Facile bromination of the benzene ring during the cyclisation of the 1H-3-methyl-4-ethoxycarbonyl-5--arylidenehydrazonopyrazoles to the 3-substituted-aryl-1H-6-methyl-7-ethoxycarbonyl--pyrazolo[3,2-c]-s-triazoles

Carol Csunderlik, Vasile Bercean*, Francisc Peter, and Valentin Badea
Department of Organic Chemistry and Technologies, 6 Bocşa Str, University "Politehnica" of Timisoara, 1900 Timişoara, Romania
E-mail: vbercean@mail.dnttm.ro

(received 02 Oct 2001; accepted 24 Jun 2002; published on the web 02 Jul 2002)

Abstract

1H-3-Substituted-aryl-6-methyl-7-ethoxycarbonyl-pyrazolo[3,2-c]-s-triazoles 2 , 3 were obtained by the action of the bromine on the 1 H -3-methyl-4-ethoxycarbonyl-5-aryllidenehydrazonopyrazoles 1 and were transformed, after hydrolysis-decarboxylation to 1 H -3-substituted-aryl pyrazolo[3,2-c]-s-triazoles 5 in the azomethyne dyes 6.

Keywords: Bromination, hydrolysis-decarboxylation, 5-arylidenehydrazonopyrazoles, pyrazolo[3,2-c]-s-triazoles, azomethyne dyes

Introduction

3,6-Disubstituted pyrazolo[3,2-c]-s-triazoles were synthetised ${ }^{1}$ and utilized for the preparation of couplers for photographic materials ${ }^{2,3,4}$ and for their biological activitie ${ }^{5}$. 1 H -3-Substituted-aryl-6-methyl-7-ethoxycarbonyl-pyrazolo[3,2-c]-s-triazoles 2 were prepared by the action of the bromine in acetic acid in the presence of anhydrous sodium acetate ${ }^{1}$ or by the action of lead tetraacetate in acetic acid ${ }^{6}$ on the 1 H -3-methyl-4-ethoxycarbonyl-5-arylidenehydrazono-pyrazole 1 (Scheme 1).

Scheme 1

Results and Discussion

The bromine action on the 1H-3-methyl-4-ethoxycarbonyl-5-aryllidenehydrazono-pyrazole $\mathbf{1}$ in acetic acid in the presence of anhydrous sodium acetate led mainly to the pyrazolo-triazole 2a-e in the case of the substituents $\mathrm{X}=2-\mathrm{NO}_{2} \mathbf{1 a}{ }^{1}, 4-\mathrm{NO}_{2} \mathbf{1 b}^{1}, 2-\mathrm{Cl} 1 \mathrm{c}^{1}, 4-\mathrm{CH}_{3} \mathbf{1 d} \mathrm{~d}^{1}$ or $\mathrm{p}-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}{ }^{7}$ and $2-\mathrm{OCH}_{3} \mathbf{1 e} .^{7}$ In the case of the electron donating groups $\left(\mathrm{OH}, \mathrm{OCH}_{3}\right)$ and utilization of excess of the bromine in the presence of a calculated excess of anhydrous sodium acetate, the obtained pyrazolo triazoles 3n-u are brominated at the benzene ring. The bromination occurs mainly at the activated free positions. In the case of the hydroxy groups, all the activated free positions, related to the hydroxy groups are substituted, but in the case of methoxy groups, only one position is occupied. If the activated positions are not free $\left(1 \mathrm{~m} \mathrm{X}=4-\mathrm{OH}, \mathrm{Y}=3,5-\mathrm{tBu}_{2}\right)$ the action of the bromine led to pyrazolo-triazole 2 m .

In the case of compound $\mathbf{1 e}$ the action of one equivalent of the bromine led to $2 \mathrm{e}^{7}$ whereas the action of two equivalent of the bromine led to 3 n and a little quantity of 2 e . The two molecular peaks $\mathrm{M}^{+}(\mathrm{m} / \mathrm{z})$ at 378,380 confirm monobromination.

Differently, the action of one equivalent of the bromine on the 1 j afford to a mixture of 1 j 2 j and $3 t$ whereas two equivalent of the bromine led to $3 t$ and a little quantity of 2 j . The two molecular peaks $\mathrm{M}^{+}(\mathrm{m} / \mathrm{z})$ at 378 , 380 confirm monobromination and ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra proved the structure of the 3 t .

Also by the action of one equivalent of the bromine on the 1 k , a mixture of 1 k 2 k and 3 u was formed, whereas two equivalent of the bromine led to 3 u . The two molecular peaks $\mathrm{M}^{+}(\mathrm{m} / \mathrm{z})$ at

408, 410 confirmed the monobromination and ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}$-NMR spectra proved the structure of the 3 u .

In the case of the compounds $1 \mathrm{f}-\mathrm{i}$, which contains hydroxy groups, utilization of one equivalent of the bromine led to a mixture of compounds. Use of tree equivalents of the bromine for 1 f 1 g 1 i led to the dibrominated compounds 3 o 3 p 3 s whereas the utilization of four equivalents of the bromine for $\mathbf{1 h}$ led to the tribrominated compound 3 r. The dibromination was confirmed by the tree molecular peaks $\mathrm{M}^{+}(\mathrm{m} / \mathrm{z})$ at 442 , 444,446 for $30, \mathrm{M}^{+}(\mathrm{m} / \mathrm{z})$ at 442 , 444 , 446 for $3 \mathrm{p}, \mathrm{M}^{+}(\mathrm{m} / \mathrm{z})$ at $458,460,462$ for 3 s , and the tribromination by the four molecular peaks $\mathrm{M}^{+}(\mathrm{m} / \mathrm{z})$ at $520,522,524,526$ for 3 r. The structures of the compounds 30 -s were confirmed also by ${ }^{1} \mathrm{H}$-NMR and ${ }^{13} \mathrm{C}$-NMR spectra.

The formation and the structure of compounds $3 n-u$ were also confirmed by the synthesis and characterization of compounds $5 n-u$ and of their azomethynic dyes $6 n-u$. (Scheme2). The ethoxycarbonyl groups from the 3-substituted aryl-1H-6-methyl-7-ethoxycarbonyl-pyrazolo[3,2-c]-s-triazoles $3 n-u$ were eliminated by hydrolysis and decarboxylation to the 3 -substituted aryl-1H-6-methyl-pyrazolo[3,2-c]-s-triazoles 5 which were converted to the azomethine dyes 6 by coupling with 2-methyl-4-N, N-
-diethylamino-aniline 7 in aqueous-alkaline $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}$ solution (Scheme 2).
Our preliminary experiments on the hydrolysis of the compounds $3 \mathrm{n}-\mathrm{u}$ by heating them 30 min at $100{ }^{\circ} \mathrm{C}$ with concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$, showed that the acids 4 n -u contained variable amounts of the decarboxylated compounds $5 \mathrm{n}-\mathrm{u}$ and in some cases, the starting material, the esters 3.

