Cycloalkenopyridines by ring transformations of diazines and triazines

H. C. van der Plas

Laboratory of Organic Chemistry, University of Wageningen, Wageningen, the Netherlands
E-mail: hvdplas@skynet.be

Dedicated to the 80th birthday of my friend and colleague Czaba Szántay

Abstract
This paper is a short review on the synthesis of 2,3-cycloalkenopyridines and 3,4-cycloalkenopyridines by inter- and intra-molecular cycloadditions.

Keywords: 2,3 and 3,4-Cycloalkenopyridines, ring transformations, pyrimidines, pyrazines, 1,2,3- and 1,2,4-triazines

Introduction
It is observed that many natural occurring biologically active compounds feature the presence of a cycloalkenopyridine ring as basic skeleton. This observation induced the development of a range of synthetic methods to prepare pharmaceuticals and agrochemicals, containing the cycloalkenopyridine ring as an important building block. Almost all of these methods are based on condensation of appropriately substituted cycloalkanones with a reagent which is able to form the pyridine ring. Since the six-membered heteroaromatics, especially diazines and triazines posses the suitable azadiene arrangements to undergo inter-and intramolecular [4+2] inverse electron demand Diels-Alder cycloadditions leading to pyridines, this methodology offers a more recent approach to the synthesis of cycloalkenopyridines. This paper deals with a short review on the synthesis of 2,3-cycloalkenopyridines and 3,4-cycloalkenopyridines by inter- and intra-molecular cycloadditions.
2,3-Cycloalkenopyridines

From pyrimidines
Reacting 5-nitropyrimidine 1 with 1-pyrrolidinocyclopentene 2(n=1) at room temperature for two hours leads to the formation of 6,7-dihydro-3-nitro-5H-cyclopenta[b]pyridine 4.\(^5\) The reaction was explained by a regiospecific cycloaddition of the double bond of the enamine across the N-1 and the C-4 atom of the pyrimidine ring, yielding intermediate 3 which by loss of hydrogen cyanide and elimination of pyrrolidine gave the 3,5,6-trisubstituted pyridine 4 (Scheme 1). The preference for eneamines to add across N-1 and C-4 in 5-nitropyrimidine and not across C-2 and C-5 is correctly predicted by FMO perturbation theory.\(^6\)

![Scheme 1](image)

The highly strained intermediate 3 could not be isolated, indicating that the addition reaction is the rate-determining step and that the elimination of hydrogen cyanide and pyrrolidine is fast. The fact that under these mild condition reactions the elimination of pyrrolidine so easily takes place, seems to suggest that the trans orientation of the hydrogen and the pyrrolidino group on the bridgehead positions in intermediate 3 is converted into the cis-trans orientation yielding intermediate 5 (Scheme 2). This isomerisation is probably facilitated by the presence of the nitro grouping in the aci form 5.

![Scheme 2](image)

Similar ring transformation reactions were also reported in the reaction of 5-nitropyrimidine with the pyrrolidinocycloalkenes 2 (n=2,3,4,8) leading to the formation of tetrahydro-quinoline 6,\(^5\) 6,7,8,9-tetrahydro-5H-cyclohepta[b]pyridine 7,\(^5\) 5,6,7,8,9,10-hexahydro dro-5H-2,3-cycloocta[b]pyridine 8,\(^5\) and 5,6,7,8,9,10,11,12,13,14-decahydro-2,3-cyclododeca[b] pyridine 9,\(^7\) respectively (Scheme 3).
A further application of this cycloaddition reaction provided the 3-nitro derivatives of 5,6,7,8-tetrahydro-8-methylquinoline 10, of 5,6,7,8-tetrahydro-5,8-methanoquinoline 11 and of 10,11-dihydro-5H-benzo[4,5]cyclohepta[1,2-b]pyridine 12 (Scheme 4).

A number of 2,3-cycloalkenopyridines has been reported to be formed by intramolecular cycloadditions reactions with inverse electron demand with pyrimidines and triazines containing a molecular chain of appropriate length between the heterocycle and the dienophile. Due to the entropic assistance of the molecular chain connecting the reactants the intramolecular cycloadditions are usually more reactive than the intermolecular cycloadditions. In general the effect of the tether on the reactivity of the Diels-Alder cycloadditions is the largest with a chain length of five or six atoms. The syntheses of 2,3-cycloalkenopyridines is most successful with pyrimidines and triazines substituted with an ω-pentynyl or a ω-hexynyl side chain. The electron
rich acetylenic moiety present in the tether acts as the dienophile adding across the azadiene part of the heterocyclic ring. It creates a cycloadduct which after the retro Diels-Alder reaction yields the cycloalkenopyridine.

