Regiospecific preparation of 1,4,5-trisubstituted pyrazoles from 2-(1H-1,2,3-benzotriazol-1-yl)-3-(4-aryl)-2-propenals

Alan R. Katritzky,* Anatoliy V. Vakulenko, Rufine Akue-Gedu, Anna V. Gromova, Rachel Witek, and James W. Rogers
Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL 32611-7200
E-mail: katritzky@chem.ufl.edu

Abstract

Treatment of α-benzotriazolyl- α, β-unsaturated aldehydes with monosubstituted hydrazines followed by alkylation at the 4-position of the pyrazoline ring and elimination of the benzotriazole group affords 1,4,5-trisubstituted pyrazoles in overall yields of 52-79\%.

Keywords: Pyrazoles, regiospecific synthesis, cyclization reaction

Introduction

Pyrazoles have attracted much attention in the last 30 years as their synthesis has become more accessible and their diverse properties appreciated. ${ }^{1}$ Alongside the traditional pyrazole dyes, ${ }^{2}$ couplers for photographic materials, ${ }^{3}$ herbicides, ${ }^{4}$ and luminescent and fluorescent substances, ${ }^{5, b}$ pyrazoles with antiarrhythmic ${ }^{6}$ and cholesterol synthesis-inhibiting activities ${ }^{7}$ have appeared. Other pyrazoles (Figure 1) include effective antirheumatoidal (SC-58635 Celecoxib) ${ }^{8}$ and antiviral agents (Pyrazomycin), ${ }^{9}$ hormone oxytocin agonists (WAY-VNA-932) ${ }^{10}$ and selective Human C1s inhibitors. ${ }^{11}$ Recently, pyrazoles became of interest as intermediates for fused pyrazoles, ${ }^{12}$ and also as chiral catalysts, ${ }^{13}$ ligands ${ }^{14}$ or as moieties to enhance regio- and stereoselectivity. ${ }^{15}$

Of the many reported syntheses of pyrazoles, ${ }^{16}$ three are especially widely applicable: (i) cyclocondensation of hydrazines with 2,3 dibromopropionitriles, ${ }^{17}$ propargyl aldehydes, 1,3dicarbonyl compounds ${ }^{18}$ or their functional derivatives such as enol ethers, acetals, enamines; ${ }^{19}$ (ii) 1,3-dipolar cycloadditions of diazoalkanes to alkynes; ${ }^{16 \mathrm{~b}}$ and (iii) eliminations of pyrazolines. ${ }^{20}$

Figure 1. Bioactive molecules containing the pyrazole moiety.

Unsymmetrical 1,3-dicarbonyls and hydrazines generally produce isomer mixtures. ${ }^{21}$ Sometimes this difficulty can be circumvented by the use of acetylenic-aldehydes or -ketones, where a hydrazone can be formed first by reaction at the carbonyl group then cyclised in a separate, second step. ${ }^{22}$ Using β-chloro- or β-alkoxy-enones ${ }^{23}$ or sterically hindered enamines ${ }^{19 a}$ as 1,3 -dicarbonyl synthons also controls the regiochemistry of cyclization. We have previously prepared unsymmetrical 1,3,5-triaryl-4-alkylpyrazolines and -pyrazoles by treatment of α -benzotriazolyl- α, β-unsaturated ketones with hydrazines followed by alkylation at the 4-position of the pyrazoline ring. ${ }^{24}$ We now report an alternative, convenient and regioselective route to $1,4,5$-trisubstituted pyrazoles from α-benzotriazolyl- α, β-unsaturated aldehydes.

Results and Discussion

Synthesis of α-benzotriazolyl- α, β-unsaturated aldehydes (4a-f)

Previous preparations of α-benzotriazolyl- α, β-unsaturated aldehydes (4), in 43-68\% yields, used four-steps from benzotriazole, 2-bromoacetate and various Grignard reagents. ${ }^{25}$ We now report a simple and convenient method that provides a large variety of aldehydes ($\mathbf{4 a - f}$) in yields of $80-$ 99% after a three-step reaction sequence.

2-Chloroacetaldehyde dimethylacetal (1) reacted with benzotriazole in DMF at reflux in the presence of one molar equivalent of potassium carbonate to give 1-(2,2-dimethoxyethyl)- 1 H -1,2,3-benzotriazole (2a) (42%; 15\% of the Bt^{2} isomer ($\mathbf{2 a}^{\prime}$) was also formed). When half a molar equivalent of potassium carbonate or one molar equivalent of potassium bicarbonate were used under the same reaction conditions, the Bt^{1} and Bt^{2} isomers were obtained (80%) in a ratio of (75:25). Lithiation of 1-(2,2-dimethoxyethyl)-1H-1,2,3-benzotriazole (2) with 2 molar equivalents of $n-\mathrm{BuLi}$ and then treatment with aromatic aldehydes gave vinylbenzotriazoles 3a-f, as mixtures of E and Z isomers in an average ratio 7:3, which were isolated in 83-96\% yield (Scheme 1).

Scheme ${ }^{1}{ }^{\text {a }}$

Reaction of $\mathbf{3 a - f}$ with aqueous HCl in THF at room temperature for 48 h provided α, β unsaturated aldehydes $\mathbf{4 a - f}$ in $85-99 \%$ yield (Table 1). For comparison, compounds $\mathbf{4 a}, \mathbf{e}$ have been previously obtained in 43 and 63% yields, ${ }^{25}$ where our method allows the preparation of the intermediates $\mathbf{4 a}$ and $\mathbf{4 e}$ in 99 and 90% yields, respectively.

Table 1. Vinylbenzotriazoles 3 and α-Benzotriazolyl- α, β-unsaturated aldehydes 4

Entry	Ar	$\mathrm{Mp}\left({ }^{\circ} \mathrm{C}\right)$	Yield (\%)
3a	Ph	$102-103$	83
3b	$4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	$115-116$	86
3c	$\mathrm{C}_{6} \mathrm{H}_{5}\left(\mathrm{CH}_{2}\right)_{2}$	oil	$85^{\text {a }}$
3d	$4-\mathrm{ClC}_{6} \mathrm{H}_{4}$	oil	92^{a}
3e	$4-\mathrm{FC}_{6} \mathrm{H}_{4}$	$100-101$	88
3f	$4-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4}$	oil	96^{a}
4a	Ph	Oil	99
4a'	Ph	$81-82$	$87^{\text {b }}$
4b	$4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	Oil	95
4c	$\mathrm{C}_{6} \mathrm{H}_{5}\left(\mathrm{CH}_{2}\right)_{2}$	Oil	80
4d	$4-\mathrm{ClC}_{6} \mathrm{H}_{4}$	$106-108$	85
4e	$4-\mathrm{FC}_{6} \mathrm{H}_{4}$	$92-93$	90
4f	4- $\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4}$	$119-120$	94

${ }^{\text {a }}$ Compound was used for next step without purification and yield is given for the crude product.
${ }^{\mathrm{b}}$ Benzotriazol-2-yl derivative.