$\mathrm{i}=\mathrm{H}_{2} \mathrm{SO}_{4} 80 \% / \mathrm{CH}_{3} \mathrm{COOH} 4-6 \mathrm{~h}$ reflux ii=2,4-($\left.\mathrm{CH}_{3}\right)\left(\mathrm{NEt}_{2}\right) \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{NH}_{2} 7 / \mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6} / \mathrm{NH}_{4} \mathrm{OH}-$ $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$

Scheme 2

This facile decarboxylation of the compounds 4 to 5 during the hydrolysis with concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ determined us to try one-pot hydrolysis-decarboxylation of 3 n -u to 5 n -u by 4-6 hours of refluxing with a solution of $80 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ in acetic acid, method utilized by us for the previously described hydrolysis-decarboxylation of the compounds $2 .{ }^{7}$ The new compounds 5 n -u were
characterized by melting point, mass spectrometry, which confirmed the degree of brominating, IR, ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}$-NMR spectroscopy. They were also characterized by coupling with 2 -methyl-4-N,N-diethylamino-aniline 7 in the presence of potassium fericyanide in ethanolammonium hydroxide solution. The new azomethyne dyes 6 were characterized by mass spectrometry, UV-VIS, ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectroscopy. The preparation of the compounds 5 t 6 t and $\mathbf{6 s}$ were unsuccessful. A single alkaline-hydrolysis experiment of the compound 3 f to 4 f was successful and after the extension of the experiment to all the compounds 3 it will be reported.

Experimental Section

General Procedures. TLC was performed using aluminium plates precoated with silica gel 60 or $60 \mathrm{~F}_{254}$ (Merck) and visualized by iodine or UV light (254 nm). Melting points were determined on a Böetius PHMK (Veb Analytik Dresden) apparatus. The NMR spectra were recorded on a Varian Gemini 300 and Bruker DRX 400 spectrometer at $25^{\circ} \mathrm{C}$, unless otherwise stated. ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR signals were referenced to TMS and the solvent shift $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO} \delta_{\mathrm{H}}\right.$ 2.50 and $\delta_{\mathrm{C}} 39.5$). Coupling constants are given in Hz and without sign. The IR-spectra were recorded (KBr) on a Jasco FT/IR-410 instrument; the UV-VIS spectra were recorded $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ on a M40 Karl Zeiss Jena instrument. Mass spectrometry was carried out on a Varian FINNIGAN MAT 212 instrument and the elementar analysis on the Perkin Elmer 240 instrument.

Materials. 1H-3-methyl-4-ethoxycarbonyl-5-aryllidene-hydrazono-pyrazoles 1e-k,m were obtained according to the literature. ${ }^{1,7}$ The others materials were commercial samples. All organic solvents were of analytical quality and used as purchased. Solvent mixtures are defined by volume ratios (v/v).

1H-3-Substituted aryl-6-methyl-7-ethoxycarbonyl-pyrazolo[3,2-c]-s-triazoles 3n-u

To a solution of $5 \mathrm{mmol} 1 \mathrm{H}-3$-methyl-4-ethoxycarbonyl-5-aryllidenehydrazono-pyrazole $\mathbf{1}$ e-k, m in $15-25 \mathrm{~mL}$ acetic acid was added

10 mmol anhydrous sodium acetate for the compounds 1 m
20 mmol anhydrous sodium acetate for the compounds $\mathbf{1 e}, \mathrm{j}, \mathrm{k}$
30 mmol anhydrous sodium acetate for the compounds $\mathbf{1 f}, \mathrm{g}$, i and
40 mmol anhydrous sodium acetate for the compounds $\mathbf{1 h}$
After dissolution by heating of the anhydrous sodium acetate, the solution was cooled to room temperature (water bath) and a solution of
$5 \mathrm{mmol} \mathrm{Br}_{2}$ in 5 mL solution of acetic acid for the compounds 1 m
$10 \mathrm{mmol} \mathrm{Br}_{2}$ in 10 mL solution of acetic acid for the compounds $\mathbf{1 e}, \mathrm{j}, \mathrm{k}$
$15 \mathrm{mmol} \mathrm{Br}_{2}$ in 15 mL solution of acetic acid for the compounds $\mathbf{1 f}, \mathrm{g}$, i and
$20 \mathrm{mmol} \mathrm{Br}_{2}$ in 20 mL solution of acetic acid for the compounds $\mathbf{1 h}$
was dropped during 10-15 minutes. The formed solution (suspension) was stirred to room temperature for 30 minutes and 1 hour to $100{ }^{\circ} \mathrm{C}$ (water bath). After cooling to room temperature, the suspensions were filtered to afford the compounds $3 n, o, r-u$ or the solutions were precipitated in water to afford the compounds 2 m 3 p .

1H-3-(5-Bromo-2-methoxy)-phenyl-6-methyl-7-ethoxycarbonyl-pyrazolo[3,2-c]-s-triazole

(3n). White powder (yield 78\%); mp186-188 ${ }^{\circ} \mathrm{C}$ (acetic acid); MS m/z: 378, 380(M+): IR v 3227, 3077, 3037, 2978, 2929, 2909, 2843, 1715, 1627, 1596, 1501, 1275, 1217, 1159, 1098, 1014, 879, 808, 771, 727, 689, $621 \mathrm{~cm}^{-1}$; Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{BrN}_{4} \mathrm{O}_{3}$: C,47.51; $\mathrm{H}, 3.99$; N , 14.77; Found: C,47.43; H,4.05; N,14.74.

