Syntheses and reactions of methyl [3-(4-phenyl-thiazol-2-yl)-thioureido] alkanoates and related compounds

Walid Fathalla

Department of Mathematical and Physical Sciences, Faculty of Engineering,
Suez Canal University, Port Said, Egypt
E-mail: walid399@yahoo.com

Dedicated to Prof. Ibrahim A. I. Aly for his efforts in Organic Chemistry
at Suez Canal University

Abstract
Thiazole thioureas 4a-d and 6 bearing an amino acid ester residue were prepared by a one-pot sequential reaction of methyl thio carbamate 2 with amino acid methyl ester hydrochlorides. Some chemoselective reactions of 4a,b with alkyl halides were studied.

Keywords: Non-nucleoside RT inhibitors, PETT, thiazole thioureas, amino acids, isothioureas, thiazolidin-4-one, intermolecular hydrogen bond, intramolecular hydrogen bond interactions

Introduction

Acquired immune compromised deficiency syndrome (AIDS) is caused by HIV (a retrovirus) affecting 33 million people worldwide, mostly affecting women and children in Sub-Saharan Africa. Three million people around the world die of AIDS each year and, so far, more than 25 million people have died of the disease.

Lately, multiple antiretroviral agents have been produced to block replication of the HIV-1 virus by blocking HIV reverse transcriptase or by blocking HIV protease. Among the most important anti-retroviral agents recently introduced are the non-nucleoside reverse transcriptase inhibitors (NNRTI), such as nevirapine and delavirdine able to reduce RT inhibition to subnanomolar concentrations.

Several heterocyclic thioureas have been reported as a new class of potent NNRTIs such phenethylthiazolyl-thiourea (PETT) derivatives. Uckun et al. described the synthesis of a series of thiazole thioureas with alkyl, aryl, heteroaryl substituents as newly identified NNRTI of HIV, including mutant strains of HIV, and effective in the treatment of multi-drug resistant HIV infection.
We have recently reported a new and efficient synthesis of novel quinazoline thioureas bearing an amino acid ester residue based on domino reaction of \(N\)-(2-cyanophenyl)benzimidoyl isothiocyanate with amino acid methyl ester hydrochlorides.\(^\text{11}\)

![Chemical structures](image)

PETT1 thiazole thiourea quinazoline thiourea

Figure 1

Results and Discussion

The synthesis of biologically active amino acid coupled derivatives was considered to be of a major interest.\(^\text{11-14}\) In this paper, we described the development of a new series of thiazole thioureas bearing amino acid esters which can be used as potent NNRTIs.

The required thiazole thioureas 4a-d and 6 were easily prepared starting from 4-phenyl-thiazol-2-ylamine (1) through methyl thiocarbamate 2 as a key intermediate in *one-pot* sequential reaction strategy (Scheme 1). First step; 4-phenyl-thiazol-2-ylamine (1) reacts with equimolar amount of carbon disulfide in basic media (KOH) using DMSO as solvent at 80 °C for 2h. The reaction mixture was then cooled to 0 °C and dimethyl sulfate was added simultaneously. The *in situ* generated methyl thiocarbamate 2 was extracted and used without further purification.

Compound 2 is an interesting reactive intermediate for the synthesis of a variety of heterocyclic compounds.\(^\text{15}\) This reactivity is due to leaving group ability of SMe group when reacting with nucleophiles. Thus, equimolar amount of amino acid ester hydrochloride 3 adds to *in situ* generated methyl thiocarbamate 2 in the presence of triethylamine in ethyl alcohol to afford methyl [3-(4-phenyl-thiazol-2-yl)-thioureido] alkanoate 4. Similarly, methyl \(p\)-aminobenzoate 5 adds to 2 to afford thiourea 6.

The syntheses of 4a-d and 6 reported herein have the advantage of *one-pot* synthesis in addition to operational simplicity and availability giving a series of very interesting compounds.
The structure assignments of amino acid esters 4a-d and 6 are based on spectral and physicochemical analysis. All isolated products exhibited a rather interesting conformation as indicated from all 1H NMR spectra, figure 2. Thus, the 1H NMR spectrum of 4b showed three signals; a quartet, a triplet and a singlet at δ 4.12, 2.83 and 3.69 ppm consequent to two CH$_2$ groups of the β-alanine residue and OCH$_3$ group, respectively.