Preparation of substituted dihydropyrazoles 5-6 and pyrazoles 7-8

Compounds 4 react with N-methylhydrazine in ethanol under reflux in air for 4 h to form stable intermediates $\mathbf{5 a} \mathbf{- d}$ in $57-87 \%$ yield. This reaction yields a single 1,4,5-regioisomer 5; no products of the alternative regiochemistry of addition were detected. Cyclization of α -benzotriazolyl- α, β-unsaturated aldehydes (4) with N-phenylhydrazine does not proceed under
the same reaction conditions and requires an application of base, which leads to undesirable elimination of the benzotriazolyl moiety. Dihydropyrazoles (pyrazolidines) 5a-c can be converted further to 1,5 -disubstituted pyrazoles 7 with sodium methoxide under reflux for 12 h in good (75% for $7 \mathbf{a}$) yield (Scheme 2).

Scheme 2 ${ }^{\text {a }}$

4,5-Dihydro-1H-pyrazoles 5 were functionalized further by alkylation or acylation at position 4 with alkyl iodides, bromides or alkylcarbonyl chlorides in the presence of n-BuLi to afford $\mathbf{6}$ as mixtures of two diastereoisomers in 52-78\% yields. Treatment of $\mathbf{6 b}-\mathbf{h}$ with NaOMe yielded the corresponding 1,4,5-trisubstituted pyrazoles $\mathbf{8 b}-\mathbf{h}$ in $52-79 \%$ yield (Scheme 2, Table 2). Final compound $\mathbf{8 a}$ was prepared similarly from 4,5 -dihydro- 1 H -pyrazole $\mathbf{5 a}$ using crude intermediate $\mathbf{6 a}$ in 63% overall yield. Use of sodium methoxide for elimination of BtH from 4-alkylcarbonyl substituted (4,5-dihydro-1H-pyrazol-4-yl)-1H-1,2,3-benzotriazole $\mathbf{6 i}$ led to ring decomposition. On the other hand, the use of NaH resulted in cleavage of the alkylcarbonyl moiety.

In conclusion we have used easily available α-benzotriazolyl- α, β-unsaturated aldehydes to prepare pyrazole derivatives regiospecifically. This method will be useful as a general route to either 1,5 -di- or $1,4,5$-trisubstituted pyrazoles, which are compounds of major synthetic, biological, and medicinal importance.

Table 2. Dihydropyrazoles 5-6 and pyrazoles 7-8

Entry	Ar	E	Yield (\%)
$\mathbf{5 a}$	Ph	-	57
$\mathbf{5 b}$	$4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	-	87
$\mathbf{5} \mathbf{c}^{\prime}$	$\mathrm{C}_{6} \mathrm{H}_{5}\left(\mathrm{CH}_{2}\right)_{2}$		60^{a}
$\mathbf{5 d}$	$4-\mathrm{ClC}_{6} \mathrm{H}_{4}$	-	68^{a}
$\mathbf{6 b}$	$4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	CH_{3}	73
$\mathbf{6 c}$	$4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	$\mathrm{C}_{4} \mathrm{H}_{9}$	55
$\mathbf{6 d ^ { \prime }}$	$\mathrm{C}_{6} \mathrm{H}_{5}\left(\mathrm{CH}_{2}\right)_{2}$	CH_{3}	52^{a}
$\mathbf{6 e}$	$\mathrm{C}_{6} \mathrm{H}_{5}\left(\mathrm{CH}_{2}\right)_{2}$	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\left(\mathrm{CH}_{2}\right)_{2}$	78^{a}
$\mathbf{6} \mathbf{f}^{\prime}$	$\mathrm{C}_{6} \mathrm{H}_{5}\left(\mathrm{CH}_{2}\right)_{2}$	$\mathrm{C}_{6} \mathrm{H}_{13}$	65^{a}
$\mathbf{6} \mathbf{h}^{\prime}$	$\mathrm{C}_{6} \mathrm{H}_{5}\left(\mathrm{CH}_{2}\right)_{2}$	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}$	45^{a}
$\mathbf{6 i}$	$4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	$\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{CO}$	60
$\mathbf{7 a}$	Ph^{2}	-	75
$\mathbf{8 a}$	Ph	CH_{3}	63
$\mathbf{8 b}$	$4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	CH_{3}	79
$\mathbf{8 c}$	$4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	$\mathrm{C}_{4} \mathrm{H}_{9}$	52
$\mathbf{8 d}$	$\mathrm{C}_{6} \mathrm{H}_{5}\left(\mathrm{CH}_{2}\right)_{2}$	CH_{3}	60
$\mathbf{8 e}$	$\mathrm{C}_{6} \mathrm{H}_{5}\left(\mathrm{CH}_{2}\right)_{2}$	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\left(\mathrm{CH}_{2}\right)_{2}$	53
$\mathbf{8 f}$	$\mathrm{C}_{6} \mathrm{H}_{5}\left(\mathrm{CH}_{2}\right)_{2}$	$\mathrm{C}_{6} \mathrm{H}_{13}$	57
$\mathbf{8 g}$	$\mathrm{C}_{6} \mathrm{H}_{5}\left(\mathrm{CH}_{2}\right)_{2}$	$\mathrm{C}_{2} \mathrm{H}_{5}$	58
$\mathbf{8 h}$	$\mathrm{C}_{6} \mathrm{H}_{5}\left(\mathrm{CH}_{2}\right)_{2}$	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}$	55

${ }^{\mathrm{a}}$ Benzotriazol-2-yl derivative.

Experimental Section

General Procedures. Melting points were determined using a capillary melting point apparatus equipped with a digital thermometer and are uncorrected. ${ }^{1} \mathrm{H}$ NMR (300 MHz) and ${ }^{13} \mathrm{C}$ NMR (75 MHz) spectra were recorded in CDCl_{3} (with tetramethylsilane as the internal standard), unless otherwise stated. Elemental analyses were performed on a Carlo Erba EA-1108 instrument. THF was distilled from sodium-benzophenone ketal prior to use. Column chromatography was performed on silica gel 200-425 mesh.

General procedure for preparation of 2a and 2a'

A mixture of benzotriazole ($21.4 \mathrm{~g}, 0.18 \mathrm{~mol}$), potassium bicarbonate ($18.0 \mathrm{~g}, 0.18 \mathrm{~mol}$) and 2chloroacetaldehyde dimethylacetal ($20.5 \mathrm{~mL}, 0.18 \mathrm{~mol}$) in 180 mL of DMF was refluxed for 18 h. The reaction mixture was cooled, diluted with 180 mL of water and extracted with ether. The combined organic layers were washed with water, brine and dried over MgSO_{4}. After
evaporation of the solvent under vacuum, the residue was purified by silica gel column chromatography ($\mathrm{EtOAc} /$ hexane, $1: 4$) to afford the pure $\mathbf{2 a}$ and $\mathbf{2 a}$ '.
2-(1H-1,2,3-Benzotriazol-1-yl)-1-ethoxyethyl methyl ether (2a). Colorless oil (60%); ${ }^{1} \mathrm{H}$ NMR $\delta 8.04(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.46(\mathrm{~m}, 1 \mathrm{H}), 7.38-7.33(\mathrm{~m}, 1 \mathrm{H})$, 4.81-4.73 (m, 3H), $3.38(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 145.7,133.6,127.3,123.7,119.6,110.1,103.1$, 55.0, 50.1. Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2}$: C, 57.96; H, 6.32; N, 20.28. Found: C, 57.97; H, 6.03; N, 20.48.
2-(1H-1,2,3-Benzotriazol-2-yl)-1-ethoxyethyl methyl ether (2a'). Colorless oil (20\%); ${ }^{1} \mathrm{H}$ NMR $\delta 7.89-7.86(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.37(\mathrm{~m}, 2 \mathrm{H}), 5.10(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H})$, $3.41(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 144.4,126.4,118.0,102.0,57.3,53.9$. Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2}$: C, 57.96; H, 6.32; N, 20.28. Found: C, 57.98; H, 6.41; N, 20.51.

