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Abstract 
Quantitative structure-property relationship (QSPR) models based on in vitro serum proteins 
binding data of 113 diverse drugs and drug-like compounds are reported. For this purpose, two 
Genetic Algorithm (GA) based approaches GA1 and GA2 along with multiple linear regression 
(MLR) are employed to exhaustively search and to select multivariate linear equations, starting 
from a large pool of molecular descriptors (molecular properties or variables). The reported 
QSPR models are based on combinations of 5 and 6 molecular properties calculated from the 2D 
chemical structures. Internal (leave-one-out) and external validation tests have demonstrated that 
these models have excellent predictive power and can be applied to the design new β-lactams 
class of antibiotics. As the models reported herein, are based on computed properties, they 
appear as valuable virtual screening tools, where selection and prioritisation of candidates is 
required. 
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Introduction 
 
Binding affinity of new chemical entities (NCE’s) to serum proteins is one of the important 
ADME1-7 (Absorption, Distribution, Metabolism and Excretion) properties considered in drug 
discovery and development. Serum proteins are grossly separated into albumin and globulins. 
Albumin is the protein of highest concentration in the serum (plasma is serum plus clotting 
proteins). It is a carrier of many small molecules,8 and is very important in maintaining the 
oncotic pressure of the blood (that is keeping the fluid from leaking out into the tissues).  
Binding of a drug to serum proteins in human plasma is a major determinant of its 
pharmacodynamic behavior (the action of a drug to the body) and the pharmacokinetics of the 
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drug (the action of the body to the drug) and consequently, can affect the systemic distribution of 
the drug in several ways. Binding of a drug to plasma protein is a reversible process and is 
therefore in an equilibrium state. The unbound drug molecules contribute to the pharmacological 
efficacy and are also susceptible to metabolic reactions.  

Acidic drugs are known to bind tightly to human serum albumin (HSA), the major 
constituent of plasma proteins.9 HSA has two ligand specific binding sites10,11 namely, site-I and 
site-II. The ligand selectivity is comparatively broader for these two sites, allowing a range of 
drug molecules to bind at these sites. This broad selectivity is considered to be a result of the 
significant allosteric effects in HSA12 and drug molecules can also interact nonspecifically with 
HSA. In addition, alpha 1-acid glycoproteins (AGP) and lipoproteins, constituents of plasma 
proteins, can also interact with drugs. Although the amount of AGP in the plasma is far smaller 
than that of HSA, it interacts strongly with basic and neutral drugs9 in addition to some acidic 
drugs.13 Binding to lipoproteins is considered non-specific due to hydrophobic interactions.9 

Prediction of the serum protein binding percentage is more difficult than that of other ADME 
factors because, this is a composite parameter made up of the sum of interactions with multiple 
proteins, each with a different affinity. The prediction is further complicated by having to include 
both specific and nonspecific binding as well as significant allosteric interactions. Given the 
importance of drug binding to serum proteins13, it should be extremely useful to develop 
quantitative structure-property relationships to predict the binding affinity to serum proteins, 
applicable to the whole medicinal chemical space. Computational models of this type are useful 
because they rationalize a large number of experimental observations and therefore allow us to 
save time and money in the drug design process. However, there are very few published reports 
14–17 on the prediction of binding affinity of drugs and drug-like compounds to serum proteins 
and further, these predictive models are based on molecular properties chosen out of experience; 
consequently, the whole space of molecular properties is not explored. This prompted us to 
perform a study aimed at (i) gaining further insights into the molecular properties that influence 
serum protein binding (ii) develop improved mathematical models for serum protein binding and 
(iii) demonstrate their utility in drug discovery and development.  

In this paper, we describe the application of two (GA) based approaches GA1 and GA2 to 
derive novel QSPR models to predict the binding affinity of a specific class of drugs, β-lactams, 
to human serum protein, for the first time using a large set of molecular properties, to the best of 
our knowledge. The predictive performance of the QSPR models on external data sets taken 
from literature is illustrated. 
 
 
Results and Discussions 
 
Methodology 
 
The methodology adopted in the data analysis is depicted in Fig. 1. The QSPR models reported 
in the literature on protein binding are principally based on manually selected descriptors, where 
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experience and intuition are the key factors for success. However, in this approach, the whole 
molecular properties space is not explored and hence, it is highly desirable to explore all possible 
descriptor combinations in model generation. Our methodology provides many advantages and 
some of them are as follows: 1) it is based on a larger training set 2) it is also based on the largest 
number of molecular properties reported as of date and hence can provide an optimal solution 3) 
we have set the inter correlation coefficient between descriptors as 0.75 and thereby the selected 
descriptors are expected to be independent. 
 

     
 

Descriptors
 

PFB* 

Manual Training Set
Selection  

Automated Variable 
Selection

Automated Variable
Selection  

Automated Training 
Set Selection

Build and Test 
the Models

Approach GA1a Approach GA2b 

 
 
a Variable selection based on 100 observations 
b Variable selection based on 113 observations 
* PFB – Percentage Fraction bound 
 
Figure 1. Data Analysis methodology. 
 
QSPR models using GA1 
In approach GA1, 100 compounds of training set their 322 descriptors and I are used to select the 
best three of the 5 and 6 variable combinations, keeping the experimental percentage fraction 
bound (PFB) values, as the dependent variable. As many of the 322 descriptors may be 
correlated, it is desirable to find variables that are not correlated and construct models using only 
these variables. It is well known that QSPR models based on un-correlated variables will 
improve the predictive performance and hence, we performed variable selection, setting the 
inter-variable correlation below 0.75, as this is expected to discard descriptors with a inter-
correlation coefficient above 0.75. The selected combinations are shown in Table 1 and the inter-
descriptor correlations are shown in Table 2. 
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Table 1. Variables selected using GA1 

No of 
Selected 
Desc. 

