A convenient synthesis of chiral 1,2,4-oxadiazoles from \mathbf{N}-protected (α-aminoacyl)benzotriazoles

Alan R. Katritzky,* Aleksandr A. Shestopalov, and Kazuyuki Suzuki
Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL 32611-7200, USA
E-mail: katritzky@.chem.ufl.edu

Dedicated to Vladimir I. Minkin on the occasion of his $70^{\text {th }}$ anniversary

(received 21 Sep 04; accepted 08 Jan 05; published on the web 22 Jan 05)

Abstract

1,2,4-Oxadiazoles (4a-k, 6a-c, 7a-d, and 11a-f) derived from chiral α-amino acids were synthesized in $70-94 \%$ yields via a fast and easy procedure under mild conditions. They were shown to be at least 97% enantiomerically pure by HPLC and NMR.

Keywords: Chiral 1,2,4-oxadiazole, N-aminoacylbenzotriazole, N-acylbenzotriazole, benzotriazole methodology

Introduction

1,2,4-Oxadiazole rings occur widely in biologically active synthetic compounds, and are often used in drug discovery as hydrolysis-resisting bioisosteric replacements for ester or amide functionalities. ${ }^{1}$ Numerous 1,2,4-oxadiazoles have been suggested as potential agonists for cortical muscarinic, ${ }^{1 \mathrm{c}, 2}$ benzodiazepine, ${ }^{3}$ and $5-\mathrm{HT}_{1 \mathrm{D}}$ (5-hydroxytryptamine) receptors, ${ }^{4}$ and as antagonists for $5-\mathrm{HT}_{3},{ }^{5}$ or histamine H_{3} receptors. ${ }^{6}$ They show activity as antirhinoviral agents, ${ }^{1 \mathrm{~b}}$ growth hormone secretagogues, ${ }^{7}$ anti-inflammatory agents, ${ }^{8}$ and antitumor agents. ${ }^{9}$ They also inhibit the SH2 domain of tyrosine kinase, ${ }^{10}$ monoamine oxidase, ${ }^{11}$ human nuetrophil elastase, ${ }^{12}$ and human DNA topoisomerases. ${ }^{13}$ Finally, tropane derivatives of 1,2,4-oxadiazoles display high affininity for the cocaine binding site of the dopamine transporter. ${ }^{14}$

The most common routes to 1,2,4-oxadiazoles couple amidoximes with: (i) activated carboxylic acid derivatives such as acid chlorides, ${ }^{15}$ fluorides, ${ }^{16}$ anhydrides, ${ }^{17}$ or active esters, ${ }^{10 a, b}$ (ii) carboxylic acids in the presence of coupling reagents including dicyclohexylcarbodiimide (DCC) ${ }^{17 \mathrm{~b}, 18} \quad$ 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide \quad (EDC), ${ }^{13,15 a, 17 \mathrm{a}} \quad$ 2(dimethylamino)isopropyl chloride (DIC)/HOBt, ${ }^{19}$ bis(2-oxo-3-oxazolidinyl)phosphinic chloride (BOP-Cl), ${ }^{17 \mathrm{~b}}$ 2-(1 H -benzotriazole-1-yl)-1,1,3,3-tetramethyluronium tetrafluoroborate (TBTU), ${ }^{20}$
or $1,1^{\prime}$-carbonyldiimidazole (CDI). ${ }^{21}$ Other methods to obtain 1,2,4-oxadiazoles include reactions of amidoximes with aryl halides in the presence of palladium catalysts, ${ }^{22}$ or with aldehydes followed by oxidation (Scheme 1). ${ }^{23}$

$$
\begin{aligned}
& \text { in } \\
& \text { i: } \quad \mathrm{X}=-\mathrm{C}(\mathrm{O}) \mathrm{Cl},-\mathrm{C}(\mathrm{O}) \mathrm{F},-\mathrm{C}(\mathrm{O}) \mathrm{O}-\mathrm{C}(\mathrm{O}) \mathrm{R}^{2},-\mathrm{C}(\mathrm{O}) \mathrm{OS},
\end{aligned}
$$

Scheme 1

The synthesis of chiral 1,2,4-oxadiazoles from amino acids has attracted attention recently. ${ }^{17 \mathrm{~b}, 10 \mathrm{a}, 18,19 \mathrm{c}} \mathrm{O}$-Acylation of amidoximes with carboxylic acids or activated carboxylic acids occurs under mild conditions, but the cyclization of the intermediate O (aminoacyl)amidoximes requires temperatures of $86-100{ }^{\circ} \mathrm{C}$ and reaction times of 2-12 hours. ${ }^{18,19 \mathrm{c}}$