1H-3-(3,5-Dibromo-2-hydroxy)-phenyl-6-methyl-7-ethoxycarbonyl-pyrazolo[3,2-c]-striazoles (3o). White powder (yield 88\%); mp300-302 ${ }^{\circ} \mathrm{C}$ (acetic acid); MS m/z: 442, 444, 446 (M+); IR v 3190, 3071, 2990, 2971, 1655, 1626, 1322, 1258, 1233, 1187, 1178, 1094, 1045, 1018, 645, $604 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR} \delta 10.61(1 \mathrm{H}, \mathrm{bs}, \mathrm{NH}), 8.58\left(1 \mathrm{H}, \mathrm{d}, J=2.0,6^{\prime}-\mathrm{H}\right), 8.01(1 \mathrm{H}, \mathrm{d}$, $\left.J=2.0,4^{\prime}-\mathrm{H}\right), 4.34\left(2 \mathrm{H}, \mathrm{q}, J=7.1, \mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{O}\right), 3.35(1 \mathrm{H}, \mathrm{bs}, \mathrm{OH}), 2.60\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}-6-\mathrm{C}\right), 1.42$ (3H, t, J=7.1, $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{O}$); ${ }^{13} \mathrm{C}-\mathrm{NMR} \delta 162.99$ (C=O), 160.83 (2'-C), 152.73 (7a-C), 148.79 (6C), 137.35 ($4^{\prime}-\mathrm{C}$), 129.54 ($\left.6^{\prime}-\mathrm{C}\right), 114.02$ ($\left.1^{\prime}-\mathrm{C}\right), 112.92$ ($\left.5^{\prime}-\mathrm{C}\right), 112.03$ ($\left.3^{\prime}-\mathrm{C}\right), 88.71$ (7-C), 59.83 $\left(\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{O}\right), 15.22\left(\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{O}\right), 14.85\left(\mathrm{CH}_{3}-6-\mathrm{C}\right)$, (Bruker DPX 300); Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{Br}_{2} \mathrm{~N}_{4} \mathrm{O}_{3}$: C,37.86; H,2.72; N, 12.62; Found: C,37.81; H,2.81; N,12.64.

1H-3-(3,5-Dibromo-4-hydroxy)-phenyl-6-methyl-7-ethoxycarbonyl-pyrazolo[3,2-c]-s-

triazole (3p). Faintly violet powder (yield 84\%); mp 213-215 ${ }^{\circ} \mathrm{C}$ (ethanol); MS m/z: 442, 444, 446 (M+); IR v 3470, 3256, 3078, 2980, 2932, 1702, 1658, 1621, 1326, 1232, 1172, 1103, 1022, $685,652,583 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR} \delta 10.58(1 \mathrm{H}, \mathrm{bs}, \mathrm{NH}), 8.11\left(2 \mathrm{H}, \mathrm{s}, 2^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}\right), 8.00(1 \mathrm{H}, \mathrm{bs}, \mathrm{OH})$, $4.23\left(2 \mathrm{H}, \mathrm{q}, J=7.1, \mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{O}\right), 2.28\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}-6-\mathrm{C}\right), 1.30\left(3 \mathrm{H}, \mathrm{t}, J=7.1, \mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{O}\right) ;{ }^{13} \mathrm{C}-$ NMR $\delta 159.00$ (7a-C), 161.43 (C=O), 151.00 (3-C), 137.00 (6-C), 129.46 ($\left.2^{\prime}-\mathrm{C}, 6^{\prime}-\mathrm{C}\right), 122.50$ (1'-C), 112.17 ($\left.3^{\prime}-\mathrm{C}, 5^{\prime}-\mathrm{C}\right), 82.5(7-\mathrm{C}), 59.08\left(\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{O}\right), 14.51\left(\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{O}\right), 14.37\left(\mathrm{CH}_{3}-6-\right.$ C); Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{Br}_{2} \mathrm{~N}_{4} \mathrm{O}_{3}$: C,37.86; $\mathrm{H}, 2.72$; $\mathrm{N}, 12.62$; Found: C,37.83; $\mathrm{H}, 2.85$; N,12.57.
1H-3-(3,5-Dibromo-2,4-dihydroxy)-phenyl-6-methyl-7-ethoxycarbonyl-pyrazolo[3,2-c]-striazole (3s). Faintly brown powder (yield 75\%); mp 302-305 ${ }^{\circ} \mathrm{C}$ (ethanol); MS m/z:458, 460, 462(M+);IR v 3493, 3263, 3188, 2988, 2935, 1651, 1616, 1322, 1213, 1174, 1105, 1026, 698, 657, $605 \mathrm{~cm}^{-1} ;{ }^{13} \mathrm{C}-\mathrm{NMR} \delta 161.74$ (C=O), 159.47 ($4^{\prime}-\mathrm{C}$), 153.50 ($\left.2^{\prime}-\mathrm{C}\right), 152.95$ (7a-C), 146.68 (6-C), 136.56 (3-C), 128.71 ($\left.6^{\prime}-\mathrm{C}\right), 118.77$ ($\left.1^{\prime}-\mathrm{C}\right), 104.37$ ($\left.5^{\prime}-\mathrm{C}\right), 101.11$ (3'-C), 86.75 (7-С), $59.09\left(\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{O}\right), 14.33\left(\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{O}\right), 14.32\left(\mathrm{CH}_{3}-6-\mathrm{C}\right)$, (Bruker AC 200); Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{Br}_{2} \mathrm{~N}_{4} \mathrm{O}_{4}$: C,36.55; H,2.63; N, 12.18; Found: C,36.53; H,2.72; N,12.09.