General procedure for preparation of 3a-f

A solution of $2(5.0 \mathrm{mmol})$ in anhydrous THF $(50 \mathrm{~mL})$ was cooled to $-78{ }^{\circ} \mathrm{C}$ and then treated dropwise with $n-\operatorname{BuLi}(6.4 \mathrm{~mL}$ of 1.6 M in hexane, 10 mmol$)$ and stirred at this temperature for 1 h. A solution of aldehyde (6.0 mmol) in 5 mL of THF was added slowly to the reaction mixture at $-78{ }^{\circ} \mathrm{C}$. The reaction mixture was allowed to stir and warm to room temperature during 2 h , quenched by the addition of saturated $\mathrm{NH}_{4} \mathrm{Cl}$, and extracted with ether. The organic extracts were washed with brine, dried over MgSO_{4} and concentrated under vacuum. The residue was chromatographed on a silica gel eluted with EtOAc/hexanes 1:4 to give 3a, b, e as isomeric mixtures. The residues isolated from the reaction mixtures for compounds $\mathbf{3 c} \mathbf{c} \mathbf{d}$, \mathbf{f} were used for the next step without purification.
2-(1H-1,2,3-Benzotriazol-1-yl)-1-phenyl-3-methoxy-2-propen-1-ol (3a). White microcrystals (83\%); mp 102-103 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR δ (mixture of two isomers in the ratio 7:3): 7.91-7.87 (m, 1H), 7.37-7.04 (m, 8H), $6.56(\mathrm{~s}, 0.7 \mathrm{H}), 6.54(\mathrm{~s}, 0.3 \mathrm{H}), 6.26(\mathrm{~s}, 0.7 \mathrm{H}), 5.75(\mathrm{~s}, 0.3 \mathrm{H}), 4.40(\mathrm{br} \mathrm{s}, 0.3 \mathrm{H})$, $3.92(\mathrm{br} \mathrm{s}, 0.7 \mathrm{H}), 3.80(\mathrm{~s}, 2.1 \mathrm{H}), 3.61(\mathrm{~s}, 0.9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 149.6,145.9,145.0,144.8,140.7$, $140.4,135.1,133.8,128.3,128.2,127.8,127.7,127.5,126.2,125.6,123.9,123.8,119.9,119.5$, $119.4,117.4,111.3,110.7,73.3,68.6,61.5,61.2,60.4$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2}: \mathrm{C}, 68.31 ; \mathrm{H}$, 5.37; N, 14.94. Found: C, 68.44; H, 5.25; N, 14.99.

2-(1H-1,2,3-Benzotriazol-1-yl)-1-(4-methylphenyl)-3-methoxy-2-propen-1-ol (3b). White microcrystals (86%); mp $115-116{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR δ (mixture of two isomers in the ratio 6:4): 7.95$7.90(\mathrm{~m}, 1 \mathrm{H}), 7.39-7.17(\mathrm{~m}, 3.8 \mathrm{H}), 7.04(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1.2 \mathrm{H}), 6.98(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 0.8 \mathrm{H}), 6.92$ $(\mathrm{d}, J=7.8 \mathrm{~Hz}, 1.2 \mathrm{H}), 6.58(\mathrm{~s}, 0.6 \mathrm{H}), 6.50(\mathrm{~s}, 0.4 \mathrm{H}), 6.21(\mathrm{~s}, 0.6 \mathrm{H}), 5.70(\mathrm{~s}, 0.4 \mathrm{H}), 3.98(\mathrm{br} \mathrm{s}$, 0.4 H), $3.84(\mathrm{~s}, 1.8 \mathrm{H}), 3.65(\mathrm{~s}, 1.2 \mathrm{H}), 3.55(\mathrm{br} \mathrm{s}, 0.6 \mathrm{H}), 2.21(\mathrm{~s}, 1.2 \mathrm{H}), 2.19(\mathrm{~s}, 1.8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ $149.1,145.5,144.9,144.7,137.5,137.3,137.1,137.0,134.9,133.6,128.9,128.8,127.5,127.3$, $125.9,125.3,123.7,123.7,119.9,119.5,117.3,111.3,110.5,73.1,68.6,61.3,61.0,20.9$. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{2}$: C, 69.14; H, 5.80; N, 14.23. Found: C, 68.93; H, 5.90; N, 14.10.
2-(1H-1,2,3-Benzotriazol-1-yl)-1-(4-fluorophenyl)-3-methoxy-2-propen-1-ol (3e). White microcrystals (88%); mp $100-101{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR δ (mixture of two isomers in the ratio 6:4): 7.93$7.89(\mathrm{~m}, 1 \mathrm{H}), 7.38-7.12(\mathrm{~m}, 5 \mathrm{H}), 6.87-6.77(\mathrm{~m}, 2 \mathrm{H}), 6.59(\mathrm{~s}, 0.6 \mathrm{H}), 6.57(\mathrm{~s}, 0.4 \mathrm{H}), 6.24(\mathrm{~s}$, 0.6 H), $5.74(\mathrm{~s}, 0.4 \mathrm{H}), 4.47$ (brs, 0.4 H), $3.95(\mathrm{~s}, 0.6 \mathrm{H}), 3.84(\mathrm{~s}, 1.8 \mathrm{H}), 3.66(\mathrm{~s}, 1.2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ
$163.6,160.3,149.5,145.6,144.8,144.6,136.4,136.3,136.0,134.9,133.5,127.7,127.6,127.5$, $127.2,127.0,123.9,123.8,119.5,119.4,117.1,115.1,115.0,114.9,114.8,111.1,110.3,72.6$, 67.9, 61.4, 61.1. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{FN}_{3} \mathrm{O}_{2}$: C, 64.21; H, 4.71; N, 14.04. Found: C, 64.12; H, 4.53; N, 13.79.

General Procedure for Preparation of 4a-f

Aqueous $\mathrm{HCl}(19 \mathrm{~mL}, 10 \%$ solution in water) was added dropwise to a stirred solution of 3 (3.6 mmol) in THF (30 mL). The reaction mixture was stirred at room temperature for 48 h , and then extracted with ether. The combined organic extracts were washed with brine, dried over MgSO_{4} and concentrated under vacuum to give 4.
2-(1H-1,2,3-Benzotriazol-1-yl)-3-phenyl-2-propenal (4a). Colorless oil (75\%); bp 109-111 ${ }^{\circ} \mathrm{C} / 0.1 \mathrm{mmHg}\left(\mathrm{lit.}^{25} \mathrm{bp} 110^{\circ} \mathrm{C} / 0.1 \mathrm{mmHg}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 9.85(\mathrm{~s}, 1 \mathrm{H}), 8.17-8.14(\mathrm{~m}, 1 \mathrm{H}), 7.92(\mathrm{~s}$, $1 \mathrm{H}), 7.63-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.22-7.17(\mathrm{~m}, 3 \mathrm{H}), 6.94-6.91(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 187.3,148.0,145.4$, 133.1, 132.6, 132.6, 130.9, 130.7, 129.3, 128.8, 125.0, 120.1, 110.3.

