Study of tert-amino effect: the role of substituents in isomerization of 5 -amino-4-vinyl-3(2H)-pyridazinones

${ }^{a}$ Department of Organic Chemistry, ${ }^{b}$ Department of Pharmaceutics, Semmelweis University, Budapest, Högyes u. 7, 1092-Hungary
${ }^{c}$ Chemical Research Center, Hungarian Academy of Sciences, Budapest, Hungary
E-mail: peter.matyus@szerves.sote.hu

This paper is kindly dedicated to Prof. Csaba Szántay on the occasion of his 80th birthday

Abstract

The thermal isomerization reaction of ortho-vinyl tert-anilines and their heterocyclic analogues via tert-amino effect affords tetrahydropyrido-fused heterocyclic ring systems with a new C-C bond formation between the vinyl and tert-amino groups. A novel series of 5-amino-4-vinyl$3(2 H)$-pyridazinone derivatives were prepared to study the role of substituents of the pyridazinone ring and the vinyl group in their isomerization reaction to tetrahydropyrido[2,3$d]$ pyridazines. In particular, 6-phenyl and 5-trioxopyrimidinediylmethylene substituents were found to significantly increase the rate of isomerization. Compounds possessing benzyl and methyl groups as amino substituents isomerized with the involvement of the benzyl group. On the basis of experiments with deuterated compounds, an intramolecular pathway was confirmed for the isomerization.

Keywords: tert-amino effect, pyridazine, steric buttressing, rearrangement, regioselective isomerization

Introduction

Type 2 tert-amino effect, originally the thermal isomerization of ortho-vinyl-tert-anilines with ring closure to quinolines, ${ }^{1}$ has been employed for the syntheses of angularly annelated tetrahydropyrido-fused polycyclic ring systems, including derivatives of quinolines and their aza- and diaza-analogues, with biological interest. ${ }^{2}$ For instance, oxazinoquinolines have recently been claimed to possess remarkable antibacterial properties due to their gyrase inhibitory activity. ${ }^{3}$ We described the synthesis of annelated analogues of CNS-active pyridazinooxazepines and -thiazepines ${ }^{4}$ via type 2 tert-amino effect. ${ }^{2}$ Several angularly-fused
pyrido[2,3- d]pyridazine ring systems were obtained from 5-azacycloalkyl-4-vinylpyridazinones prepared from 5-iodo-2-methyl-3(2H)-pyridazinone ${ }^{5}$ in several steps. No examples have however been reported for isomerization of 5-amino-4-vinylpyridazines substituted in the 6position or possessing a dialkylamino group. In this paper, syntheses of such new pyridazinones, and their thermal isomerization to otherwise hardly accessible polycyclic compounds will be reported.

Results and Discussion

Following our synthetic strategy applied earlier for 5-morpholino- and 5-pyrrolidono-4-dicyanovinyl-3(2H)-pyridazinones, 6-aryl-5-chloro-2-methyl-3(2H)-pyridazinones 4, 5 and 5-iodo-2-methyl-3(2 H)-pyridazinone (6) as starting compounds were needed for preparation of the corresponding 5-amino-4-vinylpyridazinones in order to study their cyclization tendency. As 6aryl substituent phenyl and, as an ortho-substituted analogue, 2,4-dichlorophenyl were selected. Compounds 5^{6} and 6^{5} were prepared according to reported procedures, whereas 5-chloro-6-(2,4-dichlorophenyl)-2-methylpyridazin-3(2H)-one (4) was obtained in an analogous way described for compound 5. As illustrated on Scheme 1, mucochloric acid (1) was converted to 2 by a Friedel-Crafts reaction. Then compound 2 was treated with hydrazine hydrate to obtain N unsubstituted pyridazinone 3, in this transformation too, hydrogen chloride elimination also occurred, similarly to the reaction of dichlorophenylfuranone with hydrazine hydrate ${ }^{5}$. Subsequent alkylation of $\mathbf{3}$ led to N -methylated pyridazinone 4.

Scheme 1

Each 5-halopyridazinone compound (4-6) underwent smoothly nucleophilic substitution with secondary amines to give 5 -aminopyridazinone derivatives 7. Vilsmeier-Haack formylation and subsequent Knoevenagel condensation with malononitrile (in the presence of piperidine catalyst) or 1,3-dimethylbarbituric acid (DMB) were applied to introduce the formyl group into 8, and form the vinyl substituent in compounds $\mathbf{9}, \mathbf{1 0}$, respectively (Scheme 2, Table 1).

Scheme 2

Table 1. 5-Pyridazinylamines 7, their 4-aldehyde 8, 4-vinyl- and 4-pyrimidinediylmethylene derivatives $\mathbf{9 , 1 0}$ and tetrahydropyrido[2,3- $d]$ pyridazines 11, 12

	R^{1}	amino group	7	8	9	10	11		12	
			Yield (\%)	Time (h)	Yield (\%)	Time (h)				
a	Ph	dimethylamino	57	80	73	84	$47^{\text {c }}$	72	$\begin{aligned} & 62^{\mathrm{c}} \\ & 70^{\mathrm{f}} \end{aligned}$	$\begin{gathered} 4 \\ 0.15 \end{gathered}$
b	$2,4-\mathrm{Cl}_{2} \mathrm{Ph}$	dimethylamino	71	79	70	61	$35^{\text {d }}$	6	$50^{\text {c }}$	6
C	Ph	pyrrolidino	53	40	77	86	$67^{\text {c }}$	9	$40^{\text {c }}$	3
d	Ph	piperidino	63	37	78	- b	$47^{\text {c }}$	3	$82^{\text {g }}$	1
e	Ph	morpholino	65	45	65	- b	$46^{\text {c }}$	9	$88^{\text {g }}$	1
f	Ph	benzyl(methyl)amino	63	48	$-{ }^{\text {a }}$	- b	$-{ }^{\text {a }}$		$57^{\text {h }}$	1
g	Ph	dimethylamino- d_{6}	68	69	63	81	$41^{\text {d }}$	6	$\begin{aligned} & 50^{\mathrm{c}} \\ & 40^{\mathrm{i}} \end{aligned}$	$\begin{gathered} 8 \\ 24 \end{gathered}$
h	H	tetrahydroisoquinolino	83	51	$-{ }^{\text {a }}$	- b	$-{ }^{\text {a }}$		$62^{\text {h }}$	1
i	H	dimethylamino	69	79	48	89	-		$40^{\text {d }}$	6

${ }^{\text {a }}$ Not carried out. ${ }^{\mathrm{b}}$ Not isolated. ${ }^{\mathrm{c}} \mathrm{DMF} / 100{ }^{\circ} \mathrm{C}$. ${ }^{\mathrm{d}} \mathrm{DMF} /$ reflux. ${ }^{\mathrm{e}}$ not formed. ${ }^{\mathrm{f}} \mathrm{D}_{2} \mathrm{O} / 100{ }^{\mathrm{o}} \mathrm{C} / \mu \mathrm{W}$. ${ }^{\text {g }} \mathrm{EtOH} / \mathrm{RT}$. ${ }^{\text {h }} \mathrm{EtOH} /$ reflux. ${ }^{\mathrm{i}} n-\mathrm{BuOH} /$ reflux.

The thermal isomerization reaction via tert-amino effect was generally carried out in dry N, N-dimethylformamide (DMF). The dicyanovinyl compounds 9a, c-e and pyrimidinediylmethylene derivatives $10 a-\mathbf{c}$ isomerized at $100^{\circ} \mathrm{C}$ to give 11a, c-e and 12a-c, respecitvely, whereas isomerization of dicyanovinyl compound $\mathbf{9 b}$ to $\mathbf{1 1 b}$ could only be achieved at reflux temperature. Generally, and in accordance with our previous findings, thermal isomerization of pyrimidinediylmethylene derivatives $\mathbf{1 0}$ was significantly faster than that of the respective dicyano derivatives $\mathbf{9}$. The presence of pyrimidinetrione ring in compounds $\mathbf{1 0}$ may facilitate the isomerization reaction by steric and electronic effects: i) making a favorable geometric arrangement for hydrogen migration ($c f$. reference 2), and ii) efficiently delocalizing the developing negative charge in the transition state.

The 6-aryl substituent itself exerted an accelerating effect on the isomerization too. Furthermore, two sets of experiments indicated a particularly strong rate-enhancing effect of its combination with a 4-pyrimidinediyl substituent. The first comparison was made by the reactions of aldehydes $\mathbf{8 d}$ and $\mathbf{8 e}$ with DMB . These reactions in ethanol at ambient temperature, representing the typical conditions applied for the Knoevenagel condensation with DMB, afforded as isolable products the spiro-substituted derivatives of pyridazino[4,5-c]quinolizine 12d and pyridazino $\left[4^{\prime}, 5^{\prime}: 5,6\right]$ pyrido $[2,1-c][1,4]$ oxazine 12 e ring systems, indicating that their formations were too fast to allow to isolate condensation products of type $\mathbf{1 0}$ in pure forms. In the second set of experiments isomerizations of $\mathbf{1 0 a}$ and $\mathbf{1 0 i}$ were compared. The former compound, due to the combined effect of 6-phenyl and 4-pyrimidinediyl substituents, reacted to tricyclic compound 12a much faster than $\mathbf{1 0 i}$ did to $\mathbf{1 2 i}$.

The important role of 6-phenyl substituent in the isomerization was also apparent from the reactions of compounds $9 \mathbf{a}$ and $\mathbf{9 i}$. While compound 9a, possessing a 6 -phenyl substituent, could be smoothly isomerized to 11 a in DMF at $100{ }^{\circ} \mathrm{C}$, its analogue 9 i with no 6 -phenyl substituent, did not isomerize even upon prolonged heating (72 h) in DMF, instead, a complex mixture was obtained. No cyclization was achieved by application of AlCl_{3} catalyst in refluxing xylene (after a 8 -h reaction time, the starting material was completely unchanged, a further boiling resulted in decomposition); and decomposition could only detected in neat at $200{ }^{\circ} \mathrm{C}$.
One possible explanation for the rate-accelerating role of the bulky phenyl substituent may be related to its steric buttressing effect. ${ }^{7}$ The 6-phenyl group may reduce the conformational freedom of the neighboring tert-amino group, thereby favorably influencing both the hydrogen migration and ring closure.

It is noteworthy that isomerization of hexadeuterodimethylamino derivatives $\mathbf{9 g}$ and $\mathbf{1 0 g}$ in DMF gave $\mathbf{1 1 g}$ and $\mathbf{1 2 g}$ trideuterated in $1-N$-methyl group, and di- and monodeuterated in 2-and 4-positions, respectively, indicating that no deuterium was lost, whereas isomerization of 10a in $\mathrm{D}_{2} \mathrm{O}$ by microwave heating afforded 12a with no deuterium incorporation. These findings definitely prove the intramolecular nature of the rearrangement. ${ }^{1,2}$
The observation that the dimethylaminopyridazinone 9a isomerized significantly slower than the azacycloalkyl analogues $9 \mathbf{c}-\mathbf{e}$ can be understood, supposing a two-step mechanism, by the stability difference in the respective iminium intermediates (and thereby the transition states of
their formations) obtained via hydride (or sigmatropic hydrogen) migration from the alphacarbon of amino group to the methylene carbon of the pyrimidinediylmethylene substituent. ${ }^{2}$ For a similar reason, it could be expected that replacement of one of the methyl groups with a benzyl group should accelerate the isomerization with full control of the regiochemistry; in fact, the regioselective type 2 tert-amino effect had already been observed in a few cases. ${ }^{8}$

Reaction of aldehydes $\mathbf{8 f}$ and $\mathbf{8 h}$ with DMB gave a mixture of condensation and isomerization products $\mathbf{1 0 f}+\mathbf{1 2 f}$ and $\mathbf{1 0 h}+\mathbf{1 2 h}$, indicating enhancement of isomerization. To make complete the ring closure reaction and to isolate the spirocyclic products $\mathbf{1 2 f}, \mathbf{1 2 h}$ in pure forms, the reaction mixtures were shortly refluxed in ethanol (Schemes 3, 4). Interestingly, the isomerization of $\mathbf{1 0 f}$ exclusively gave 12f, while its regioisomer, compound $\mathbf{1 3}$ was not detected at all (Scheme 3).

Scheme 3

Similarly, isomerization of the isoquinolinyl derivative 10h led to the formation triazachrysene ring system $\mathbf{1 2 h}$ with no detectable amount of its regioisomer 14 (Scheme 4).

Scheme 4

Constitution of $\mathbf{1 2 f}$ and $\mathbf{1 2 h}$ could be unambiguously proven by nmr data.
The regiochemistry is determined by the migration aptitudes of hydrogens. In both cases, isomerization took place with the involvement of one of the benzylic hydrogens leading to the more stabilized iminium double bond in the dipolar intermediates $10 f \mathrm{~A}$ vs. $\mathbf{1 0 f B}$, and $\mathbf{1 0 h A}$ vs. $\mathbf{1 0 h B}$, and in the respective transition states.

In summary, isomerization of novel series of 4-vinyl-5-aminopyridazinones via type 2 tertamino effect led to the formation of new pyridopyridazines in moderate to high yields, indicating some new features and wide synthetic scope of the reaction. In particular, a phenyl substituent located ortho to the tert-amino group and a cyclic electron-withdrawing vinyl substituent may significantly accelerate the reaction.

While the intramolecular nature of the rearrangement reactions was confirmed by deuteration experiments, and some new information could be provided on the scope of type 2 tert-amino effect. Although, we feel that a step-wise mechanism may operate in the formation of tetrahydropyridine ring, a concerted mechanism for the ring formation could not be fully excluded. This question and to find new extensions of the reaction will challenge our further work.

Experimental Section

General Procedures. All melting points were determined on a Kofler apparatus, and are uncorrected. The IR spectra were recorded on a Perkin-Elmer 1600 FTIR instrument in potassium bromide pellets. The ${ }^{1} \mathrm{H}$ NMR spectra were recorded at ambient temperature in the solvent indicated, using the ${ }^{2} \mathrm{H}$ signal of the solvent as the lock and tetramethylsilane as the internal standard. Chemical shifts (δ) are given in ppm and coupling constants (J) in Hz. Bruker AM at 200 MHz and Varian Mercury Plus spectrometer at 400 MHz were used. ${ }^{13} \mathrm{C}$ NMR spectra were recorded on the same spectrometers at 50 and 100 MHz , respectively. The assignments of ${ }^{13} \mathrm{C}$ NMR spectra were supported by DEPT-135 spectra. All new compounds gave satisfactory elementary analytical data ($\mathrm{C}, \mathrm{H}, \mathrm{N}$); these analyses were performed on a Carlo Erba Elemental Analyzer Model 1012 apparatus. Mass spectrometric experiments were performed on a reverse geometry VG-ZAB-2SEQ instrument (in case of compounds $\mathbf{9 a}, \mathbf{9 c}, \mathbf{9 e}$, $\mathbf{9 g}, 9 \mathrm{i}, 10 \mathrm{a}, 10 \mathrm{~b}, 10 \mathrm{~g}, 11 \mathrm{a}, 11 \mathrm{~g}, 12 \mathrm{a}$ and 12 g). Fast atom bombardment (FAB) ionization with $30 \mathrm{kV} \mathrm{Cs}^{+}$ions was used, samples were dissolved in CHCl_{3} and put on the probe using DHB matrix. Accelerating voltage was 8 kV . Microwave irradiation experiments were carried out a monomode CEM-Discover MW reactor in the standard configuration as delivered, including proprietary software. The experiments were executed in a MW process vial $(10 \mathrm{~mL})$ with control of the temperature by infrared detection. After completion of the reaction, the vial was cooled to $50{ }^{\circ} \mathrm{C}$ via air jet cooling. For flash column chromatography Kieselgel 60 (Aldrich, 0.040-0.063 mm silica gel) was used; for TLC analysis Silica gel $60 \mathrm{~F}_{254}$ (Merck) plates were applied. Solvent mixtures used for chromatography are always given in a vol/vol ratio. The reagents were obtained from commercial sources and used as received. Solvents were dried and distilled prior to use. Compounds 5^{6} and 6^{5} were prepared according to the literature procedures cited.