In addition the 1H NMR spectrum of 4b gave two exchangeable singlets at δ 11.29 and 10.57 ppm corresponding to two NH groups. This implies that N3–H group participate in a strong intramolecular hydrogen bond interaction with the thiazole nitrogen of the type N3–H···N=C.10,11,16 The other N1–H group is involved in an intermolecular hydrogen bond with
either the thiocarbonyl of the thiourea of the type N1–H···S=C,17-20 or the carbonyl of the amino acid residue of the type N1–H···O=C.21-23

The intermolecular hydrogen bond could be distinguished by comparison of the 1H NMR spectra with similar compound lacking the ester function group. 1-Benzyl-3-(4-phenyl-thiazol-2-yl)-thiourea 7 was similarly prepared by the reaction of benzyl amine with \textit{insitu} generated methyl thiocarbamate 2, scheme 1. The 1H NMR spectrum of 7 shows chemical shift at 11.49 ppm due to NH group participating in an intramolecular hydrogen bond; while gave chemical shift at 6.38 ppm due to N1H group.

![Figure 2](image)

Figure 2. Selected 1H NMR data of compounds 4b, 7 and 10b.

The reaction of glycine derivatives 4a with absolute ethanol in the presence of potassium hydroxide furnished the trans-esterification product 8 (Scheme 2). The reaction of methyl [3-(4-phenyl-thiazol-2-yl)-thioureido] alkanoates 4a,b (Gly and β-Ala) with electrophiles might give more evidence for structure elucidation beside chemical and biological importance. Thus, the reaction of 4a,b with allyl bromide and benzyl bromide in the presence of \textit{Et}_3N gave a single tautomeric chemoselective S-alkylated derivatives 9a,b and 10a,b24-26 induced by hydrogen bond interactions. Earlier we reported the chemoselective S-alkylation reaction in similar compounds afforded only a single compound preserving the intramolecular hydrogen bond.11

The 1H NMR spectrum clearly deduced the alkylation site and the position of double bond. The 1H NMR spectrum of 10b has shown a broad singlet at \(\delta\) 10.68 attributed to N1H group participating in an intermolecular hydrogen bond of the type N1–H···O=C,21-23 figure 2. Also, the 1H NMR spectrum of 10b gave three signals at \(\delta\) 4.41, 3.71 and 2.69 ppm consequent to SCH2 and two CH\textsubscript{2} groups of the β-alanine residue, respectively.

Thiazolidin-4-one derivatives are known to exhibit diverse bioactivities such as antiHIV.27 Hence, it seems of interest to attach thiazolidin-4-one bearing amino acid ester residue to amino thiazole moieties in single molecular framework to enhance the biological activity.

The reaction of methyl [3-(4-phenyl-thiazol-2-yl)-thioureido] alkanoates 4a,b (Gly and β-Ala) with methyl chloroacetate resulted in the formation of thiazolidines 11a,b. The 1H NMR spectrum of 11a shows three singlets at \(\delta\) 4.64, 3.93 and 3.78 ppm typically associated with an NCH\textsubscript{2}, SCH\textsubscript{2}CO and OCH\textsubscript{3}, respectively. This structure was in good agreement with our
previous results with methyl [4-oxo-2-(2-phenylquinazolin-4-ylimino)thiazolidin-3-yl]acetate preparation, figure 3.11

Scheme 2

Similarly, the reaction of glycine derivative \(4a\) with phenacyl bromides \(12\) afforded 4-hydroxythiazolidines \(13a\text{-}c\). The \(^1H\) NMR spectra of 4-hydroxythiazolidines \(13a\text{-}c\) gave completely different pattern compared to thiazolidine \(11a,b\). The \(^1H\) NMR spectrum of \(13b\) shows two doublets centered at $\delta 4.40$ and $\delta 3.63$ ppm ($J_{AB} = 17.2$ Hz) corresponding to an AB system of the prochiral hydrogen atoms of the NCH$_2$ group. In addition, apparent two doublets are displayed at $\delta 3.57$ and 3.48 ppm ($J_{AB} = 11.8$ Hz) resulting from A and B parts of the AB quartets of SCH$_2$ groups.11
Experimental Section