1H-3-(5-Bromo-2,4-dimethoxy)-phenyl-6-methyl-7-ethoxycarbonyl-pyrazolo[3,2-c]-s-

triazole (3u). White powder (yield 60\%); mp 222-224${ }^{\circ} \mathrm{C}$ (ethanol); MS m/z:408, 410(M+); IR v 3430, 3151, 2978, 2938, 2845, 1700, 1619, 1605, 1506, 1369,1277, 1210, 1160, 1096, 1021, 693, $570,547 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.75\left(1 \mathrm{H}, \mathrm{s}, 6^{\prime}-\mathrm{H}\right), 6.82\left(1 \mathrm{H}, \mathrm{s}, 3^{\prime}-\mathrm{H}\right), 4.30(2 \mathrm{H}, \mathrm{q}, J=7.1$, $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{O}$), $3.95\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}-\mathrm{O}\right), 3.88\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}-\mathrm{O}\right), 2.32\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}-6-\mathrm{C}\right), 1.29(3 \mathrm{H}, \mathrm{t}$, $\left.J=7.1, \mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{O}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR} \delta 162.63(\mathrm{C}=\mathrm{O}), 161.54$ ($\left.4^{\prime}-\mathrm{C}\right), 158.45$ (2'-C), 153.02 (3-C),
151.90 (7a-C), 148.15 (6-C), 132.05 ($\left.6^{\prime}-\mathrm{C}\right), 131.89$ ($\left.3^{\prime}-\mathrm{C}\right), 113.60$ ($\left.1^{\prime}-\mathrm{C}\right), 100.75$ ($\left.5^{\prime}-\mathrm{C}\right), 88.65$ (7-C), $59.61\left(\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{O}\right), 56.92\left(\mathrm{CH}_{3} \mathrm{O}\right), 56.25\left(\mathrm{CH}_{3} \mathrm{O}\right), 15.31\left(\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{O}\right), 13.10\left(\mathrm{CH}_{3}-6-\mathrm{C}\right)$; Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{BrN}_{4} \mathrm{O}_{4}$: C,46.96; H,4.19; N, 13.69; Found: C,46.91; H,4.25; N,13.59.
1H-3-(3-Bromo-4-methoxy)-phenyl-6-methyl-7-ethoxycarbonyl-pyrazolo[3,2-c]-s-triazole (3t). Faintly gray powder (yield 80\%); mp 196-198 ${ }^{\circ} \mathrm{C}$ (acetic acid); MS m/z: 378, 380(M+);IR v 3209, 3000, 2972, 2933, 2833, 1649, 1626, 1504, 1321, 1252, 1175, 1098, 1021,1001, 739, 609, $520 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR} \delta 13.90(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 8.48\left(1 \mathrm{H}, \mathrm{d}, J=2.0,2^{\prime}-\mathrm{H}\right), 8.27\left(1 \mathrm{H}, \mathrm{dd}, J=8.8,2.0,6^{\prime}-\right.$ H), $7.33\left(1 \mathrm{H}, \mathrm{d}, J=8.8,5^{\prime}-\mathrm{H}\right), 4.24\left(2 \mathrm{H}, \mathrm{q}, J=7.1, \mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{O}\right), 3.95\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}\right), 2.58(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3}-6-\mathrm{C}\right), 1.33\left(3 \mathrm{H}, \mathrm{t}, J=7.1, \mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{O}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR} \delta 162.06(\mathrm{C}=\mathrm{O}), 159.15\left(4^{\prime}-\mathrm{C}\right), 156.80$ (7a-C), 147.89 (3-C), 137.05 (6-C), 130.00 ($\left.2^{\prime}-\mathrm{C}\right), 126.85$ ($\left.6^{\prime}-\mathrm{C}\right), 118.84$ ($\left.1^{\prime}-\mathrm{C}\right), 113.04$ ($5^{\prime}-\mathrm{C}$), 111.01 (3'-C), 86.67 (7-C), $59.02\left(\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{O}\right), 56.47\left(\mathrm{CH}_{3}-\mathrm{O}\right), 14.48\left(\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{O}\right), 13.52$ $\left(\mathrm{CH}_{3}-6-\mathrm{C}\right)$; Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{BrN}_{4} \mathrm{O}_{3}$: C,47.51; H,3.99; N, 14.77; Found: C,47.48; H,4.06; N,14.69.
A small amount of the isomeric 1H-3-(2-bromo-4-methoxy)-phenyl-6-methyl-7-ethoxycarbonyl-pyrazolo[3,2-c]-s-triazole was evidenced in the 400 MHz spectra.
1H-3-(3-Hydroxy-2,4,6-tribromo)-phenyl-6-methyl-7-ethoxycarbonyl-pyrazolo[3,2-c]-striazole (3r). White powder (yield 50\%); MS m/z: 520, 522, 524, 526(M+); IR v 3497, 3173, 3074, 3005, 2940, 1660, 1616, 1328, 1223, 1181, 1117, 1094, 1016, 688, 672, $592 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-$ NMR $\delta 10.78(1 \mathrm{H}, \mathrm{bs}, \mathrm{NH}), 8.10\left(1 \mathrm{H}, \mathrm{s}, 5^{\prime}-\mathrm{H}\right), 3.38(1 \mathrm{H}, \mathrm{bs}, \mathrm{OH}), 2.72\left(2 \mathrm{H}, \mathrm{q}, J=7.1, \mathrm{CH}_{3}-\mathrm{CH}_{2}{ }^{-}\right.$ O), $2.42\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}-6-\mathrm{C}\right), 1.28\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.1, \mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{O}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR} \delta 161.96(\mathrm{C}=\mathrm{O}), 159.28$ ($\left.3^{\prime}-\mathrm{C}\right), 151.54$ (7a-C), 147.11 (3-C), 137.60 ($\left.6-\mathrm{C}\right), 134.94$ ($\left.5^{\prime}-\mathrm{C}\right), 127.49$ ($1^{\prime}-\mathrm{C}$), 116.21 ($6^{\prime}-\mathrm{C}$), 116.17 (4'-C), 114.49 (2'-C), 87.00 (7-C), $\left.59.14\left(\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{O}\right), 14.55 \mathrm{CH}_{3}-6-\mathrm{C}\right), 14.55\left(\mathrm{CH}_{3}{ }^{-}\right.$ CH_{2}-O). (Bruker AC 200); Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{Br}_{3} \mathrm{~N}_{4} \mathrm{O}_{3}$: C,32.15; H,2.12; N, 10.71; Found: C,32.13; H,2.17; N,10.69.
1H-3-(4-Hydroxy-3,5-di-t-butyl)-phenyl-6-methyl-7-ethoxycarbonyl-pyrazolo[3,2-c]-striazole (2m). Faintly yellow powder (yield 95\%); mp253-256 ${ }^{\circ} \mathrm{C}$ (benzene-petr. et.); MS m/z:398(M+); IR v 3605, 3447, 3144, 2958, 2909, 2874, 1713, 1669, 1622, 1319, 1240, 1223, 1198, 1159, 1099, $1024 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR} \delta 13.69(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 9.83(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 8.21\left(2 \mathrm{H}, \mathrm{s}, 2^{\prime}-\mathrm{H}\right.$, $\left.6^{\prime}-\mathrm{H}\right), 4.30\left(2 \mathrm{H}, \mathrm{q}, J=7.1, \mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{O}\right), 2.50\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}-6-\mathrm{C}\right), 1.46$ ($18 \mathrm{H}, \mathrm{s}, \mathrm{t}-\mathrm{Bu}$), 1.33 (3H, t, $J=7.1, C H_{3}-\mathrm{CH}_{2}-\mathrm{O}$); ${ }^{13} \mathrm{C}-\mathrm{NMR} \delta 162.21$ (C=O), 158.78 (7a-C), 156,00 (3-C), 147.94 (4'-C), 139.39 ($\left.3^{\prime}-\mathrm{C}\right), 139.36$ (6-C), 122.92 ($6^{\prime}-\mathrm{C}$), 116.60 ($\left.1^{\prime}-\mathrm{C}\right), 86.41$ ($7-\mathrm{C}$), 58.96 ($\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{O}$), $34.69\left(\mathrm{C}-\mathrm{Me}_{3}\right), 30.04\left(\mathrm{C}-\mathrm{Me}_{3}\right), 14.80\left(\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{O}\right), 14.50\left(\mathrm{CH}_{3}-6-\mathrm{C}\right)$.
A small amount (up to 5\%) of the 1H-3-(3-bromo-4-hydroxy-5-t-butyl)-phenyl-6-methyl-7-ethoxycarbonyl-pyrazolo[3,2-c]-s-triazole was evidenced in the 400 MHz spectra.