2-(1H-1,2,3-Benzotriazol-1-yl)-3-phenyl-2-propenal (4a'). White microcrystals (87\%); mp $81-82{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 9.80(\mathrm{~s}, 1 \mathrm{H}), 7.99-7.94(\mathrm{~m}, 2 \mathrm{H}), 7.79(\mathrm{~s}, 1 \mathrm{H}), 7.50-7.45(\mathrm{~m}, 2 \mathrm{H}) 7.40-$ $7.35(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 2 \mathrm{H}), 6.87-6.85(\mathrm{~m}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\delta 186.3,145.4,145.2,137.1$, 132.4, 130.9, 130.2, 129.1, 127.5, 118.7. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}: \mathrm{C}, 72.28 ; \mathrm{H}, 4.45$; N, 16.86. Found: C, 72.32; H, 4.39; N, 17.09.

2-(1H-1,2,3-Benzotriazol-1-yl)-3-(4-methylphenyl)-2-propenal (4b). White prisms (95\%); mp 93-94 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 9.80(\mathrm{~s}, 1 \mathrm{H}), 8.16-8.14(\mathrm{~m}, 1 \mathrm{H}), 7.83(\mathrm{~s}, 1 \mathrm{H}), 7.47-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.21-$ $7.18(\mathrm{~m}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.80(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ 187.1, 147.8, 145.7, 143.6, 132.9, 131.7, 130.9, 129.9, 128.4, 127.8, 124.4, 120.1, 110.0, 21.5. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}: \mathrm{C}, 72.99$; H, 4.98; N, 15.96. Found: C, 73.30; H, 4.95; N, 16.02.
2-Benzotriazol-1-yl-5-phenyl-pent-2-enal (4c). Yellow oil (80\%); ${ }^{1} \mathrm{H}$ NMR $\delta 9.65$ (s, 1H); 8.11 (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}) ; 7.50-7.36(\mathrm{~m}, 2 \mathrm{H}) ; 7.24-7.15(\mathrm{~m}, 4 \mathrm{H}) ; 7.11-7.08(\mathrm{~m}, 3 \mathrm{H}) ; 2.89(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 2 \mathrm{H}$) ; 2.69 (q, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR $\delta 186.0,153.3,145.5,139.3,137.2,133.3,128.6$, 128.2, 126.6, 124.2, 120.0, 110.3, 109.6, 34.1, 30.2. HRMS Calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}: 278.1287$. Found: 278.1284.
2-(1H-1,2,3-Benzotriazol-1-yl)-3-(4-chlorophenyl)-2-propenal (4d). Yellow microcrystals (85%) mp 106-108 ${ }^{\circ} \mathrm{C}\left(\mathrm{lit} .^{25} \mathrm{bp} 122{ }^{\circ} \mathrm{C} / 1 \mathrm{mmHg}\right.$); ${ }^{1} \mathrm{H}$ NMR $\delta 9.82(\mathrm{~s}, 1 \mathrm{H}), 8.16$ (dd, $J=7.4 \mathrm{~Hz}$, $J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~s}, 1 \mathrm{H}), 7.50-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.18(\mathrm{~m}, 3 \mathrm{H}), 6.87(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\delta 186.8,145.8,145.5,138.6,132.8,132.7,131.8,129.5,129.0,128.7,124.6,120.3$, 109.9; Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{ClN}_{3} \mathrm{O}: \mathrm{C}, 63.50$; H, 3.55. Found: C, 63.21; H, 3.62.

2-(1H-1,2,3-Benzotriazol-1-yl)-3-(4-fluorophenyl)-2-propenal (4e). Colorless needles (90\%); mp 92-93 ${ }^{\circ} \mathrm{C}$ (lit. ${ }^{25} \mathrm{mp} 93-94{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\delta 9.82(\mathrm{~s}, 1 \mathrm{H}), 8.17-8.14(\mathrm{~m}, 1 \mathrm{H}), 7.84(\mathrm{~s}, 1 \mathrm{H}), 7.49-$ $7.39(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.19(\mathrm{~m}, 1 \mathrm{H}), 6.97-6.87(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 186.9,164.6(\mathrm{~d}, \mathrm{~J}=255.0 \mathrm{~Hz}$, $1 \mathrm{C}), 146.1,145.7,133.1(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{C}), 132.7,132.2,128.6,126.9(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{C})$, $124.5,120.2,116.5$ (d, $J=21.6 \mathrm{~Hz}, 1 \mathrm{C}), 109.9$.
2-(1H-1,2,3-Benzotriazol-1-yl)-3-(4-methoxyphenyl)-2-propenal (4f). White microcrystals (94\%); mp 119-120 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\delta 9.78$ (s, 1H), 8.17 (d, J = 8.1 Hz, 1H), 7.79 (s, 1H), 7.49-
$7.40(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.21(\mathrm{~m}, 1 \mathrm{H}), 6.86(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.72(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR $\delta 187.0,163.0,147.7,145.8,133.3,132.9,130.4,128.4,124.4,123.2,120.2,114.7$, 110.0, 55.4. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2}$: C, 68.81 ; H, 4.69; N, 15.04. Found: C, 68.47; H, 4.65; N, 14.90.

General Procedure for Preparation of 5

Hydrazine (3.1 mmol) was added to a stirred solution of $7(3.1 \mathrm{mmol})$ in 15 mL of ethanol. The reaction mixture was heated under reflux for 4 h , and the solvent was evaporated under reduced pressure. The residue was purified by silica gel column chromatography eluted with EtOAc/hexane 1:9 to give pure 5.
1-(1-Methyl-5-phenyl-4,5-dihydro-1H-pyrazol-4-yl)-1H-1,2,3-benzotriazole (5a). Colorless oil (57%); ${ }^{1} \mathrm{H}$ NMR δ (mixture of 2 isomers $6: 4$): $8.12-8.09(\mathrm{~m}, 0.4 \mathrm{H}), 8.00(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 0.6 \mathrm{H})$, 7.71 (d, $J=8.4 \mathrm{~Hz}, 0.6 \mathrm{H}), 7.63-7.60(\mathrm{~m}, 1.2 \mathrm{H}), 7.44-7.20(\mathrm{~m}, 6.2 \mathrm{H}), 6.99(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 0.4 \mathrm{H})$, 6.91 (dd, $J=10.6,2.7 \mathrm{~Hz}, 0.6 \mathrm{H}), 6.12(\mathrm{dd}, J=12.1,1.4 \mathrm{~Hz}, 0.4 \mathrm{H}), 4.46(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 0.4 \mathrm{H})$, $3.80(\mathrm{dd}, J=12.0,2.6 \mathrm{~Hz}, 0.6 \mathrm{H}), 3.54-3.47(\mathrm{~m}, 0.6 \mathrm{H}), 3.18(\mathrm{~s}, 1.8 \mathrm{H}), 2.97(\mathrm{~s}, 1.2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ (mixture of 2 isomers 6:4): 146.7, $146.5145 .2,137.2,136.3,132.4,131.0,130.3,129.1,129.0$, $128.8,128.7,127.9,127.7,127.3,125.7,124.3,124.2,120.4,119.8,110.9,109.6,77.9,73.6$, 63.8, 60.6, 42.4, 41.4. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{5}$: C, 69.30; H, 5.45; N, 25.25. Found: C, 69.54; H, 5.54; N, 24.89.
1-(1-Methyl-5-p-tolyl-4,5-dihydro-1H-pyrazol-4-yl)-1H-benzotriazole (5b). Colorless oil (75\%); ${ }^{1} \mathrm{H}$ NMR $\delta 8.12-8.08(\mathrm{~m}, 1 \mathrm{H}), 7.44-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.16-7.10(\mathrm{~m}, 4 \mathrm{H})$, $6.98(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{dd}, J=12.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{~s}, 3 \mathrm{H})$, 2.35 ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR $\delta 146.4,138.6,136.3,134.0,132.4,129.7,127.6,127.2,124.3,120.3$, 109.7, 77.7, 73.6, 41.3, 21.1. HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{Na}$: 314.1376. Found: 314.1378.