3,4-Dichloro-5-(2,4-dichlorophenyl)furane-2(5H)-one (2). A three-neck, round-bottom flask was equipped with a reflux condenser, a thermometer and a stopper. The flask was charged with $\mathrm{AlCl}_{3}(25.0 \mathrm{~g}, 0.19 \mathrm{~mol})$ and 1,3-dichlorobenzene ($100 \mathrm{~mL}, 0.87 \mathrm{~mol}$). Mucochloric acid (1) $(20.0 \mathrm{~g}, 0.12 \mathrm{~mol})$ was added to the suspension and the reaction mixture was stirred and warmed at $50{ }^{\circ} \mathrm{C}$ for 10 h . The orange suspension was poured onto a mixture of ice (150 g) and concentrated $\mathrm{HCl}(45 \mathrm{~mL})$. After separation, the aqueous phase was extracted with toluene (2×50 mL). The toluene phases were combined with the first organic phase (1,3-dichlorobenzene), washed with water $(30 \mathrm{~mL})$, dried, filtered. The solvent was evaporated, and the crude product $(11.0 \mathrm{~g})$ thus obtained was crystallized from methanol, affording $8.9 \mathrm{~g}(25 \%)$ white crystals: mp $136-138{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.92$ (chloroform: methanol 95:5). ${ }^{1} \mathrm{H}$ NMR (200 MHz, DMSO- d_{6}): $\delta 7.80$ and $7.56\left(2 \mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{\text {phenyl }}\right), 6.67(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5) .{ }^{13} \mathrm{C}$ NMR (50 MHz, DMSO- d_{6}): $\delta 164.9(\mathrm{C}-2), 151.0$ (C-4), 136.1 (C-1' phenyl), 134.5 and 131.7 (C-2' and C-4' phenyl), 130.0, 128.4 and 128.2 (C3' phenyl, C-5' and C-6' phenyl), 121.0 (C-3), 79.8 (C-5). IR (potassium bromide): $v_{\max } 3092$, 2960, 1778, 1626, 1588, 1498, 1472, 1382, 1292, 1228, 1106, 1032, 916, 850, $820 \mathrm{~cm}^{-1}$; Anal. calculated for $\mathrm{C}_{10} \mathrm{H}_{4} \mathrm{Cl}_{4} \mathrm{O}_{2}$ (297.95): C 40.31; H 1.35. Found: C 40.31; H 1.22.

5-Chloro-6-(2,4-dichlorophenyl)pyridazin-3(2H)-one (3). A three-neck, round-bottom flask was equipped with a reflux condenser, a thermometer and a dropping funnel. The flask was charged with 3,4-dichloro-5-(2,4-dichlorophenyl)furane-2(5H)-one (2) (0.027 mol), and glacial acetic acid $(20 \mathrm{~mL})$. The funnel was charged with 99% hydrazine monohydrate ($3.4 \mathrm{~mL}, 0.07$ mol). The reaction mixture was warmed to $60^{\circ} \mathrm{C}$, and the hydrazine monohydrate was added dropwise in 15 min . Subsequently, the resulting mixture was heated under reflux for 2 h . After cooling, the solid precipitate was filtered off and washed with water ($5 \times 10 \mathrm{~mL}$). The crude product was crystallized from methanol, affording 2.5 g pale yellow crystals: $\mathrm{mp} 267-269{ }^{\circ} \mathrm{C}$, $\mathrm{R}_{\mathrm{f}}=0.40$ (toluene: methanol 4:1). ${ }^{1} \mathrm{H}$ NMR (200 MHz, DMSO- d_{6}): $\delta 13.6(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N} H), 7.81-7.58$ $\left(2 \mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{\text {phenyl }}\right), 7.38(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4) .{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): $\delta 159.7$ (C-3), 142.4 (C-6), 139.9 (C-5), 135.2 (C-1' phenyl), 134.0 and 132.0 (C-2' and C-4' phenyl), 132.8, 128.9, 128.4 and 127.7 (C-4, C-3' phenyl, C-5' and C-6' phenyl). IR (potassium bromide): $v_{\max } 3382$, 3268, 3070, 2986, 2910, 2846, 2798, 1680, 1638, 1592, 1480, 1438, 1086, 1052, 1012, 892, 870, 836, 814, 540, 490, $454 \mathrm{~cm}^{-1}$. Anal. calculated for $\mathrm{C}_{10} \mathrm{H}_{5} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{O}$ (275.52): C 43.59; H 1.83; N 10.17 . Found: C 43.59; H 1.77; N 10.43.
5-Chloro-6-(2,4-dichlorophenyl)-2-methylpyridazin-3(2H)-one (4). A two-neck, roundbottom flask was equipped with a drying tube and a dropping funnel. The flask was charged with 5-chloro-6-(2,4-dichlorophenyl)pyridazin-3(2H)-one (3) (0.036 mol), methanol (40 mL), and sodium hydroxide solution ($1.6 \mathrm{~g}, 0.04 \mathrm{~mol}, \mathrm{NaOH}$ in 40 mL water). The funnel was charged with 97% dimethyl sulphate ($3.8 \mathrm{~mL}, 0.04 \mathrm{~mol}$). The reaction mixture was cooled to $10{ }^{\circ} \mathrm{C}$, and the dimethyl sulphate was added dropwise in 20 min . The resulting mixture was stirred at room temperature for 8 h . The suspension was evaporated to half volume and extracted with toluene $(4 \times 100 \mathrm{~mL})$. The combined organic layer was washed first with 2 M sodium hydroxide (100 mL) and then with water $(2 \times 100 \mathrm{~mL})$. The organic phase was dried, filtered and the solvent was evaporated in vacuo. The crude product was purified by column chromatography with a mixture of toluene:acetone (9:1) as the eluent, affording $6.1 \mathrm{~g}(58 \%)$ beige crystals: $\mathrm{mp} 156-162{ }^{\circ} \mathrm{C}$, $\mathrm{R}_{\mathrm{f}}=0.42$ (toluene: acetone 9:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.52$ ($1 \mathrm{H}, \mathrm{d}, \mathrm{H}-3$ 'phenyl, $J=2.0$), $7.38\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{H}-5 '\right.$ phenyl, $\left.J_{1}=8.0, J_{2}=2.0\right), 7.29(1 \mathrm{H}, \mathrm{d}, \mathrm{H}-6$ ' phenyl, $J=8.0), 7.11(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-4)$, $3.82\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}(2) \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 159.2(\mathrm{C}-3), 142.9(\mathrm{C}-6), 140.3(\mathrm{C}-5)$, 136.5 (C-1' phenyl), 134.9 and 131.6 (C-2' and C-4' phenyl), 131.8 (C-4, and C-6' phenyl), 129.6 (C-3' phenyl), 127.4 (C-5' phenyl), $40.1\left(\mathrm{~N}(2) \mathrm{CH}_{3}\right)$. IR (potassium bromide): $v_{\max } 3062$, 2924, 1650, 1480, 1266, 1102, 1008, 966, 910, 834, 818, 772, $488 \mathrm{~cm}^{-1}$. Anal. calculated for $\mathrm{C}_{11} \mathrm{H}_{7} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{O}$ (289.55): C 45.63; H 2.44; N 9.67. Found: C 46.01; H 2.33; N 9.49.
2-Methyl-5-(dimethylamino)-6-phenylpyridazin-3(2H)-one (7a). A mixture of compound 5 $(4.0 \mathrm{~g}, 0.018 \mathrm{~mol})$ and 45 mL solution of dimethyl amine ($25 \mathrm{wt} . \%$ in ethanol) was stirred at 100 ${ }^{\circ} \mathrm{C}$ in pressure vessel for 5 h . The reaction mixture was evaporated to dryness in vacuo. Then water (50 mL) was added to the residue, and the mixture was extracted with chloroform (5×30 mL), and the combined organic phases were dried over anhydrous magnesium sulphate. The solvent was evaporated in vacuo, and the crude product was purified by short column chromatography with ethyl acetate and crystallized from cyclohexane, affording $3.1 \mathrm{~g}(74 \%)$
pale brown crystals: mp $105-107{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.20$ (ethyl acetate). ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.60-7.56 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3^{\prime}$ and H-5' phenyl), 7.47-7.39 ($3 \mathrm{H}, \mathrm{m}, \mathrm{H}-2$ ', H-4' and H-6' phenyl), 6.17 $(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-4), 3.76\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}(2) \mathrm{CH}_{3}\right), 2.59\left(6 \mathrm{H}, \mathrm{s}, \mathrm{N}(5) \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($\left.50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.4$ (C-3), 153.3 (C-5), 141.5 (C-6), 136.8 (C-1' phenyl), 128.5, 128.4, 127.6 (C-2' -6' phenyl), $106.6(\mathrm{C}-4), 41.7\left(\mathrm{~N}(5) \mathrm{CH}_{3}\right) 39\left(\mathrm{~N}(2) \mathrm{CH}_{3}\right)$. IR (potassium bromide): $v_{\max } 3444,2994,2948$, $2860,2796,2540,1644,1578,1498,1470,1446,1408,1346,1302,1286,1270,1198,1128$, 1054, 986, 920, 836, 784, 744, $712 \mathrm{~cm}^{-1}$. Anal. calculated for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}$ (229.28): C 68.10; H 6.59; N 18.33. Found: C 68.17; H 6.59; N 18.66 .

6-(2,4-Dichlorophenyl)-5-(dimethylamino)-2-methylpyridazin-3(2H)-one (7b). A mixture of $4(1 \mathrm{~g}, 0.0035 \mathrm{~mol})$ and 15 mL solution of dimethylamine ($25 \mathrm{wt} . \%$ in ethanol) was stirred at $100{ }^{\circ} \mathrm{C}$ in pressure vessel for 4 h . The reaction mixture was evaporated to dryness in vacuo. Then water (50 mL) was added to the residue, and it was extracted with chloroform ($3 \times 40 \mathrm{~mL}$), and the combined organic phases were dried over anhydrous magnesium sulphate. The solvent was evaporated in vacuo, and the crude product was purified by column chromatography with a mixture of chloroform: ethyl acetate (9:1) as the eluent, affording $0.70 \mathrm{~g}(71 \%)$ beige crystals: $\mathrm{mp} 175-178{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.16$ (chloroform: ethyl acetate $9: 1$). ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.46-$ $7.45\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3\right.$ ' phenyl), 7.31-7.30 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-5^{\prime}$ and H-6' phenyl), $6.02(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-4), 3.69$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}(2) \mathrm{CH}_{3}\right), 2.57\left(6 \mathrm{H}, \mathrm{s}, \mathrm{N}(5) \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.4(\mathrm{C}-3), 152.6(\mathrm{C}-$ 5), 138.1, 135.3, 134.9, 134.3 (C-6 pyridazine, C-1' phenyl, C-2' and C-4' phenyl), 131.8, 129.8, 127.5 (C-3', C-4' and C-6' phenyl), $105.0(\mathrm{C}-4), 41.2\left(\left(\mathrm{~N}(5) \mathrm{CH}_{3}\right) 39.2\left(\mathrm{~N}(2) \mathrm{CH}_{3}\right)\right.$. IR (potassium bromide): $v_{\max } 3444,3048,3014,2942,2870,2798,1636,1578,1548,1492,1474$, $1446,1412,1382,1350,1300,1248,1196,1158,1138,1100,1078,1060,1044,988,866,824$, $774,700,458 \mathrm{~cm}^{-1}$. Anal. calculated for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}$ (298.17): C 52.37; H 4.39; $\mathrm{N} 14.09, \mathrm{Cl}$ 23.78. Found: C 52.00; H 4.36; N 13.92, Cl 23.89.