1H-3-Substituted aryl-6-methyl-pyrazolo[3,2-c]-s-triazoles (5n-u)

A mixture of 1 mmol 1 H -3-substituted aryl-6-methyl-7-ethoxycarbonyl-pyrazolo[3,2-c]-striazoles $3 \mathrm{n}-\mathrm{u}$ in 8 mL acetic acid and $2 \mathrm{~mL} \mathrm{H}_{2} \mathrm{SO}_{4} 80 \%$ was refluxed for $4-7 \mathrm{~h}$ (TLC benzene / ethyl acetate 1:1). The reaction mixture was filtered, the solution precipitated in 50 mL water, neutralized with $10 \% \mathrm{NaOH}$ solution, the suspension filtered and the products $5 \mathrm{n}-\mathrm{u}$ recrystallised.

Preparation of the azomethyne dyes: 3-Substituted-phenyl-6-methyl-7-(2-methyl-4-diethylamino-phenyl-imino-pyrazolo-[3,2-c]-s-triazoles 6n-u
To a solution of 1 mmol of the compounds $5 \mathrm{n}-\mathrm{u}$ and $1,1 \mathrm{mmol} 7$ in $15-20 \mathrm{~mL}$ ethanol was dropped with stirring a solution of $4,4 \mathrm{mmol} \mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}$ in 10 mL water and $2 \mathrm{~mL} 25 \%$ ammonium hydroxide. After 10 minute stirring to room temperature the reaction mixture was poured into 100 mL water and filtered. The compounds $6 \mathrm{n}-\mathrm{u}$ were recrystallised from $\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}$-petroleum ether.
1H-3-(5-Bromo-2-methoxy)-phenyl-6-methyl-pyrazolo[3,2-c]-s-triazole (5n). White powder (yield 59\%); MS m/z: 306, 308(M+); IR v 3429, 3220, 3155, 3105, 3074, 3021, 2968, 2928, 2897, 2838, 1611, 1506, 1261, 1185, 1085, 1020, 695, 630, 563, $546 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$ with $\left.\mathrm{CF}_{3} \mathrm{COOH}\right) \delta 7.87\left(1 \mathrm{H}, \mathrm{d}, J=2.50,6^{\prime}-\mathrm{H}\right), 7.33\left(1 \mathrm{H}, \mathrm{dd}, J=2.50, J=9.0,4^{\prime}-\mathrm{H}\right), 7.03(1 \mathrm{H}, \mathrm{d}, J=9.0$, $\left.3^{\prime}-\mathrm{H}\right), 6.27(1 \mathrm{H}, \mathrm{bs}, 7-\mathrm{H}), 3.95\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 2.55\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}-6-\mathrm{C}\right)$; ${ }^{13} \mathrm{C}-\mathrm{NMR} \delta 161.65$ (2'-C), 156.35 (7a-C), 154.50 (3-C), 148.12 (6-C), 137.49 ($\left.4^{\prime}-\mathrm{C}\right), 133.03$ ($\left.6^{\prime}-\mathrm{C}\right), 120.21$ ($\left.1^{\prime}-\mathrm{C}\right), 114.14$ ($3^{\prime}-\mathrm{C}$), $108.88\left(5^{\prime}-\mathrm{C}\right), 82.26(7-\mathrm{C}), 57.00\left(\mathrm{CH}_{3} \mathrm{O}-2^{\prime} \mathrm{C}\right), 12.64\left(\mathrm{CH}_{3}-6 \mathrm{C}\right)$; Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{BrN}_{4} \mathrm{O}$: C,46.93; H,3.61; N, 18.24; Found: C,46.89; H,3.70; N,18.27.
6n. MS m/z: 480, 482(M+); $\lambda_{\text {max }}: 558 \mathrm{~nm}\left(\varepsilon 5,9 x 10^{4}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 9.22(1 \mathrm{H}, \mathrm{d}, J=9,50$, $14-\mathrm{H}), 7.96\left(1 \mathrm{H}, \mathrm{d}, J=2.50,6^{\prime}-\mathrm{H}\right), 7.55\left(1 \mathrm{H}, \mathrm{dd}, J=2.50, J=8.90,4^{\prime}-\mathrm{H}\right), 6.93$ (1H, d, $J=8.90,3^{\prime}-$ H), $6.79(1 \mathrm{H}, \mathrm{dd}, J=3.00, J=9.50,13-\mathrm{H}), 6.63(1 \mathrm{H}, \mathrm{d}, J=3.00,11-\mathrm{H}), 3.89\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.51$ $\left(4 \mathrm{H}, \mathrm{q}, J=7.10,-\mathrm{N}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right), 2.57\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}-6-\mathrm{C}\right), 2.49\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}-10-\mathrm{C}\right), 1.27(6 \mathrm{H}, \mathrm{t}$, $J=7.10, \mathrm{~N}^{2} \mathrm{CH}_{2}-\mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}-\mathrm{NMR} \delta 168.09$ (7-C), 156.94 (2'-C), 153.00 (3-C), 151.62 (7a-C), 148.59 (6-C), 146.19 (12-C), 142.20 (9-C), 135.20 (10-C), 134.34 ($\left.4^{\prime}-\mathrm{C}\right), 133.74$ ($\left.6^{\prime}-\mathrm{C}\right), 127.05$ (14-C), 116.75 ($\left.1^{\prime}-\mathrm{C}\right), 113.59$ ($\left.3^{\prime}-\mathrm{C}\right), 112.80$ ($5^{\prime}-\mathrm{C}$), 112.57 (11-С), 110.40 (13-С), 56.28 $\left(\mathrm{CH}_{3} \mathrm{O}-\right), 45.01\left(\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{N}\right), 19.45\left(\mathrm{CH}_{3}-10-\mathrm{C}\right), 12.88\left(\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{N}\right), 12.66\left(\mathrm{CH}_{3}-6-\mathrm{C}\right)$; Anal. Calcd. for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{BrN}_{6} \mathrm{O}$: C,57.39; H,5.23; N, 17.46; Found: C,57.32; H,5.28; N,17.39.
1H-3-(3,5-Dibromo-2-hydroxy)-phenyl-6-methyl-pyrazolo[3,2-c]-s-triazole (50). White powder (yield 90\%); mp235-237 ${ }^{\circ} \mathrm{C}$ (ethanol-water); MS m/z: 370, 372, 374(M+); IR v 3595, 3407, 3143, 3075, 2976, 2927, 1607, 1237, 1188, 1103, 1032, 647, 618, 556cm- ${ }^{1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right.$ with $\left.\mathrm{CF}_{3} \mathrm{COOH}\right) \delta 7.92\left(1 \mathrm{H}, \mathrm{d}, J=2.50,6^{\prime}-\mathrm{H}\right), 7.89\left(1 \mathrm{H}, \mathrm{d}, J=2.50,4^{\prime}-\mathrm{H}\right), 6.29(1 \mathrm{H}, \mathrm{s}, 7-$ H), 2.57 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}-6-\mathrm{C}$); ${ }^{13} \mathrm{C}-\mathrm{NMR} \delta 161.48$ ($2^{\prime}-\mathrm{C}$), 155.10 (7a-C), 149.05 (6-C), 148.31 (3С), 138.82 ($4^{\prime}-\mathrm{C}$), 131.60 ($\left.6^{\prime}-\mathrm{C}\right), 119.80\left(1^{\prime}-\mathrm{C}\right), 114.38$ ($5^{\prime}-\mathrm{C}$), 108.49 ($\left.3^{\prime}-\mathrm{C}\right), 86.05$ (7-C), 12.30 ($\left.\mathrm{CH}_{3}-6-\mathrm{C}\right)$; Anal. Calcd. for $\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{Br}_{2} \mathrm{~N}_{4} \mathrm{O}: \mathrm{C}, 35.51$; $\mathrm{H}, 2.17$; N, 15.06; Found: C,35.49; H,2.22; N,15.02.
6o. MS m/z: 544, 546, 548(M+); $\lambda_{\text {max }}: 576 \mathrm{~nm}\left(\varepsilon 7,9 \times 10^{4}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 9.10(1 \mathrm{H}, \mathrm{d}$, $J=9.35,14-\mathrm{H}), 8.51\left(1 \mathrm{H}, \mathrm{d}, J=2.35,6^{\prime}-\mathrm{H}\right), 7.76\left(1 \mathrm{H}, \mathrm{d}, J=2.35,4^{\prime}-\mathrm{H}\right), 6.82(1 \mathrm{H}, \mathrm{dd}, J=9.35$, $J=2.90,13-\mathrm{H}), 6.62(1 \mathrm{H}, \mathrm{d}, J=2.90,11-\mathrm{H}), 3.51\left(4 \mathrm{H}, \mathrm{q}, \mathrm{N}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right), 2.57\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}-6-\mathrm{C}\right)$, 1.29 (6H, t, $J=7.10, \mathrm{~N}^{2}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}-\mathrm{NMR} \delta 167.90$ (7-C), 160.00 (2'-C), 152.82 (3-C), 149.30 (7a-C), 148.20 (6-C), 144.63 (12-C), 141.03 (9-C), 137.02 ($\left.4^{\prime}-\mathrm{C}\right), 135.80$ (10-C), 128.49 ($\left.6^{\prime}-\mathrm{C}\right)$, 127.57 (14-C), 119.10 ($\left.1^{\prime}-\mathrm{C}\right), 113.18$ (13-C), 112.20 (11-C), 111.30 ($5^{\prime}-\mathrm{C}$), 111.05 ($\left.3^{\prime}-\mathrm{C}\right), 45.67$ $\left(\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{N}\right), 19.92\left(\mathrm{CH}_{3}-10-\mathrm{C}\right), 13.41\left(\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{N}\right), 13.27\left(\mathrm{CH}_{3}-6-\mathrm{C}\right)$; Anal. Calcd. for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{Br}_{2} \mathrm{~N}_{6} \mathrm{O}: \mathrm{C}, 48.37$; H,4.06; N, 15.38; Found: C,48.39; H,4.12; N,15.33.