General Procedures. Solvent were purified and dried in the usual way. The boiling range of the petroleum ether used was 40-60 °C. Thin layer chromatography (TLC): silica gel 60 F_{254} plastic plates (E. Merck, layer thickness 0.2 mm) detected by UV absorption. Elemental analyses were performed on a Flash EA-1112 instrument at the Microanalytical laboratory, Faculty of Science, Suez Canal University, Ismailia, Egypt. Melting points were determined on a Buchi 510 melting-point apparatus and the values are uncorrected. NMR spectra measured with Bruker (200 MHz) and TMS (0.00 ppm) was used as internal standard. The starting compounds 1 was prepared according to described methods.28

General procedure for preparation of 4, 6 and 7

To a vigorously stirred solution of 4-phenyl-thiazol-2-ylamine (1) (0.9 g, 5.0 mmol) in dimethylsulfoxide (10 ml) at room temperature, carbon disulfide (0.4 ml, 6.5 mmol) and potassium hydroxide (0.31 g, 5.5 mmol) solution in 2 mL H\textsubscript{2}O were added dropwise simultaneously over 30 min, the mixture was then allowed to stir for 30 min in water bath at 80 °C. The reaction mixture was cooled in an ice bath to 0 °C and dimethyl sulfate (0.5 mL, 5.0 mmol) was added dropwise for 15 min under cooling. Stirring was continued for 3 h, the reaction mixture was poured into ice-water and then it was extracted with chloroform. The solvent was removed by distillation under reduced pressure. Thus, the obtained crude methyl thiocarbamate 2 dissolved in ethanol 30 mL cooled to 10 °C and was treated with nucleophiles [amino acid methyl ester hydrochloride 3 (5.0 mmol) and triethyl amine (0.7 mL, 5.0 mmol); methyl p-aminobenzoate 5 (0.75 g, 5.0 mmol) or benzyl amine (0.55 mL, 5.0 mmol)]. Stirring was continued for 3 h at 70 °C. The reaction mixture was concentrated and the solid obtained was filtered, washed with water, dried and recrystallized from ethanol.

Methyl [3-(4-phenyl-thiazol-2-yl)-thioureido] acetate (4a). From GlyOCH\textsubscript{3}·HCl 3a (0.65 g). Colorless crystals (1.05 g, 67 %); mp 212-213 °C. 1H NMR (200 MHz, CDCl\textsubscript{3}): \(\delta\) 11.51 (1H, bs, D\textsubscript{2}O exchangeable, NH), 9.77 (1H, bs, D\textsubscript{2}O exchangeable, NH), 7.92 (2H, d, \(J = 8.0\) Hz, ArH), 7.48–7.32 (3H, m, ArH), 7.03 (1H, s, CH-thiazole), 4.57 (2H, d, \(J = 4.2\) Hz, NHCH\textsubscript{2}), 3.86 (3H,
Methyl 3-[3-(4-phenyl-thiazol-2-yl)-thioureido] propanoate (4b). From β-AlaOCH₃·HCl (0.7 g). Colorless crystals (1.35 g, 85 %); mp 202-203 °C. ¹H NMR (200 MHz, CDCl₃): δ 11.29 (1H, bs, D₂O exchangeable, NH), 10.57 (1H, bs, D₂O exchangeable, NH), 7.86 (2H, d, J = 8.0 Hz, ArH), 7.48–7.33 (3H, m, ArH), 7.01 (1H, s, CH-thiazole), 4.12 (2H, q, J = 5.8 Hz, NHCH₂), 3.69 (3H, s, OCH₃), 2.83 (2H, t, J = 5.8 Hz, CH₂). Anal. Calcd. For C₁₄H₁₅N₃O₂S₂ (321.4): C, 52.32; H, 4.70; N, 13.07; Found: C, 52.29; H, 4.64; N, 12.89.

Methyl 2-[3-(4-phenyl-thiazol-2-yl)-thioureido] propanoate (4c). From L-AlaOCH₃·HCl (0.7 g). Colorless crystals (0.85 g, 53 %); mp 170-171 °C. ¹H NMR (200 MHz, CDCl₃): δ 11.68 (1H, bs, D₂O exchangeable, NH), 10.71 (1H, bs, D₂O exchangeable, NH), 7.88 (2H, d, J = 8.0 Hz, ArH), 7.47–7.30 (3H, m, ArH), 7.02 (1H, s, CH-thiazole), 5.22–5.08 (1H, m, CH), 3.84 (3H, s, OCH₃), 1.67 (3H, d, J = 7.0 Hz, CH₃). Anal. Calcd. For C₁₄H₁₅N₃O₂S₂ (321.4): C, 52.32; H, 4.68; N, 12.93.