2-Methyl-6-phenyl-5-pyrrolidinopyridazin-3(2H)-one (7c). A mixture of 5 ($1.0 \mathrm{~g}, 0.045 \mathrm{~mol}$) and pyrrolidine ($0.76 \mathrm{~mL}, 0.09 \mathrm{~mol}$) was refluxed in 8 mL of ethanol for 20 h . The reaction mixture was evaporated to dryness in vacuo. Then water (15 mL) was added to the residue, and the crystals were filtered off, washed with water $(3 \times 10 \mathrm{~mL})$ and crystallized from cyclohexane, affording $0.6 \mathrm{~g}(53 \%)$ beige crystals: $\mathrm{mp} 142-143{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.64$ (chloroform: methanol 95:5). ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42-7.34\left(5 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\text {phenyl }}\right), 5.89(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-4), 3.71\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}(2) \mathrm{CH}_{3}\right)$, 2.91-2.85 ($4 \mathrm{H}, \mathrm{m}, \mathrm{N}-\mathrm{CH}_{2}$ pyrrolidine), 1.78-1.71 ($4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}-\mathrm{CH}_{2}$ pyrrolidine). ${ }^{13} \mathrm{C}$ NMR (50 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.5(\mathrm{C}-3), 149.0(\mathrm{C}-5), 140.3(\mathrm{C}-6), 137.6$ (C-1' phenyl), 128.3, 128.29 (C-2'6' phenyl), 101.1 (C-4), 50.7 (C-2,5 pyrrolidine) $39\left(\mathrm{~N}(2) \mathrm{CH}_{3}\right), 25.4$ (C-3,4 pyrrolidine). IR (potassium bromide): $v_{\max } 3422,2960,2892,2832,1636,1568,1494,1430,1356,1296,1234$, 1176, 1136, 1076, 988, 820, 774, 742, 706, $578 \mathrm{~cm}^{-1}$. Anal. calculated for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}(255.31)$: C 70.56; H 6.71; N 16.46. Found: C 70.40; H 6.69; N 16.60.
2-Methyl-6-phenyl-5-piperidinopyridazin-3(2H)-one (7d). Compound 5 ($2 \mathrm{~g}, 0.009 \mathrm{~mol}$) and piperidine ($2.24 \mathrm{~mL}, 0.011 \mathrm{~mol}$) was refluxed in 8 mL of anhydrous DMF (monitored by TLC). After completion of the reaction, it was evaporated to dryness in vacuo. Then water (15 mL) was added to the residue, and the crystals were filtered off, washed with water ($3 \times 10 \mathrm{~mL}$). The crude
product was purified by column chromatography, using dichloromethane and ethyl acetate (1:1) as the eluent, affording $1.54 \mathrm{~g}(63 \%)$ beige crystals: mp 123-124 ${ }^{\circ} \mathrm{C}\left(\right.$ lit. ${ }^{9} \mathrm{mp} 121-122{ }^{\circ} \mathrm{C}$), $\mathrm{R}_{\mathrm{f}}=0.32$ (ethyl acetate: dichloromethane ($1: 1, \mathrm{v} / \mathrm{v}$)). ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.85-7.60$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3$ ' and H-5' phenyl), 7.55-7.30 (3H, m, H-2', H-4', H-6' phenyl), 6.23 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-4$), $3.76\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}(2) \mathrm{CH}_{3}\right), 2.95-2.65\left(4 \mathrm{H}, \mathrm{m}, \mathrm{N}-\mathrm{CH}_{2}\right.$ piperidine $), 1.65-1.35\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}\right.$ piperidine). ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.7(\mathrm{C}-3), 154.3(\mathrm{C}-5), 142.7(\mathrm{C}-6), 136.5(\mathrm{C}-1$, phenyl), 128.7, 128.5, 127.6 (C-2'-6' phenyl), 109.5 (C-4), 50.8 (C-2,6 piperidine) 39.4 $\left(\mathrm{N}(2) \mathrm{CH}_{3}\right), 25.1$ (C-3,5 piperidine), 23.6 (C-4 piperidine). IR (potassium bromide): $v_{\max } 3422$, 2934, 2848, 1648, 1582, 1568, 1412, 1382, 1278, 1226, 1130, 1110, 1016, 740, $700 \mathrm{~cm}^{-1}$. Anal. calculated for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}$ (269.35): C 71.35; H 7.11; N 15.60. Found: C 71.43; H 7.16; N 15.72. 2-Methyl-5-morpholino-6-phenylpyridazin-3(2H)-one (7e). A mixture of 5 ($1.95 \mathrm{~g}, 0.0088$ mol) and morpholine ($3.8 \mathrm{~mL}, 0.044 \mathrm{~mol}$) was refluxed in 20 mL of n-butanol for 23 h (monitored by TLC). The reaction mixture was evaporated to dryness in vacuo. Then water (20 mL) was added to the residue, and the crystals were filtered off, washed with water ($3 \times 10 \mathrm{~mL}$) and crystallized from methanol, affording 1.56 g (65%) pale brown crystals: mp $142-144{ }^{\circ} \mathrm{C}$, $\mathrm{R}_{\mathrm{f}}=0.24$ (ethyl acetate). ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.71-7.67(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3$ ' and $\mathrm{H}-5$ ' phenyl), 7.47-7.40 (3H, m, H-2', H-4' and H-6' phenyl), $6.25(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-4), 3.78\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}(2) \mathrm{CH}_{3}\right), 3.62$ $\left(4 \mathrm{H}, \mathrm{t}, \mathrm{O}-\mathrm{CH}_{2}\right.$ morpholine, $\left.J=4.8\right), 2.84\left(4 \mathrm{H}, \mathrm{t}, \mathrm{N}-\mathrm{CH}_{2}\right.$ morpholine, $\left.J=4.8\right) .{ }^{13} \mathrm{C}$ NMR (50 MHz , CDCl_{3}) $\delta 161.5$ (C-3), 153.3 (C-5), 142.2 (C-6), 136 (C-1' phenyl), 129, 128.7, 127.8 (C-2'-6' phenyl), 110.0 (C-4), 66.0 (C-2,6 morpholine), 49.8 (C-3,5 morpholine), $39.4\left(\mathrm{~N}(2) \mathrm{CH}_{3}\right)$. IR (potassium bromide): $v_{\max } 3446,3060,2974,2950,2904,2860,2826,1652,1582,1496,1446$, $1412,1372,1338,1320,1304,1274,1226,1212,1112,1030,990,902,882,742,704,622,582$, $534 \mathrm{~cm}^{-1}$. Anal. calculated for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{2}$ (271.31): C 66.40; H 6.32; N 15.49. Found: C 66.38; H 6.38; N 15.55.
5-[Benzyl(methyl)amino]-2-methyl-6-phenylpyridazin-3(2H)-one (7f). A mixture of 5 (2.0 g, $0.009 \mathrm{~mol}), N$-benzyl- N-methylamine $(1.42 \mathrm{~mL}, 0.01 \mathrm{~mol})$ and potassium carbonate $(1.5 \mathrm{~g}, 0.01$ mol) was stirred in anhydrous DMF (6 mL) at $150{ }^{\circ} \mathrm{C}$ for 12 h . After cooling, water (50 mL) was added to the reaction mixture, and it was extracted with chloroform ($3 \times 40 \mathrm{~mL}$). The combined organic phases were dried over anhydrous magnesium sulphate. The solvent was evaporated in vacuo, and the oily crude product was purified by repeated column chromatography using toluene and acetone (7:3) as the eluent, affording $0.90 \mathrm{~g}(33 \%)$ beige crystals: $\mathrm{mp} 94-96{ }^{\circ} \mathrm{C}$, $\mathrm{R}_{\mathrm{f}}=0.36$ (toluene: acetone 7:3). ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.70-6.95\left(10 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\text {aromatic }}\right), 6.17$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-4$), $3.98\left(2 \mathrm{H}, \mathrm{s}, \mathrm{N}-\mathrm{CH}_{2}-\mathrm{Ph}\right), 3.78\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}(2) \mathrm{CH}_{3}\right), 2.53\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}(5) \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.5(\mathrm{C}-3), 152.9(\mathrm{C}-5), 142.0(\mathrm{C}-6), 136.8$ and $135.9(\mathrm{C}-1$ ' phenyl and $\mathrm{C}-$ 1 " benzyl), 128.7, 128.5, 127.9, 127.8 and 127.6 ($\mathrm{C}_{\text {aromatic }}$), $108.7(\mathrm{C}-4), 57.5\left(\mathrm{~N}-\mathrm{CH}_{2}-\mathrm{Ph}\right), 39.3$ and $39.0\left(\mathrm{~N}^{-\mathrm{CH}_{3}}\right.$ benzyl and $\left.\mathrm{N}(2) \mathrm{CH}_{3}\right)$. IR (potassium bromide): $v_{\max } 3459,3059,2947,1646$, 1496, 1447, 1409, 1279, 1224, 1157, 1098, 1054, 992, 846, 739, 700, $589 \mathrm{~cm}^{-1}$. Anal. calculated for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}$ (305.38): C 74.73; H 6.27; N 13.76. Found: C 74.71; H 6.33; N 13.66.
5-(Dimethylamino- \boldsymbol{d}_{6})-2-methyl-6-phenylpyridazin- $\mathbf{3 (2 H}$)-one (7 g). A mixture of 5 (0.5 g , $0.0022 \mathrm{~mol})$, dimethyl $-d_{6}$-amine hydrochloride (0.004 mol) and triethyl amine (0.007 mol) in
isopropyl alcohol $(10 \mathrm{~mL})$ was stirred at $100{ }^{\circ} \mathrm{C}$ in pressure vessel for 12 h . The reaction mixture was then evaporated to dryness in vacuo. Water (10 mL) was added to the residue, and it was extracted with chloroform ($3 \times 10 \mathrm{~mL}$). The combined organic phases were dried over anhydrous magnesium sulphate. The solvent was evaporated in vacuo, and the crude product was purified by column chromatography, using ethyl acetate as the eluent, affording $0.36 \mathrm{~g}(68 \%)$ beige crystals: mp 104-105 ${ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.17$ (ethyl acetate). ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.58-7.56(2 \mathrm{H}$, m, H-3' and H-5' phenyl), 7.48-7.37 (3H, m, H-2', H-4' and H-6' phenyl), 6.13 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-4$), $3.76\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}(2) \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.5(\mathrm{C}-3), 153.4(\mathrm{C}-5), 141.6(\mathrm{C}-6)$, 136.9 (C-1' phenyl), 128.6, 128.5, 127.8 (C-2'-6' phenyl), 106.6 (C-4), 41.4 and $40.9\left(\mathrm{~N}(5) \mathrm{CD}_{3}\right)$ $39.2\left(\mathrm{~N}(2) \mathrm{CH}_{3}\right)$. IR (potassium bromide): $v_{\max } 2946,1640,1574,1422,1290,1260,1000,782$, $712 \mathrm{~cm}^{-1}$. Anal. calculated for $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{D}_{6} \mathrm{~N}_{3} \mathrm{O}$ (235.32): C 66.35; H+D 6.42; N 17.86 . Found: C 66.25; H+D 6.37; N 17.90.

5-(3,4-Dihydroisoquinolin-2(1H)-yl)-2-methylpyridazin-3(2H)-one (7h). A mixture of 6 (2 g, $0.0085 \mathrm{~mol})$, tetrahydroisoqinoline ($1.3 \mathrm{~mL}, 0.01 \mathrm{~mol}$) and potassium carbonate $(1.4 \mathrm{~g}, 0.01 \mathrm{~mol})$ was stirred in anhydrous DMF (6 mL) at $110{ }^{\circ} \mathrm{C}$ for 9 h . After cooling, water (40 mL) was added to the mixture, and the crude product was filtered off, washed with water ($3 \times 50 \mathrm{~mL}$) and recrystallized from ethanol, affording 1.7 g (83%) beige crystals: $\mathrm{mp} 175-176{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.28$ (toluene: acetone (7:3, v/v)). ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.73(1 \mathrm{H}, \mathrm{d}, \mathrm{H}-6, J=2.8 \mathrm{~Hz}$), $7.26-$ $7.13\left(4 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\text {aromatic }}\right), 5.92(1 \mathrm{H}, \mathrm{d}, \mathrm{H}-4, J=2.8), 4.44\left(2 \mathrm{H}, \mathrm{s}, \mathrm{H}_{2}-1\right.$ isoquinoline), $3.70(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{N}(2) \mathrm{CH}_{3}\right), 3.59\left(2 \mathrm{H}, \mathrm{t}, \mathrm{H}_{2}-3\right.$ isoquinoline, $\left.J=5.9\right), 2.98\left(2 \mathrm{H}, \mathrm{t}, \mathrm{H}_{2}-4\right.$ isoquinoline, $\left.J=5.9\right) .{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.8(\mathrm{C}-3), 149.2(\mathrm{C}-5), 134.3$ and 132.3 (C-4a and C-8a isoquinoline), 128.1, 128.0, 127.2, 126.7, 126.4 (C-6 pyridazine, C-5, $-6,-7,-8$ isoquinoline), 99.7 (C-4), 47.9 ($\mathrm{C}-1$ isoquinoline) 43.8 ($\mathrm{C}-3$ isoquinoline), $39\left(\mathrm{~N}(2) \mathrm{CH}_{3}\right), 28.5$ (C-4 isoquinoline). IR (potassium bromide): $v_{\max } 3446,3068,3030,2934,2908,2878,2836,1652$, $1624,1586,1516,1500,1446,1408,1390,1374,1358,1332,1312,1296,1258,1230,1182$, 1152, 1112, 1046, 1020, 986, 812, 750, $612 \mathrm{~cm}^{-1}$. Anal. calculated for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}$ (241.29): C 69.69; H 6.27; N 17.41. Found: C 69.69; H 6.29; N 17.66.

5-(Dimethylamino)-2-methylpyridazin-3(2H)-one (7i). A mixture of 6 ($2 \mathrm{~g}, 0.0085 \mathrm{~mol}$) and 20 mL solution of dimethyl amine ($25 \mathrm{wt} . \%$ in ethanol) was stirred at $40^{\circ} \mathrm{C}$ for 7 h . The reaction mixture was evaporated to dryness in vacuo. Then water (50 mL) was added to the residue, and it was extracted with chloroform ($3 \times 50 \mathrm{~mL}$), and the combined organic phases were dried over anhydrous magnesium sulphate. The solvent was evaporated in vacuo, and the crude product was crystallized from ethanol, affording $1.1 \mathrm{~g}(88 \%)$ beige crystals: mp $120-122{ }^{\circ} \mathrm{C}$ (lit. ${ }^{10} 119-120$ ${ }^{\circ} \mathrm{C}$), $\mathrm{R}_{\mathrm{f}}=0.15$ (toluene: acetone 7:3). ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.57(1 \mathrm{H}, \mathrm{d}, \mathrm{H}-6, J=2.8), 5.73$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{H}-4, J=2.6), 3.69\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}(2) \mathrm{CH}_{3}\right), 3.01\left(6 \mathrm{H}, \mathrm{s}, \mathrm{N}(5) \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 161.6 (C-3), 149.6 (C-5), 127.5 (C-6), $98.4(\mathrm{C}-4), 39.2\left(\mathrm{~N}(5) \mathrm{CH}_{3}\right), 38.9\left(\mathrm{~N}(2) \mathrm{CH}_{3}\right)$. IR (potassium bromide): $v_{\max } 2930,1626,1528,1490,1440,1412,1336,1290,1069,987,826 \mathrm{~cm}^{-1}$. Anal. calculated for $\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}$ (153.18): C 54.89; H 7.24; N 27.43. Found: C 54.99; H 7.29; N 27.49.

General procedure for preparation of aldehydes (8) by Vilsmeier-Haack reaction. Typical example

A solution of $7 \mathbf{a}(0.0044 \mathrm{~mol})$ in anhydrous DMF (8 mL) was cooled by ice-water bath. A solution of $\mathrm{POCl}_{3}(1.3 \mathrm{~mL})$ in anhydrous DMF $(3.1 \mathrm{~mL})$ was added dropwise to the mixture 0-6 ${ }^{\circ} \mathrm{C}$. The reaction mixture was allowed to warm to room temperature, and was heated at $60{ }^{\circ} \mathrm{C}$ for 6 hours (monitored by TLC). After evaporation of the solvent (under $60^{\circ} \mathrm{C}$ in vacuo), ice (30 g) was added to the brown oily residue and the mixture was allowed to warm to room temperature. Then it was made alkaline with aqueous 40% sodium hydroxide $(\mathrm{pH}=8)$ and the resulting solution was extracted with chloroform ($5 \times 30 \mathrm{~mL}$). The combined organic phases were dried over anhydrous magnesium sulphate. The solvent was evaporated in vacuo to give the crude product (in this case 8a) which was purified by column chromatography and/or (re)crystallization.
5-(Dimethylamino)-2-methyl-3-oxo-6-phenyl-2,3-dihydropyridazine-4-carbaldehyde
(8a).
The crude product was purified by column chromatography with a mixture of ethyl acetate and dichloromethane (1:1) as the eluent, affording yellow crystals: yield 80%, mp $147-148{ }^{\circ} \mathrm{C}$, $\mathrm{R}_{\mathrm{f}}=0.49$ (ethyl acetate: dichloromethane $1: 1$). ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.32(1 \mathrm{H}, \mathrm{s}$, CHO), 7.48-7.36 (5H, m, $\left.\mathrm{H}_{\text {phenyl }}\right), 3.74\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}(2) \mathrm{CH}_{3}\right), 2.76\left(6 \mathrm{H}, \mathrm{s}, \mathrm{N}(5) \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (50 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 188.7$ (C-formyl), 162.7 (C-3), 151 (C-5), 142.7, 137.2 (C-6 pyridazine, C-1’ phenyl), 128.9, $128.0\left(\mathrm{C}-2^{\prime},-6^{\prime}\right.$ phenyl), $110.8(\mathrm{C}-4), 45.4\left(\mathrm{~N}(5) \mathrm{CH}_{3}\right), 39.0\left(\mathrm{~N}(2) \mathrm{CH}_{3}\right)$.
IR (potassium bromide): $v_{\max } 3422,3050,3024,2992,2954,2922,2856,2776,1664,1634$, $1550,1510,1492,1472,1442,1388,1318,1294,1266,1132,1108,1088,1010,786,776,582$ cm^{-1}. Anal. calculated for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2}$ (257.29): C 65.35 ; H 5.88; N 16.33 . Found: C $65.08 ; \mathrm{H}$ 5.93; N 16.12 .