1H-3-(3,5-Dibromo-4-hydroxy)-phenyl-6-methyl-pyrazolo[3,2-c]-s-triazole (5p). Brown powder (yield 41\%); MS m/z: 370, 372, 374(M+); IR v 3612, 3488, 3381, 3142, 3078, 2990, 2923, 1601, 1243, 1163, 1095, 1041,1000, 678, $621,558 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$ with $\left.\mathrm{CF}_{3} \mathrm{COOH}\right)$ $\delta 8.02$ ($\left.2 \mathrm{H}, \mathrm{s}, 2^{\prime}, 6^{\prime}-\mathrm{H}\right), 6.26(1 \mathrm{H}, \mathrm{s}, 7-\mathrm{H}), 2.56\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}-6-\mathrm{C}\right)$;
${ }^{13} \mathrm{C}-\mathrm{NMR} \delta 162.10$ ($4^{\prime}-\mathrm{C}$), 156.50 (7a-C), 153.30 (3-C), 149.10 (6-C), 130.67 (2'-C, 6'-C), 120.31 ($1^{\prime}-\mathrm{C}$), 108.99 ($3^{\prime}-\mathrm{C}, 5^{\prime}-\mathrm{C}$), 86.81 (7-C), 12.67 ($\left.\mathrm{CH}_{3}-6-\mathrm{C}\right)$; Anal. Calcd. for $\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{Br}_{2} \mathrm{~N}_{4} \mathrm{O}: \mathrm{C}, 35.51$; H, 2.17; N, 15.06; Found: C,35.47; H,2.25; N,15.01.
6p. MS m/z: 544, 546, 548(M+); $\lambda_{\text {max }}: 572 \mathrm{~nm}\left(\varepsilon 3,5 \times 10^{4}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 8.98(1 \mathrm{H}, \mathrm{d}$, $J=9.30,14-\mathrm{H}), 7.84\left(2 \mathrm{H}, \mathrm{s}, 2^{\prime}, 6^{\prime}-\mathrm{H}\right), 6.83(1 \mathrm{H}, \mathrm{dd}, J=9.30, J=2.90,13-\mathrm{H}), 6.60(1 \mathrm{H}, \mathrm{d} . J=2.90$, $11-\mathrm{H}), 3.51\left(4 \mathrm{H}, \mathrm{q}, J=7.10, \mathrm{~N}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right), 2.55\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}-6-\mathrm{C}\right), 2.53\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}-10-\mathrm{C}\right), 1.28$ ($6 \mathrm{H}, \mathrm{t}, J=7.10, \mathrm{~N}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}-\mathrm{NMR} \delta 165.85$ (7-C), 163.20 (4'-C), 152.80 (3-C), 151.60 ($7 \mathrm{a}-$ C), 148.70 ($6-\mathrm{C}), 146.50$ (12-C), 142.31 ($9-\mathrm{C}), 134.93$ ($10-\mathrm{C}$), 130.82 ($2^{\prime}-\mathrm{C}, 6^{\prime}-\mathrm{C}$), 126.80 ($14-$ C), 119.50 ($1^{\prime}-\mathrm{C}$), 112.80 (11-C), 111.85 ($\left.3^{\prime}-\mathrm{C}, 5^{\prime}-\mathrm{C}\right), 109.85$ ($\left.13^{\prime}-\mathrm{C}\right), 45.10\left(\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{N}\right)$, $19.40\left(\mathrm{CH}_{3}-10-\mathrm{C}\right), 12.81\left(\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{N}\right), 12.65\left(\mathrm{CH}_{3}-6-\mathrm{C}\right)$; Anal. Calcd. for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{Br}_{2} \mathrm{~N}_{6} \mathrm{O}$: C, 48.37; H, 4.06; N, 15.38; Found: C,48.32; H,4.12; N,15.33.