 
Model 
No 

 
Selected Descriptors 

 
R 

 
F 

 
Q 

 
SE 

5 G1 158, 235, 268, 284, 304 0.8935 74.45 0.8723 12.724 
 G2 158, 235, 247, 284, 304 0.8933 74.28 0.8720 12.736 
 G3 199, 231, 268, 284, 304 0.8926 74.68 0.8728 12.776 
6 G4 158, 193, 231, 247, 284, 304 0.9074 72.25 0.8888 11.973 
 G5 158, 193, 235, 268, 284, 304 0.9072 72.03 0.8884 11.988 
 G6 158, 193, 235, 247, 284, 304 0.9068 71.73 0.8881 12.009 

where 
158 – Autocorrelation descriptor (Broto-Moreau) weighted by atomic masses – Order 2 
193 – Autocorrelation descriptor (Moran) weighted by Pauling electronegativity – Order1   
199 – Autocorrelation descriptor (Moran) weighted by atomic van der Waals radius – Order 1 
231 – Mean information content on the distance equality 
235 – Mean information content on the edge distance equality 
247 – Atomic Type Electrotopological state index (E-state) - SsNH2 
268 – Hydrogen Electrotopological state index (E-state) – SHsNH2 
284 – Atomic-Level-Based AI topological descriptors – AIsssCH 
304 – AlogP98 
 

The best 5 descriptors model G1 is based on variables 158, 235, 268, 284 and 304 with a 
correlation coefficient, R of 0.8935 and cross-validated correlation coefficient, Q of 0.8723. The 
correlation coefficients of the other two models G2 and G3 are 0.8933 and 0.8926 respectively.  

Significantly, the descriptors 284 (Atomic-Level-Based AI topological descriptor – AIsssCH) 
and 304 (AlogP98) are selected in all the best five variable models G1, G2 and G3.  Descriptors 
231 (Mean information content on the distance equality) in model G3 and 235 (Mean 
information content on the edge distance equality) in models G1 and G2 have high correlation (R 
= 0.9945), indicating that they provide the same information and significance to protein binding 
property of chemical compounds. Similarly, descriptor 247 (Atomic Type Electrotopological 
state index – SsNH2) of model G2 and 268 (Hydrogen Electrotopological state index – SHsNH2) 
of models G1 and G3 have inter-correlation coefficient R = 0.9992. It is interesting to note that 
descriptor 199 (Autocorrelation descriptor (Moran) weighted by atomic van der Waals radius – 
Order 1) of model G3 has low correlation with the rest of the descriptors in the five descriptors 
combinations. 

The best six descriptors combination G4 is based on the variables 158, 193, 231, 247, 284 
and 304 with a correlation coefficient of 0.9074, and cross-validated correlation coefficient, Q of 
0.8888. Combinations of descriptors in models G5 and G6 are the same as those in models G1 
and G2 with an additional new descriptor 193. Similarly, model G4, is the same as model G3, 
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with an additional descriptor 158. As there is no significant improvement in R and Q values 
between the five and six descriptor combinations, we did not proceed further to select models 
with higher number of descriptors and this prompted us to believe that the six descriptors model 
is an optimal solution to the prediction of protein binding based on the 332 descriptors.  
 
Table 2. Correlation matrix of the selected variables 

 158 193 199 231 235 247 268 284 304 
158 1 0.1064 0.0358 0.0239 0.0244 0.1187 0.1148 0.0148 0.0646 
193   1 0.9653 0.0742 0.1145 0.0808 0.0833 0.1417 0.0696 
199     1 0.1679 0.2076 0.0556 0.0584 0.1572 0.0678 
231       1 0.9945 0.2107 0.2150 0.1149 0.1799 
235         1 0.1971 0.2013 0.1069 0.1625 
247           1 0.9992 0.0935 0.5238 
268             1 0.0930 0.5216 
284               1 0.3260 
304                 1 
          

 
The regression equations derived by performing MLR on the above variable combinations are 
given below: 
PFB = -173.467 + 0.295338*Desc158 + 58.488900*Desc235 – 9.692590*Desc268 – 

        1.311910*Desc284 + 16.173280*Desc304      (G1) 
PFB = -172.390 + 0.293301*Desc158 + 58.283730*Desc235 – 3.171120*Desc247 – 

        1.310580*Desc284 + 16.154600*Desc304      (G2) 
PFB = -118.739 + 101.1195*Desc199 + 60.530060*Desc231 – 10.98010*Desc268 – 

        1.148630*Desc284 + 15.351260*Desc304      (G3) 
PFB = -188.255 + 0.326134*Desc158 + 115.3533*Desc193 + 61.72461*Desc231 – 

        3.460850*Desc247 – 1.167410*Desc284 + 15.285760*Desc304  (G4) 
PFB = -160.184 + 0.326561*Desc158 + 105.4771*Desc193 + 55.176880*Desc235 – 

        10.44420*Desc268 – 1.153940*Desc284 + 15.180520*Desc304  (G5) 
PFB = -159.096 + 0.324263*Desc158 + 104.9271*Desc193 + 54.967900*Desc235 – 

        3.412100*Desc247 – 1.153440*Desc284 + 15.170140*Desc304  (G6) 
 
Model validation 
The above models, G1 to G6 are validated using Leave-One-Out approach. The results of LOO 
cross-validations are given in Table 3. A plot of cross-validated PFB values versus the 
experimental PFB values of compounds in training set using models G1–G6 are shown in Fig. 2 
– Fig. 7 respectively. Based on the cross-validated results, we believe that the models G1 and G4 
are the best five and six descriptors models, based on their overall predictive power and can be 
used for virtual screening of β-lactam analogs.  
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Table 3. Results of LOO cross validation 