On heating of 5-R-2-(pent-4-yn-1-yl) pyrimidine 13a-c at 210 °C in nitrobenzene under nitrogen in good yield the 5-R-cyclopenta[b]pyridine 15a-c was obtained. The reaction probably occurs via the intermediacy of cycloadduct 14 which by expulsion of hydrogen cyanide yields the required product (Scheme 5). The rate of the reaction was dependent on the electronic character of substituent R (NO2>H>Ph). The rate increase of the 5-nitro compound 13b, compared to the unsubstituted one 13a is certainly due to the enhancement of the electron deficiency of the pyrimidine ring. The rate retarding effect of the 5-phenyl group in 13c may very probably be ascribed to its steric hindrance in the formation of the cycloadduct 14.

Considerable rate enhancements are observed upon quaternization of the pyrimidine ring or on protonation, for example, when the reaction is carried out in trifluoroacetic acid.

Scheme 5

A strong rate accelerating effect was observed when in the α position of the side chain dicyano groups are present. This rate effect was also observed in the chemistry of the 1,2,4-triazines. Heating of 2-(1,1′-dicyanopent-4-yn-1-yl)pyrimidines 16(n=1) at 130°C provided in excellent yields the dicyanocyclopenta[b]pyridine, i.e 17(n=1). Similarly from the 2-hexynylpyrimidine 16(n=2) the corresponding 8,8-dicyano-5,6,7,8-tetrahydroquinoline 17(n=2) was obtained (Scheme 5). The much lower temperature observed for the conversion of 16 (R=H, n=1) into 17(R=H, n=1) (130°C) compared to the conversion of 13 (R=H) into 15 (R=H) at 210°C was explained by the so-called Thorpe-Ingold effect, which suggests that the

![Image](image-url)
repulsion effect of the two neighbouring cyano groups reduces the internal C2-Cα-Cβ angle, leading to a closer proximity of the acetylenic reaction center to the C2 and C5 of the pyrimidine ring (compare structures A and B in Scheme 5). It results in added entropic assistance and consequently rate enhancement. An alternative explanation concerns the change of the conformational equilibria of the electron-rich side chain connected with the electron-poor pyrimidine. It has been suggested that the reactive syn rotamers are higher populated due to the presence of cyano substituents connecting the reaction centers.11,12

From 1,2,3-triazines

1,2,3-Triazine 18, when reacting with the pyrrolidinocycloalkenes (2,n=1,2,4,6,8) in dry chloroform at 100-120°C gives, usually in moderate-to-poor yields, the corresponding 2,3-cycloalkenopyridines 19.13,14 The reaction can be described to occur by cycloaddition across the N-3 and C-6 of the 1,2,3-triazine ring, whereby the nucleophilic carbon of the dienophile is attached to C-6 (Scheme 6). Loss of nitrogen and pyrrolidine gave the required product. Similar reactions were also reported with the 3-methyl-, 4-methyl- and 4,6-dimethyl-1,2,3-triazine, although the rate of the reaction is lower due to the electron donating influence of the methyl Group, requiring more energetic reaction conditions. Trimethyl-1,2,3-triazine is unreactive. It has been reported that under microwave irradiation a dramatic shortening of reaction time can be achieved.15

The property of 18 to undergo inverse cycloadditions has been found a useful application in the synthesis of the quinoline derivative 21, the key intermediate in the synthesis of the alkaloids tortuosamine 22 (R=H), N-formyltortuosamine 22 (R=CHO) and N-acetyltortuosamine 22 (R=COCH3) (Scheme 6). Heating 18 with the pyrrolidine eneamine of 1-(3’,4’-dimethoxyphenyl)-4-oxocyclohexane carbonitrile 20 at 100-110°C in a sealed tube gave the quinoline derivative 21.13