6-(2,4-Dichlorophenyl)-5-(dimethylamino)-2-methyl-3-oxo-2,3-dihydropyridazine-4-

carbaldehyde (8b). The product was recrystallized from isopropyl alcohol, affording yellow crystals: yield $79 \%, m p 152-153{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.4$ (ethyl acetate: dichloromethane $1: 1$). ${ }^{1} \mathrm{H}$ NMR (200 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.28(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}), 7.55-7.48(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3$ ' phenyl), 7.36-7.34 (2H, m, H-5’ and H-6' phenyl), $3.70\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}(2) \mathrm{CH}_{3}\right), 2.74\left(6 \mathrm{H}, \mathrm{s}, \mathrm{N}(5) \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($\left.50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 188.3 (C-formyl), 162.7 (C-3), 151 (C-5), 139.2, 135.9, 135.1, 134.4 (C-6 pyridazine, C-1', C-2' and C-4' phenyl), 131.8, 129.7, 127.9 (C-3', C-5' and C-6' phenyl), 109.9 (C-4), 44.8 $\left(\mathrm{N}(5) \mathrm{CH}_{3}\right), 39.2\left(\mathrm{~N}(2) \mathrm{CH}_{3}\right)$. IR (potassium bromide): $v_{\max } 3070,330,2994,2924,2894,2862$, $2794,1700,1674,1624,1588,1560,1550,1506,1484,1458,1404,1384,1334,1310,1282$, 1142, 1098, 1058, 1008, 700, 608, 508, $460 \mathrm{~cm}^{-1}$. Anal. calculated for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{2}$ (326.18): C 51.55; H 4.02; N 12.88. Found: C 51.42; H 3.95; N 12.99.
2-Methyl-3-oxo-6-phenyl-5-pyrrolidino-2,3-dihydropyridazine-4-carbaldehyde (8c). The product was crystallized from isopropyl alcohol, affording yellow crystals: yield $40 \%, \mathrm{mp}$ 185$186{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.50$ (ethyl acetate: dichloromethane 1:1). ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.20(1 \mathrm{H}$, $\mathrm{s}, \mathrm{CHO}), 7.39\left(5 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\text {phenyl }}\right)$, $3.67\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}(2) \mathrm{CH}_{3}\right), 3.17-3.11\left(4 \mathrm{H}, \mathrm{m}, \mathrm{N}-\mathrm{CH}_{2}\right.$ pyrrolidine), 1.82-1.76 ($4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}-\mathrm{CH}_{2}$ pyrrolidine). ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 187.6$ (C-formyl), 162.6 (C-3), 148.2 (C-5), 139.7, 137.5 (C-6 pyridazine, C-1' phenyl), 128.8, 127.7 (C-2',-6' phenyl),
105.8 (C-4), 56 (C-2,5 pyrrolidine), $38.3\left(\mathrm{~N}(2) \mathrm{CH}_{3}\right), 25$ (C-3,4 pyrrolidine). IR (potassium bromide): $v_{\max } 3422,3082,3054,3030,2980,2940,2870,2842,1644,1616,1544,1510,1456$, 1390, 1342, 1318, 1296, 1278, 1156, 1074, 1010, 772, 716, 694, $590 \mathrm{~cm}^{-1}$. Anal. calculated for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{2}$ (283.32): C 67.83; H 6.05; N 14.83. Found: C 67.72; H 6.07; N 15.01.
2-Methyl-3-oxo-6-phenyl-5-piperidino-2,3-dihydropyridazine-4-carbaldehyde (8d). The crude product was purified by column chromatography with a mixture of ethyl acetate and dichloromethane (2:8) as the eluent, affording yellow crystals: yield 37%, mp 151-153 ${ }^{\circ} \mathrm{C}$, $\mathrm{R}_{\mathrm{f}}=0.73$ (ethyl acetate: dichloromethane 1:1). ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.32(1 \mathrm{H}, \mathrm{s}$, CHO), 7.30-7.60 ($\left.5 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\text {phenyl }}\right), 3.71\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}(2) \mathrm{CH}_{3}\right), 2.93\left(4 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-2, \mathrm{H}_{2}-6\right.$ piperidine), $1.51\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-4\right.$ piperidine), $1.36\left(4 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-3, \mathrm{H}_{2}-5\right.$ piperidine). ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 189.9$ (C-formyl), 162.6 (C-3), 152.0 (C-5), 144.6 (C-6), 136.7 (C-1’ phenyl), 128.9, 128.8, 128.6 (C-2',-6' phenyl), 114.1 (C-4), 53.5 (C-2,6, piperidine), $39.1\left(\mathrm{~N}(2) \mathrm{CH}_{3}\right), 25.2(\mathrm{C}-3,5$ piperidine), 23.2 (C-4 piperidine). IR (potassium bromide): $v_{\max }$ 2934, 2852, 1678, 1636, 1600, 1542, 1488, 1398, 1328, 1294, 1278, 1254, 1226, 1122, 1014, 776, 714, $578 \mathrm{~cm}^{-1}$. Anal. calculated for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2}$ (297.36): C 68.67; H 6.44; N 14.13. Found: C 68.38; H 6.44; N 14.13. 2-Methyl-5-morpholino-3-oxo-6-phenyl-2,3-dihydropyridazine-4-carbaldehyde (8e). The crude product was purified by column chromatography with a mixture of ethyl acetate and chloroform (1:1) as the eluent, affording yellow crystals: yield 45%, $\mathrm{mp} 195-197{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.52$ (ethyl acetate: chloroform 1:1). ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.37(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}), 7.53-7.41$ $\left(5 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\text {phenyl }}\right), 3.76\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}(2) \mathrm{CH}_{3}\right), 3.59\left(4 \mathrm{H}, \mathrm{t}, \mathrm{O}-\mathrm{CH}_{2}\right.$ morpholine, $\left.J=4.8\right), 2.99(4 \mathrm{H}, \mathrm{m}, \mathrm{N}-$ CH_{2} morpholine, $J=4.8$). ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 189.7$ (C-formyl), 162.4 (C-3), 150.6 (C5), 143.9 (C-6), 136.6 (C-1' phenyl), 129.2, 128.9, 128.5 (C-2'-6' phenyl), 114.3 (C-4), 66.2 (C2,6 morpholine), 52.7 (C-3,5 morpholine), $39.3\left(\mathrm{~N}(2) \mathrm{CH}_{3}\right)$. IR (potassium bromide): $v_{\max } 3444$, 3056, 3002, 2952, 2920, 2876, 2850, 1664, 1631, 1598, 1540, 1484, 1430, 1394, 1362, 1332, $1322,1290,1256,1192,1110,1070,1034,1012,956,918,904,836,772,732,710,700,686$, $612,582,546,500 \mathrm{~cm}^{-1}$. Anal. calculated for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3}$ (299.32): C 64.20; H 5.72; N 14.04 . Found: C 64.26; H 5.71; N 14.02.

5-[N-Benzyl- N-methylamino]-2-methyl-3-oxo-6-phenyl-2,3-dihydropyridazine-4-

carbaldehyde (8f). The crude product was purified by column chromatography with a mixture of ethyl acetate and dichloromethane (1:1) as the eluent, affording yellow crystals: yield 48%, $\mathrm{mp} 127-128{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.67$ (ethyl acetate: dichloromethane 1:1). ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $10.38(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}), 7.34-7.09\left(10 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\text {aromatic }}\right), 4.07\left(2 \mathrm{H}, \mathrm{s}, \mathrm{N}(5) \mathrm{CH}_{2}\right), 3.78\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}(2) \mathrm{CH}_{3}\right)$, $2.57\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}(5) \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 189.8$ (C-formyl), 163.3 (C-3), 151.8 (C5), 144.2, 137.7, 136.8 (C-6, C-1' phenyl and C-1" benzyl), 129.6, 129.5, 129.3, 129.1, 128.9, $128.8\left(\mathrm{C}_{\text {aromatic }}\right), 113.4(\mathrm{C}-4), 62.3\left(\mathrm{~N}(2) \mathrm{CH}_{3}\right), 43.6\left(\mathrm{~N}(5) \mathrm{CH}_{3}\right), 39.9\left(\mathrm{~N}-\mathrm{CH}_{2}-\mathrm{Ph}\right)$. IR (potassium bromide): $v_{\max } 3568,3410,3056,3022,2952,2926,2852,1670,1634,1538,1510,1492,1432$, $1406,1392,1316,1294,1268,1244,1180,1156,832,780,762,710,690,582,544,506,466$ cm^{-1}. Anal. calculated for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2}$ (333.39): C 72.05; H 5.74; N 12.60. Found: C 71.87; H 5.59; N 12.43.

5-(Dimethylamino- \boldsymbol{d}_{6})-2-methyl-3-oxo-6-phenyl-2,3-dihydropyridazine-4-carbaldehyde

(8g). The crude product was purified by column chromatography with a mixture of ethyl acetate and dichloromethane (1:1) as the eluent, affording yellow crystals: yield 69%, mp 146-148 ${ }^{\circ} \mathrm{C}$, $\mathrm{R}_{\mathrm{f}}=0.48$ (ethyl acetate: dichloromethane $1: 1$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.32(1 \mathrm{H}, \mathrm{s}$, $\mathrm{CHO}), 7.50-7.36\left(5 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\text {phenyl }}\right), 3.74\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}(2) \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 188.7$ (C-formyl), 162.7 (C-3), 151.0 (C-5), 142.6, 137.2 (C-6 pyridazine, C-1’ phenyl), 128.9, 128.8 and $128.0\left(\mathrm{C}-2^{\prime},-6\right.$ ' phenyl), $110.6(\mathrm{C}-4), 44.6\left(\mathrm{~N}(5) \mathrm{CD}_{3}\right), 39.0\left(\mathrm{~N}(2) \mathrm{CH}_{3}\right)$. IR (potassium bromide): $v_{\max } 3050,2954,2856,2774,2246,2216,2128,2062,1666,1634,1578,1540,1488$, $1438,1398,1318,1294,1264,1198,1122,1100,1072,1058,1046,1014,994,940,902,876$, $834,810,786,774,732,716,700,666,636,578,542 \mathrm{~cm}^{-1}$. Anal. calculated for $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{D}_{6} \mathrm{~N}_{3} \mathrm{O}_{2}$ (263.15): C 63.86; H+D 5.73; N 15.96. Found: C 63.39; H+D 5.68; N 15.94.

5-(3,4-Dihydroisoquinolin-2(1H)-yl)-2-methyl-3-oxo-2,3-dihydropyridazin-4-carbaldehyde
(8h). The product was crystallized from isopropyl alcohol, affording pale yellow crystals: yield $51 \%, \mathrm{mp} 181-183{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.52$ (ethyl acetate: dichloromethane $1: 1$). ${ }^{1} \mathrm{H} \mathrm{NMR}(200 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 10.33(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}), 7.87(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-6), 7.28-7.21\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\text {aromatic }}\right), 7.07-7.03(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{H}_{\text {aromatic }}\right), 4.48\left(2 \mathrm{H}, \mathrm{s}, \mathrm{H}_{2}-1\right.$ isoquinoline $), 3.77\left(2 \mathrm{H}, \mathrm{t}, \mathrm{H}_{2}-3\right.$ isoquinoline, $\left.J=5.8\right), 3.69(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{N}(2) \mathrm{CH}_{3}\right), 3.09\left(2 \mathrm{H}, \mathrm{t}, \mathrm{H}_{2}-4\right.$ isoquinoline, $\left.J=5.8\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 188.7(\mathrm{C}-$ formyl), $162.8(\mathrm{C}-3), 148.2(\mathrm{C}-5), 133.8$ and 132.7 (C-4a and $\mathrm{C}-8 \mathrm{a}$ isoquinoline), 128.9, 128.1, 127.3, 126.9, 126.1 (C-6 pyridazine, $\mathrm{C}-5,-6,-7,-8$ isoquinoline), 107.3 (C-4), 54.3 (C-1 isoquinoline) 48.3 ($\mathrm{C}-3$ isoquinoline), $39\left(\mathrm{~N}(2) \mathrm{CH}_{3}\right), 28.9$ ($\mathrm{C}-4$ isoquinoline). IR (potassium bromide): $v_{\max } 3424,3068,3038,2946,2844,1652,1634,1562,1496,1460,1436,1410,1382$, $1370,1300,1258,1200,1176,1104,1018,922,890,868,836,756,690,646,540 \mathrm{~cm}^{-1}$. Anal. calculated for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2}$ (269.30): C 66.90; H 5.61; N 15.60. Found: C 66.63; H 5.44; N 15.61. 5-(Dimethylamino)-2-methyl-3-oxo-2,3-dihydropyridazine-4-carbaldehyde (8i). According to the general procedure for preparation of aldehydes from $7 \mathbf{i}$. The product was crystallized from acetone, affording pale yellow crystals: yield 77%, mp $141-143{ }^{\circ} \mathrm{C}$ (lit. ${ }^{11} \mathrm{mp} 141-142{ }^{\circ} \mathrm{C}$), $\mathrm{R}_{\mathrm{f}}=0.33$ (ethyl acetate: dichloromethane $1: 1$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.28(1 \mathrm{H}, \mathrm{s}$, $\mathrm{CHO}), 7.74(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-6), 3.69\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}(2) \mathrm{CH}_{3}\right), 3.13\left(6 \mathrm{H}, \mathrm{s}, \mathrm{N}(5) \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}(50 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 188.7$ (C-formyl), $162.7(\mathrm{C}-3), 149.2(\mathrm{C}-5), 128.9(\mathrm{C}-6), 106.5(\mathrm{C}-4), 43.7\left(\mathrm{~N}(5) \mathrm{CH}_{3}\right)$, $38.9\left(\mathrm{~N}(2) \mathrm{CH}_{3}\right)$. IR (potassium bromide): $v_{\max } 3446,2928,2867,1629,1584,1535,1477,1371$, 1302, 1252, 1162, 1127, 1060, $852 \mathrm{~cm}^{-1}$. Anal. calculated for $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}$ (181.21): C 53.03; H 6.12; N 23.19. Found: C 53.06; H 6.15; N 23.26 .