Predicted PFB Serial 
No 

Compound 
Name 

Expt 
PFB G1 G2 G3 G4 G5 G6 

1 Penicillin_31 12.00 -5.77 -6.04 -2.99 -4.46 -3.34 -3.60 
2 Penicillin_2 15.00 8.52 8.72 8.63 12.93 9.12 9.32 
3 Penicillin_32 16.80 23.07 23.46 27.93 27.07 26.96 27.37 
4 Penicillin_9 20.00 32.33 32.42 28.15 28.19 26.87 27.00 
5 Penicillin_11 25.00 46.54 46.59 40.92 41.98 40.12 40.20 
6 Penicillin_30 26.00 37.29 37.27 41.41 42.06 42.14 42.11 
7 Penicillin_6 28.00 35.17 35.25 27.80 29.45 27.50 27.62 
8 Penicillin_72 32.00 35.93 35.05 31.85 35.40 39.12 38.18 
9 Penicillin_12 33.00 10.68 10.54 11.89 13.08 11.22 11.08 
10 Penicillin_34 38.00 32.05 32.17 31.91 29.47 29.26 29.42 
11 Penicillin_35 42.00 51.69 53.61 57.47 60.28 56.80 58.86 
12 Penicillin_8 47.00 54.31 54.33 52.18 51.67 50.08 50.12 
13 Penicillin_37 53.20 50.20 50.24 55.88 54.20 55.01 55.02 
14 Penicillin_28 55.00 43.25 43.19 43.46 45.66 45.75 45.68 
15 Penicillin_76 57.00 68.17 68.19 68.66 64.18 64.99 65.03 
16 Penicillin_71 58.00 74.93 74.91 69.46 74.71 77.50 77.46 
17 Penicillin_7 58.80 63.31 63.32 58.26 58.70 56.71 56.74 
18 Penicillin_73 59.00 65.42 65.40 59.04 61.60 64.18 64.15 
19 Penicillin_27 60.00 35.75 35.77 40.43 38.18 38.21 38.23 
20 Penicillin_46 60.00 58.84 58.85 80.35 76.81 74.69 74.61 
21 Penicillin_77 61.70 71.60 71.62 73.04 68.10 68.65 68.69 
22 Penicillin_38 62.00 56.18 56.21 56.63 53.54 54.79 54.82 
23 Penicillin_36 63.00 67.78 67.77 71.67 67.60 68.62 68.60 
24 Penicillin_45 65.00 60.86 60.88 62.15 61.68 61.88 61.88 
25 Penicillin_13 66.20 51.62 51.26 53.55 53.08 51.33 50.96 
26 Penicillin_19 68.00 67.72 67.74 73.01 70.32 71.02 71.02 
27 Penicillin_10 74.00 63.90 63.92 61.96 60.89 59.40 59.44 
28 Penicillin_79 74.50 77.66 77.67 79.81 74.79 74.78 74.81 
29 Penicillin_18 77.00 68.21 68.22 65.05 60.83 60.70 60.75 
30 Penicillin_22 78.00 73.33 73.32 74.06 75.95 76.67 76.64 
31 Penicillin_62 80.00 78.35 78.32 78.27 78.68 78.53 78.49 
32 Penicillin_67 80.00 79.18 79.20 83.53 78.20 78.62 78.64 
33 Penicillin_54 81.50 80.08 80.04 78.50 79.69 79.24 79.20 
34 Penicillin_48 81.50 71.79 71.78 70.70 68.50 69.63 69.62 
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Table 3. Continued  

35 Penicillin_66 82.10 87.82 87.82 96.01 90.95 91.23 91.22 
36 Penicillin_29 82.20 55.81 55.58 53.27 58.43 58.07 57.83 
37 Penicillin_21 82.50 83.79 83.72 78.25 87.15 87.91 87.81 
38 Penicillin_44 83.00 77.16 77.14 75.59 78.09 77.62 77.59 
39 Penicillin_53 83.50 77.80 77.78 76.20 77.36 77.09 77.06 
40 Penicillin_75 83.60 82.15 82.05 69.35 80.07 81.06 80.96 
41 Penicillin_41 84.00 83.47 83.43 77.80 80.67 81.28 81.25 
42 Penicillin_61 84.00 76.22 76.20 76.10 76.47 76.50 76.47 
43 Penicillin_64 86.00 80.88 80.89 88.55 84.11 84.50 84.49 
44 Penicillin_50 86.10 79.68 79.67 79.16 76.49 77.53 77.52 
45 Penicillin_14 87.00 62.16 62.20 65.11 63.82 64.59 64.62 
46 Penicillin_39 88.00 79.73 79.67 72.87 78.02 78.44 78.38 
47 Penicillin_68 89.30 85.43 85.43 90.42 85.07 84.84 84.85 
48 Penicillin_74 89.70 100.98 100.71 73.76 99.91 101.25 100.96 
49 Penicillin_16 91.00 94.83 94.82 102.85 97.82 98.05 98.02 
50 Penicillin_52 91.50 76.76 76.74 74.68 75.84 76.08 76.05 
51 Penicillin_42 92.00 88.76 88.71 85.05 86.01 86.06 86.01 
52 Penicillin_3 92.40 98.59 98.54 100.93 100.72 97.75 97.71 
53 Penicillin_49 92.50 83.33 83.32 82.12 79.15 80.36 80.35 
54 Penicillin_4 93.30 104.11 104.11 109.50 105.94 103.81 103.82 
55 Penicillin_23 94.00 88.26 88.21 86.31 91.57 91.34 91.27 
56 Penicillin_24 94.00 90.69 90.63 88.75 94.08 93.66 93.58 
57 Penicillin_69 94.70 92.78 92.73 96.91 92.00 92.53 92.47 
58 Penicillin_63 95.20 107.51 107.42 100.78 104.15 104.53 104.46 
59 Penicillin_65 95.60 86.28 86.27 93.59 89.21 89.59 89.56 
60 Penicillin_57 96.00 99.16 99.08 92.07 95.83 96.20 96.13 
61 Penicillin_43 96.50 101.09 101.00 93.13 98.90 98.26 98.18 
62 Penicillin_25 97.00 105.24 105.14 100.20 109.09 108.09 107.97 
63 Penicillin_59 97.00 100.84 100.75 94.36 98.18 97.81 97.73 
64 Penicillin_51 97.20 88.99 88.97 93.31 88.16 89.05 89.02 
65 Penicillin_58 97.40 102.84 102.74 96.33 100.22 99.70 99.62 
66 Penicillin_70 97.40 88.17 88.14 92.68 87.66 88.13 88.09 
67 Amoxicillin 18.00 25.48 25.77 30.34 29.44 29.24 29.55 
68 Bacampicillin 20.00 60.19 60.20 53.54 50.92 50.73 50.81 
69 Piperacillin 30.00 52.83 52.83 51.45 48.46 48.48 48.48 
70 Methicillin 39.00 62.50 62.54 58.91 55.26 55.36 55.44 
71 Carbenicillin 50.00 53.21 53.25 59.95 57.98 58.64 58.65 
72 Penicillin_G 60.00 70.57 70.58 74.01 72.42 73.02 73.02 
73 Ticarcillin 65.00 49.95 49.97 50.79 52.82 55.34 55.32 
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Table 3. Continued  