We reported previously that N -protected (aminoacyl)benzotriazoles are stable, versatile peptide coupling reagents. ${ }^{24}$ The reactions of N-(Boc- α-aminoacyl)benzotriazoles with chiral amines produced N-(Boc- α-amino)amides in $82-99 \%$ yields with no detectable racemization. ${ }^{25}$ The peptide coupling of N-(Z- α-aminoacyl)benzotriazoles ${ }^{26 a}$ (Z-Ala-Bt, Z-Val-Bt, and Z-Phe-Bt) with unprotected amino acids in $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}$ occurred with complete preservation of the original chirality. ${ }^{26 \mathrm{~b}}$ Efficient preparations of functionalized N-(Z or Fmoc- α aminoacyl)benzotriazoles derived from Tyr, Trp, Met, Cys, and Gln were followed by advantageous coupling with unprotected amino acids (L-Ala, DL-Ala, L-Phe, $D L$-Phe). ${ }^{27}$ We herein demonstrate facile reactions for the preparation of 3,5-disubstituted-1,2,4-oxadiazoles derived from chiral α-amino acids utilizing N-(Boc, Z, and Fmoc- α-aminoacyl)benzotriazoles. We also report the preparation of 3,5-substituted-1,2,4-oxadiazoles utilizing N acylbenzotriazoles in order to show the general applicability of the method.

Results and Discussion

Preparation of 1,2,4-oxadiazoles (4a-k, 6a-c, 7a-d) using N-protected (α-aminoacyl) benzotriazoles (1a-k). Refluxing a symmetric Boc-amino acid anhydride and an amidoxime in pyridine provided one-pot preparations of chiral 1,2,4-oxadiazoles in $20-81 \%$ yield calculated on the amidoxime utilizing only 50% of the Boc-amino acid. Retention of chirality was proved by HPLC analysis. ${ }^{17 \mathrm{~b}}$ Recently, preparations of $1,2,4$, -oxadiazoles from N-protected amino acids
were reported using DIC/HOBt or DCC as coupling reagents, followed by heating at $86-100{ }^{\circ} \mathrm{C}$ for $2-12$ hours. ${ }^{18,19 \mathrm{c}}$ Although these reaction procedures give reasonable yields $(50-80 \%)$, carbodiimides (DIC and DCC) and their intermediates with HOBt are frequently moisture sensitive, and isolation and purification processes often involve column chromatography due to the formation of ureas from the coupling reagents.

N -Protected (α-aminoacyl)benzotriazoles (1a-k) are sufficiently reactive to form amide bonds at ambient temperature, but stable enough to resist side reactions such as hydrolysis. ${ }^{26 b}$ They are available directly from the corresponding N-protected amino acids and can be stored at room temperature without decomposition or racemization for months. We prepared 1,2,4oxadiazoles 4a-k, 6a-c, and 7a-d from (α-aminoacyl)benzotriazoles 1a-k with p-tolyl (2a), 4pyridinyl (2b), and benzyl (2c) amidoximes, respectively.

The O-acylation of $\mathbf{1}$ with p-tolyl amidoxime (2a) proceeded immediately after addition of 1 equivalent of $\mathrm{Et}_{3} \mathrm{~N}$ in EtOH at room temperature. Subsequent cyclization occurred surprisingly quickly ($3-5 \mathrm{~min}$) when the mixture was refluxed in EtOH in the presence of $\mathrm{Et}_{3} \mathrm{~N}$ (Scheme 2). These reactions were complete within 5 min , and the products $4 \mathrm{a}-\mathrm{k}$ were precipitated in $70-94 \%$ yield by adding water to the reaction mixture (Table 1). To support the proposed mechanism of the reaction (Scheme 2), intermediates $\mathbf{3 c}$ and $\mathbf{3 g}$ were isolated in $96,97 \%$ yield by filtration from water- EtOH solution, and subjected to cyclization by heating under reflux in EtOH for 5 minutes to afford 1,2,4,-oxadiazoles $\mathbf{4 c}$ and $\mathbf{4 g}$ in 83 and 75% yields, respectively.