General procedure for the synthesis of malononitriles (9a-h). Typical example

To a solution of aldehyde $(0.005 \mathrm{~mol}) \mathbf{8}$ in ethanol $(10 \mathrm{ml})$, malononitrile (0.005) and 1-2 drops of piperidine were added. The mixture was stirred at room temperature until the starting material had been consumed (monitored by TLC). The precipitated product was then filtered off, washed with ethanol, diethyl ether and hexane. The crude product was purified by flash column chromatography with a mixture of dichloromethane and ethyl acetate $(1: 1)$ as the eluent.
\{[5-(Dimethylamino)-2-methyl-3-oxo-6-phenyl-2,3-dihydropyridazin-4-yl]methylene\} malononitrile (9a). Deep orange crystals: yield 73%, mp 180-182 ${ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.6$ (ethyl acetate: dichloromethane $1: 1$). ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.3(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}=\mathrm{C})$, 7.48-7.44 ($5 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{H}_{\text {phenyl }}\right), 3.72\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}(2) \mathrm{CH}_{3}\right), 2.93\left(6 \mathrm{H}, \mathrm{s}, \mathrm{N}(5) \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.4(\mathrm{C}-$ 3), $156.7(=\mathrm{CH}), 152.8(\mathrm{C}-5), 140.7(\mathrm{C}-6), 136.5(\mathrm{C}-1$ ' phenyl), 129.3, 129.2, 127.8 (C-2',-6' phenyl), 114.8, $113.3(\mathrm{CN}), 105.7(\mathrm{C}-4), 78.9\left(\mathrm{C}(\mathrm{CN})_{2}\right), 46.1\left(\mathrm{~N}(5) \mathrm{CH}_{3}\right), 39.2\left(\mathrm{~N}(2) \mathrm{CH}_{3}\right)$. IR (potassium bromide): $v_{\max } 3412,3050,2937,2212,1636,1564,1513,1447,1398,1273,1166$, 1008, 943, $770 \mathrm{~cm}^{-1}$. Anal. calculated for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{Ox} 0.2 \mathrm{H}_{2} \mathrm{O}$ (308.94): C $66.09 ; \mathrm{H} 5.02 ; \mathrm{N}$ 22.64. Found: C 65.98; H 5.02; N 22.24. MS: $[\mathrm{M}+\mathrm{H}]^{+}: 306$.
\{[6-(2,4-Dichlorophenyl)-5-(dimethylamino)-2-methyl-3-oxo-2,3-dihydropyridazin-4-yl] methylene\}malononitrile (9b). Deep orange crystals: yield 70%, mp 200-202 ${ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.73$ (ethyl acetate: dichloromethane 1:1). ${ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.1(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}=\mathrm{C}), 7.60-$ $7.30\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\text {aromatic }}\right), 3.74\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}(2) \mathrm{CH}_{3}\right), 2.80\left(6 \mathrm{H}, \mathrm{s}, \mathrm{N}(5) \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (50 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 158.9(\mathrm{C}-3), 156.2(=\mathrm{CH}), 152.8(\mathrm{C}-5), 138.7,136.3,134.4$ (C-6 pyridazine, $\mathrm{C}-1$ ' phenyl, C-2' and C-4' phenyl), 131.9, 129.8, 128.0 (C-3' phenyl, C-5' and C-6' phenyl), 114.0, $109.2(\mathrm{CN})$, $112.3(\mathrm{C}-4), 84.0\left(\mathrm{C}(\mathrm{CN})_{2}\right), 44.4\left(\mathrm{~N}(5) \mathrm{CH}_{3}\right), 39.7\left(\mathrm{~N}(2) \mathrm{CH}_{3}\right)$. IR (potassium bromide): $v_{\max } 3586,3566,3422,3274,3088,3010,2926,2886,2796,2258,2224,1640,1550$, $1506,1484,1456,1440,1402,1384,1334,1314,1282,1264,1244,1214,1156,1090,1060$, 1014, 996, 938, 924, 870, 838, 796, 782, 732, 698, 570, $470 \mathrm{~cm}^{-1}$. Anal. calculated for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{Cl}_{2} \mathrm{~N}_{5} \mathrm{O}$ (374.23): C 54.56; H 3.50; N 18.71. Found: C 54.33; H 3.35; N 18.35.
[(2-Methyl-3-oxo-6-phenyl-5-pyrrolidino-2,3-dihydropyridazin-4-yl)methylene]malono-
nitrile (9c). Yellow crystals: 77%, $\mathrm{mp} 185-186^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.66$ ethyl acetate: dichloromethane 1:1). ${ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.50(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}=\mathrm{C}), 7.56-7.41\left(5 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\text {phenyl }}\right), 3.69(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{N}(2) \mathrm{CH}_{3}\right), 3.03\left(4 \mathrm{H}, \mathrm{m}, \mathrm{N}-\mathrm{CH}_{2}\right.$ pyrrolidine), $1.93\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}-\mathrm{CH}_{2}\right.$ pyrrolidine). ${ }^{13} \mathrm{C}$ NMR (50 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.8(\mathrm{C}-3), 156.5(=\mathrm{CH}), 148.9(\mathrm{C}-5), 139.7(\mathrm{C}-6), 136.3(\mathrm{C}-1$ ' phenyl), 129.3, 129, 127.7 (C-2',-6’ phenyl), 114.8, $113.3(\mathrm{CN}), 103.1(\mathrm{C}-4), 74.9\left(C(\mathrm{CN})_{2}\right), 55.8(\mathrm{C}-2,5$ pyrrolidine), $38.7\left(\mathrm{~N}(2) \mathrm{CH}_{3}\right)$, $25\left(\mathrm{C}-3,4\right.$ pyrrolidine). IR (potassium bromide): $v_{\max } 3412,2976$, $2216,1637,1556,1480,1441,1276,1142,1012,927,768,705,594 \mathrm{~cm}^{-1}$. Anal. calculated for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}$ (331.37): C 68.87; H 5.17; N 21.13. Found: C 68.34; H 5.17; N 20.99. HRMS calculated for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}$: 331.1511. Found: 331.1499.
[(2-Methyl-3-oxo-6-phenyl-5-piperidino-2,3-dihydropyridazin-4-yl)methylene]malononitrile (9d). Deep orange crystals: $78 \%, \mathrm{mp} 170-172{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.93$ (ethyl acetate: dichloromethane 1:1). ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.60(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}=\mathrm{C}), 7.55-7.30(5 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{H}_{\text {phenyl }}\right), 3.75\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}(2) \mathrm{CH}_{3}\right)$, 3.15-2.85 $\left(4 \mathrm{H}, \mathrm{m}, \mathrm{N}-\mathrm{CH}_{2}\right.$ piperidine), $1.65-1.25\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}-\right.$ $\mathrm{CH}_{2}-\mathrm{CH}_{2}$ piperidine). ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.7(\mathrm{C}-3), 153.9(\mathrm{C}-5), 153.5$ (=CH), 143.0 (C-6), 136.3 (C-1’ phenyl), 129.1, 128.9, 128.1 (C-2',-6' phenyl), 114.3, 113.5, 112.5 (C4, CN), $86.7\left(C(\mathrm{CN})_{2}\right), 54.1(\mathrm{C}-2,6$ piperidine $), 40.0\left(\mathrm{~N}(2) \mathrm{CH}_{3}\right), 26.6(\mathrm{C}-3,5$ piperidine $), 23.1(\mathrm{C}-$ 4 piperidine). IR (potassium bromide): $v_{\max } 3444,2936,2856,2220,1740,1698,1650,1560$, 1542, 1508, 1476, 1442, 1398, 1368, 1322, 1214, 1102, 1020, $708 \mathrm{~cm}^{-1}$. Anal. calculated for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}$ (345.40): C 69.55; H 5.54; N 20.28. Found: C 69.42; H 5.56; N 20.32.
[(2-Methyl-5-morpholino-3-oxo-6-phenyl-2,3-dihydropyridazin-4-yl)methylene]malononitrile (9e). Orange crystals: $64 \%, \mathrm{mp} 184-187^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.8$ (ethyl acetate: dichloromethane 1:1). ${ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.68(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}=\mathrm{C}), 7.52-7.38\left(5 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\text {phenyl }}\right), 3.80(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{N}(2) \mathrm{CH}_{3}\right), 3.61\left(4 \mathrm{H}, \mathrm{t}, \mathrm{O}-\mathrm{CH}_{2}\right.$ morpholine, $\left.J=4.6\right), 3.05\left(4 \mathrm{H}, \mathrm{m}, \mathrm{N}-\mathrm{CH}_{2}\right.$ morpholine, $\left.J=4.6\right) .{ }^{13} \mathrm{C}$ NMR ($\left.50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 157.7(\mathrm{C}-3), 153.5(=\mathrm{CH}), 152.8(\mathrm{C}-5), 142.8(\mathrm{C}-6), 135.8(\mathrm{C}-1$, phenyl), $129.5,129.2,128.3$ (C-2',-6' phenyl), 114.2, 113.8, $128.3(\mathrm{C}-4, \mathrm{CN}), 88.5\left(C(\mathrm{CN})_{2}\right)$, 66.8 (C-2,6 morpholine), 52.4 ($\mathrm{C}-3,5$ morpholine), $40.2\left(\mathrm{~N}(2) \mathrm{CH}_{3}\right)$. IR (potassium bromide): $v_{\max } 3412,2963,2906,2852,2220,1646,1567,1545,1481,1436,1322,1256,1204,1111$, 1031, 782, $710 \mathrm{~cm}^{-1}$. Anal. calculated for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}_{2}$ (347.38): C 65.69; H 4.93; N 20.16. Found: C 65.02; H 4.94; N 19.72. HRMS calculated for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}_{2}$: 348.1461. Found: 348.1447.
\{[5-(Dimethylamino-d ${ }_{6}$)-2-methyl-3-oxo-6-phenyl-2,3-dihydropyridazin-4-yl]methylene\} malononitrile (9g). Deep orange crystals: $63 \%, \mathrm{mp} 181-183{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.56$ ethyl acetate : dichloromethane 1:1). ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.33(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}=\mathrm{C}), 7.65-7.35(5 \mathrm{H}, \mathrm{m}$, $\mathrm{H}_{\text {phenyl }}$), $3.73\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}(2) \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($\left.50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.5(\mathrm{C}-3), 156.8(=\mathrm{CH}), 152.8$ (C-5), 140.6 (C-6), 136.5 (C-1' phenyl), 129.3, 129.2, 127.9 (C-2',-6' phenyl), 114.5, 113.2 $(\mathrm{CN}), 105.4(\mathrm{C}-4), 78.7\left(\mathrm{C}(\mathrm{CN})_{2}\right), 39.2\left(\mathrm{~N}(2) \mathrm{CH}_{3}\right)$. IR (potassium bromide): $v_{\max } 3428,3250$, 3024, 2936, 2256, 2208, 1636, 1552, 1496, 1442, 1332, 1272, 1142, 1098, 1026, 992, 960, 768, $722,696,594,542 \mathrm{~cm}^{-1}$. Anal. calculated for $\mathrm{C}_{17} \mathrm{H}_{9} \mathrm{D}_{6} \mathrm{~N}_{5} \mathrm{O}$ (311.38): C $65.58 ; \mathrm{H}+\mathrm{D} 4.85 ; \mathrm{N}$ 22.49. Found: C65.16; H+D 4.79; N 22.56. MS: $[\mathrm{M}+\mathrm{H}]^{+}: 312$. Based on the comparison of spectra of $\mathbf{9 g}$ to those of $\mathbf{9 a}$, it was confirmed that no deuterium was lost ($>98 \%$ deuterium).
\{[5-(Dimethylamino)-2-methyl-3-oxo-2,3-dihydropyridazin-4-yl]methylene\}malononitrile (9i). Orange crystals: $48 \%, m p 180-182{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.47$ (ethyl acetate: dichloromethane $1: 1$). ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.31(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}=\mathrm{C}), 7.82(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-6), 3.69\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}(2) \mathrm{CH}_{3}\right), 3.12$ $\left(6 \mathrm{H}, \mathrm{s}, \mathrm{N}(5) \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.5(\mathrm{C}-3), 157.1(=\mathrm{CH}), 150.6(\mathrm{C}-5), 128.5$ (C-6), 114, $111.9(\mathrm{CN})$, $104.2(\mathrm{C}-4), 81.6\left(\mathrm{C}(\mathrm{CN})_{2}\right), 42.6\left(\mathrm{~N}(5) \mathrm{CH}_{3}\right), 39.3\left(\mathrm{~N}(2) \mathrm{CH}_{3}\right)$. IR (potassium bromide): $v_{\max } 3429,3086,2948,2221,1623,1585,1535,1476,1405,1369,1303$, 1260, 1167, 1111, 1020, 959, 757, $679 \mathrm{~cm}^{-1}$. Anal. calculated for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~N}_{5} \mathrm{O}$ (229.24): C 57.63; H 4.84; N 30.55. Found: C 57.31; H 4.86; N 30.00. HRMS calculated for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~N}_{5} \mathrm{O}: 230.1042$. Found: 230.1033.

General procedure for the synthesis of $10 \mathrm{a}-\mathrm{c}, 10 \mathrm{~h}, 10 \mathrm{i}$. Knoevenagel condensation of aldehydes with DMB. Typical example
To a s olution of formyl derivative $8(0.001 \mathrm{~mol})$ in ethanol (5 mL) 1,3-dimethylpyrimidine$2,4,6(1 H, 3 H, 5 H)$-trione (1,3-dimethylbarbituric acid, DMB) $(0.001 \mathrm{~mol})$ was added. The mixture was stirred at ambient temperature until the starting material had been consumed (monitored by TLC). The precipitated products were then filtered off, which was then washed with ethanol, diethyl ether and hexane to give analytically pure crystals at all times.
5-\{[5-(Dimethylamino)-2-methyl-3-oxo-6-phenyl-2,3-dihydropyridazin-4-yl]methylene\}-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione (10a). Yellow crystals: $84 \%, \mathrm{mp} 188-189{ }^{\circ} \mathrm{C}$,
$\mathrm{R}_{\mathrm{f}}=0.21$ (toluene: acetone 7:3). ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.94(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}=\mathrm{C}), 7.82-7.77$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3^{\prime}$ and $\mathrm{H}-5^{\prime}$ phenyl), 7.52-7.42 (3H, m, H-2' phenyl, H-4' and H-6' phenyl), 3.74 (3 H , $\mathrm{s}, \mathrm{N}(2) \mathrm{CH}_{3}$ pyridazine), 3.42 and $3.35\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}(1) \mathrm{CH}_{3}\right.$ and $3 \mathrm{H}, \mathrm{s}, \mathrm{N}(3) \mathrm{CH}_{3}$ pyrimidine), 2.78 $\left(6 \mathrm{H}, \mathrm{s}, \mathrm{N}(5) \mathrm{CH}_{3}\right.$ pyridazine). ${ }^{13} \mathrm{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.8,161.3,159.5$ (C-3 pyridazine, C-6 and C-4 pyrimidine), 155.7 and 151.7 (C-5 pyridazine and C-2 pyrimidine), $151.5(=\mathrm{CH})$, 140 (C-6 pyridazine), 137.1 (C-1' phenyl), 129 and 127.6 (C-2'-6' phenyl), 112.4 and 107.6 (C-5 pyrimidine and C-4 pyridazine), $46\left(\mathrm{~N}(5) \mathrm{CH}_{3}\right), 39.1\left(\mathrm{~N}(2) \mathrm{CH}_{3}\right.$ pyridazine), 28.6 and 28.1 $\left(\mathrm{N}(1) \mathrm{CH}_{3}\right.$ and $\mathrm{N}(3) \mathrm{CH}_{3}$ pyrimidine). IR (potassium bromide): $v_{\max } 3446,3062,2940,1712$, $1650,1570,1496,1462,1400,1378,1324,1296,1282,1176,1120,1084,1058,1016,974,960$, $780,760,712,576,540,480,454 \mathrm{~cm}^{-1}$. Anal. calculated for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}_{4}$ (395.42): C $60.75 ; \mathrm{H}$ 5.35; N 17.71. Found: C 60.59; H 5.33; N 17.65. MS: $[\mathrm{M}+\mathrm{H}]^{+}: 396$.

5-\{[6-(2,4-Dichlorophenyl)-5-dimethylamino-2-methyl-3-oxo-2,3-dihydropyridazin-4-yl] methylene\}-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione (10b). Orange crystals: 61%, mp 134-135 ${ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.27$ (petroleum ether (bp $40-70{ }^{\circ} \mathrm{C}$): ethyl acetate $1: 1$). ${ }^{1} \mathrm{H}$ NMR (200 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.69(0.5 \mathrm{H}$, broad s, $\mathrm{CH}=\mathrm{C}), 8.00(0.5 \mathrm{H}$, broad s, $\mathrm{CH}=\mathrm{C}), 7.53-7.30(3 \mathrm{H}$, broad m, H$3^{\prime}$ phenyl, H-5' and H-6' phenyl), $3.75\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}(2) \mathrm{CH}_{3}\right.$ pyridazine), 3.41 and $3.35(3 \mathrm{H}, \mathrm{s}$, $\mathrm{N}(1) \mathrm{CH}_{3}$ and 3 H , board $\mathrm{s}, \mathrm{N}(3) \mathrm{CH}_{3}$ pyrimidine), $2.66\left(6 \mathrm{H}\right.$, board $\left.\mathrm{s}, \mathrm{N}-\mathrm{CH}_{3}\right)$. Due to the atropisomerism, at room temperature in the ${ }^{13} \mathrm{C}$ NMR spectrum broadened signals are present. On heating the sample in NMR tube, transformation to 12b occurred. IR (potassium bromide): $v_{\max } 3446,2926,1676,1620,1578,1455,1379,1305,1094,1055,753 \mathrm{~cm}^{-1}$. Anal. calculated for: $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{Cl}_{2} \mathrm{~N}_{5} \mathrm{O}_{4}$ (464.30): C 51.74; H 4.12; N 15.08 . Found: C 51.13; H 4.02; N 14.81. HRMS calculated for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{Cl}_{2} \mathrm{~N}_{5} \mathrm{O}_{4}$: 464.0892. Found: 464.0871.
1,3-Dimethyl-5-[(2-methyl-3-oxo-6-phenyl-5-pyrrolidino-2,3-dihydropyridazin-4-yl)methyl-lene]pyrimidine-2,4,6(1H,3H,5H)-trione (10c). Orange crystals: $86 \%, \mathrm{mp} 161-163{ }^{\circ} \mathrm{C}$, $\mathrm{R}_{\mathrm{f}}=0.38$ (ethyl acetate). ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.27(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}=\mathrm{C}), 7.94(2 \mathrm{H}, \mathrm{d}, \mathrm{H}-3$) and H-5' phenyl), 7.53-7.43 (3H, m, H-2' phenyl, H-4' and H-6' phenyl), $3.73\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}(2) \mathrm{CH}_{3}\right.$ pyridazine), 3.43 and $3.33\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}(1) \mathrm{CH}_{3}\right.$ and $3 \mathrm{H}, \mathrm{s}, \mathrm{N}(3) \mathrm{CH}_{3}$ pyrimidine), $2.82\left(4 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}\right.$, pyrrolidine), $1.83\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}-\mathrm{CH}_{2}\right.$, pyrrolidine). ${ }^{13} \mathrm{C} \mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.8,161.3$, 159.5 (C-3 pyridazine, C-4 and C-6 pyrimidine), 153 and 151.9 (C-5 pyridazine and C-2 pyrimidine), $151.7(=\mathrm{CH}$), 139.4 (C-6 pyridazine), 137 (C-1' phenyl), 128.9 and 127.7 (C-2'-6' phenyl), 109.2 and 104.4 (C-5 pyrimidine and C-4 pyridazine), 55.3 (C-2, -5 pyrrolidine), 38.9 $\left(\mathrm{N}(2) \mathrm{CH}_{3}\right.$ pyridazine), 28.6 and $28\left(\mathrm{~N}(1) \mathrm{CH}_{3}\right.$ and $\mathrm{N}(3) \mathrm{CH}_{3}$ pyridazine), 24.8 (C-3,-4 pyrrolidine). IR (potassium bromide): $v_{\max } 3362,2946,1716,1647,1558,1484,1380,1350$, 1300, 1277, 1250, 1146, 1050, 955, $703 \mathrm{~cm}^{-1}$. Anal. calculated for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}_{4}$ (421.45): C 62.70; H 5.50; N 16.62. Found: C 62.60; H 5.61; N 16.37 .