74 Penicillin_V 80.00 73.57 73.55 70.85 69.33 70.22 70.21 
75 Nafcillin 89.00 85.44 85.44 90.43 85.08 84.85 84.86 
76 Oxacillin 92.00 79.25 79.24 92.14 87.53 87.70 87.65 
77 Cloxacillin 95.00 92.71 92.67 103.21 100.92 100.71 100.63 
78 Meropenem 2.00 -15.22 -15.07 -3.89 -10.67 -10.90 -10.78 
79 Cephalexin 14.00 35.21 35.29 40.50 36.01 36.62 36.71 
80 Cefadroxil 20.00 34.39 34.70 40.92 37.08 36.48 36.81 
81 Cefepime 20.00 40.05 39.49 32.77 31.62 35.03 34.44 
82 Ceftazidime 21.00 53.06 52.78 52.60 51.82 51.83 51.53 
83 Cefaclor 25.00 37.83 37.87 38.57 38.86 39.52 39.56 
84 Loracarbef 25.00 28.91 29.05 35.94 29.85 30.46 30.61 
85 Cefpodoxime 27.00 48.72 48.16 34.20 31.43 32.13 31.52 
86 Ceftizoxime 28.00 37.20 36.73 31.73 34.73 36.36 35.86 
87 Ceftibutin 30.00 39.85 39.51 35.16 38.26 38.90 38.54 
88 Cefotaxime 36.00 46.42 45.98 39.26 40.21 40.29 39.84 
89 Cefprozil 40.00 45.91 46.21 53.71 49.15 47.73 48.05 
90 Cephapirin 62.00 78.76 78.70 72.37 73.24 72.87 72.82 
91 Cefixime 67.00 43.64 43.40 42.85 44.82 43.97 43.73 
92 Cefmetazole 70.00 91.13 91.04 88.21 88.43 87.64 87.55 
93 Cefoxitin 73.00 68.05 69.93 51.79 55.13 54.69 57.08 
94 Cefmandole 74.00 79.07 79.00 93.10 88.15 88.69 88.55 
95 Ceforanide 81.00 65.46 64.51 77.32 72.93 71.61 70.56 
96 Cefotetan 83.00 72.61 74.54 66.97 83.57 79.90 81.97 
97 Cefazolin 89.00 76.28 76.15 75.13 82.53 84.27 84.07 
98 Cefoperazone 91.00 78.32 78.22 80.46 75.86 75.40 75.28 
99 Ceftriaxone 93.00 46.15 45.84 45.55 44.77 44.86 44.54 
100 Cefonicid 98.00 74.02 73.92 83.96 84.46 82.64 82.47 
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Figure 2. Cross-Validated PFB using G1.         Figure 3. Cross-Validated PFB using G2. 
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Figure 4. Cross-Validated PFB using G3.          Figure 5. Cross-Validated PFB using G4. 
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Figure 6. Cross-Validated PFB using G5.          Figure 7. Cross-Validated PFB using G6. 
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External-validations of models G1 to G6 
 
The manually selected members of test set I are used to study the predictive power of the models 
G1 – G6. The predicted PFB values of these test compounds are given in Table 4. 
 
Table 4. Results of External Validation 

Predicted PFB Serial 
 No 

Compound  
Name 

Expt  
PFB G1 G2 G3 G4 G5 G6 

101 Penicillin_5 7.20 21.25 21.36 13.72 15.26 13.61 13.76 
102 Penicillin_78 69.70 74.25 74.26 75.53 71.08 71.24 71.27 
103 Penicillin_40 83.00 71.36 71.35 69.09 69.18 69.57 69.56 
104 Penicillin_20 93.60 75.72 75.76 79.71 77.70 75.86 75.91 
105 Penicillin_55 96.00 85.82 85.77 81.79 82.67 83.35 83.31 
106 Penicillin_60 86.00 75.42 75.40 74.91 75.25 75.73 75.71 
107 Penicillin_56 94.80 87.54 87.49 82.58 85.49 85.23 85.18 
108 Ampicillin 18.00 26.36 26.42 29.40 28.06 29.17 29.23 
109 Dicloxacillin 96.00 105.53 105.47 112.88 112.88 112.42 112.32 
110 Cephradine 14.00 19.44 19.38 26.12 21.35 22.25 22.18 
111 Cephalothin 71.00 81.77 81.73 76.74 77.72 78.63 78.59 
112 Cefdinir 65.00 46.46 46.16 49.91 52.82 52.90 52.55 
113 Cefuroxime 33.00 48.02 49.77 41.47 39.14 38.07 40.01 

 
QSPR models using GA2 
It is well known that manual selection of training and test sets followed by QSPR model 
generation is arduous and even impractical at times, particularly, when the data set is too large. 
Automated training set selection procedures are expected to be useful in such cases. Abraham et 
al30 have employed automated training set selection successfully for the generating prediction 
models for absorption. They have employed Kennath and Stone algorithm31, which selects 
compounds based on the maximin (maximizing the minimum distances) principle, thereby 
satisfies the diverse distribution of molecular descriptors. We have chosen to study the 
application of GA based automated training set selection for the first time to the best of our 
knowledge, in the development of prediction models for PFB. In this study, the selection of the 
compounds is based on the best correlation coefficient of MLR, as the models with high value of 
R are expected to possess good predictive power.  