2-(1-Methyl-5-phenethyl-4,5-dihydro-1H-pyrazol-4-yl)-2H-benzotriazole (5c'). Yellow oil (60%); ${ }^{1} \mathrm{H}$ NMR $\delta 7.92-7.87(\mathrm{~m}, 2 \mathrm{H}) ; 7.46-7.41(\mathrm{~m}, 2 \mathrm{H}) ; 7.23-7.12(\mathrm{~m}, 3 \mathrm{H}) ; 7.04-7.02(\mathrm{~m}$, 2H); 6.85 (br s,1H); 6.04 (dd, $J=10.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}) ; 3.78-3.70(\mathrm{~m}, 1 \mathrm{H}) ; 3.00(\mathrm{~s}, 3 \mathrm{H}) ; 2.80-2.70$ $(\mathrm{m}, 1 \mathrm{H}) ; 2.63-2.52(\mathrm{~m}, 1 \mathrm{H}) ; 2.31-2.08(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 144.6,140.8,136.7,128.4,128.1$, $126.9,126.1,118.2,76.9,73.3,41.8,33.2,31.3$. HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{5}: 306.1713$. Found: 306.1732 .

2-[5-(4-Chloro-phenyl)-1-methyl-4,5-dihydro-1H-pyrazol-4-yl]-2H-benzotriazole (5d'). Yellow oil (68\%); ${ }^{1} \mathrm{H}$ NMR $\delta 7.90-7.86(\mathrm{~m}, 2 \mathrm{H}) ; 7.43-7.40(\mathrm{~m}, 2 \mathrm{H}) ; 7.31(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}) ; 7.24$ (d, J $=8.5 \mathrm{~Hz}, 2 \mathrm{H}) ; 6.91(\mathrm{~s}, 1 \mathrm{H}) ; 6.09(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}) ; 4.70(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}) ; 2.93(\mathrm{~s}, 3 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR $\delta 144.5,136.3,135.7,134.3,129.1,128.7,126.9,118.1,79.9,77.4,41.4$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{ClN}_{5}$: C, 61.64; H, 4.53. Found: C, 61.78; H, 4.62.

General procedure for preparation of 6

To a stirred solution of $5(1.7 \mathrm{mmol})$ in anhydrous THF $(20 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}, n-\mathrm{BuLi}(1.1 \mathrm{~mL}$ of 1.6 M in hexane, 1.7 mmol) was added dropwise and stirring was continued for 0.5 h at $-78{ }^{\circ} \mathrm{C}$. A solution of methyl iodide $(0.12 \mathrm{~mL}, 1.9 \mathrm{mmol})$ was then added. The reaction mixture was allowed to warm to room temperature while stirring for 2 h , quenched by the addition of saturated $\mathrm{NH}_{4} \mathrm{Cl}$, and extracted with ether. The combined extracts were washed with brine, dried
over MgSO_{4} and the solvent was evaporated under reduced pressure. The residue was purified by silica gel column chromatography eluting with EtOAc/hexane $1: 9$ to give $\mathbf{6 b}-\mathbf{i}$. The residue isolated from the column chromatography for compound $\mathbf{6 g}$ contained about 10% of final product 8 g due to easy elimination of Bt^{2} moiety on silica gel and was used for the next step without additional purification.
1-[1,4-Dimethyl-5-(4-methylphenyl)-4,5-dihydro-1H-pyrazol-4-yl]-1H-1,2,3-benzotriazole (6b). Colorless oil (73%); ${ }^{1} \mathrm{H}$ NMR $\delta 8.13(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.38(\mathrm{~m}$, 2H), 7.14-7.10 (m, 3H), $6.94(\mathrm{~d}, ~ J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.40(\mathrm{~s}, 1 \mathrm{H}), 2.95(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.63(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 146.9,142.4,138.3,131.9,129.7,129.2,127.7,127.0,124.0,120.4,111.6$, 79.9, 76.3, 40.8, 21.0, 18.3. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{5}$: C, 70.79; H, 6.27. Found: C, 70.39; H, 6.42 .