5-\{[5-(Dimethylamino- d_{6})-2-methyl-3-oxo-6-phenyl-2,3-dihydropyridazin-4-yl]methylene\}-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione (10g). Yellow crystals: 81%, mp 188-190 ${ }^{\circ} \mathrm{C}$, $\mathrm{R}_{\mathrm{f}}=0.24$ (toluene: acetone 7:3). ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.97(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}=\mathrm{C}), 7.83-7.70$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3$ ' and H-5' phenyl), 7.60-7.35 (3H, m, H-2' phenyl, H-4' and H-6' phenyl), $3.73(3 \mathrm{H}$, s, $\mathrm{N}(2) \mathrm{CH}_{3}$), 3.41 and $3.35\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}(1) \mathrm{CH}_{3}\right.$ and $3 \mathrm{H}, \mathrm{s}, \mathrm{N}(3) \mathrm{CH}_{3}$ pyrimidine). ${ }^{13} \mathrm{C}$ NMR (50
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.5,160.4,160.2$ (C-3 pyridazine, C-6 and C-4 pyrimidine), 155.8 and 151.8 (C-5 pyridazine and C-2 pyrimidine), $151.6(=\mathrm{CH}), 140.0$ (C-6 pyridazine), 137.2 (C-1' phenyl), 129.0 and 127.7 (C-2'-6' phenyl), 112.4 and 107.5 (C-5 pyrimidine, C-4 pyridazine), 39.2 $\left(\mathrm{N}(2) \mathrm{CH}_{3}\right.$ pyridazine), 28.6 and $28.1\left(\mathrm{~N}(1) \mathrm{CH}_{3}\right.$ and $\mathrm{N}(3) \mathrm{CH}_{3}$ pyrimidine). IR (potassium bromide): $v_{\max } 3442,1712,1652,1558,1522,1478,1414,1378,1324,1294,1234,1154,1090$, 1054, 782, 714, $480 \mathrm{~cm}^{-1}$. Anal. calculated for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{D}_{6} \mathrm{~N}_{5} \mathrm{O}_{4}$ (401.45): C 59.84; $\mathrm{H}+\mathrm{D} 5.27 ; \mathrm{N}$ 17.44. Found: C 59.36; H+D 5.19; N 17.01. MS: $[\mathrm{M}+\mathrm{H}]^{+}$: 402. Based on the comparison of spectra of $\mathbf{1 0 g}$ to those of 10a, it was confirmed that no deuterium was lost ($>98 \%$ deuterium).
5-\{[5-(Dimethylamino)-2-methyl-3-oxo-2,3-dihydropyridazin-4-yl]methylene\}-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione (10i). Orange crystals: $89 \%, \mathrm{mp} 207-209{ }^{\circ} \mathrm{C}$, $\mathrm{R}_{\mathrm{f}}=0.24$ (ethyl acetate: chloroform 9:1). ${ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.9(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}=\mathrm{C}), 7.81$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-6), 3.69\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}(2) \mathrm{CH}_{3}\right), 3.41$ and $3.28\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}(1) \mathrm{CH}_{3}\right.$ and $3 \mathrm{H}, \mathrm{s}, \mathrm{N}(3) \mathrm{CH}_{3}$ pyrimidine), $2.92\left(6 \mathrm{H}, \mathrm{s}, \mathrm{N}(5) \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.2,160.7,159.5(\mathrm{C}-3$ pyridazine, C-4 and C-6 pyrimidine), $152.3,151.6$ (C-5 pyridazine, C-2 pyrimidine and $=\mathrm{CH}$), 128.3 (C-6 pyridazine), 115.5 and 106.4 (C-5 pyrimidine and C-4 pyridazine), $43.1\left(\mathrm{~N}(5) \mathrm{CH}_{3}\right.$ pyridazine), $39.4\left(\mathrm{~N}(2) \mathrm{CH}_{3}\right.$ pyridazine), 28.8 and $28.2\left(\mathrm{~N}(1) \mathrm{CH}_{3}\right.$ and $\mathrm{N}(3) \mathrm{CH}_{3}$ pyrimidine). IR (potassium bromide): $v_{\max } 3440,2954,1716,1655,1589,1506,1410,1275,1257,1167,1084$, 943, $754 \mathrm{~cm}^{-1}$. Anal. calculated for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}_{4}$ (319.32): C 52.66; H 5.37; N 21.93. Found: C 52.64; H 5.41; N 21.68.

General procedure for the isomerization of vinyl compounds 9: preparation of compounds 11
Compound $9(0.005 \mathrm{~mol})$ in anhydrous DMF $(10 \mathrm{ml})$ was heated at $100^{\circ} \mathrm{C}$ (in case of compound $\mathbf{9 b}$ and $\mathbf{9 g}$ at $155^{\circ} \mathrm{C}$) until the starting material had been consumed (monitored by TLC). After evaporation of the solvent in vacuo, water (5 mL) was added to the oily residue, and the mixture was extracted with chloroform ($3 \times 5 \mathrm{~mL}$). The combined organic phases were dried over anhydrous magnesium sulphate. The solvent was evaporated in vacuo, and the crude product was purified by column chromatography or crystallization. In case of compounds 11a, 11b and 11d, the precipitated crystals were filtered off and washed with water $(3 \times 2 \mathrm{~mL})$. The crude product was purified by column chromatography or crystallization.
1,6-Dimethyl-5-oxo-8-phenyl-1,4,5,6-tetrahydropyrido[2,3-d]pyridazine-3,3(2H)-
dicarbonitrile (11a). The crude product was purified by column chromatography with a mixture of petroleum ether ($\mathrm{bp} 40-70^{\circ} \mathrm{C}$) and ethyl acetate (1:1) as the eluent, affording beige crystals: yield $47 \%, m p 190-192{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.38$ (petroleum ether (bp 40-70 ${ }^{\circ} \mathrm{C}$): ethyl acetate $1: 1$). ${ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.5-7.43\left(5 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\text {phenyl }}\right), 3.80\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}(6) \mathrm{CH}_{3}\right), 3.75\left(2 \mathrm{H}, \mathrm{s}, \mathrm{H}_{2}-2\right), 3.40$ $\left(2 \mathrm{H}, \mathrm{s}, \mathrm{H}_{2}-4\right), 2.67\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}(1) \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.2(\mathrm{C}-5), 145.3$ and 140.3 (C-8 and C-8a), 136.0 (C-1' phenyl), 129.2 (C-4' phenyl), 129.0, 127.9 (C-2' phenyl, C-3', C-5' and C-6' phenyl), 113.8 and $111.4(\mathrm{C}-4 \mathrm{a}$ and CN$)$, $56.1(\mathrm{C}-2), 43.9\left(\mathrm{~N}(1) \mathrm{CH}_{3}\right), 39.8\left(\mathrm{~N}(6) \mathrm{CH}_{3}\right)$, 32.1 (C-4), 26.2 (C-3). IR (potassium bromide): $v_{\max } 2966,1626,1441,1401,1278,1075,776$,
$703 \mathrm{~cm}^{-1}$. Anal. calculated for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{O}$ (305.33): C 66.87; H 4.95; N 22.94. Found: C 67.03; H 5.11; N 23.02. MS: $[\mathrm{M}+\mathrm{H}]^{+}: 306$.

8-(2,4-Dichlorophenyl)-1,6-dimethyl-5-oxo-1,4,5,6-tetrahydropyrido[2,3-d]pyridazine-

$\mathbf{3 , 3 (2 H})$-dicarbonitrile (11b). The product was crystallized from isopropyl alcohol, affording beige crystals: yield 35%, mp 221-222 ${ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.75$ (ethyl acetate: dichloromethane $1: 1$). ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.51$ (1 H , broad s, $\mathrm{H}-3^{\prime}$ phenyl), $7.40(2 \mathrm{H}$, broad s, H-5’ and H-6’ phenyl), $3.78\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}(6) \mathrm{CH}_{3}\right), 3.73(1 \mathrm{H}, \mathrm{d}, \mathrm{Ha}-2, J=16.0), 3.70(1 \mathrm{H}, \mathrm{d}, \mathrm{Hb}-2, J=16.0), 3.50$ ($1 \mathrm{H}, \mathrm{d}, \mathrm{Ha}-4, J=17.0$), $3.25(1 \mathrm{H}, \mathrm{d}, \mathrm{Hb}-4, J=17.0), 2.67\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}(1) \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (50 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 159.1(\mathrm{C}-5), 145.1,136.9,136.1134 .3$ and 133.9 (C-1' phenyl, C-2' and C-4' phenyl, C-8 and C-8a), 131.9, 129.8, 127.9 (C-3' phenyl, C-5' and C-6' phenyl), 113.6 and 110.1 (C-4a and CN), $56.3(\mathrm{C}-2), 42.7$ and $39.8\left(\mathrm{~N}(1) \mathrm{CH}_{3}\right.$ and $\left.\mathrm{N}(6) \mathrm{CH}_{3}\right), 31.9(\mathrm{C}-4), 26.9$ (C-3). IR (potassium bromide): $v_{\max } 3748,3674,3650,3614,3588,3566,3422,2926,1700,1682,1634$, 1578, 1558, 1542, 1508, 1490, 1474, 1458, 1436, 1412, 1378, 1102, 1024, $460 \mathrm{~cm}^{-1}$. Anal. calculated for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{Cl}_{2} \mathrm{~N}_{5} \mathrm{O}$ (374.23): C 54.56; H 3.50; N 18.71. Found: C 54.38; H 3.41; N 18.66.

3-Methyl-4-oxo-1-phenyl-3,5,6a,7,8,9-hexahydropyridazino[4,5-e]indolizine-6,6(4H)-
dicarbonitrile (11c). The crude product was purified by column chromatography with a mixture of petroleum ether ($\mathrm{bp} 40-70{ }^{\circ} \mathrm{C}$) and ethyl acetate ($1: 2$) as the eluent, affording yellow crystals: yield $67 \%, \operatorname{mp} 224-228{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.44$ (petroleum ether (bp 40-70 ${ }^{\circ} \mathrm{C}$): ethyl acetate $1: 2$). ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45\left(5 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\text {phenyl }}\right), 3.85(1 \mathrm{H}, \mathrm{d}, 5-\mathrm{Ha}, J=18.0), 3.81\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}(3) \mathrm{CH}_{3}\right)$, $3.10(1 \mathrm{H}, \mathrm{d}, 5-\mathrm{Hb}, J=18.0), 2.87\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-9\right), 2.60-1.60\left(4 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-7\right.$ and $\left.\mathrm{H}_{2}-8\right) .{ }^{13} \mathrm{C}$ NMR (50 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.2$ (C-4), 143.2 and 139.5 (C-1 and $\left.\mathrm{C}-10 \mathrm{a}\right), 136.4$ (C-1’ phenyl), 129.1, 128.7 and 128.6 (C-2'-6' phenyl), 114.4 and $113.3(\mathrm{CN}), 107.6$ (C-4a), 63.1 (C-6a), 52.5 (C-9), 39.7 $\left(\mathrm{N}(3) \mathrm{CH}_{3}\right), 31.8(\mathrm{C}-6), 32.8,28.8$ and $23.2(\mathrm{C}-5, \mathrm{C}-7$, and $\mathrm{C}-8)$. IR (potassium bromide): $v_{\max }$ $3676,3652,3630,3568,3238,3064,3022,2990,2946,2920,2898,2864,2248,1626,1547$, 1496, 1434, 1372, 1352, 1318, 1274, 1246, 1192, 1158, 1094, 1072, 1016, 996, 986, 970, 786, $708,568 \mathrm{~cm}^{-1}$. Anal. calculated for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}$ (331.37): C 68.87 ; H 5.17; N 21.13 . Found: C 68.85; H 5.25; N 21.38.

3-Methyl-4-oxo-1-phenyl-3,5,7,8,9,10-hexahydro-4H-pyridazino[4,5-c]quinolizine-6,6(6aH)dicarbonitrile (11d). The product was crystallized from isopropyl alcohol, affording white crystals: yield $46 \%, \mathrm{mp} 188-190{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.58$ (ethyl acetate: dichloromethane $1: 1$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.65-7.50\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3^{\prime}\right.$ and $\mathrm{H}-5^{\prime}$ phenyl), 7.49-7.40 $\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-2^{\prime}\right.$ phenyl, H-4' and H-6' phenyl), $3.77\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}(3) \mathrm{CH}_{3}\right), 3.71(1 \mathrm{H}, \mathrm{d}, \mathrm{Ha}-5 J=18.0), 3.45(1 \mathrm{H}, \mathrm{m}, \mathrm{Ha}-10)$, $3.24(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6 \mathrm{a}), 3.13(1 \mathrm{H}, \mathrm{d}, \mathrm{Hb}-5, J=18.0), 2.41(1 \mathrm{H}, \mathrm{m}, \mathrm{Hb}-10), 2.32(1 \mathrm{H}, \mathrm{m}, \mathrm{Ha}-7), 1.98$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{Ha}-9), 1.85(1 \mathrm{H}, \mathrm{m}, \mathrm{Hb}-7), 1.49(1 \mathrm{H}, \mathrm{m}, \mathrm{Hb}-9), 1.22-1.33\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-8\right) .{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.9$ (C-4), 145.8 and 140.6 (C-1 and C-11a), 137.3 (C-1' phenyl), 129.8 (C-4’ phenyl), 129.7 (C-2' and C-6 phenyl), 127.8 (C-3' and C-5' phenyl), 114.5 and $113.4(\mathrm{CN})$, $111.4(\mathrm{C}-4 \mathrm{a}) 62.7(\mathrm{C}-6 \mathrm{a}), 52.3(\mathrm{C}-10), 40.2\left(\mathrm{~N}(3) \mathrm{CH}_{3}\right), 36.6(\mathrm{C}-6), 32.4,29.2,24.4$ and $23.9(\mathrm{C}-$ 5, C-7, C-8 and C-9). IR (potassium bromide): $v_{\max } 3784,3698,3658,3634,3574,3428,3056$, 3022, 2932, 2852, 2822, 2728, 2612, 1972, 1902, 1856, 1630, 1592, 1550, 1498, 1442, 1414,

1370, 1332, 1310, 1284, 1260, 1236, 1210, 1168, 1138, 1098, 1074, 1048, 1020, 990, 968, 918, 776, 706, 574, $546 \mathrm{~cm}^{-1}$. Anal. calculated for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}$ (345.40): C 69.55; H 5.54; N 20.28 . Found: C 69.76; H 5.49; N 20.38.
3-Methyl-4-oxo-1-phenyl-3,5,6a,7,9,10-hexahydropyridazino[4’,5’:5,6]pyrido[2,1-c][1,4] oxazine-6,6(4H)-dicarbonitrile (11e). The crude product was purified by column chromatography with a mixture of dichloromethane and ethyl acetate (1:1) as the eluent, affording white crystals: yield $46 \%, \mathrm{mp} 239-241{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.54$ (ethyl acetate: dichloromethane 1:1). ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.67-7.52(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3$ ' and $\mathrm{H}-5$ ' phenyl), 7.48-7.42 ($3 \mathrm{H}, \mathrm{m}$, H-2' phenyl, H-4' and H-6' phenyl), 4.29 (1 H , dd, Ha-7, $J_{1}=11.7, J_{2}=3.0$), $3.96(1 \mathrm{H}, \mathrm{dd}, \mathrm{Hb}-7$, $\left.J_{1}=11.6, J_{2}=8.2\right), 3.79\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}(3) \mathrm{CH}_{3}\right), 3.75(1 \mathrm{H}, \mathrm{d}, \mathrm{Ha}-5, J=18), 3.55-3.25\left(4 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-9\right.$, На-8 and $\mathrm{Hb}-10), 3.18(1 \mathrm{H}, \mathrm{d}, \mathrm{Hb}-5, J=18), 2.68(1 \mathrm{H}, \mathrm{m}, \mathrm{Ha}-10) .{ }^{13} \mathrm{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.1$ (C-4), 144.6 and 139.7 (C-1 and C-11a), 135.9 (C-1' phenyl), 129.5 (C-4' phenyl), 129.2, 127.3 (C-2', C-3', C-5' and C-6' phenyl), 113, 112.6 and 112.4 (C-4a and CN), 67.2, 66.0 (C-7, C-9), $59.2(\mathrm{C}-6 \mathrm{a}), 48.8(\mathrm{C}-5), 39.7\left(\mathrm{~N}(3) \mathrm{CH}_{3}\right), 32.5(\mathrm{C}-10), 30.9(\mathrm{C}-6)$. IR (potassium bromide): $v_{\max }$ 3424, 2946, 2922, 2868, 1638, 1580, 1496, 1432, 1410, 1382, 1356, 1292, 1226, 1182, 1124, 1052, 1026, 992, 778, $708 \mathrm{~cm}^{-1}$. Anal. calculated for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}_{2}$ (347.37): C 65.70; H 4.93; N 20.16. Found: C 65.40; H 5.00; N 19.98.

1,6-Dimethyl-1d d_{3}-5-oxo-8-phenyl-1,4,5,6-tetrahydro-4-d-pyrido[2,3-d]pyridazine-3,3(2H)-2,2- \boldsymbol{d}_{2}-dicarbonitrile (11g). The crude product was purified by column chromatography with a mixture of petroleum ether ($\mathrm{bp} 40-70{ }^{\circ} \mathrm{C}$) and ethyl acetate ($1: 1$) as the eluent, affording beige crystals: yield $51 \%, \mathrm{mp} 190-192{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.53$ (petroleum ether (bp $40-70{ }^{\circ} \mathrm{C}$): ethyl acetate $1: 1$). ${ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.52-7.43\left(5 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\text {phenyl }}\right), 3.80\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}(6) \mathrm{CH}_{3}\right), 3.38(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-$ 4). ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.2$ (C-5), 145.3 and 140.3 (C-8 and C-8a), 136.0 (C-1' phenyl), 129.2 (C-4’ phenyl), 129.0, 127.9 (C-2’ phenyl, C-3' phenyl, C-5' and C-6' phenyl), 113.8 and $111.4(\mathrm{C}-4 \mathrm{a}$ and CN$), 39.8\left(\mathrm{~N}(6) \mathrm{CH}_{3}\right), 31.7$ [$\mathrm{t}(1: 1: 1)$ due to the $\left.{ }^{1} J(\mathrm{C}, \mathrm{D}), C-4\right], 25.9$ (C-3). IR (potassium bromide): $v_{\max } 2926,1630,1510,1444,1414,1352,1284,1268,1244$, 1216, 1026, 754, 708, 544, $456 \mathrm{~cm}^{-1}$. Anal. calculated for $\mathrm{C}_{17} \mathrm{H}_{9} \mathrm{D}_{6} \mathrm{~N}_{5} \mathrm{O}$ (311.38): C $65.58 ; \mathrm{H}+\mathrm{D}$ 4.85; N 22.49. Found: C $65.18 ; \mathrm{H}+\mathrm{D} 4.75$; N 22.52. MS: $[\mathrm{M}+\mathrm{H}]^{+}: 312$. Based on the comparison of spectra of 11g to those of 11a, it was confirmed that no deuterium was lost ($>98 \%$ deuterium).