In this approach, same data set of 113 compounds and 322 molecular descriptors are used, as 
in the case of the approach GA1. However, the model generation involves the following two 
steps: 1) variable selection using the full data set of 113 compounds as compared to 100, used  in 
the case of GA1 and 2) based on the best variable combinations of step 1, the best training set 
containing 100 members are selected by GA2.  
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The best three of the 5 and 6 variable combinations selected by GA2 are shown in Table 5 
and the inter-descriptor correlations are shown in Table 6. The 5 variable combinations of V1, 
V2 and V3 are the same as that of G1, G2 and G3 respectively of GA1. The best six variable 
combination, V4, is based on the variables 133, 199, 235, 268, 284 and 304 with a correlation 
coefficient, R of 0.8996. It is a new descriptors combination and such a result is anticipated, as 
the training set size is different from that in approach GA1. Similarly, the second best six 
variable combination V5 also has a new descriptor 35 (mean square distance index) that contains 
the same information as descriptors 231 and 235. The third best six variable combination V6 is 
the same as G5 selected by GA1, but has different statistical numbers.   
 
Table 5. Variables selected using GA2 

Sample 
Size 

No of 
Input 
Desc. 

No of 
Selected 
Desc. 

Descriptor 
Combination 

 
Selected Descriptors 

 
R 

113 322 5 V1 158, 235, 268, 284, 304 0.8996 
   V2 158, 235, 247, 284, 304 0.8991 
   V3 199, 231, 268, 284, 304 0.8987 
 
113 

 
322 

 
6 

 
V4 

 
133, 199, 235, 268, 284, 304 

 
0.9128 

   V5 35, 158, 193, 268, 284, 304 0.9126 
   V6 158, 193, 235, 268, 284, 304 0.9124 
      

where 
35 – Mean square distance index 
133 – Bound charge index (J) – Order 1 
158 – Autocorrelation descriptor (Broto-Moreau) weighted by atomic masses of  
          Order 2 
193 – Autocorrelation descriptor (Moran) weighted by Pauling electro-negativity –  
          Order 1 
199 – Autocorrelation descriptor (Moran) weighted by atomic van der Waals  
          radius – Order 1 
231 – Mean information content on the distance equality 
235 – Mean information content on the edge distance equality 
245 – Atomic Type Electrotopological state index (E-state) - SsNH2 
268 – Hydrogen Electro-topological state index (E-state) - SHsNH2 
284 – Atomic-Level-Based AI topological descriptors – AIsssCH 
304 – AlogP98 
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Table 6. Correlation matrix of the selected variables 

 35 133 158 193 199 231 235 247 268 284 304 
 
35 

 
1 

 
0.4054 

 
0.0179 

 
0.0814 

 
0.1711 

 
0.9883 

 
0.979 

 
0.1829 

 
0.188 

 
0.1248 

 
0.1614 

133  1 0.329 0.1823 0.2366 0.4113 0.430 0.2267 0.2272 0.2936 0.349 
158   1 0.0972 0.036 0.0259 0.025 0.1434 0.1407 0.0163 0.079 
193    1 0.9678 0.0941 0.135 0.1055 0.1038 0.0991 0.1052 
199     1 0.183 0.222 0.0786 0.078 0.115 0.1092 
231      1 0.994 0.2004 0.2053 0.1251 0.1442 
235       1 0.19 0.1948 0.1201 0.1261 
247        1 0.9991 0.1024 0.5363 
268         1 0.104 0.5352 
284          1 0.3462 
304           1 
            

 
The best 5 and 6 variable combinations having high correlation to PFB, V1 and V4 are 

considered for the selection of best training sets using GA2. The data set consisting of 113 
compounds and the best 5 and 6 variable combinations are used as the input data for GA2 to 
select the training set of 100 compounds based on the correlation coefficient R. The two best 
training sets, II and III are presented in Table 7. The compounds that are not selected as training 
set members in the case of models T1 and T4 constitute test sets II and III respectively.  
 
Table 7. Training set selected using GA2 

Descri
ptor 
Combi
nation 

Model 
No 

 
Selected members of the training set 

 
R 

 
Q 

 
F 

     V1    T1 
 

II: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 
15, 16, 17, 18, 19, 20, 21, 22, 25, 26, 27, 
28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 39, 
40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 51, 
52, 53, 55, 56, 57, 58, 60, 61, 62, 63, 64, 
65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 
77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 
88, 89, 90, 91, 92, 93, 94, 96, 97, 98, 99, 
100, 101, 104, 105, 106, 107, 109, 110, 
111,113 

0.9438 0.9323 153. 260 
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Table 7. Continued 

V4 T4 III: 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 
14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 
25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 
36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 
48, 50, 52, 53, 54, 55, 56, 57, 59, 60, 61, 
62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 
74, 75, 77, 78, 79, 80, 81, 82, 83, 84, 85, 
86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 
98, 99, 100, 105, 106, 107, 108, 109, 
110, 111, 113 
 

0.9473 0.9358 135.572 

The compounds selected as training sets II and III for the models T1 and T4 with their 
corresponding PFB values are used for model generation using MLR and the resulting regression 
equations are given below: 
 
PFB = -196.76 + 0.294636*Desc158 + 60.49762*Desc235 – 9.45805*Desc268 –  

    0.614930*Desc284 + 16.68958*Desc304     (T1) 
N = 100, R = 0.9438, SE = 9.747849, Q = 0.9323 
PFB = -195.554 + 160.736*Desc133 + 80.60265*Desc199 + 72.65097*Desc235 –  

      12.0217*Desc268 – 1.296300*Desc284 + 15.07384*Desc304  (T4) 
N = 100, R = 0.9473, SE = 9.401961, Q = 0.9358 
 
Model validation 
 
The members of the training sets II and III, selected by GA2 (Table 7), are cross-validated by the 
LOO method. The LOO cross-validated PFB values of compounds in training sets II and III are 
given in Table 8. A plot of cross-validated PFB values versus the observed PFB values using T1 
and T4 is shown in Fig. 8 and Fig. 9 respectively.  
 
Table 8. Results of LOO cross-validation of compounds in training sets II and III 

Training set II – Model T1  Training set III – Model T4 
Comp 
No. 

Comp Name Expt 
PFB 

Calc 
PFB 

Comp 
No. 