1-(4-Butyl-1-methyl-5-(4-methylphenyl)-4,5-dihydro-1H-pyrazol-4-yl)-1H-benzotriazole (6c). Colorless crystals (55\%), mp 110-112 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 7.89-7.87(\mathrm{~m}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.30-7.20(\mathrm{~m}, 3 \mathrm{H}), 6.72(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.64(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.11(\mathrm{~s}, 1 \mathrm{H}), 3.00-$ $2.88(\mathrm{~m}, 1 \mathrm{H}), 2.43-2.33(\mathrm{~m}, 1 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}), 1.52-1.38(\mathrm{~m}, 3 \mathrm{H}), 1.32-1.22(\mathrm{~m}, 1 \mathrm{H}), 0.92(\mathrm{t}, J$ $=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 146.2,139.2,138.3,133.2,129.6,128.8,127.3,127.0,123.2,119.5$, 111.9, 79.4, 78.5, 40.5, 36.6, 27.2, 22.8, 21.0, 13.9. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{5}$: C, 72.59; H, 7.25; N, 20.16. Found: C, 72.84; H, 7.34; N, 20.44.
2-(1,4-Dimethyl-5-phenethyl-4,5-dihydro-1H-pyrazol-4-yl)-2H-benzotriazole (6d'). Colorless oil (52\%); ${ }^{1} \mathrm{H}$ NMR $\delta 7.92-7.88(\mathrm{~m}, 2 \mathrm{H}) ; 7.45-7.40(\mathrm{~m}, 2 \mathrm{H}) ; 7.19-7.11(\mathrm{~m}, 3 \mathrm{H}) ; 6.96-6.94(\mathrm{~m}$, $3 \mathrm{H}) ; 3.54$ (dd, $J=8.7,4.8, \mathrm{~Hz}, 1 \mathrm{H}) ; 2.94(\mathrm{~s}, 3 \mathrm{H}) ; 2.69-2.59(\mathrm{~m}, 1 \mathrm{H}) ; 2.47-2.36(\mathrm{~m}, 1 \mathrm{H}) ; 2.27-$ $2.05(\mathrm{~m}, 2 \mathrm{H}) ; 1.98(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 144.1,143.6,141.0,128.3,128.0,126.7,126.0,118.2$, 79.6, 75.8, 41.8, 32.1, 28.6, 16.8. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}_{5}$: C, $71.45 ; \mathrm{H}, 6.63 ; \mathrm{N}, 21.93$. Found: C, 71.42; H, 6.44; N, 21.58.
2-[1-Methyl-4-(3-methyl-butyl)-5-phenethyl-4,5-dihydro-1H-pyrazol-4-yl]-2H-benzotriazole (6e'). Yellow oil (78\%); ${ }^{1} \mathrm{H}$ NMR $\delta 7.93-7.88$ (m, 2H); 7.44-7.39 (m, 2H); 7.25 (s, 1H); 7.21-7.09 (m, $3 \mathrm{H}) ; 7.03-7.01(\mathrm{~m}, 2 \mathrm{H}) ; 3.13(\mathrm{dd}, J=7.3,5.1 \mathrm{~Hz}, 1 \mathrm{H}) ; 2.89(\mathrm{~s}, 3 \mathrm{H}) ; 2.89-2.78(\mathrm{~m}, 1 \mathrm{H}) ; 2.71-$ $2.54(\mathrm{~m}, 2 \mathrm{H}) ; 2.44-2.32(\mathrm{~m}, 1 \mathrm{H}) ; 2.23-2.05(\mathrm{~m}, 2 \mathrm{H}) ; 1.63-1.50(\mathrm{~m}, 1 \mathrm{H}) ; 1.32-1.15(\mathrm{~m}, 1 \mathrm{H})$; $1.09-0.95(\mathrm{~m}, 1 \mathrm{H}) ; 0.88(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 3 \mathrm{H}) ; 0.86(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 143.9,142.3$, 141.2, 128.3, 128.1, 126.5, 126.0, 118.3, 82.6, 76.9, 42.1, 32.8, 32.2, 29.4, 28.4, 28.3, 22.4, 22.3. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{~N}_{5}$: C, 73.57; H, 7.78. Found: C, 73.49; H, 7.85.
2-(4-Hexyl-1-methyl-5-phenethyl-4,5-dihydro-1H-pyrazol-4-yl)-2H-benzotriazole (6f'). Yellow oil (65\%); ${ }^{1} \mathrm{H}$ NMR $\delta 7.96-7.90(\mathrm{~m}, 2 \mathrm{H}) ; 7.42-7.36(\mathrm{~m}, 2 \mathrm{H}) ; 7.23-7.09(\mathrm{~m}, 4 \mathrm{H}) ; 6.99-6.97$ (m, $2 \mathrm{H}) ; 3.05(\mathrm{dd}, \mathrm{J}=3.8 \mathrm{~Hz}, 8.5 \mathrm{~Hz}, 1 \mathrm{H}) ; 2.94(\mathrm{~s}, 3 \mathrm{H}) ; 2.92-2.80(\mathrm{~m}, 2 \mathrm{H}) ; 2.37-2.27(\mathrm{~m}, 2 \mathrm{H})$; $1.71-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.39-1.18(\mathrm{~m}, 8 \mathrm{H}) ; 1.09-0.96(\mathrm{~m}, 1 \mathrm{H}) ; 0.88(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ $144.1,141.2,140.6,128.4,128.2,126.5,126.0,118.4,82.4,73.6,41.3,37.3,32.0,31.5,29.3$, 28.7, 25.1, 22.5, 14.0. Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{~N}_{5}$: C, 74.00; H, 8.02; N, 17.98. Found: C, 74.32; H, 8.37; N, 17.59.
2-(4-Benzyl-1-methyl-5-phenethyl-4,5-dihydro-1H-pyrazol-4-yl)-2H-benzotriazole (6h'). Yellow oil (45\%); ${ }^{1} \mathrm{H}$ NMR $\delta 7.97-7.91(\mathrm{~m}, 2 \mathrm{H}) ; 7.43-7.38(\mathrm{~m}, 2 \mathrm{H}) ; 7.23-7.13(\mathrm{~m}, 6 \mathrm{H}) ; 7.05-6.98(\mathrm{~m}$,
$5 \mathrm{H}) ; 4.35$ (d, $J=14.0 \mathrm{~Hz}, 1 \mathrm{H}) ; 3.66$ (d, $J=14.1 \mathrm{~Hz}, 1 \mathrm{H}) ; 3.19$ (dd, $J=8.2,4.0 \mathrm{~Hz}, 1 \mathrm{H}) ; 2.99-$ $2.82(\mathrm{~m}, 1 \mathrm{H}) ; 2.85(\mathrm{~s}, 3 \mathrm{H}) ; 2.44-2.34(\mathrm{~m}, 1 \mathrm{H}) ; 1.75-1.63(\mathrm{~m}, 1 \mathrm{H}) ; 1.18-1.05(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 144.5,141.6,140.8,135.3,131.0,129.0,128.9,128.7,127.7,127.1,126.5,118.9,83.3,73.8$, 43.6, 41.6, 32.5, 29.3. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{~N}_{5}$: C, 75.92 ; H, 6.37; N, 17.71. Found: C, 76.32; H, 6.23; N, 17.65.
1-(4-Benzotriazol-1-yl-1-methyl-5-(4-methylphenyl)-4,5-dihydro-1H-pyrazol-4-yl)-pentan-
1-one (6i). Yellow microcrystals (60%), mp $95-97{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 8.06$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$), $7.74-$ $7.71(\mathrm{~m}, 2 \mathrm{H}), 7.57(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.50(\mathrm{~s}, 1 \mathrm{H}), 2.95(\mathrm{~s}, 3 \mathrm{H}), 2.75-2.65(\mathrm{~m}, 1 \mathrm{H}), 2.51-2.41(\mathrm{~m}, 1 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H})$, $1.68-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.31(\mathrm{~m}, 2 \mathrm{H}), 0.88(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 172.2,146.1,138.3$, $134.7,131.9,129.4,128.6,126.5,124.8,123.7,120.4,112.3,110.6,75.1,47.6,32.2,26.7,22.3$, 21.0, 13.7. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{O}: \mathrm{C}, 70.38 ; \mathrm{H}, 6.71$; $\mathrm{N}, 18.65$. Found: C, $70.43 ; \mathrm{H}, 6.82$; N, 18.83.

General procedure for preparation of 7

A solution of $4(1.0 \mathrm{mmol})$ and hydrazine $(1.0 \mathrm{mmol})$ in 5 mL of ethanol was heated at $78{ }^{\circ} \mathrm{C}$ for 12 h . After cooling, sodium ($0.05 \mathrm{~g}, 2.1 \mathrm{mmol}$) was added and the reaction mixture was heated under reflux again for additional 12 h . After evaporation of solvent, the residue was chromatographed on silica gel eluted with EtOAc/hexane 1:19 to give pyrazole 7.
1-Methyl-5-phenyl-1H-pyrazole (7a). Colorless oil (75\%); bp 91-93 ${ }^{\circ} \mathrm{C} / 1.5 \mathrm{mmHg}$ (lit. ${ }^{26} \mathrm{bp}$ $\left.90-95{ }^{\circ} \mathrm{C} / 1.5 \mathrm{mmHg}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 7.51(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.37(\mathrm{~m}, 5 \mathrm{H}), 6.30(\mathrm{~d}, J=1.8$ $\mathrm{Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\delta 143.5,138.4,130.7,128.7,128.6,128.3,106.0,37.4$.

