \& Nucleic Acids 2004, 23, 51.
2. Ritzmann, G.; Pfleiderer, W. Chem. Ber. 1973, 106, 1401.
3. Pfleiderer, W.; Ritzmann, G.; Harzer, K.; Jochims, J. C. Chem. Ber. 1973, 106, 2982.
4. Hutzenlaub, W.; Kobayashi, K.; Pfleiderer, W. Chem. Ber. 1976, 109, 3217.
5. Ritzmann, G.; Ienaga, K.; Pfleiderer, W. Liebigs Ann. Chem. 1977, 1217.
6. Southon, I. W.; Pfleiderer, W. Chem. Ber. 1978, 111, 2571.
7. Al-Msoudi, N. A.; Pfleiderer, W. Nucleosides \& Nucleotides 1989, 8, 1485.
8. Al-Masoudi, N. A.; Pfleiderer, W. Pteridines 1990, 2, 9.
9. Al-Masoudi N. A.; Pfleiderer, W. Pteridines, 1993, 4, 119.
10. Cao, X.; Pfleiderer, W. Nucleosides \& Nucleotides 1994, 13, 773.
11. Maurinsh, Y.; Pfleiderer, W. Nucleosides \& Nucleotides 1996, 15, 431.
12. Harzer, K.; Pfleiderer, W. Helv. Chim. Acta 1973, 56, 1225.
13. Pfleiderer, W.; Autenrieth, D.; Schranner, M. Chem. Ber. 1973, 106, 317.
14. Schmid, H.; Schranner, M.; Pfleiderer, W. Chem. Ber. 1973, 106, 1952.
15. Ott, M.; Pfleiderer, W. Chem. Ber. 1974, 107, 339.
16. Itoh, T.; Pfleiderer, W. Chem. Ber. 1976, 109, 3228.
17. Ritzmann, G.; Kiriasis, L.; Pfleiderer, W. Chem. Ber. 1980, 113, 1524.
18. Ritzmann, G.; Ienaga, K.; Kiriasis, L.; Pfleiderer, W. Chem. Ber. 1980, 113, 1535.
19. Harris, R.; Pfleiderer, W. Liebigs Ann. Chem. 1981, 1457.
20. Kiriasis, L.; Pfleiderer, W. Nucleosides \& Nucleotides 1989, 8, 1345.
21. Jungmann, O.; Pfleiderer, W. Tetrahedron Lett. 1996, 37, 8355.
22. Melguizo, M.; Gottlieb, M.; Charubala, R.; Pfleiderer, W. Nucleosides \& Nucleotides 1998, 17, 175.
23. Lehbauer, J.; Pfleiderer, W. Helv. Chim. Acta 2001, 84, 2330.
24. Hilbert, G. E.; Johnson, T. B. J. Am. Chem. Soc. 1930, 52, 4489.
25. Fox, J. J.; Yung, J.; Davoll, J.; Brown, G. J. Am. Chem. Soc. 1956, 78, 2117.
26. Birkofer, L.; Kühltau, H. P.; Ritter, A. Chem. Ber. 1964, 93, 2810.
27. Birkofer, L.; Ritter, A. Angew. Chem. 1965, 77, 414.
28. Niedballa, U.; Vorbrüggen, H. J. Org. Chem. 1974, 39, 3654.
29. Wittenburg, E. W. Chem. Ber. 1968, 101, 1095, 1614, 2132.
30. Zemplen, G.; Geres, A.; Hadadcsy, J. Ber. Deut. Chem. Ges. 1936, 69, 1827.
31. Albert, A.; Serjeant, E. P. The Determination of Ionization Constants, Chapman and Hall, Ltd. London, 1971.
32. Helmchen, G.; Nill, G.; Flockerzi, D.; Schühle, W.; Youssef, M. S. K. Angew. Chem. 1979, 91, 64.
33. Master Thesis Flockerzi D, University of Stuttgart, 1977.
34. Cain, F.; Mallette, M. F.; Taylor, E. C. J. Am. Chem. Soc. 1946, 68, 1996.
35. Stevens, J. D.; Fletcher Jr, R. G.; Ness, H. G. J. Org. Chem. 1968, 33, 1806.
36. Boothe, J. H., Waller, C. W., Stokstad, E. L. R., Hutchings, B. L., Mowat, J. H., Angier, R. B., Semb, J., Subba Row, Y., Cosulich, D. B., Fahrenbach, M. J., Hultquist, M. E., Kuh, E., Northey, E. H., Seeger, D. R., Sickels, J. P., Smith Jr., J. M. J. Am. Chem. Soc. 1948, 70, 27.
37. Pfleiderer, W., Zondler, H., Mengel, R. Liebigs Ann. Chem. 1970, 741, 64.
38. Storm, C. B., Shiman, R., Kaufman, S. J. Org. Chem. 1971, 36, 3925.
39. Yamamoto, H., Hutzenlaub, W., Pfleiderer, W. Chem. Ber. 1973, 106, 3175.
40. Schneider, H. J., Pfleiderer, W. Chem. Ber. 1974, 107, 3377.
41. Hunt, B. J., Rigby, W. Chem. and Ind. London 1967, 1868.
42. Pfleiderer, W. Pteridines 1993, 4, 11.
43. Angier, R. B., Curran, W. V. J. Org. Chem. 1961, 26, 2129.
44. Angier, R. B. J. Org. Chem. 1963, 28, 1509.