Comp Name Expt 
PFB 

Calc 
PFB 

1 Penicillin_5 7.20 13.94 1 Penicillin_5 7.20 13.84 
2 Penicillin_31 12.00 -5.03 2 Penicillin_31 12.00 -4.07 
3 Penicillin_2 15.00 -4.57 3 Penicillin_2 15.00 5.86 
4 Penicillin_32 16.80 23.85 4 Penicillin_32 16.80 29.47 
5 Penicillin_9 20.00 30.85 5 Penicillin_9 20.00 26.74 
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Table 8. Continued 

6 Penicillin_11 25.00 39.99 6 Penicillin_11 25.00 39.33 
7 Penicillin_30 26.00 38.46 7 Penicillin_30 26.00 42.84 
8 Penicillin_6 28.00 27.18 8 Penicillin_6 28.00 26.38 
9 Penicillin_72 32.00 37.02 9 Penicillin_72 32.00 35.04 
10 Penicillin_12 33.00 9.83 11 Penicillin_34 38.00 33.55 
11 Penicillin_34 38.00 34.17 12 Penicillin_35 42.00 64.24 
13 Penicillin_8 47.00 57.54 13 Penicillin_8 47.00 54.28 
14 Penicillin_37 53.20 50.07 14 Penicillin_37 53.20 54.02 
15 Penicillin_28 55.00 44.48 15 Penicillin_28 55.00 45.06 
16 Penicillin_76 57.00 65.66 16 Penicillin_76 57.00 65.15 
17 Penicillin_71 58.00 68.98 17 Penicillin_71 58.00 74.43 
18 Penicillin_7 58.80 58.35 18 Penicillin_7 58.80 56.48 
19 Penicillin_73 59.00 66.74 19 Penicillin_73 59.00 62.70 
20 Penicillin_27 60.00 36.91 20 Penicillin_27 60.00 41.88 
21 Penicillin_46 60.00 61.57 21 Penicillin_46 60.00 79.44 
22 Penicillin_77 61.70 69.76 22 Penicillin_77 61.70 70.68 
25 Penicillin_45 65.00 62.06 23 Penicillin_38 62.00 53.80 
26 Penicillin_13 66.20 53.66 24 Penicillin_36 63.00 68.41 
27 Penicillin_19 68.00 68.12 25 Penicillin_45 65.00 64.10 
28 Penicillin_78 69.70 72.60 26 Penicillin_13 66.20 48.95 
29 Penicillin_10 74.00 64.54 27 Penicillin_19 68.00 70.90 
30 Penicillin_79 74.50 76.55 28 Penicillin_78 69.70 70.22 
31 Penicillin_18 77.00 66.27 29 Penicillin_10 74.00 57.58 
32 Penicillin_22 78.00 73.73 30 Penicillin_79 74.50 75.60 
33 Penicillin_62 80.00 81.04 31 Penicillin_18 77.00 66.71 
34 Penicillin_67 80.00 76.99 32 Penicillin_22 78.00 71.97 
35 Penicillin_54 81.50 77.73 33 Penicillin_62 80.00 86.34 
36 Penicillin_48 81.50 73.31 34 Penicillin_67 80.00 78.91 
37 Penicillin_66 82.10 85.26 35 Penicillin_54 81.50 86.24 
39 Penicillin_21 82.50 84.22 36 Penicillin_48 81.50 73.63 
40 Penicillin_40 83.00 72.44 37 Penicillin_66 82.10 92.32 
41 Penicillin_44 83.00 79.43 39 Penicillin_21 82.50 75.70 
42 Penicillin_53 83.50 75.29 40 Penicillin_40 83.00 70.78 
43 Penicillin_75 83.60 84.42 41 Penicillin_44 83.00 79.19 
44 Penicillin_41 84.00 85.38 42 Penicillin_53 83.50 83.24 
45 Penicillin_61 84.00 78.70 43 Penicillin_75 83.60 76.94 
46 Penicillin_60 86.00 77.54 44 Penicillin_41 84.00 77.46 
47 Penicillin_64 86.00 77.65 45 Penicillin_61 84.00 83.53 
48 Penicillin_50 86.10 81.69 46 Penicillin_60 86.00 78.77 
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Table 8. Continued 

50 Penicillin_39 88.00 81.04 47 Penicillin_64 86.00 83.38 
51 Penicillin_68 89.30 83.99 48 Penicillin_50 86.10 79.93 
52 Penicillin_74 89.70 103.91 50 Penicillin_39 88.00 74.23 
53 Penicillin_16 91.00 93.45 52 Penicillin_74 89.70 80.74 
55 Penicillin_42 92.00 91.52 53 Penicillin_16 91.00 96.20 
56 Penicillin_3 92.40 95.57 54 Penicillin_52 91.50 78.24 
57 Penicillin_49 92.50 80.82 55 Penicillin_42 92.00 93.07 
58 Penicillin_4 93.30 101.63 56 Penicillin_3 92.40 97.13 
60 Penicillin_23 94.00 89.58 57 Penicillin_49 92.50 94.47 
61 Penicillin_24 94.00 92.21 59 Penicillin_20 93.60 84.51 
62 Penicillin_69 94.70 98.05 60 Penicillin_23 94.00 89.06 
63 Penicillin_56 94.80 89.72 61 Penicillin_24 94.00 92.12 
64 Penicillin_63 95.20 111.40 62 Penicillin_69 94.70 102.06 
65 Penicillin_65 95.60 83.66 63 Penicillin_56 94.80 85.87 
66 Penicillin_55 96.00 88.03 64 Penicillin_63 95.20 104.00 
67 Penicillin_57 96.00 102.55 65 Penicillin_65 95.60 93.90 
68 Penicillin_43 96.50 104.47 66 Penicillin_55 96.00 85.52 
69 Penicillin_25 97.00 107.73 67 Penicillin_57 96.00 97.25 
70 Penicillin_59 97.00 104.52 68 Penicillin_43 96.50 97.82 
71 Penicillin_51 97.20 92.47 69 Penicillin_25 97.00 104.79 
72 Penicillin_58 97.40 106.71 71 Penicillin_51 97.20 87.15 
73 Penicillin_70 97.40 92.76 72 Penicillin_58 97.40 105.54 
74 Amoxicillin 18.00 26.49 73 Penicillin_70 97.40 92.99 
75 Ampicillin 18.00 26.96 74 Amoxicillin 18.00 32.59 
77 Piperacillin 30.00 60.85 75 Ampicillin 18.00 26.20 
78 Methicillin 39.00 59.01 77 Piperacillin 30.00 53.65 
79 Carbenicillin 50.00 53.83 78 Methicillin 39.00 56.70 
80 Penicillin_G 60.00 65.84 79 Carbenicillin 50.00 57.66 
81 Ticarcillin 65.00 49.34 80 Penicillin_G 60.00 75.28 
82 Penicillin_V 80.00 70.02 81 Ticarcillin 65.00 51.64 
83 Nafcillin 89.00 84.01 82 Penicillin_V 80.00 73.19 
84 Oxacillin 92.00 77.38 83 Nafcillin 89.00 83.86 
85 Cloxacillin 95.00 91.79 84 Oxacillin 92.00 87.81 
86 Dicloxacillin 96.00 105.97 85 Cloxacillin 95.00 100.02 
87 Meropenem 2.00 3.72 86 Dicloxacillin 96.00 112.20 
88 Cephalexin 14.00 30.38 87 Meropenem 2.00 -17.28 
89 Cephradine 14.00 20.46 88 Cephalexin 14.00 26.69 
90 Cefadroxil 20.00 30.03 89 Cephradine 14.00 10.95 
91 Cefepime 20.00 31.02 90 Cefadroxil 20.00 33.08 
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Table 8. Continued 