Methyl 4-methyl-2-[3-(4-phenyl-thiazol-2-yl)-thioureido]-pentanoate (4d). From L-LeuOCH₃·HCl (0.9 g). Colorless crystals (1.05 g, 57 %); mp 152-153 °C. ¹H NMR (200 MHz, CDCl₃): δ 11.57 (1H, bs, D₂O exchangeable, NH), 10.93 (1H, bs, D₂O exchangeable, NH), 7.78 (2H, d, J = 8.0 Hz, ArH), 7.45–7.29 (3H, m, ArH), 7.01 (1H, s, CH-thiazole), 5.12 (1H, q, J = 7.2 Hz, CH), 3.81 (3H, s, OCH₃), 1.98–1.88 (3H, m, CH₂, CH), 1.03 (3H, d, J = 5.8 Hz, CH₃), 0.99 (3H, d, J = 5.8 Hz, CH₃). Anal. Calcd. For C₁₇H₂₁N₃O₂S₂ (363.5): C, 56.17; H, 5.82; N, 11.56; Found: C, 56.01; H, 5.66; N, 11.43.

Methyl 4-[3-(4-phenyl-thiazol-2-yl)-thioureido] benzoate (6). From methyl 4-aminobenzoate (0.75 g). Colorless crystals (1.4 g, 77 %); mp 201-202 °C. ¹H NMR (200 MHz, CDCl₃): δ 13.25 (1H, bs, D₂O exchangeable, NH), 10.10 (1H, bs, D₂O exchangeable, NH), 8.15 (2H, d, J = 8.4 Hz, ArH), 7.90 (2H, d, J = 8.6 Hz, ArH), 7.76 (2H, d, J = 8.0 Hz, ArH), 7.47–7.33 (3H, m, ArH), 7.07 (1H, s, CH-thiazole), 3.94 (3H, s, OCH₃). Anal. Calcd. For C₁₈H₁₅N₂O₂S₂ (369.5): C, 58.52; H, 4.09; N, 11.37; Found: C, 58.48; H, 4.03; N, 11.31.

1-Benzyl-3-(4-phenyl-thiazol-2-yl)-thiourea (7). From benzyl amine (0.55 mL). Colorless crystals (1.1 g, 68 %); mp 164-165 °C. ¹H NMR (200 MHz, CDCl₃): δ 13.25 (1H, bs, D₂O exchangeable, NH), 10.10 (1H, bs, D₂O exchangeable, NH), 8.15 (2H, d, J = 8.4 Hz, ArH), 7.90 (2H, d, J = 8.6 Hz, ArH), 7.76 (2H, d, J = 8.0 Hz, ArH), 7.47–7.33 (3H, m, ArH), 7.07 (1H, s, CH-thiazole), 3.94 (3H, s, OCH₃). Anal. Calcd. For C₁₇H₁₅N₃S₂ (325.5): C, 58.52; H, 4.09; N, 11.37; Found: C, 58.48; H, 4.03; N, 11.31.

Derivatization reactions of 4a,b

Ethyl [3-(4-phenyl-thiazol-2-yl)-thioureido] acetate (8). To a stirred solution of 4a (1.55 g, 5.0 mmol) in absolute ethanol was added KOH (0.28 g, 5.0 mmol). The reaction mixture was refluxed for 4 h, and then evaporated under reduced pressure. The residue was collected and crystallized from ethanol to give white crystals.

Colorless crystals (1.3 g, 82 %); mp 198-199 °C. ¹H NMR (200 MHz, CDCl₃): δ 11.48 (1H, bs, D₂O exchangeable, NH), 9.85 (1H, bs, D₂O exchangeable, NH), 7.87 (2H, d, J = 8.0 Hz, ArH), 7.53–7.38 (5H, m, ArH), 7.31–7.22 (5H, m, ArH), 6.95 (1H, s, CH-thiazole), 6.38 (1H, bs, D₂O exchangeable, NH), 4.87 (2H, d, J = 5.0 Hz, NHCH₂). Anal. Calcd. For C₁₇H₁₅N₃S₂ (325.5): C, 62.74; H, 4.65; N, 12.91; Found: C, 62.68; H, 4.63; N, 12.88.
7.48–7.32 (3H, m, ArH), 7.02 (1H, s, CH-thiazole), 4.61 (2H, d, \(J = 4.6\) Hz, NHCH\(_2\)), 4.41 (2H, q, \(J = 7.2\) Hz, OCH\(_2\)), 1.38 (3H, t, \(J = 7.0\) Hz, CH\(_3\)). Anal. Calcd. For C\(_{14}\)H\(_{15}\)N\(_3\)O\(_3\)S\(_2\) (321.4): C, 52.32; H, 4.70; N, 13.07; Found: C, 52.25; H, 4.66; N, 13.01.