$\mathrm{Pg}=\mathrm{Boc}, \mathrm{Z}, \mathrm{Fmoc}$
Amino acid with R : alanine, valine, phenylalanine, methionine, tryptophan, and glutamine $\mathrm{Bt}=$ benzotriazol-1-yl

Scheme 2

Table 1. Synthesis of 1,2,4-oxadiazoles 4a-k from N-protected (α-aminoacyl) benzotriazoles 1a\mathbf{k} utilizing p-tolyl amidoxime (2a)

Entry	RCOBt	Time (min)	Product a (\% yield)
1	Z-L-Ala-Bt (1a)	5	4a (83)
2	Z-D-Ala-Bt (1b)	5	4b (84)
3	Z-L-Val-Bt (1c)	5	4c (70) ${ }^{\text {b }}$
4	Boc-L-Phe-Bt (1d)	5	4d (79)
5	Z-L-Phe-Bt (1e)	5	4e (91)
6	Z-D-Phe-Bt (1f)	5	4f (93)
7	Fmoc-L-Phe-Bt (1g)	3	$\mathbf{4 g}(71)^{c}$
8	Z-L-Met-Bt (1h)	5	4h (94)
9	Fmoc-L-Met-Bt (1i)	3	4i (89)
10	Fmoc-L-Trp-Bt (1j)	3	4j (92)
11	Z-L-Gln-Bt (1k)	5	4k (87)

${ }^{a}$ Isolated yield. ${ }^{b} \mathbf{4 c}$ in 83% yield was obtained by cyclization of $\mathbf{3 c} .{ }^{c} \mathbf{4 g}$ in 75% yield was obtained by cyclization of $\mathbf{3 g}$.

Utilizing conditions similar to those described for the preparation of $\mathbf{4 a - k}$, the synthesis of $\mathbf{6 c}$ was first attempted by reaction of $\mathbf{1 e}$ with 4 -pyridinyl amidoxime (2b). However, $\mathbf{6 c}$ was obtained along with N, O-disubstituted amidoxime as by-product formed by a reaction of $\mathbf{2 b}$ with two molecules of $\mathbf{1 e}$. This result can be explained by the higher reactivity of amidoxime $\mathbf{2 b}$ compared to $\mathbf{2 a}$. To overcome this problem, $\mathbf{2 b}$ was initially converted into the hydrochloric salt by adding 1 equivalent of $\mathrm{HCl}(10 \%$ aq.) and then coupled with $\mathbf{1 a , c}, \mathbf{e}$ under refluxing EtOH to give the intermediates 5a-c, which were cyclized to give 6a-c by heating under reflux in EtOH in the presence of two equivalents of $\mathrm{Et}_{3} \mathrm{~N}$. The products $\mathbf{6 a - c}$ were isolated in $90-93 \%$ yield after column chromatography, and fully characterized by NMR and elemental analysis (Scheme 3, Table 2).

Scheme 3

Table 2. Synthesis of 1,2,4-oxadiazoles 6a-c from N-protected (α-aminoacyl) benzotriazoles 1a,c,e utilizing 4- pyridinyl amidoxime (2b)

Entry	RCOBt	Time (min)	Product (\% yield)
1	Z-L-Ala-Bt (1a)	10	$\mathbf{6 a}(91)$
2	Z-L-Val-Bt (1c)	10	$\mathbf{6 b}(93)$
3	Z-L-Phe-Bt (1e)	10	$\mathbf{6 c}(90)$

We also investigated the preparation of 1,2,4-oxadiazoles derived from benzyl amidoxime (2c) (Scheme 4) to produce $\mathbf{7 a - d}$ in $83-89 \%$ yields following the procedure used for preparation of $\mathbf{4 a - l}$, but with extended refluxing times (Table 3). When the conditions for the preparation of 4 were applied, yields of 7 did not exceed 10%, presumably due to the lower reactivity of $\mathbf{2 c}$ compared to 2a.

Scheme 4

Table 3. Synthesis of 1,2,4-oxadiazoles 7a-d from N-protected (α-aminoacyl) benzotriazoles 1a,e,h,i utilizing N-benzyl amidoxime (2c)

Entry	RCOBt	Time (hours)	Product (\% yield)
1	Z- L-Ala-Bt (1a)	1.5	7a (87)
2	Z- L-Phe-Bt (1e)	1.5	7b (83)
3	Z- $L-$ Met-Bt (1h)	1.5	7c (89)
4	Fmoc- $L-$ Met-Bt (1i)	1.0	$\mathbf{7 d}(85)$

Stereochemistry

Dipeptides and tripeptides prepared from N-protected (α-aminoacyl)benzotriazoles were previously shown to be more than 97% enantiomerically pure by HPLC analysis and NMR spectra. ${ }^{28}$ We have now made N-protected diastereomers of peptidolylbenzotriazoles 10a-f from $\mathbf{1 a}, \mathbf{b}, \mathbf{e}, \mathbf{f}$ and amino acid $\mathbf{8 a - d}$. The extent of racemization during 1,2,4-oxadiazole ring-formation was then checked by NMR and HPLC of products 11a-f from reactions of 10a-f with 2a (Scheme 5).