General procedures for the preparation of compounds 12

Method A. Thermal isomerization of compounds $\mathbf{1 0}$. Compound $\mathbf{1 0}$ (0.001 mol) in anhydrous DMF (5 mL) was heated at $100^{\circ} \mathrm{C}$ (in case of compound $\mathbf{1 0 i}$ at $155^{\circ} \mathrm{C}$) until the starting material had been consumed (monitored by TLC). After evaporation of the solvent in vacuo, water (10 mL) was added to the residue. Then it was filtered off and washed with water ($3 \times 2 \mathrm{~mL}$). The product was purified by flash column chromatography or crystallization.
Method B. One-pot procedure from aldehydes 8. To a solution of aldehyde $8(0.001 \mathrm{~mol})$ in ethanol (5 mL), DMB (0.001 mol) was added. The mixture was stirred at room temperature until the starting material had been consumed (monitored by TLC). The precipitated product was then filtered off and washed with ethanol, diethyl ether and hexane to give analytically pure crystals
in case of compound 12d, 12e. Starting from $\mathbf{8 f}$ or $\mathbf{8 h}$ aldehydes afforded a mixture of vinyl compounds and the tetrahydropyrido-fused compounds (10f and 12f, or 10h and 12h) (detected by TLC, ${ }^{1} \mathrm{H}$ NMR). To make complete the reaction, the product was heated in ethanol (5 mL) for 1h. After cooling, crystals precipitated were filtered off and washed with ethanol to give analytically pure compound $\mathbf{1 2 h}$. Compound $\mathbf{1 2 f}$ was purified by flash column chromatography, using dichloromethane-ethyl acetate (1:1) as the eluent.
1,1',3’,6-Tetramethyl-8-phenyl-4,6-dihydro-2H,2'H-spiro[pyrido[2,3-d]pyridazine-3,5'-
pyrimidine]- $\mathbf{2}^{\prime}, \mathbf{4}^{\prime}, \mathbf{5 , 6} \mathbf{6}^{\prime}\left(\mathbf{1 H}, \mathbf{1}^{\prime} \mathbf{H}, \mathbf{3}^{\prime} \boldsymbol{H}\right)$-tetrone (12a). Following the procedure of Method A , the product was crystallized from ethanol, affording beige crystals: yield 62%.
Compound 12a was also prepared by using microwave-heating. Compound 10a (50 mg) and 2 $\mathrm{mL}_{2} \mathrm{O}$ was irradiated in a closed vessel with pressure control at $100^{\circ} \mathrm{C}$ for 10 minutes (ramp time: 2 min ; hold time: 10 min) at 200 W maximum power. The precipitated product was then filtered off and washed with hexane to give analytically pure $35 \mathrm{mg}(70 \%)$ beige crystals.
Mp 209-211 ${ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.32$ (petroleum ether (bp 40-70 ${ }^{\circ} \mathrm{C}$): ethyl acetate ($1: 2$). ${ }^{1} \mathrm{H}$ NMR (200 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.55-7.53 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3^{\prime}$ and $\mathrm{H}-5^{\prime}$ phenyl), 7.45-7.39 (3H, m, H-2' phenyl, H-4’ and H-6' phenyl), $3.81\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}(6) \mathrm{CH}_{3}\right), 3.48\left(2 \mathrm{H}, \mathrm{s}, \mathrm{H}_{2}-2\right), 3.31\left(6 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(3^{\prime}\right) \mathrm{CH}_{3}\right.$ and $\mathrm{N}\left(1^{\prime}\right) \mathrm{CH}_{3}$ pyrimidine) $3.22\left(2 \mathrm{H}, \mathrm{s}, \mathrm{H}_{2}-4\right), 2.40\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}(1) \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 169 (C-4' and C-6' pyrimidine), 160.1 (C-5), 151 (C-2' pyrimidine), 145 and 140.5 (C-8 and C8a), 136.8 (C-1' phenyl), 128.7 (C-4' phenyl), 128.8, 128 (C-2', C-3', C-5' and C-6' phenyl), $116.3(\mathrm{C}-4 \mathrm{a})$, $58.1(\mathrm{C}-2), 46.2(\mathrm{C}-3), 43.6\left(\mathrm{~N}(1) \mathrm{CH}_{3}\right), 39.8\left(\mathrm{~N}(6) \mathrm{CH}_{3}\right), 29\left(\mathrm{~N}\left(1^{\prime}\right) \mathrm{CH}_{3}\right.$ and $\mathrm{N}\left(3^{\prime}\right) \mathrm{CH}_{3}$ pyrimidine), 28.3 (C-4). IR (potassium bromide): $v_{\max } 3462,2936,1746,1678,1614$, $1544,1510,1446,1420,1404,1382,1340,1280,1200,1160,1126,1064,778,756,708,544$, $474 \mathrm{~cm}^{-1}$. Anal. calculated for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}_{4}$ (395.42): C 60.75; H 5.35; N 17.71. Found: C 61.15; H 5.51; N 17.79. MS: $[\mathrm{M}+\mathrm{H}]^{+}: 396$.

8-(2,4-Dichlorophenyl)-1,1',3',6-tetramethyl-4,6-dihydro-2H,2'H-spiro[pyrido[2,3-

d]pyridazine-3,5'-pyrimidine]-2', $\mathbf{4}^{\prime}, 5, \mathbf{6}^{\prime}\left(\mathbf{1 H}, \mathbf{1}^{\prime} \mathbf{H}, \mathbf{3}^{\prime} \mathbf{H}\right)$-tetrone (12b). Following the procedure of Method A, then the product was crystallized from ethanol, affording beige crystals: yield 50 $\%, \mathrm{mp} 251-252{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.37$ (toluene: acetone 7:3). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.55-7.27(3 \mathrm{H}$, m, H-3', H-5', H-6' phenyl), $3.79\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}(6) \mathrm{CH}_{3}\right), 3.48(1 \mathrm{H}, \mathrm{d}, \mathrm{Ha}-2, J=13.2), 3.39(1 \mathrm{H}, \mathrm{d}, \mathrm{Hb}-$ $2, J=13.2), 3.34$ and $3.28\left(6 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(3^{\prime}\right) \mathrm{CH}_{3}\right.$ and $\mathrm{N}\left(1^{\prime}\right) \mathrm{CH}_{3}$ pyrimidine) $3.22(1 \mathrm{H}$, d, Ha- 4 , $J=18.4), 3.25(1 \mathrm{H}, \mathrm{d}, \mathrm{Hb}-4, J=18.4), 2.41\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}(1) \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169$ (C-4'and C-6' pyrimidine), 160.1 (C-5), 151 (C-2' pyrimidine), 145 (C-8a), 137.2, 135.5, 134.7, 134.4 (C-8, and C-1' phenyl, C-2' and C-4' phenyl), 132.1, 129.7 and 127.6 (C-3'phenyl, C-5' and C-6' phenyl), $115.5(\mathrm{C}-4 \mathrm{a}), 58.1(\mathrm{C}-2), 46.4(\mathrm{C}-3), 42.6\left(\mathrm{~N}(1) \mathrm{CH}_{3}\right), 39.7\left(\mathrm{~N}(6) \mathrm{CH}_{3}\right), 29.2$ and $28.8\left(\mathrm{~N}\left(1^{\prime}\right) \mathrm{CH}_{3}\right.$ and $\mathrm{N}\left(3^{\prime}\right) \mathrm{CH}_{3}$ pyrimidine), $28.3(\mathrm{C}-4)$. IR (potassium bromide): $v_{\max } 3568$, 3526, 3420, 3058, 2990, 2956, 2920, 1744, 1670, 1632, 1592, 1546, 1508, 1454, 1406, 1372, 1342, 1324, 1284, 1204, 1138, 1088, 1058, 1034, 826, 800, 750, 480, $452 \mathrm{~cm}^{-1}$. Anal. calculated for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{Cl}_{2} \mathrm{~N}_{5} \mathrm{O}_{4}$ (464.30): C 51.74; H 4.12; N 15.08. Found: C 51.77; H 4.06; N 15.03.
1',3,3'-Trimethyl-1-phenyl-3,5,6a,7,8,9-hexahydro-2'H,4H-spiro[pyridazino[4,5e]indolizine-6,5'-pyrimidine]-2',4,4', $\mathbf{6}^{\prime}\left(\mathbf{1}^{\prime} \mathbf{H}, \mathbf{3}^{\prime} \mathbf{H}\right)$-tetrone (12c). Following the procedure of

Method A, then the product was purified by flash column chromatography, using ethyl acetate as the eluent, affording white crystals: yield $40 \%, m p 207-209{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.59$ (ethyl acetate). ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.48-7.38\left(5 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\text {phenyl }}\right), 3.88(1 \mathrm{H}, \mathrm{m}, \mathrm{Ha}-6), 3.76(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{N}(3) \mathrm{CH}_{3}\right), 3.37$ and $3.20\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(3^{\prime}\right) \mathrm{CH}_{3}\right.$ and $3 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(1^{\prime}\right) \mathrm{CH}_{3}$ pyrimidine), $3.26(1 \mathrm{H}, \mathrm{d}, \mathrm{Ha}-5$, $J=18.4$), 3.13 ($1 \mathrm{H}, \mathrm{d}, \mathrm{Hb}-5, J=18.4$), 2.82-2.74 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-9$), 2.19-1.42 ($4 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-7$ and $\mathrm{H}_{2}-8$). ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.4,168(\mathrm{C}-4$ ' and $\mathrm{C}-6$ ' pyrimidine), $160(\mathrm{C}-4), 151$ (C-2' pyrimidine), 143.4 (C-10a), 139.8 (C-1), 137.4 (C-1' phenyl), 128.7, 128.6 (C-2'-6' phenyl), 112.2 (C-4a), 64.2 (C-6a), $52.5(\mathrm{C}-9), 46.9(\mathrm{C}-6), 39.6\left(\mathrm{~N}(3) \mathrm{CH}_{3}\right), 31.6,27.6$ and $23.7(\mathrm{C}-5, \mathrm{C}-7$ and C-8), 29.1 and $28.5\left(\mathrm{~N}\left(1^{\prime}\right) \mathrm{CH}_{3}\right.$ and $\mathrm{N}\left(3^{\prime}\right) \mathrm{CH}_{3}$ pyrimidine). IR (potassium bromide): $v_{\max }$ $3408,3084,6054,2964,2888,1742,1686,1616,1514,1448,1418,1382,1356,1280,1210$, 1180, 1156, 1128, 1086, 1062, 1022, 780, 756, 704, 538, $472 \mathrm{~cm}^{-1}$. Anal. calculated for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}_{4}$ (421.45): C 62.70; H 5.50; N 16.62. Found: C 62.75 ; H 5.48; N 16.51.
1',3,3’-Trimethyl-1-phenyl-3,5,7,8,9,10-hexahydro-2'H,4H,6aH-spiro[pyridazino[4,5-c]quinolizine-6,5'-pyrimidine]- $\mathbf{2}^{\prime}, 4, \mathbf{4}^{\prime}, \mathbf{6}^{\prime}\left(\mathbf{1}^{\prime} \mathbf{H}, \mathbf{3}^{\prime} \boldsymbol{H}\right)$-tetrone (12d). Following the procedure of Method B , the product was obtained as beige crystals: $82 \%, \mathrm{mp} 253-254{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.52$ (ethyl acetate : dichloromethane $1: 1$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.73-7.69\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3{ }^{\prime}\right.$ and $\mathrm{H}-5^{\prime}$ phenyl), 7.50-7.30 (3H, m, H-2' phenyl, H-4' and H-6' phenyl), $3.74\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}(3) \mathrm{CH}_{3}\right)$, 3.65$3.50(1 \mathrm{H}, \mathrm{m}, \mathrm{Ha}-10)$, $3.50-3.39(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6 \mathrm{a}), 3.39$ and $3.29\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(1^{\prime}\right) \mathrm{CH}_{3}\right.$ and $3 \mathrm{H}, \mathrm{s}$, $\mathrm{N}(3 ') \mathrm{CH}_{3}$ pyrimidine), $3.28(1 \mathrm{H}, \mathrm{d}, \mathrm{Ha}-5 J=17.6), 3.02(1 \mathrm{H}, \mathrm{d}, \mathrm{Hb}-5, J=17.6), 2.52-2.45(1 \mathrm{H}, \mathrm{m}$, $\mathrm{Hb}-10), 1.80-1.70(1 \mathrm{H}, \mathrm{m}, \mathrm{Ha}-7), 1.60-1.50(1 \mathrm{H}, \mathrm{m}, \mathrm{Hb}-7), 1.50-1.35\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-9\right), 1.25-1.05$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-9\right), 1.40-1.20\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-8\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.5$ and 167.2 (C-4' and C-6' pyrimidine) 160.3 (C-4), 150.9 (C-2' pyrimidine), 146.2 and 140.4 (C-1 and C-11a), 137.9 (C-1' phenyl), 128.9 (C-2' and C-6' phenyl), 128.8 (C-4' phenyl), 127.5 (C-3' and C-5’ phenyl), 112.3 (C-4a), $62.0(\mathrm{C}-6 \mathrm{a}), 52.2(\mathrm{C}-6), 51.6(\mathrm{C}-10), 39.6\left(\mathrm{~N}(3) \mathrm{CH}_{3}\right), 32.3(\mathrm{C}-7), 29.5$ and $28.9\left(\mathrm{~N}\left(1^{\prime}\right) \mathrm{CH}_{3}\right.$ and $\mathrm{N}\left(3^{\prime}\right) \mathrm{CH}_{3}$ pyrimidine), 26.8, 24.0 and 23.9 (C-5, $\mathrm{C}-8$ and $\left.\mathrm{C}-9\right)$. IR (potassium bromide): $v_{\max } 3408,2940,2850,1746,1678,1628,1600,1428,1366,1314,1282$, 1264, 1238, 1210, 1166, 1132, 1066, 968, 754, $702,476 \mathrm{~cm}^{-1}$. Anal. calculated for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{O}_{4}$ (435.48): C 63.44; H 5.79; N 16.08. Found: C 63.23; H 5.79; N 15.92.