92 Ceftazidime 21.00 46.03 91 Cefepime 20.00 38.77 
93 Cefaclor 25.00 32.99 93 Cefaclor 25.00 24.18 
94 Loracarbef 25.00 24.13 94 Loracarbef 25.00 21.42 
96 Ceftizoxime 28.00 27.42 95 Cephpodoxime 27.00 34.77 
97 Ceftibutin 30.00 30.97 96 Ceftizoxime 28.00 21.29 
98 Cefuroxime 33.00 40.50 97 Ceftibutin 30.00 29.27 
99 Cefotaxime 36.00 37.76 98 Cefuroxime 33.00 34.66 
100 Cefprozil 40.00 42.83 99 Cefotaxime 36.00 35.98 
101 Cephapirin 62.00 70.04 100 Cefprozil 40.00 43.68 
104 Cefmetazole 70.00 77.37 105 Cephalothin 71.00 75.02 
105 Cephalothin 71.00 73.21 106 Cefoxitin 73.00 56.35 
106 Cefoxitin 73.00 54.05 107 Cefmandole 74.00 84.37 
107 Cefmandole 74.00 78.12 108 Ceforanide 81.00 72.15 
109 Cefotetan 83.00 71.68 109 Cefotetan 83.00 65.45 
110 Cefazolin 89.00 66.55 110 Cefazolin 89.00 73.93 
111 Cefoperazone 91.00 77.62 111 Cefoperazone 91.00 83.68 
113 Cefonicid 98.00 74.12 113 Cefonicid 98.00 85.70 
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Figure 8. Cross-Validated PFB using T1.                     Figure 9. Cross-Validated PFB using T4. 
 
External validation  
The compounds of the test sets II and III are used for external validation of the models T1 and 
T4 to assess the actual predictive power of the models. The results of the external validation of 
models T1 and T4 using the test sets I and II are given in Table 9. 
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Table 9. Results of external validation of compounds in test sets II and III 

Test set II – Model T1 Test set III – Model T4 
Comp 
No. 

Comp  
Name 

Expt 
PFB 

Calc 
PFB 

Comp 
No. 

Comp. Name Expt 
PFB 

Calc 
PFB 

12 Penicillin_35 42.00 57.06 10 Penicillin_12 33.00 9.93 
23 Penicillin_38 62.00 56.71 38 Penicillin_29 82.20 57.67 
24 Penicillin_36 63.00 71.62 49 Penicillin_14 87.00 63.00 
38 Penicillin_29 82.20 59.79 51 Penicillin_68 89.30 84.12 
49 Penicillin_14 87.00 57.32 58 Penicillin_4 93.30 108.84 
54 Penicillin_52 91.50 74.42 70 Penicillin_59 97.00 105.86 
59 Penicillin_20 93.60 70.95 76 Bacampicillin 20.00 49.92 
76 Bacampicillin 20.00 67.44 92 Ceftazidime 21.00 55.11 
95 Cephpodoxime 27.00 60.80 101 Cephapirin 62.00 68.69 
102 Cefdinir 65.00 37.50 102 Cefdinir 65.00 41.18 
103 Cefixime 67.00 37.09 103 Cefixime 67.00 38.42 
108 Ceforanide 81.00 61.15 104 Cefmetazole 70.00 85.45 
        

 
Analysis of the models G1-G6, T1 & T4 and their implications in drug discovery 
As mentioned earlier, the unbound drugs are susceptible to metabolic clearance and at the same 
time, the unbound drugs are also responsible for pharmacological efficacy. Thus, the higher the 
protein binding, the lesser is the metabolic clearance of the drug, especially, when the binding is 
restrictive27 Thus, an increase in the lifetime of the drug is observed for strongly binding drugs. 
Hence, the greater accuracy of prediction of high binding percent of drugs is desirable, as even 
small errors in this range will have significant impact on the pharmacodynamic effect of the 
drug. For example, the difference in the predicted values of percent fraction bound of drugs from 
96 to 92 corresponds to a doubling of unbound fraction.  

Given the significance of high binding behavior of drugs on the pharmacological efficacy, it 
is desirable for any model to perform well, especially, in the higher range of protein binding 
(75%-100%). Analyses of the predicted values of PFB of the β-lactam compounds in the range of 
0-33%, 34-66% and 67-100% versus the observed PFB values were performed using G4. Among 
the 23 compounds in the range 0-33% of PFB, model, G4 predicted effectively in 63.63% 
(14/22) cases respectively keeping the acceptable standard error as 10%. Similarly its 
performance in the range of 34-66% is 77.27% (17/22). Significantly, the predictive performance 
of the model is excellent in the case of high binding drugs, i.e., of the 55 compounds in the range 
of 67-100%; the model G4 predicted PFB values successfully for 47/56 compounds. The 
performance of the models is at the upper limits of the expectations for a property that is 
measured by a variety of methods with results of modest accuracy.  