$\mathbf{1 a , b , e , f}$

10a-f
8a-d

11a-f

$$
\mathrm{R}^{1}, \mathrm{R}^{2}=\mathrm{PhCH}_{2}-, \mathrm{Me}_{2} \mathrm{CH}-, \mathrm{Me}-
$$

Scheme 5

According to HPLC analysis, compounds 11a,b,e,f are single isomers (Table 4), and no peaks corresponding to another diastereomer were detected. The ${ }^{1} \mathrm{H}$ NMR spectra of compounds 11a-f contain signals of -NH protons as doublets, which resonate in different positions for each pair of diastereomers (Table 5). On Chirobiotic T column, retention times for diastereomers 11a and 11b were 24.2 and 27.0 minutes, respectively. Signals of the NH protons β to the oxadiazole ring for $\mathbf{1 1 a}$ and $\mathbf{1 1 b}$ appeared as doublets at $6.93 \mathrm{ppm}(J=6.5 \mathrm{~Hz})$ and $6.76 \mathrm{ppm}(J=6.6 \mathrm{~Hz})$, respectively. Using similar conditions, diastereomers 11c and 11d could not be separated on Chirobiotic T column. However, the ${ }^{1} \mathrm{H}$ NMR spectra of 11c and 11d showed significant difference in their $\mathrm{N}^{3} \mathrm{H}$ proton shifts as described in Table 5. Diastereomers 11e and 11f were observed in HPLC at 24.4 and 20.3 minutes, and demonstrated different values for $\mathrm{N}^{3} \mathrm{H}$ proton shifts at 6.89 ppm and 7.08 ppm , respectively. The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of 11a-f indicated the absence of the peaks expected from racemization. Thus, HPLC and NMR analyses indicated less than 3% of racemization for 1,2,4-oxadiazoles 11a,b,e,f, and the racemization of the orginal chirality in 11c and 11d was illustrated by NMR to be less than 5%.

Table 4. Synthesis of 1,2,4-oxadiazoles 11a-f containing two centers of chirality

Entry	RCOBt	$\begin{aligned} & \text { Time } \\ & \text { (min.) } \end{aligned}$	Product (\% yield)	HPLC analysis		
				Solvents ratio	Flow rate ($\mathrm{mL} / \mathrm{min}$)	Retention time (min.)
1	$\begin{aligned} & \text { Z-L-Phe-L-Ala-Bt } \\ & \quad(\mathbf{1 0} \mathbf{a}) \end{aligned}$	10	11a (83)	$\begin{gathered} \hline \mathrm{EtOH}(65 \%) / \\ \mathrm{H}_{2} \mathrm{O}(35 \%) \end{gathered}$	0.85	24.2
2	$\begin{aligned} & \text { Z-D-Phe-L-Ala-Bt } \\ & (\mathbf{1 0} \mathbf{b}) \end{aligned}$	10	11b (79)	$\begin{gathered} \mathrm{EtOH}(65 \%) / \\ \mathrm{H}_{2} \mathrm{O}(35 \%) \end{gathered}$	0.85	27.0
3	$\begin{aligned} & \text { Z- } L \text {-Ala- } L \text {-Val-Bt } \\ & \qquad(\mathbf{1 0} \mathbf{c}) \end{aligned}$	10	11c (87)	$\begin{aligned} & \mathrm{EtOH}(65 \%) / \\ & \mathrm{H}_{2} \mathrm{O}(35 \%) \end{aligned}$	1.00	24.0
4	$\mathrm{Z}-D-\mathrm{Ala}-L-\mathrm{Val}-\mathrm{Bt}$ (10 d)	10	11d (85)	$\begin{aligned} & \mathrm{EtOH}(65 \%) / \\ & \mathrm{H}_{2} \mathrm{O}(35 \%) \end{aligned}$	1.00	24.0
5	$\begin{aligned} & \text { Z-L-Ala- }- \text {-Phe-Bt } \\ & \text { (10e) } \end{aligned}$	10	11e (91)	$\begin{aligned} & \mathrm{EtOH}(65 \%) / \\ & \mathrm{H}_{2} \mathrm{O}(35 \%) \end{aligned}$	1.00	24.4
6	$\begin{gathered} \text { Z-L-Ala-D-Phe-Bt } \\ (\mathbf{1 0 f}) \\ \hline \end{gathered}$	10	11f (94)	$\begin{aligned} & \mathrm{EtOH}(65 \%) / \\ & \mathrm{H}_{2} \mathrm{O}(35 \%) \\ & \hline \end{aligned}$	1.00	20.3