Reactions with alkyl halides. To a stirred mixture of 4\(a,b\) (5.0 mmol) in absolute ethanol (20 mL) and triethyl amine (0.7 mL, 5.0 mmol) was added the appropriate alkyl halide [benzyl bromide, allyl bromide and ethyl chloroacetate] (5.0 mmol). The reaction mixture was heated at 90 °C for 4 h, then evaporated under reduced pressure. The residue was recrystallized from ethanol.

Methyl [2-allyl-3-(4-phenyl-thiazol-2-yl)-isothioureido]-acetate (9\(a\)). From Gly derivative 4\(a\) (1.55 g) and allyl bromide (0.45 mL). Colorless crystals (0.95 g, 48 %); mp 51 °C.

\[\text{\(1^1H\ NMR (200 MHz, CDCl}_3\): } \delta 10.68 (1H, bs, D\(_2\)O exchangeable, NH), 7.84 (2H, d, \(J = 7.0\) Hz, ArH), 7.46–7.27 (8H, m, ArH), 7.05 (1H, s, CH-thiazole), 4.42 (2H, s, SCH\(_2\)), 3.74–3.65 (5H, m, NCH\(_2\), OCH\(_3\)). \]

Anal. Calcd. For C\(_{17}\)H\(_{19}\)N\(_3\)O\(_2\)S\(_2\) (361.5): C, 56.48; H, 5.30; N, 11.62; Found: C, 56.35; H, 5.28; N, 11.46.

Methyl 3-[2-allyl-3-(4-phenyl-thiazol-2-yl)-isothioureido]-propanoate (9\(b\)). From β-Ala derivative 4\(b\) (1.6 g) and allyl bromide (0.6 mL). Colorless crystals (1.75 g, 85 %); mp 88–89 °C.

\[\text{\(1^1H\ NMR (200 MHz, CDCl}_3\): } \delta 10.68 (1H, bs, D\(_2\)O exchangeable, NH), 7.97–7.88 (2H, m, ArH), 7.46–7.27 (8H, m, ArH), 7.01 (1H, s, CH-thiazole), 4.41 (2H, s, SCH\(_2\)), 3.74–3.65 (5H, m, NCH\(_2\), OCH\(_3\)), 2.68 (2H, t, \(J = 6.4\) Hz, CH\(_2\)). \]

Methyl [4-Oxo-2-(4-phenyl-thiazol-2-ylimino)-thiazolidin-3-yl]-acetate (11\(a\)). From Gly derivative 4\(a\) (1.55 g) and ethyl chloroacetate (0.55 mL). Colorless crystals (1.05 g, 61 %); mp 182–183 °C.

\[\text{\(1^1H\ NMR (200 MHz, CDCl}_3\): } \delta 7.92–7.86 (2H, m, ArH), 7.46–7.27 (8H, m, ArH), 7.01 (1H, s, CH-thiazole), 4.41 (2H, s, SCH\(_2\)), 3.74–3.65 (5H, m, NCH\(_2\), OCH\(_3\)), 2.68 (2H, t, \(J = 6.4\) Hz, CH\(_2\)). \]

Anal. Calcd. For C\(_{15}\)H\(_{13}\)N\(_3\)O\(_3\)S\(_2\) (347.4): C, 51.86; H, 3.77; N, 12.10; Found: C, 51.81; H, 3.64; N, 12.96.
Methyl 3-[4-Oxo-2-(4-phenyl-thiazol-2-ylimino)-thiazolidin-3-yl]-propanoate (11b). From β-Ala derivative 4b (1.6 g) and ethyl chloroacetate (0.55 mL). Colorless crystals (1.55 g, 87 %); mp 165-166 °C. 1H NMR (200 MHz, CDCl3): δ 7.90 (2H, d, J = 7.8 Hz, ArH), 7.46–7.32 (4H, m, 3ArH, CH-thiazole), 4.19 (2H, t, J = 7.4 Hz, NCH2), 3.8 (2H, s, SCH2), 3.69 (3H, s, OCH3), 2.74 (2H, t, J = 7.4 Hz, CH2). Anal. Calcd. For C16H15N3O3S2 (361.4): C, 53.17; H, 4.18; N, 11.63; Found: C, 53.03; H, 4.16; N, 11.54.