1',3,3'-Trimethyl-1-phenyl-3,5,6a,7,9,10-hexahydro-2H’,4H-spiro[pyridazino[4',5':5,6] pyrido $[2,1-c][1,4]$ oxazine- $6,5^{\prime}$ 'pyrimidine $]-2^{\prime}, 4,4^{\prime}, 6^{\prime}\left(\mathbf{1}^{\prime} H, 3^{\prime} H\right)$-tetrone (12e). Following the procedure of Method B , the product was obtained as orange crystals: 88%, $\mathrm{mp}>260{ }^{\circ} \mathrm{C}$, $\mathrm{R}_{\mathrm{f}}=0.44$ (petroleum ether (bp $40-70{ }^{\circ} \mathrm{C}$): ethyl acetate $1: 2$). ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.7-$ 7.68 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3^{\prime}$ 'and H-5' phenyl), 7.47-7.38 ($3 \mathrm{H}, \mathrm{m}, \mathrm{H}-2^{\prime}$ phenyl, H-4' and H-6' phenyl), 3.79 $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}(3) \mathrm{CH}_{3}\right), 3.75\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{Ha}-7, J_{1}=11.2, J_{2}=2.6\right), 3.66\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{Ha}-6, J_{1}=6.2, J_{2}=2.8\right), 3.60$ $\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{Hb}-7, J_{1}=11.2, J_{2}=6.3\right), 3.39$ and $3.27\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(3{ }^{\prime}\right) \mathrm{CH}_{3}\right.$ and $3 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(1^{\prime}\right) \mathrm{CH}_{3}$ pyrimidine) $3.36\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-9\right), 3.3(1 \mathrm{H}, \mathrm{d}, \mathrm{Ha}-5, J=18.2), 3.25(1 \mathrm{H}, \mathrm{m}, \mathrm{Ha}-10), 3.18(1 \mathrm{H}, \mathrm{d}, \mathrm{Hb}-$ $5, J=18.2$), 2.7-2.67 ($1 \mathrm{H}, \mathrm{m}, \mathrm{Hb}-10$). ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.5,168.1$ (C-4' and C-6' pyrimidine), 160.1 (C-4), 150.5 (C-2' pyrimidine), 145.1 and 140.2 (C-1 and C-11a), 136.8 (C-1’ phenyl), 129, 128.9, 127.5 (C-2'-6' phenyl), 116 (C-4a), 66.1, 65.9 (C-7, C-9), 60.6 (C-6a), 48.9 $(\mathrm{C}-6), 47.4(\mathrm{C}-10), 39.7\left(\mathrm{~N}(3) \mathrm{CH}_{3}\right), 32(\mathrm{C}-5), 29.3$ and $28.9\left(\mathrm{~N}\left(1^{\prime}\right) \mathrm{CH}_{3}\right.$ and $\mathrm{N}\left(3^{\prime}\right) \mathrm{CH}_{3}$
pyrimidine). IR (potassium bromide): $v_{\max } 3410,3052,2998,2966,2886,1744,1684,1630$, 1596, 1444, 1414, 1384, 1346, 1294, 1282, 1264, 1230, 1190, 1120, 1044, 1018, 946, 780, 758, 704, 554, 542, 486, $470 \mathrm{~cm}^{-1}$. Anal. calculated for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}_{5}$ (437.45): C 60.40 ; H $5.30 ; \mathrm{N}$ 16.01. Found: C 60.52 ; H 5.32; N 16.17 .

1,1',3',6-Tetramethyl-2,8-diphenyl-4,6-dihydro-2H,2’H-spiro[pyrido[2,3-d]pyridazine-3,5’-pyrimidine]-2', $\mathbf{4 , 4 ^ { \prime } , \mathbf { 6 } ^ { \prime } (\mathbf { 1 H } , \mathbf { 1 } ^ { \prime } \mathbf { H } , \mathbf { 3 } ^ { \prime } \mathbf { H }) \text { -tetrone (12f). Following the procedure of Method } \mathrm { B } \text { , the }}$ product was obtained as yellow crystals: $57 \%, m p 260-262{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.34$ (ethyl acetate: dichloromethane ($1: 1, \mathrm{v} / \mathrm{v})$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 7.53-7.50\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2^{\prime \prime}\right.$ and $\mathrm{H}-$ 6"), 7.45-7.28 (6H, m, H-3", H-4", H-5", H-3'", H-4'" and H-5'"), 4.65 (1H, s, H-2), 3.69 (3H, s, $\left.\mathrm{N}(6) \mathrm{CH}_{3}\right), 3.09(2 \mathrm{H}, \mathrm{s}, \mathrm{H}-4), 2.99$ and $2.97\left(6 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(3^{\prime}\right) \mathrm{CH}_{3}\right.$ and $\mathrm{N}\left(1^{\prime}\right) \mathrm{CH}_{3}$ pyrimidine $), 2.21$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}(1) \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 169.5$ and 167.5 (C-4'and C-6' pyrimidine), 159 (C-5), 150.3 (C-2' pyrimidine), 145.8 (C-8a), 139.3 (C-8), 137.4 (C-1" phenyl), 135.9 (C-1"" phenyl), 128.7 (C-4"" phenyl), 128.6 (C-3" and C-5" phenyl), 128.4 (C-3"" and C$5 "$ " phenyl) 127.3 (C-2" and C-6" phenyl) 127.0 (C-2"" and C-6"" phenyl), 116.0 (C-4a), 68.8 $(\mathrm{C}-2), 52.2(\mathrm{C}-3), 42.6\left(\mathrm{~N}(1) \mathrm{CH}_{3}\right), 38.9\left(\mathrm{~N}(6) \mathrm{CH}_{3}\right), 28.3$ and $28.2\left(\mathrm{~N}\left(1^{\prime}\right) \mathrm{CH}_{3}\right.$ and $\mathrm{N}\left(3^{\prime}\right) \mathrm{CH}_{3}$ pyrimidine), 25.3 (C-4). H " and C " are 8-phenyl and H " and C "" are 2-phenyl atoms. IR (potassium bromide): $v_{\max } 3420,3060,3030,2948,1748,1684,1620,1544,1446,1424,1402$, 1384, 1340, 1282, 1178, 1158, 1138, 1116, 1082, 1064, 1004, 790, 754, 702, 610, 554, 532, 470 cm^{-1}. Anal. calculated for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{O}_{4}$ (471.52): C 66.23; H 5.34; N 14.85. Found: C 66.19; H 5.32; N 14.98.
$1,1^{\prime}, 3 ’, 6-T e t r a m e t h y l-1 d_{3}$-8-phenyl-4,6-dihydro-4d-2H,2' H-spiro[pyrido[2,3-d]pyridazine-3,5'-pyrimidine]-2,2- $\mathbf{d}_{2}-\mathbf{2}^{\prime}, \mathbf{4}^{\prime}, \mathbf{5 , 6} \mathbf{6}^{\prime}\left(\mathbf{1 H}, \mathbf{1}^{\prime} \mathbf{H}, \mathbf{3}^{\prime} \mathbf{H}\right)$-tetrone (12g). Following the procedure of Method A, then the product was crystallized from ethanol, affording beige crystals: yield 50%. Compound $\mathbf{1 2 g}$ was also prepared in n-butanol. Compound $\mathbf{1 0 g}(20 \mathrm{mg})$ was refluxed in n butanol for 24 h (monitored by TLC). Evaporation of the solvent in vacuo gave analytically pure beige crystalline product: $10 \mathrm{mg}(50 \%), \mathrm{mp} 210-212{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.41$ (petroleum ether ($\mathrm{bp} 40-70$ ${ }^{\circ} \mathrm{C}$): ethyl acetate 1:10). ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.65-7.35\left(5 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\text {phenyl }}\right), 3.81(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{N}(6) \mathrm{CH}_{3}\right), 3.31\left(6 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(3^{\prime}\right) \mathrm{CH}_{3}\right.$ and $\mathrm{N}\left(1^{\prime}\right) \mathrm{CH}_{3}$ pyrimidine) $3.20(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-4) .{ }^{13} \mathrm{C}$ NMR (50 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.1$ (C-4’and C-6’ pyrimidine), 160.1 (C-5), 150.9 (C-2' pyrimidine), 145.0 and 140.5 (C-8 and C-8a), 136.9 (C-1' phenyl), 128.7 (C-4' phenyl), 128.8, 128.1 (C-2', C-3', C5' and C-6' phenyl), $116.2(\mathrm{C}-4 \mathrm{a}), 45.9(\mathrm{C}-3), 43.1$ and $42.7\left(\mathrm{~N}(1) \mathrm{CD}_{3}\right), 39.7\left(\mathrm{~N}(6) \mathrm{CH}_{3}\right), 29.0$ $\left(\mathrm{N}\left(1^{\prime}\right) \mathrm{CH}_{3}\right.$ and $\mathrm{N}\left(3^{\prime}\right) \mathrm{CH}_{3}$ pyrimidine), 27.9 [$\mathrm{t}(1: 1: 1)$ due to the $\left.{ }^{1} J(\mathrm{C}, \mathrm{D}), C-4\right]$. IR (potassium bromide): $v_{\max } 3650,3616,3588,3566,3546,3526,3420,3058,2954,1748,1676,1624,1542$, 1510, 1446, 1410, 1376, 1286, 1212, 1110, 1062, 1024, 752, 704, 538, $468 \mathrm{~cm}^{-1}$. Anal. calculated for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{D}_{6} \mathrm{~N}_{5} \mathrm{O}_{4}$ (401.45): C 59.84; H+D 5.27; N 17.45. Found: C 59.35; H+D 5.17; N 16.93. MS: $[\mathrm{M}+\mathrm{H}]^{+}: 402$. Based on the comparison of spectra of $\mathbf{1 2 g}$ to those of 12a, it was confirmed that no deuterium was lost ($>98 \%$ deuterium).
1’,2,3’-Trimethyl-2,7,11b,13-tetrahydro-1H,2’H,6H-spiro[2,3,4b-triazachrysene-12,5’-
pyrimidine]-1,2', $\mathbf{4}^{\prime}, \mathbf{6}^{\prime}\left(\mathbf{1} \mathbf{\prime} \mathbf{H}, \mathbf{3}^{\prime} \boldsymbol{H}\right)$-tetrone (12h). Following the procedure of Method B, the product was obtained as pale yellow crystals: $62 \%, m p 260-262{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.33$ (ethyl acetate:
chloroform 9:1). ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.68(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-4), 7.35-7.16$ ($3 \mathrm{H}, \mathrm{m}, \mathrm{H}-8, \mathrm{H}-9$ and H-10), 6.96-6.93 (1H, m, H-11), $4.55(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-11 \mathrm{~b}), 4.02-4.00(1 \mathrm{H}, \mathrm{m}, \mathrm{Ha}-6), 3.78(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{N}(2) \mathrm{CH}_{3}\right), 3.57(1 \mathrm{H}, \mathrm{d}, \mathrm{Ha}-13, J=18.9), 3.52-3.41(1 \mathrm{H}, \mathrm{m}, \mathrm{Hb}-6), 3.14$ and $3.01\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(3^{\prime}\right) \mathrm{CH}_{3}\right.$ and $\left.3 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(1^{\prime}\right) \mathrm{CH}_{3}\right), 2.98(1 \mathrm{H}, \mathrm{d}, \mathrm{Hb}-13, J=18.9), 2.87-2.65\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-7\right) .{ }^{13} \mathrm{C}$ NMR (50 MHz , CDCl_{3}) $\delta 169.1$ and 167.7 (C-4' and C-6' pyrimidine), 160.4 (C-1), 150 (C-2' pyrimidine), 144.2 (C-4a), 135.7 and 129.1 (C-7a and C-11a), 129.3, 128.5, 127.7, 127.5 and 126.5 (C-4, C-8, C-9, $\mathrm{C}-10, \mathrm{C}-11), 112.1$ (C-13a), 64.9 (C-11b), $53.5(\mathrm{C}-12), 44.5(\mathrm{C}-6), 39.5\left(\mathrm{~N}(2) \mathrm{CH}_{3}\right), 29.0$ and 28.9 (C-7 and $\mathrm{C}-13), 28.8$ and $28.4\left(\mathrm{~N}\left(3^{\prime}\right) \mathrm{CH}_{3}\right.$ and $\left.\mathrm{N}\left(1^{\prime}\right) \mathrm{CH}_{3}\right)$. IR (potassium bromide): $v_{\max }$ 3429, 2927, 2861, 1679, 1630, 1447, 1380, 1047, 944, 856, $751 \mathrm{~cm}^{-1}$. Anal. calculated for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{x} 0.2 \mathrm{H}_{2} \mathrm{O}$ (411.02): C 61.37; H 5.25; N 17.04. Found: C 61.32; H 5.14; N 17.02.
1,1’,3',6-Tetramethyl-4,6-dihydro-2H,2'H-spiro[pyrido[2,3-d]pyridazine-3,5'-pyrimidine]$\mathbf{2}^{\prime}, \mathbf{4}^{\prime}, \mathbf{5}, \mathbf{6}^{\mathbf{\prime}} \mathbf{(\mathbf { 1 H } , \mathbf { 1 } ^ { \prime } \mathbf { H } , \mathbf { 3 } ^ { \prime } \mathbf { H }) \text { -tetrone (12i). Following the procedure of Method A, the product was }}$ crystallized from isopropyl alcohol, affording beige crystals: 40%, mp $214-215{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.30$ (petroleum ether (bp $\left.40-70{ }^{\circ} \mathrm{C}\right)$: ethyl acetate ($1: 10, \mathrm{v} / \mathrm{v}$)). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.58$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-8), 3.66\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}(6) \mathrm{CH}_{3}\right), 3.51\left(2 \mathrm{H}, \mathrm{s}, \mathrm{H}_{2}-2\right), 3.25\left(6 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(3^{\prime}\right) \mathrm{CH}_{3}\right.$ and $\mathrm{N}\left(1^{\prime}\right) \mathrm{CH}_{3}$ pyrimidine) $3.11\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}(1) \mathrm{CH}_{3}\right), 2.99\left(2 \mathrm{H}, \mathrm{s}, \mathrm{H}_{2}-4\right) .{ }^{13} \mathrm{C}$ NMR ($\left.50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.9(\mathrm{C}-$ 4'and C-6' pyrimidine), 160 (C-5), 150.7 (C-2' pyrimidine), 143.3 (C-8a), 126.3 (C-8), 106.3 (C$4 a), 53.5(\mathrm{C}-2), 45.7(\mathrm{C}-3), 39.4$ and $38.6\left(\mathrm{~N}(1) \mathrm{CH}_{3}\right.$ and $\left.\mathrm{N}(6) \mathrm{CH}_{3}\right), 29.6(\mathrm{C}-4), 28.9\left(\mathrm{~N}\left(1^{\prime}\right) \mathrm{CH}_{3}\right.$ and $\mathrm{N}\left(3^{\prime}\right) \mathrm{CH}_{3}$ pyrimidine). IR (potassium bromide): $v_{\max } 3434,2928,1676,1622,1452,1375$, 1075, $750 \mathrm{~cm}^{-1}$. Anal. calculated for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}_{4}$ (319.32): C 52.66; H 5.37; N 21.93. Found: C 52.30; H 5.40; N 21.56.

Acknowledgements

This work was supported by grants from the Hungarian Scientific Research Fund (OTKA; T047328) and Ministry of Health (ETT-508/2006).

References and Notes

1. (a) Meth-Cohn, O.; Suschitzky, H. Adv. Heterocycl. Chem. 1972, 14, 211. (b) Meth-Cohn, O. Adv. Heterocycl. Chem. 1996, 65, 1.
2. (a) Ojea, V.; Muinelo, I.; Figueroa, M. C.; Ruiz, M.; Quintela, J. M. Synlett, 1995, 622.; for a recent review see (b) Mátyus, P.; Éliás, O.; Tapolcsányi, P.; Bálint-Polonka, Á.; HalászDajka, B. Synthesis, 2006, 1.
3. Barbachyn, M. R.; Dobrowolski, P. J.; Hurd, A. R.; McNamara, D. J.; Palmer, J. R.; Romero, A. G.; Ruble, J. C.; Sherry, D. A.; Thomasco, L. M.; Toogood, P. L. Int. Pat. Appl. 2004 WO2004/031195; Chem. Abstr. 2004, 140, 339202.
4. (a) Mátyus, P.; Varga, I.; Zára, E.; Mezei, A.; Behr, Á.; Simay, A.; Haider, N.; Boros, S.; Bakonyi, A.; Horváth, E.; Horváth, K. Bioorg. Med. Chem. Lett. 1997, 7, 2857. (b) Andrasi, F.; Angyal, A.; Berzsenyi, P.; Boros, S.; Harsing, L.; Horvath, K.; Matyus, P.; Moravcsik, I.; Papp, A.; Simay, A.; Szabo, E.; Szabo, K.; Tarnawa, I.; Varga, I. Int. Pat. Appl. 2000 WO2000/027851 A1 20000518; Chem. Abstr. 2000, 132, 334478.
5. (a) Mátyus, P.; Fuji, K.; Tanaka, K. Heterocycles 1993, 36, 1975.; (b) Dajka-Halász, B.; Monsieurs, K.; Éliás, O.; Károlyházy, L.; Tapolcsányi, P.; Maes, B. U. W.; Riedl, Zs.; Hajós, Gy.; Dommisse, R. A.; Lemiere, G. L. F.; Kosmrlj, J.; Mátyus, P. Tetrahedron 2004, 60, 2283.
6. Estevez, I.; Ravina, E.; Sotelo, E. J. Heterocycl. Chem. 1998, 35, 1421.
7. An example for steric buttressing see: Orlek, B. S.; Sammes, P. G.; Weller, D. J. J. Chem. Soc. Chem. Commun. 1993, 1412.
8. (a) Ojea, V.; Peinador, C.; Vilar, J.; Quintela, J. M. Synthesis, 1993, 152. (b) Quintela, J. M. Recent Res. Dev. Org. Chem. 2003, 7, 259.
9. Sotelo, E.; Ravina, E. Synth. Commun. 2002, 32, 1675.
10. Farina, F.; Martin, M. V.; Tito, A. An. Quim., Serie C 1981, 77, 188.