General procedure for preparation of 8 from 5

A solution of 5a (1.1 mmol) in anhydrous THF (20 mL) was cooled to $-78{ }^{\circ} \mathrm{C}$ and then treated dropwise with $n-\operatorname{BuLi}(0.75 \mathrm{~mL}$ of 1.6 M in hexane, 1.2 mmol$)$ and stirred at this temperature for 0.5 h . A solution of methyl iodide ($0.08 \mathrm{ml}, 1.3 \mathrm{mmol}$) in 5 mL of THF was added slowly at -78 ${ }^{\circ} \mathrm{C}$. The reaction mixture was allowed to warm to room temperature while stirring for 2 h , quenched by the addition of saturated $\mathrm{NH}_{4} \mathrm{Cl}$, and extracted with ether. The organic extracts were washed with brine, dried over MgSO_{4} and concentrated under vacuum. The residue was dissolved in $\mathrm{MeOH}(10 \mathrm{~mL})$ and $\mathrm{MeONa}(0.21 \mathrm{~g}, 0.0038 \mathrm{~mol})$ was added. The reaction mixture was heated under reflux for 12 h . The solvent was evaporated and the residue was dissolved in EtOAc (15 mL). The solution was washed with water, brine, dried over MgSO_{4} and the solvent was evaporated under reduced pressure. The residue was purified by silica gel column chromatography using EtOAc/hexane (1:9) to give pure 8a.
1,4-Dimethyl-5-phenyl-1H-pyrazole (8a). Colorless oil (63%); (lit. ${ }^{27}$ bp $112-114{ }^{\circ} \mathrm{C} / 1 \mathrm{mmHg}$); ${ }^{1} \mathrm{H}$ NMR $\delta 7.69-7.66(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.20(\mathrm{~s}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~d}, J=0.6 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 130.7,128.6,128.4,127.3,127.1,125.5,113.8,38.8,10.0$. HRMS calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{2}$: 173.1073. Found: 173.1077.

General procedure for preparation of 8 from 6

$\mathrm{MeONa}(0.06 \mathrm{~g}, 1.1 \mathrm{mmol})$ was added to a stirred solution of $6(0.33 \mathrm{mmol})$ of methanol (10 mL). The reaction mixture was heated under reflux for 12 h . The solvent was evaporated and the
residue was dissolved in $\mathrm{EtOAc}(15 \mathrm{~mL})$. The solution was washed with water, brine, dried over MgSO_{4} and the solvent was evaporated under reduced pressure and the residue was purified by silica gel column chromatography to give pure $\mathbf{8 b}-\mathbf{h}$.
1,4-Dimethyl-5-(4-methylphenyl)-1H-pyrazole (8b). Colorless oil (79\%); ${ }^{1} \mathrm{H}$ NMR $\delta 7.37$ (s, $1 \mathrm{H}), 7.28(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR $\delta 140.7,138.7,138.1,129.4,129.2,127.3,114.2,37.2,21.2,9.0$. HRMS calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{2}$: 187.1229. Found: 187.1227.
1-Methyl-4-butyl-5-(4-methylphenyl)-1H-pyrazole (8c). Colorless oil (52\%); ${ }^{1} \mathrm{H}$ NMR $\delta 7.39$ (s, 1H); $7.27(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}) ; 7.18(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}) ; 3.73(\mathrm{~s}, 3 \mathrm{H}) ; 2.42(\mathrm{~s}, 3 \mathrm{H}) ; 2.35(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 2 \mathrm{H}) ; 1.51-1.40(\mathrm{~m}, 2 \mathrm{H}) ; 1.34-1.21(\mathrm{~m}, 2 \mathrm{H}) ; 0.84(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 140.5$, 138.2, 138.0, 129.6, 129.3, 127.6, 120.0, 37.1, 33.1, 23.6, 22.3, 21.3, 13.8. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}_{2}$: C, 78.90; H, 8.83; N, 12.27. Found: C, 78.65; H, 9.05; N, 12.45.
1,4-Dimethyl-5-phenethyl-1H-pyrazole (8d). Yellow oil (60\%); ${ }^{1} \mathrm{H}$ NMR $\delta 7.30-7.22$ (m, 4H); 7.08-7.05 (m, 2H); $3.56(\mathrm{~s}, 3 \mathrm{H}) ; 2.89-2.77(\mathrm{~m}, 4 \mathrm{H}) ; 1.87(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 140.5,138.5$, 138.3, 128.5, 128.4, 126.3, 113.5, 36.1, 35.1, 26.2, 8.5. HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{2}$: 201.1386. Found: 201.1384.
1-Methyl-4-(3-methyl-butyl)-5-phenethyl-1H-pyrazole (8e). Yellow oil (53\%); ${ }^{1} \mathrm{H}$ NMR δ 7.30-7.18 (m, 4H), 7.09-7.06 (m, 2H), 3.58 (s, 3H), 2.89-2.76 (m, 4H), 2.28-2.22 (m, 2H), 1.56 (septet, $J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.40-1.33(\mathrm{~m}, 2 \mathrm{H}), 0.91(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 140.5,128.0$, 138.0, 137.4, 128.5, 128.4, 126.3, 119.1, 40.0, 36.1, 35.5, 27.6, 26.3, 22.4, 21.6. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{~N}_{2}$: C, $79.64 ; \mathrm{H}, 9.44 ; \mathrm{N}, 10.93$. Found: C, $79.45 ; \mathrm{H}, 9.75 ; \mathrm{N}, 10.75$.
4-Hexyl-1-methyl-5-phenethyl-1H-pyrazole (8f). Yellow oil (57\%); ${ }^{1} \mathrm{H}$ NMR $\delta 7.31-7.19$ (m, $4 \mathrm{H}) ; 7.10-7.07(\mathrm{~m}, 2 \mathrm{H}) ; 3.57(\mathrm{~s}, 3 \mathrm{H}) ; 2.89-2.76(\mathrm{~m}, 4 \mathrm{H}) ; 2.26(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}) ; 1.50-1.45(\mathrm{~m}$, 2H); 1.33-1.25 (m, 6H); 0.91-0.86 (m, 3H); ${ }^{13} \mathrm{C}$ NMR $\delta 140.6,138.1,137.6,128.5,128.4$, $126.3,119.0,36.1,35.6,31.7,30.8,29.1,26.2,23.8,22.6$, 14.1. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{~N}_{2}: \mathrm{C}$, 79.95; H, 9.69; N, 10.36. Found: C, 79.73; H, 10.04; N, 10.57.

4-Ethyl-1-methyl-5-phenethyl-1H-pyrazole (8g). Yellow oil (58\%); ${ }^{1} \mathrm{H}$ NMR $\delta 7.30-7.19$ (m, 4H); 7.10-7.07 (m, 2H); $3.58(\mathrm{~s}, 3 \mathrm{H}) ; 2.90-2.77(\mathrm{~m}, 4 \mathrm{H}) ; 2.30(\mathrm{q}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}) ; 1.13$ (t, $J=$ $7.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 140.5,137.9,137.1,128.5,128.5,126.4,120.6,36.1,35.5,26.2,17.0$, 15.2. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2}$: C, 78.46; H, 8.47; N, 13.07. Found: C, 78.39; H, 8.82; N, 12.88. 4-Benzyl-1-methyl-5-phenethyl-1H-pyrazole (8h). Yellow oil (55\%); ${ }^{1} \mathrm{H}$ NMR $\delta 7.30-7.14$ (m, 9H); 7.00-6.98 (m, 2H); $3.64(\mathrm{~s}, 2 \mathrm{H}) ; 3.59(\mathrm{~s}, 3 \mathrm{H}) ; 2.81(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}) ; 2.63(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 141.1,140.5,138.8,138.5,128.5,128.45,128.4,128.36,126.3,126.0,117.5$, 36.2, 35.1, 30.2, 26.4. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2}$: C, 82.57; H, 7.29; N, 10.14. Found: C, 82.23; H, 7.54; N, 10.21.