Table 5. Characteristic ${ }^{1} \mathrm{H}$ NMR signals of compounds 11a-f

Product	$\mathrm{N}^{1} \mathrm{H}(\mathrm{d})$	$\mathrm{N}^{3} \mathrm{H}(\mathrm{d})$	$\mathrm{C}^{2} \mathrm{H}(\mathrm{m})$	$\mathrm{C}^{4} \mathrm{H}(\mathrm{m})$	Ar-Me (s)	$\mathrm{Ph}_{-} \mathrm{CH}_{2}-\mathrm{O}-(\mathrm{s})$
$\mathbf{1 1 a}$	5.65	6.93	$4.50-4.57$	$5.31-5.42$	2.40	5.04
11b	5.62	6.76	$4.53-4.58$	$5.27-5.39$	2.38	5.05
11c	5.53	7.08	$4.41-4.48$	$5.33(\mathrm{dd})$	2.46	5.18
11d	5.59	7.23	$4.42-4.52$	$5.32(\mathrm{dd})$	2.44	5.18
$\mathbf{1 1 e}$	5.31	6.89	$4.28-4.40$	$5.66-5.75$	2.47	5.15
11f	5.50	7.08	$4.29-4.33$	$5.64(\mathrm{dd})$	2.39	5.10

Preparation of $1,2,4$-oxadiazoles (13a-d) utilizing aromatic N-acylbenzotriazoles (12a-c). To extend the synthetic possibilities, we introduced the reaction of amidoximes $\mathbf{2 a}, \mathbf{b}$ with aromatic N-acylbenzotriazoles 12a-c (Scheme 6). Compounds 12a-c were prepared directly from carboxylic acids according to the procedures developed in our group. ${ }^{29}$ 1,2,4-Oxadiazoles 13a-d were synthesized in $73-82 \%$ yields following the procedure illustrated for the preparation of compounds 4a-l. The starting materials 12a-c were less reactive in the cyclization reactions than
their aliphatic analogues $\mathbf{1 a - l}$ and hence required longer refluxing times (Table 6). Since many previously reported methods for the synthesis of 1,2,4-oxadiazole require acyl halides, our method offers advantages, especially where acyl halides are not readily available or stable.

Scheme 6

Table 6. Synthesis of 1,2,4-oxadiazoles 13a-d utilizing N-acylbenzotriazoles 12a-c

R^{1}	R^{2}	Time (h)	Product (\% yield)
$\mathrm{C}_{6} \mathrm{H}_{5}(\mathbf{1 2 a})$	p-tolyl (2a)	7	$\mathbf{1 3 a}(77)$
$4-\mathrm{MeOC}_{6} \mathrm{H}_{4}(\mathbf{1 2 b})$	p-tolyl (2a)	7	$\mathbf{1 3 b}(82)$
2 -indolyl (12c)	p-tolyl (2a)	7	$\mathbf{1 3 c}(73)$
$\mathrm{C}_{6} \mathrm{H}_{5}(\mathbf{1 2 a})$	benzyl (2c)	7	$\mathbf{1 3 d}(74)$

Conclusions

In summary, a convenient method for the preparation of 1,2,4-oxadiazoles utilizing N -protected (α-aminoacyl)benzotriazoles and aromatic N-acylbenzotriazoles has been developed. The reactions were demonstrated to give 1,2,4-oxadiazoles in high yields under mild conditions together with a simple process for isolation and purification. During the whole process, the original chirality has been preserved in $>97 \%$ enantiomerically pure products, as demonstrated by HPLC and NMR analysis.

Experimental Section

General Procedures. Melting points were determined on a capillary point apparatus equipped with a digital thermometer. NMR spectra were recorded in CDCl_{3} or DMSO- d_{6} with TMS for ${ }^{1} \mathrm{H}$ $(300 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}(75 \mathrm{MHz})$ as the internal reference. N-Boc-, Z- and Fmoc-amino acids purchased from Fluka and amino acids purchased from Acros, were used without further purification. Optical rotation values were measured at the sodium D line. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was distilled in the presence of CaH_{2} under N_{2} immediately prior to use. HPLC analyses were performed on

Beckman system gold programmable solvent module 126 using Chirobiotic T column $(4.6 \times 250 \mathrm{~mm})$, detection at 254 nm .