1H-3-(3-Hydroxy-2,4,6-tribromo)-phenyl-6-methyl-pyrazolo[3,2-c]-s-triazole (5r). Whitepink powder (yield 40\%); MS m/z: 448, 450, 452, 454(M+); IR v 3556, 3320, 3159, 3074, 2980, 2928, 1599, 1335, 1225, 1176, 1099,1065, 1014, 684, 656, $585 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$ with $\left.\mathrm{CF}_{3} \mathrm{COOH}\right) \delta 7.90\left(1 \mathrm{H}, \mathrm{s}, 5^{\prime}-\mathrm{H}\right), 6.27(1 \mathrm{H}, \mathrm{s}, 7-\mathrm{H}), 2.56\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}-6-\mathrm{C}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR} \delta 164.10$ ($\left.3^{\prime}-\mathrm{C}\right), 155.37$ ($7 \mathrm{a}-\mathrm{C}$), 150.77 (3-C), 147.64 ($\left.6-\mathrm{C}\right), 135.81$ ($\left.5^{\prime}-\mathrm{C}\right), 124.01$ ($\left.1^{\prime}-\mathrm{C}\right), 120.20$ ($\left.6^{\prime}-\mathrm{C}\right)$, 115.31 ($4^{\prime}-\mathrm{C}$), 108.87 (2'-C), 85.90 (7-C), $12.81\left(\mathrm{CH}_{3}-6-\mathrm{C}\right)$; Anal. Calcd. for $\mathrm{C}_{11} \mathrm{H}_{7} \mathrm{Br}_{3} \mathrm{~N}_{4} \mathrm{O}: \mathrm{C}$, 29.30; H, 1.56; N, 12.43; Found: C,29.25; H,1.60; N,12.36.