Acknowledgements

The authors are indebted to Dr. Dennis Hall (University of Florida) for help and useful discussions during the preparation of this manuscript.

References

1. (a) Migliara, O.; Plescia, S.; Diana, P.; Di Stefano, V.; Camarda, L.; Dall'Olio, R. Arkivoc 2004, (v), 44. (b) Daidone, G.; Raffa, D.; Plescia, F.; Maggio, B.; Roccaro, A. Arkivoc 2002, (xi), 227.
2. Loewe, I.; Balzer, W. R.; Gerstung, S. Ger Offen. 19,619,112, 1997; Chem. Abstr. 1997, 128, 16281.
3. Csunderlik, C.; Bercean, V.; Peter, F.; Badea, V. Arkivoc 2002, (ii), 133.
4. Siddall, T. L.; Ouse, D. G.; Benko, Z. L.; Garvin, G. M.; Jackson, J. L.; McQuiston, J. M.; Ricks, M. J.; Thibault, T. D.; Turner, J. A.; VanHeertum, J. C.; Weimer, M. R. Pest Manag. Sci. 2002, 58, 1175.
5. (a) Funaki, J.; Imai, K.; Araki, K.; Danel, A.; Tomasik, P. Pol. J. Chem. 2004, 78, 843. (b) Baroni, E. E.; Kovyrzina, K. A. Zh. Obshch. Khim. 1961, 31, 1641.
6. Bailey, D. M.; Powles, R. G. U.S. Pat. 4916150, 1990; Chem. Abstr. 1990, 113, 59173.
7. Karanewsky, D. S.; Badia, M. C.; Biller, S. A.; Gordon, E. M.; Sofia, M. J. Ger. Offen. 3817298, 1988; Chem. Abstr. 1989, 111, 23720.
8. Penning, T. D.; Talley, J. J.; Bertenshaw, S. R.; Carter, J. S.; Collins, P. W.; Docter, S; Graneto, M. J.; Lee, L. F.; Malecha, J. W.; Miyashiro, J. M.; Rogers, R. S.; Rogier, D. J.; Yu, S. S.; Anderson, G. D.; Burton, E. G.; Cogburn, J. N.; Gregory, S. A.; Koboldt, C. M.; Perkins, W. E.; Seibert, K.; Veenhuizen, A. W.; Zhang, Y. Y.; Isakson, P. C. J. Med. Chem. 1997, 40, 1347.
9. Begtrup, M.; Nytoft, H. P. J. Chem. Soc., Perkin Trans 1 1985, 81.
10. Pitt, G. R. W.; Batt, A. R.; Haigh, R. M.; Penson, A. M.; Robson, P. A.; Rooker, D. P.; Tartar, A. L.; Trim, J. E.; Yea, C. M.; Roe, M. B. Bioorg. Med. Chem. Lett. 2004, 14, 4585.
11. Subasinghe, N. L.; Ali, F.; Illig, C. R.; Rudolph, M. J.; Klein, S.; Khalil, E.; Soll, R. M.; Bone, R. F.; Spurlino, J. C.; DesJarlais, R. L.; Crysler, C. S.; Cummings, M. D.; Morris, P. E.; Kilpatrick, J. M.; Babu, Y. S. Bioorg. Med. Chem. Lett. 2004, 14, 3043.
12. (a) Novinson, T.; Robins, R. K.; Matthews, T. R. J. Med. Chem. 1977, 20, 296. (b)

Volochnyuk, D. M.; Pushechnikov, A. O.; Krotko, D. G.; Sibgatulin, D. A.; Kovalyova, S. A.; Tolmachev, A. A. Synthesis 2003, 1531.
13. (a) Kashima, C.; Miwa, Y.; Shibata, S.; Nakazono, H. J. Heterocycl. Chem. 2003, 40, 681. (b) Kashima, C.; Higashide, K.; Miwa, Y.; Tsukamoto, Y. J. Heterocycl. Chem. 2002, 39, 917.
14. (a) Mukherjee, A.; Sarkar, A. Arkivoc 2003, (ix), 87. (b) Sanz, D.; Jiménez, J. A.; Claramunt, R. M.; Elguero, J. Arkivoc 2004, (iv), 100.
15. Kobayashi, T.; Uchiyama, Y. J. Chem. Soc., Perkin Trans 1 2000, 2731.
16. (a) Behr, L. C.; Fusco, R.; Jarboe, C. H. Pyrazoles, Pyrazolines, Pyrazolidines, Indazoles and condenced rings; Interscience Publisher: New York, 1967. (b) Kost, A. N.; Grandberg, I. I. In Advanced in Heterocyclic Chemistry; Katritzky, A. R.; Boulton, A. J., Eds.; Academic Press: New York, 1966; Vol. 6, p 347.
17. Ege, G.; Franz, H. J. Heterocycl. Chem. 1982, 19, 1267.
18. (a) Singh, S. K.; Reddy, M. S.; Shivaramakrishna, S.; Kavitha, D.; Vasudev, R.; Babu, J. M.; Sivalakshmidevi, A.; Rao, Y. K. Tetrahedron Lett. 2004, 45, 7679. (b) Katritzky, A. R.; Galuszka, B.; Rachwal, S.; Black, M. J. Heterocycl. Chem. 1994, 31, 917.
19. (a) Nishiwaki, N.; Matsushima, K.; Chatani, M.; Tamura, M.; Arida, M. Synlett 2004, 703. (b) Vicente, V.; Fruchier, A.; Elguero, J. Arkivoc 2004, (iii), 5.
20. (a) Yoshimatsu, M.; Kawahigashi, M.; Honda, E.; Kataoka, T. Chem. Soc., Perkin Trans. 1 1997, 695. (b) Kamitori, Y.; Hojo, M.; M. Masuda, R.; Fujishiro, M.; Wada, M.; Heterocycles 1994, 38, 21. (c) Katritzky, A. R.; Musgrave, R. P.; Breytenbach, J. C. J. Heterocycl. Chem. 1996, 33, 1637.
21. Touzot, A.; Soufyane, M.; Berber, H.; Toupet, L.; Mirand, C. J. Fluorine Chem. 2004, 125, 1299.
22. Dastrup, D. M.; Yap, A. H.; Weinreb, S. M.; Henry, J. R.; Lechleiter, A. I. Tetrahedron 2004, 60, 901.
23. Tamaru, Y.; Harada, T.; Yoshida, Z. Chem. Lett. 1978, 263.
24. Katritzky, A. R.; Wang, M.; Zhang, S.; Voronkov, M. V. J. Org. Chem. 2001, 66, 6787.
25. Petrich, S. A; Main, A. D.; Jaeger, R.; Smith, S. Q.; Hicks, F. A.; Gupton, J. T.; Sikorski, J. A.; Katritzky, A. R.; Castle, L. Heterocycles 1994, 39, 623.
26. Pavlik, J. W.; Kebede, N. J. Org. Chem. 1997, 62, 8325.
27. Elguero, J.; Jacquier, R.; Tizane, D. Bull. Soc. Chim. Fr. 1969, 5, 1687.