![Scheme 6](image-url)
Extension of this work showed that the mode of cycloaddition is temperature dependent.\(^{16}\)
Whereas heating of 4-methyl-1,2,3-triazine 23 with 1-pyrrolidinocycloctene at 100°C in benzene for a few hours gave the 2-methylcycloocta[b]pyridine 24, heating in a high boiling solvent at 200°C gave a mixture of 24 and the isomeric 4-methyl derivative 25\(^{5c}\). This result shows that at elevated temperatures besides addition across the N-3/C-6 (intermediate A), leading to 24, addition also takes place across N-1/C-4 (intermediate B) (Scheme 7). This result was usefully applied to prove the structure of the alkaloids onychine (28, R=H) and 6-methoxyonychine (28, R=OCH\(_3\)) (Scheme 7).\(^{16}\) Reaction of 23 with the pyrroline enamine of 1-indanone gave a mixture of 1-methyl-4-azafluorene 26 and 3-methyl-4-azafluorene 27. Oxidation of 26 with potassium permanganate gave the onychine alkaloid 28.

\[\begin{align*}
\text{23} & \xrightarrow{200°C} \text{A} \\
\text{A} & \xrightarrow{\text{N}_2, \text{NH}} \text{24} + \text{25}
\end{align*}\]

\[\begin{align*}
\text{23} + \text{R} & \xrightarrow{\text{KMnO}_4} \text{26} + \text{27} \\
\text{26} & \xrightarrow{\text{R} = \text{H, OCH}_3} \text{28}
\end{align*}\]

Scheme 7
From 1,2,4-triazines

Intramolecular cycloaddition reactions have been reported with 1,2,4-triazines having at position 3 an alkynyl side chain being unsubstituted or substituted in the α position of the side chain. These compounds 30 were prepared by nucleophilic displacements of methyl sulphinate in 3-methylsulphonyl-1,2,4-triazine 29 by a base induced reaction with an alkyne bearing two activating groups. Mild heating of compound 30(n=1) and 30(n=2) gave in reasonable yields the cyclopenta[b]pyridines 31(n=1) and 5,6,7,8-tetrahydroquinolines 31(n=2) (Scheme 8).3

Another approach to construct a reactive side chain at position 3 of the triazine ring was the replacement of hydrogen at position 3 in 32 by the methylsulphonyl group using the vicarious SNH substitution methodology with α-chloromethyl phenyl sulphone.17,18 By a reaction of 33 with iodoalkyne the 3-(α-sulphonylalkynyl)-1,2,4-triazine 34 was prepared (Scheme 8).

Heating of compound 34(n=1) in bromobenzene at reflux temperature gave the corresponding cyclopenta[b]pyridine 35(n=1) in reasonable yields. The reaction involves a cycloadduct which after expulsion of nitrogen gives the required product. Similarly from 34(n=2) the 8-methylsulfonyl-5,6,7,8-tetrahydroquinolines 35(n=2) are obtained.19 As expected the rate of formation of the tetrahydroquinolines was substantially lower than that of the cyclopenta[b]pyridines due to the longer carbon chain linking the diene and the acetylenic Group, retarding the formation of the cycloadduct.

Scheme 8

3,4-Cycloalkenopyridines

From 1,2,4-triazines

Reaction of 5-acyl-1,2,4-triazines 36a-d with 2(n=1) in ethanol or in dry dioxane at room temperature affords 3-acyl-5,6-dihydro-7H-cyclopenta[c]pyridines 38a-d. These products result from a regiospecific addition of the double bond of the eneamine to C-3 and C-6 of the triazine
ring, yielding cycloadducts 37, which by nitrogen expulsion and pyrrolidine elimination convert to the cyclopenta[c]pyridine derivatives 38 (Scheme 9). Similarly, reaction of 36a-c,e with 1-pyrrolidinocyclohexene 2(n=2) provides the corresponding 3-acyl-5,6,7,8-tetrahydroisoquinolines 39a-c,e. The rate of the transformation is lower than the reaction with 1-pyrrolidinocyclopentene, probably due to steric hindrance in the formation of the cyclohexenoadduct. It is of interest to mention that 3-acetyl-1-methylthio-5,6,7,8-tetrahydroisoquinoline 39e is a useful key intermediate in the Fisher preparation of 2(3-(5,6,7,8-tetrahydroisoquinolinyl))indole 40, the precursor in the synthesis of the zwitterionic indole alkaloid sempervirine 41 (Scheme 9). Using the same methodology also the seven- and eight-membered analogs of sempervirine, i.e. 42 and 43 are also prepared.

It is of interest to mention that from the reaction mixture, obtained when reacting 5-cyano-3-isopropylthio-1,2,4-triazine 44 with 1-pyrrolidinocyclohexene 2(n=2) not the expected 3-cyano1-isopropylthioisoquinoline 47 was obtained, but an isomeric mixture of the addition products 3-cyano-1-isopropylthio-4a,5,6,7,8,8a-hexahydro-8a-pyrrolidino-isoquinoline 46a and 46b. They are formed after nitrogen extrusion from the highly strained cycloadduct 45 (Scheme 10). The formation of 46 is one of the few examples of a reaction in which the precursor of the final product could be isolated. Treatment of 46 with acid gives 47.