6r. MS m/z: 622, 624, 626, 628 (M+); $\lambda_{\text {max }}: 553 \mathrm{~nm}\left(\varepsilon 4,8 \mathrm{x} 10^{4}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 9.05(1 \mathrm{H}, \mathrm{d}$, $J=9.30,14-\mathrm{H}), 8.15\left(1 \mathrm{H}, \mathrm{s}, 5^{\prime}-\mathrm{H}\right), 6.78(1 \mathrm{H}, \mathrm{dd}, J=9.30, J=2.90,13-\mathrm{H}), 6.56(1 \mathrm{H}, \mathrm{d}, J=2.90,11-$ H), $3.50\left(4 \mathrm{H}, \mathrm{q}, J=7.10, \mathrm{~N}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right), 2.55\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}-6-\mathrm{C}\right), 1.27\left(6 \mathrm{H}, \mathrm{t}, J=7.10, \mathrm{~N}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right)$; ${ }^{13}$ C-NMR $\delta 164.25$ (7-C), 163.10 ($\left.3^{\prime}-\mathrm{C}\right), 153.05$ (3-C), 148.95 (7a-C), 148.35 (6-C), 144.52 (12C), 143.50 ($\left.1^{\prime}-\mathrm{C}\right), 141.10$ (9-С), 136.25 ($5^{\prime}-\mathrm{C}$), 135.76 ($10-\mathrm{C}$), 127.60 ($14-\mathrm{C}$), 118.76 ($6^{\prime}-\mathrm{C}$), 113.20 (13-C), 112.20 (11-C), 111.75 ($\left.4^{\prime}-\mathrm{C}\right), 110.20\left(2^{\prime}-\mathrm{C}\right), 45.52\left(\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{N}\right), 19.85\left(\mathrm{CH}_{3}{ }^{-}\right.$ $10-\mathrm{C}), 13.45\left(\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{N}\right), 13.25\left(\mathrm{CH}_{3}-6-\mathrm{C}\right)$; Anal. Calcd. for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{Br}_{3} \mathrm{~N}_{6} \mathrm{O}: \mathrm{C}, 42.27$; $\mathrm{H}, 1.39$; N, 13.44; Found: C,42.21; H,1.45; N,13.37.
1H-3-(3,5-Dibromo-2,4-dihydroxy)-phenyl-6-methyl-pyrazolo[3,2-c]-s-triazole (5s). Black powder (yield 76\%); mp $145-147{ }^{\circ} \mathrm{C}$ (ethanol-water); MS m/z: 386, 388, 390 (M+); IR v 3585, 3350, 3140, 3073, 2993, 2927,1605, 1324, 1212, 1100, 1018, 695, 647, $551 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right.$ with $\left.\mathrm{CF}_{3} \mathrm{COOH}\right) \delta 7.67\left(1 \mathrm{H}, \mathrm{s}, 6^{\prime}-\mathrm{H}\right), 6.31(1 \mathrm{H}, \mathrm{s}, 7-\mathrm{H}), 2.55\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}-6-\mathrm{C}\right) ;{ }^{13} \mathrm{C}-$ NMR $\delta 167.62$ ($\left.4^{\prime}-\mathrm{C}\right), 161.50\left(2^{\prime}-\mathrm{C}\right), 156.42$ ($7 \mathrm{a}-\mathrm{H}$), 154.82 (3-С), 146.20 (6-C), 135.43 ($\left.6^{\prime}-\mathrm{C}\right)$, 115.32 ($1^{\prime}-\mathrm{C}$), 106.77 ($5^{\prime}-\mathrm{C}$), 101.20 ($3^{\prime}-\mathrm{C}$), 87.21 (7-C), 13.24 ($\mathrm{CH}_{3}-6-\mathrm{C}$); Anal. Calcd. for $\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{Br}_{2} \mathrm{~N}_{4} \mathrm{O}_{2}$: C, 34.05; H, 2.08; N, 14.44; Found: C,34.00; H,2.12; N,14.39.
1H-3-(5-Bromo-2,4-dimethoxy)-phenyl-6-methyl-pyrazolo[3,2-c]-s-triazole (5u). Grey powder (yield 83\%); mp 240-242 ${ }^{\circ} \mathrm{C}$ (ethanol); MS m/z: 336, 338(M+); IR v 3368, 3061, 2941, 2838, 2749, 1605, 1280, 1213, 1173, 1092, 1017, $550 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR} \delta 7.26\left(1 \mathrm{H}, \mathrm{s}, 6^{\prime}-\mathrm{H}\right), 6.61$
$\left(1 \mathrm{H}, \mathrm{s}, 3^{\prime}-\mathrm{H}\right), 5.56(1 \mathrm{H}, \mathrm{s}, 7-\mathrm{H}), 3.98\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}-\mathrm{O}\right), 3.91\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}-\mathrm{O}\right), 2.43\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}-6-\right.$ C); ${ }^{13} \mathrm{C}-\mathrm{NMR} \delta 162.00$ ($\left.4^{\prime}-\mathrm{C}\right), 157.00\left(2^{\prime}-\mathrm{C}\right), 156.50$ (7a-C), 132.54 ($\left.6^{\prime}-\mathrm{C}\right), 132.50$ (3́-C), $108.50\left(1^{\prime}-\mathrm{C}\right), 98.28\left(5^{\prime}-\mathrm{C}\right), 76.57(7-\mathrm{C}), 56.33\left(\mathrm{CH}_{3} \mathrm{O}\right), 56.32\left(\mathrm{CH}_{3} \mathrm{O}\right), 14.58\left(\mathrm{CH}_{3}-6-\mathrm{C}\right)$ (Bruker DPX 300); Anal. Calcd. for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{BrN}_{4} \mathrm{O}_{2}$: C, 46.31; H, 3.89; N, 16.62; Found: C,46.27; H,3.96; N,16.58.
6u. MS m/z: 510, 512(M+); $\lambda_{\max } 576 \mathrm{~nm} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 9.08(1 \mathrm{H}, \mathrm{d}, J=9.35,14-\mathrm{H}), 7.32$ $\left(1 \mathrm{H}, \mathrm{s}, 6^{\prime}-\mathrm{H}\right), 6.90(1 \mathrm{H}, \mathrm{dd}, J=9.30, J=2.90,13-\mathrm{H}), 6.72\left(1 \mathrm{H}, \mathrm{s}, 3^{\prime}-\mathrm{H}\right), 6.57(1 \mathrm{H}, \mathrm{d}, J=2.90,11-$ H), $3.98\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}-\mathrm{O}\right), 3.51\left(4 \mathrm{H}, \mathrm{q}, J=7.10, \mathrm{~N}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right), 2.53\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}-10-\mathrm{C}\right), 2.43(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3}-6-\mathrm{C}\right), 1,28\left(6 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.10, \mathrm{~N}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR} \delta 163.25$ (7-C), 162.85 (4'-C), 157.43 ($\left.2^{\prime}-\mathrm{C}\right), 152.23$ (3-C), 151.94 (7a-C), 148.22 (6-С), 146.73 (12-С), 142.11 (9-С), 135.22 (10-С), 132.68 ($6^{\prime}-\mathrm{C}$), 132.33 (3'-С), 125.47 (14-С), 112.63 ($1^{\prime}-\mathrm{C}$), 111.81 (11-С), 109.90 (13-С), 99.19 (5'-C), $57.05\left(\mathrm{CH}_{3} \mathrm{O}\right), 56.32\left(\mathrm{CH}_{3} \mathrm{O}\right), 45.14\left(\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{N}\right), 19.36\left(\mathrm{CH}_{3}-10-\mathrm{C}\right), 13.90\left(\mathrm{CH}_{3}-\mathrm{CH}_{2}-\right.$ N), 13.21 ($\left.\mathrm{CH}_{3}-6-\mathrm{C}\right)$; Anal. Calcd. for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{BrN}_{6} \mathrm{O}_{2}$: C, 56.36; H, 5.32; N, 16.43; Found: C,56.31; H,5.38; N,16.38 Anal. Calcd. for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{BrN}_{6} \mathrm{O}_{2}$: C, $56.36 ; \mathrm{H}, 5.32 ; \mathrm{N}, 16.43$; Found: C,56.31; H,5.38; N,16.38.

Acknowledgements

The work was effected with the financial support (Grant CNCSIS 19D) of the Romanian Ministry of Education and Research. Many thanks to Prof. Dr. M. Fild for his help in performing the 400 MHz NMR spectra at the "Institut für Anorganische und Analytische Chemie" Technische Universität Braunschweig, Germany.

References

1. Bailey, J. J.Chem.Soc., Perkin Trans I 1977, 18, 2047.
2. Buckland, P. R.; Leyshon, L. L. J. Eur. Pat 02003541986 Int. Cl. G03C7/38.
3. Nishijima, T.; Onodera, K. U. S. Pat. 4,752,561 1988 Int.Cl.G03C1/08.
4. Katoh, K.; Kawakatsu, S.; Masuda, K.; Miyagi, K.; Nakayama, N.; Kimura,T.
5. U. S. Pat. 4,581,326 1986 Int.Cl.G03C7/26.
6. Abdel Sayed, N. I. Egypt. J. Chem. 1999, 42, 2175.
7. Pizey, J. S. Synthetic Reagents, John Wiley \&Sons Inc.: New-York, 1977; Vol.3, pp 319.
8. Bercean, V. N. Ph. D. Thesis 1998 University "Politehnica" of Timisoara.