Reactions with phenacyl bromides
To a stirred mixture of 4a (1.55 g, 5.0 mmol) in DMSO (10 mL) and triethyl amine (0.7 mL, 5.0 mmol) was added the appropriate phenacyl bromide (5.0 mmol). The reaction mixture was left at room temperature over night, poured over water. The resultant solid was filtered off and recrystallized from ethanol.

Methyl [4-hydroxy-4-phenyl-2-(4-phenyl-thiazol-2-ylimino)-thiazolidin-3-yl]-acetate (13a). From Gly derivative 4a (1.55 g) and phenacyl bromide (1.0 g). Yellowish orange crystals (1.3 g, 62 %); mp 45-47 °C. 1H NMR (200 MHz, CDCl3): δ 7.92 (2H, d, J = 7.0 Hz, ArH), 7.61 (2H, d, J = 7.8 Hz, ArH), 7.47–7.28 (6H, m, ArH), 7.11 (1H, s, CH-thiazole), 4.85 (1H, bs, D2O exchangeable, OH), 4.46 (1H, d, J = 17.2 Hz, NCHA), 3.77–3.66 (4H, m, OCH3, NCHB), 3.60 (1H, d, J = 11.8 Hz, SCHA), 3.52 (1H, d, J = 11.8 Hz, SCHB). Anal. Calcd. For C21H19N3O4S2 (425.5): C, 59.27; H, 4.50; N, 9.87; Found: C, 59.12; H, 4.34; N, 9.67.

Methyl [4-Hydroxy-2-(4-phenyl-thiazol-2-ylimino)-4-p-tolyl-thiazolidin-3-yl]-acetate (13b). From Gly derivative 4a (1.55 g) and 4-methyl phenacyl bromide (1.05 g). Brownish crystals (0.95 g, 43 %); mp 40-41 °C. 1H NMR (200 MHz, CDCl3): δ 7.90 (2H, d, J = 7.2 Hz, ArH), 7.48–7.17 (7H, m, ArH), 7.09 (1H, s, CH-thiazole), 4.78 (1H, bs, D2O exchangeable, OH), 4.40 (1H, d, J = 17.0 Hz, NCHA), 3.70 (3H, s, OCH3), 3.63 (1H, d, J = 17.0 Hz, NCHB), 3.57 (1H, d, J = 11.8 Hz, SCHA), 3.48 (1H, d, J = 11.8 Hz, SCHB), 2.34 (3H, s, CH3). Anal. Calcd. For C22H21N3O4S2 (439.6): C, 60.11; H, 4.82; N, 9.56; Found: C, 60.04; H, 4.76; N, 9.15.

Methyl [4-hydroxy-4-(4-methoxy-phenyl)-2-(4-phenyl-thiazol-2-ylimino)-thiazolidin-3-yl]-acetate (13c). From Gly derivative 4a (1.55 g) and 4-methoxy phenacyl bromide (1.15 g). Colorless crystals (1.3 g, 57 %); mp 50-51 °C. 1H NMR (200 MHz, CDCl3): δ 7.92 (2H, d, J = 7.2 Hz, ArH), 7.52 (2H, d, J = 8.6 Hz, ArH), 7.43–7.27 (3H, m, ArH), 7.11 (1H, s, CH-thiazole), 6.92 (2H, d, J = 8.6 Hz, ArH), 4.80 (1H, bs, D2O exchangeable, OH), 4.44 (1H, d, J = 17.0 Hz, NCHA), 3.81 (3H, s, OCH3), 3.72 (3H, s, OCH3), 3.63 (1H, d, J = 17.0 Hz, NCHB), 3.58 (1H, d, J = 12.0 Hz, SCHA), 3.49 (1H, d, J = 12.0 Hz, SCHB), 2.34 (3H, s, CH3). Anal. Calcd. For C22H21N3O4S2 (455.6): C, 58.00; H, 4.65; N, 9.22; Found: C, 57.89; H, 4.54; N, 9.13.

References