General procedure for compounds 1a-k, 10a-f, and 12 a-c

Thionyl chloride (2.0 mmol) was added dropwise to a solution of $1 H$-benzotriazole (8.0 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$, and reaction mixture was heated under reflux for 30 minutes. The solution was cooled in an ice bath, and the corresponding carboxylic acid (2.0 mmol) was added in one portion. After stirring for 2 hours at room temperature, the reaction mixture was washed with aq $5 \% \mathrm{Na}_{2} \mathrm{CO}_{3}(3 \times 30 \mathrm{~mL})$, aq sat. $\mathrm{NH}_{4} \mathrm{Cl}(30 \mathrm{~mL})$, and dried $\left(\mathrm{MgSO}_{4}\right)$. After evaporation of the solvent and recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexanes, N -acylbenzotriazoles 1a-k, 10a-f, and 12a-c were obtained in $67-95 \%$ yield.
(S)-Benzyl 1-(1H-benzo[d][1,2,3]triazol-1-yl)-1-oxopropan-2-ylcarbamate (1a). Yield: 90\%; colorless microcrystals from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexanes; mp 113-114 ${ }^{\circ} \mathrm{C}\left(\mathrm{Lit}^{26 b, \mathrm{c}} \mathrm{mp} 114-115{ }^{\circ} \mathrm{C}\right)$.
(R)-Benzyl 1-(1H-benzo[d][1,2,3]triazol-1-yl)-1-oxopropan-2-ylcarbamate (1b). Yield: 91\%; colorless microcrystals from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexanes; mp 114-115 ${ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{23}=+37.8\left(c 2.7, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta 1.69(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 5.13-5.15(\mathrm{~m}, 2 \mathrm{H}), 5.67(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.79-$ $5.83(\mathrm{~m}, 1 \mathrm{H}), 7.12-7.41(\mathrm{~m}, 5 \mathrm{H}), 7.50-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.63-7.69(\mathrm{~m}, 1 \mathrm{H}), 8.13(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 8.25(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 19.1,50.7,67.4,114.5,120.5,126.6,128.3$, 128.4, 128.7, 130.9, 131.3, 136.2, 146.1, 155.8, 172.4. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{3}$: C, 62.95; H, 4.97; N, 17.27. Found: C, 62.79; H, 4.89; N, 17.23.
(S)-Benzyl 1-(1H-benzo[d][1,2,3]triazol-1-yl)-3-methyl-1-oxobutan-2-ylcarbamate (1c). Yield: 87%; colorless microcrystals from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexanes; mp $73-74{ }^{\circ} \mathrm{C}$ (Lit. ${ }^{26 \mathrm{~b}, \mathrm{c}} \mathrm{mp} 73-74{ }^{\circ} \mathrm{C}$).
(S)-tert-Butyl 1-(1H-benzo[d][1,2,3]triazol-1-yl)-1-oxo-3-phenylpropan-2-ylcarbamate (1d). Yield: 89%; colorless microcrystals from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexanes; mp $144-145{ }^{\circ} \mathrm{C}$ (Lit. ${ }^{26 a} \mathrm{mp} 144$ $145{ }^{\circ} \mathrm{C}$). (S)-Benzyl 1-(1H-benzo[d][1,2,3]triazol-1-yl)-1-oxo-3-phenylpropan-2-ylcarbamate (1e). Yield: 93%; colorless microcrystals from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ - hexanes; mp $149-150{ }^{\circ} \mathrm{C}$ (Lit. ${ }^{26 \mathrm{~b}} \mathrm{mp}$ $151-152{ }^{\circ} \mathrm{C}$).
(R)-Benzyl 1-(1H-benzo[d][1,2,3]triazol-1-yl)-1-oxo-3-phenylpropan-2-ylcarbamate (1f). Yield: 91\%; colorless microcrystals from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexanes; mp $152-153{ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{23}=-24.0(c$ 2.7, $\left.\mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 3.29(\mathrm{dd}, J=13.9,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.48-3.61(\mathrm{~m}, 1 \mathrm{H}), 5.15(\mathrm{~s}$, $2 \mathrm{H}), 5.62(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.08-6.21(\mathrm{~m}, 1 \mathrm{H}), 7.09-7.43(\mathrm{~m}, 10 \mathrm{H}), 7.56-7.65(\mathrm{~m}, 1 \mathrm{H}), 7.69-$ $7.78(\mathrm{~m}, 1 \mathrm{H}), 8.21(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.30(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 39.1,55.9$, $67.5,114.5,120.6,126.8,127.6,128.4,128.4,128.7,129.0,129.5,131.0,131.2,135.2,136.2$, 146.2, 155.9, 171.0. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{3}$: C, 68.99; H, 5.03; N, 13.99. Found: C, 69.30; H, 5.02; N, 14.06.
(S)-(9H-Fluoren-9-yl)methyl 1-(1H-benzo[d][1,2,3]triazol-1-yl)-1-oxo-3-phenyl propan-2ylcarbamate (1g). Yield: 84%; colorless microcrystals from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexanes; mp 137-138 ${ }^{\circ} \mathrm{C}$, (Lit. ${ }^{30} \mathrm{mp} 136-137^{\circ} \mathrm{C}$).