An interesting application of this methodology concerns the preparation of the symmetrical and unsymmetrical, annelated 2,2'-bipyridines from 5,5'-bi-1,2,4-triazines. Heating 3,3'-(bis methylthio)-5,5'-bi-1,2,4-triazine 48 with the pyrrolidinocyclopentene 2(n=1) at 130°C in the absence of a solvent the 1,1-bis((methylthio)-3,3'-bi(cyclopenta[c]pyridine 49(n=1) is obtained in good yield (Scheme 11). Similarly, reaction of 48 with the six- and seven-membered enamines 2(n=2) and 2(n=3) gives at somewhat higher temperatures the corresponding 3,3'-bi(cyclohexa[c]- and cyclohepta[c]pyridines 49(n=2) and 49(n=3) respectively. The course of these cycloaddition reactions is found to be solvent dependent.
Reaction of 48 with the enamines 2(n=1,2,3), carried out in boiling dioxane, resulted in the conversion of only one triazine ring into the pyridine ring; 1,2,4-triazinylcycloalka[c]pyridines 50(n=1,2,3) a bi(cyclohexa[c]- and cyclohepta[c]pyridines 49(n=2) and 49(n=3) respectively.
The course of these cycloaddition reactions is found to be solvent dependent. Reaction of 48 with the eneamines 2(n=1,2,3), carried out in boiling dioxane, resulted in the conversion of only one triazine ring into the pyridine ring: 1,2,4-triazinylcycloalka[c]pyridines 50(n=1,2,3) are formed. Enhancing the electron-deficiency of the triazine ring by oxidation of the methylthio group into the methylsulfonyl substituent, 51 yields with the eneamine 2(n=1,2,3) the unsymmetrical annelated 2,2’-bipyridines 52. The compounds 52 with ring A (n=1) and ring B (n=2), with ring A (n=1) and ring B (n=3) and with ring A (n=2 and ring B (n=3) have been synthesised (Scheme 11).

Scheme 11

A few 3,4-cycloalkenopyridines are formed from 1,2,4-triazines, containing at position 6 the α-sulphonylalkynyl substituent. Compound 53(n=1,2), obtained by a vicarious SnH substitution of 3-methylthio-5-phenyl-1,2,4-triazine with α-chloromethyl phenyl sulphone and subsequent treatment with a iodoalkyne gave on heating the 3,4-cycloalkenopyridine 54 or the 5,6,7,8-tetrahydroisoquinoline 55 respectively, in low yields (Scheme 11).19

Interestingly, it has been reported that the highly electron-deficient trichloro-1,2,4-triazine 56 is able to react with unactivated cyclic olefins such as cyclopentene, cycloheptene, cyclooctene and cyclododecene into 3,4-cycloalkeno-2,6-dichloropyridines 5926,27. It is suggested that the initial addition takes place across C-3 and C-6, leading (after loss of nitrogen) to the
dihydropyridine 57. Aromatisation into 59 occurs via a [1,5] sigmatropic hydrogen shift of 57 into 58 and subsequent loss of hydrogen chloride (Scheme 12). The azadiene structure in intermediate 57 can react further, when 56 reacts with cyclopenta-1,3-diene. The trichlorotriene 60 could be isolated.

Scheme 12

2,3- And 3,4-cycloalkenopyridines mixture

There is one report in the literature in which in a cycloaddition reaction a mixture of 2,3- and 3,4-cycloalkenopyridines is obtained. It concerns the reaction of the dicyanoalkynylpyrazine 61, which on heating gives a mixture of the 2,3- and 3,4-(1,1-dicyanocyclopenteno)pyridine 63 and 64 respectively.\(^{28}\) It is evident that both compounds originate from intermediate 62 by loss of hydrogen cyanide which can take place via bond breaking A or B. An interesting extension of the reaction is the behaviour of the 2,6-di(1,1-dicyanopentynyl) pyrazine 65, which at 130°C undergoes conversion into the mixture of 66 and 67, but on heating at 210°C yields the tetracyanotetrahydro-s-indacene 68. The compounds 66 and 67 are intermediates in the formation of 68, since each of them on heating at 210°C gives 68 (Scheme 13).
Scheme 13

References