Another significant aspect of the models is the finding that most of the variables are common 
among the datasets. This suggests that we have been able to identify a number of common 
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structural features contributing to the protein binding of these drugs. It is important to keep in 
mind that there is more than one binding site on albumin and that there are multiple proteins 
involved in the measured percent of binding. However, it is possible from these results to infer 
that certain structural features enhance binding, whereas others are detrimental.  

As mentioned earlier, the GA based approaches used in the present study, GA1 and GA2, 
generated models with various combinations of molecular properties. This provides an advantage 
when one is interested not only in prediction, but also in understanding the mechanisms behind 
the modeled phenomenon.  In this respect, it is clear that hydrophobicity increases drug binding 
to serum proteins because all the models contain a term for hydrophobicity factor, AlogP98. This 
has also been observed previously in other models of limited set of compounds28, 29 and further 
supported by X-ray structure of HSA, both alone and bound to different ligands27. From a drug 
design point of view, an increase of hydrophobicity within a series of compounds is expected to 
result in an increased serum protein binding as long as the corresponding chemical modifications 
do not result in an opposing effect of other types of interactions that affect binding. In our 
models in addition to AlogP98, we uncovered new molecular properties that effect serum 
protein’s binding and further studies are needed to understand the correlation between these 
molecular properties and serum protein binding.  
 
 
Conclusions  
 
In this paper, we have derived novel predictive models for serum protein binding affinity β-
lactam class of antibiotics based on genetic algorithms and in vitro data of percent fraction of β-
lactams bound to serum proteins. Further, the utility of automated variable and training set 
selection using genetic algorithms in the development of chemoinformatic models for protein 
binding affinity is demonstrated and this approach is expected to have significant impact in drug 
discovery and development of this class of compounds. The predictive performance of the 
models (both internal and external) is excellent and hence they are applicable to the design of 
new derivatives of β-lactams. Unlike other reported approaches, in this paper, models with 
various combinations of molecular properties are presented, which provides options to the end 
users. 

Significantly, the models reported herein are based on molecular properties that are easy and 
fast to compute and hence can be applied for virtual screening of drug like compounds. Further, 
new molecular properties contributing to the binding of β-lactam analogs to serum proteins are 
uncovered.  
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Methods 
 
Genetic algorithm  
GAs18–21 are computational algorithms constructed in analogy with the process of evolution and 
are widely used to find near-optimal solution where the variable space is exponentially 
proportional to the problem dimensions. Three fundamental mechanisms drive the evolutionary 
process: selection, crossover and mutation within chromosomes. Selection occurs on the current 
population by choosing the fittest individuals to reproduce. Reproduction, then, can result in the 
crossover and/or mutation of parent genes to form new solutions. In the present study, the 
crossover and mutation probabilities were set to 0.9 and 0.1 respectively. The population size has 
been fixed to 100 and the number of iterations to 5000.  
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Figure 10. Genetic algorithm sequence. 
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Datasets  
The quality of a QSPR model depends on: 1) size and quality of the data set used 2) the 
molecular propertied considered and 3) the mathematical methods employed. The serum protein 
binding data of 113 drugs and drug like compounds used in the present study is collected from 
literature 15–17, 24–26 and is expressed as a percentage of drug bound to total serum proteins 
(percent fraction bound, PFB)”. These values are in vitro measurements carried out in several 
concentrations and the mean value is referred as “PFB. The PFB values range from 2.00 
(Morepenem) to 98.0 (Cefonicid) and the molecular weights range from 258 (Penicillin_2) to 
646 (Cefoperazone). The names, compound numbers, structures and their corresponding PFB 
values of the dataset are given in the supplemental material.  
 
Training and test sets  
In approach GA1, 100 drugs and drug like compounds are selected manually, and they constitute   
“Training set I” (Table 3). It consists of compounds with a wide range of molecular size. The 
selection is based on the substituents on the β-lactam ring system and the diversity of the 
experimental PFB data. The rest of the 13 compounds constitute the Test set I (Table 4). 

In approach GA2, the same numbers of compounds are selected as training sets II and III 
(Table 7), in an automated fashion using GA from the initial pool of 113 compounds. The 
remaining 13 compounds are used as Test sets II and III  (Table 9). 
 
Software 
All the programs used in the present study are developed in-house, are part of the in-house 
product TATA-Biosuite 22 and are used to perform the following: 1) to draw the 2D structures of 
the compounds 2) to calculate the molecular descriptors 3) to perform variable selection and the 
training set selection and 4) multiple linear regression and validation. 
 
Descriptor generation  
For all the compounds used in the study, 322 descriptors23 are calculated using the QSAR 
module of “Tata-Biosuite” and are stored as a text file. Among the 322 calculated descriptors, 7 
are physicochemical descriptors (AlogP98, SklogP, calculated vapour pressure etc.,), 7 are 
geometrical descriptors (topological surface area, 2D-van der Waals surface area, 2D-van der 
Waals volume etc.), 11 are structural descriptors (molecular weight, number of rotatable bonds, 
number of aromatic rings, number of hydrogen bond donors, number of hydrogen bond acceptors 
etc.,) and the remaining 297 are topological descriptors. The topological descriptors include 
Weiner index, Balaban index, Kier and Hall molecular connectivity indices, Kappa shape 
indices, autocorrelation indices, information content descriptors, Electrotopological indices, 
atomic-level-based AI topological descriptors etc.,  
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Cross-validation 
We have used ‘Leave-One-Out (LOO)” method, the simplest and commonly used cross 
validation approach, in our studies. In this approach, the property value for a given compound in 
the training set is predicted using the regression equation derived from the data of the remaining 
compounds. The PRESS (predictive residual sum of squares) statistic is computed using the 
formula 
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Supplementary information available 
 
Structures and their corresponding PFB data of the compounds used in this study are provided as 
the supplementary information. 
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