(S)-Benzyl 1-(1H-benzo[d][1,2,3]triazol-1-yl)-4-(methylthio)-1-oxobutan-2-ylcarbamate (1h). Yield: 92%; colorless microcrystals from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexanes; mp $107-109{ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{23}=-32.9(\mathrm{c}$ 2.7, $\left.\mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 2.11(\mathrm{~s}, 3 \mathrm{H}), 2.21-2.23(\mathrm{~m}, 1 \mathrm{H}), 2.48-2.50(\mathrm{~m}, 1 \mathrm{H}), 2.74(\mathrm{t}, J$ $=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.19(\mathrm{~s}, 2 \mathrm{H}), 5.96(\mathrm{~s}, 2 \mathrm{H}), 7.40(\mathrm{br} . \mathrm{s}, 5 \mathrm{H}), 7.55-7.61(\mathrm{~m}, 1 \mathrm{H}), 7.69-7.74(\mathrm{~m}, 1 \mathrm{H})$, $8.18(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.29(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 15.5,30.2,32.5,54.4$, 67.6, 114.5, 120.5, 126.8, 128.4, 128.4, 126.1, 128.7, 131.0, 131.2, 146.2, 156.2, 171.4. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{3}$: C, 59.36; H, 5.24; N, 14.57. Found: C, 59.42; H,5.24; N, 14.59.
(S)-(9H-Fluoren-9-yl)methyl 1-(1H-benzo[d][1,2,3]triazol-1-yl)-4-(methylthio)-1-oxobutan-2-ylcarbamate (1i). Yield: 89%; colorless microcrystals from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexanes; mp $100-101{ }^{\circ} \mathrm{C}$ (Lit. ${ }^{27} \mathrm{mp} 98-100{ }^{\circ} \mathrm{C}$).
(S)-(9H-Fluoren-9-yl)methyl 1-(1H-benzo[d][1,2,3]triazol-1-yl)-3-(1H-indol-3-yl)-1-oxo-propan-2-ylcarbamate (1j). Yield: 87%; colorless microcrystals from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexanes; mp $93-94{ }^{\circ} \mathrm{C}$ (Lit. ${ }^{27} \mathrm{mp} 88-90{ }^{\circ} \mathrm{C}$).
(S)-Benzyl 5-amino-1-(1H-benzo[d][1,2,3]triazol-1-yl)-1,5-dioxopentan-2-ylcarbamate (1k). Yield: 67%; colorless microcrystals from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexanes; mp $160-161{ }^{\circ} \mathrm{C}$ (Lit. ${ }^{27} \mathrm{mp} 161-$ $162{ }^{\circ} \mathrm{C}$).
Benzyl (S)-1-((S)-1-(1H-benzo[d][1,2,3]triazol-1-yl)-1-oxopropan-2-ylamino)-1-oxo-3-phenylpropan-2-ylcarbamate (10a). Yield: 87%; colorless microcrystals from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ hexanes; mp 180-181 ${ }^{\circ} \mathrm{C}\left(\right.$ Lit. $\left.^{26 \mathrm{a}} \mathrm{mp} 180-181^{\circ} \mathrm{C}\right)$.
Benzyl (R)-1-((S)-1-(1H-benzo[d][1,2,3]triazol-1-yl)-1-oxopropan-2-ylamino)-1-oxo-3-phenylpropan-2-ylcarbamate (10b). Yield: 90%; colorless microcrystals from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ hexanes; mp $135-136{ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{23}=-45.4\left(c 1.3, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.47(\mathrm{~d}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}), 3.04-3.19(\mathrm{~m}, 2 \mathrm{H}), 4.54-4.59(\mathrm{~m}, 1 \mathrm{H}), 5.10(\mathrm{~s}, 2 \mathrm{H}), 5.51(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.80-5.90(\mathrm{~m}$, $1 \mathrm{H}), 6.67(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.35(\mathrm{~m}, 10 \mathrm{H}), 7.47-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.60-7.67(\mathrm{~m}, 1 \mathrm{H}), 8.11$ $(\mathrm{d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.17(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 8.7,38.9,49.1,67.3,69.8$, $114.5,120.5,126.7,127.3,128.2,128.4,128.7,129.0,129.6,130.9,131.3,131.9,136.3,136.4$, 146.2, 170.8, 171.6. Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{O}_{4}$: C, 66.23 ; H, 5.34; N, 14.85. Found: C, 65.75; H, 5.31; N, 15.08.
Benzyl (S)-1-((S)-1-(1H-benzo[d][1,2,3]triazol-1-yl)-3-methyl-1-oxobutan-2-ylamino)-1-oxopropan-2-ylcarbamate (10c). Yield: 84%; colorless microcrystals from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ hexanes; mp 131-132 ${ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{23}=-62.9\left(c 2.1, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 0.95(\mathrm{~d}, J=6.6 \mathrm{~Hz}$, $3 \mathrm{H}), 1.05(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.41(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.46-2.57(\mathrm{~m}, 1 \mathrm{H}), 4.39-4.48(\mathrm{~m}, 1 \mathrm{H})$, $5.15(\mathrm{~s}, 2 \mathrm{H}), 5.53(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.94(\mathrm{dd}, J=8.2,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.27-7.40(\mathrm{~m}, 5 \mathrm{H}), 7.49-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.63-7.70(\mathrm{~m}, 1 \mathrm{H}), 8.14(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.26$ (d, $J=$ $8.1 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.4,19.8,31.8,50.6,57.8,67.3,114.6,120.5,126.7,128.2$, 128.4, 128.7, 130.9, 131.2, 135.2, 136.3, 146.2, 171.2, 172.8. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{O}_{4}$: C, 62.40; H, 5.95; N, 16.54. Found: C, 62.41; H, 5.98; N, 16.39.

Benzyl (R)-1-((S)-1-(1H-benzo[d][1,2,3]triazol-1-yl)-3-methyl-1-oxobutan-2-ylamino)-1-oxopropan-2-ylcarbamate (10d). Yield: 81\%; colorless microcrystals from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ hexanes; mp 103-104 ${ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{23}=+6.9\left(c 2.3, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 0.93(\mathrm{~d}, J=6.0 \mathrm{~Hz}$,
$3 \mathrm{H}), 1.07(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.46(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 2.44-2.56(\mathrm{~m}, 1 \mathrm{H}), 4.42-4.55(\mathrm{~m}, 1 \mathrm{H})$, 5.15 (s, 2H), $5.49-5.67(\mathrm{~m}, 1 \mathrm{H}), 5.97(\mathrm{dd}, J=8.5 \mathrm{~Hz}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.39(\mathrm{~m}, 5 \mathrm{H}), 7.46-$ $7.52(\mathrm{~m}, 1 \mathrm{H}), 7.59-7.65(\mathrm{~m}, 1 \mathrm{H}), 8.09(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.17(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 17.3,19.9,31.8,50.7,57.7,67.3,114.5,120.5,126.6,128.2,128.3,128.7,130.8$, 131.2, 136.4, 146.2, 171.2, 172.9. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{O}_{4}$: C, 62.40; H, 5.95; N, 16.54. Found: C, 62.33; H, 5.99; N, 16.56.
Benzyl (S)-1-((S)-1-(1H-benzo[d][1,2,3]triazol-1-yl)-1-oxo-3-phenylpropan-2-ylamino)-1-oxopropan-2-ylcarbamate (10e). Yield: 95\%; colorless microcrystals from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ hexanes; mp 148-149 ${ }^{\circ} \mathrm{C}$ (Lit. ${ }^{26 \mathrm{~b}} \mathrm{mp} 148-149{ }^{\circ} \mathrm{C}$).
Benzyl (S)-1-((R)-1-(1H-benzo[d][1,2,3]triazol-1-yl)-1-oxo-3-phenylpropan-2-ylamino)-1-oxopropan-2-ylcarbamate (10f). Yield: 93\%; colorless microcrystals from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ hexanes; mp 97-98 ${ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{23}=-37.4\left(c 1.7, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 1.35(\mathrm{~d}, J=6.9 \mathrm{~Hz}$, $3 \mathrm{H}), 3.20(\mathrm{dd}, J=14.0,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{dd}, J=13.7,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.35-4.54(\mathrm{~m}, 1 \mathrm{H}), 5.15(\mathrm{~s}$, $2 \mathrm{H}), 5.72$, (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.25-6.35(\mathrm{~m}, 1 \mathrm{H}), 7.17-7.30(\mathrm{~m}, 5 \mathrm{H}), 7.30-7.41(\mathrm{~m}, 6 \mathrm{H}), 7.42-$ $7.51(\mathrm{~m}, 1 \mathrm{H}), 7.51-7.62(\mathrm{~m}, 1 \mathrm{H}), 7.62-7.75(\mathrm{~m}, 1 \mathrm{H}), 8.10-8.22(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta$ $18.6,38.6,50.6,54.2,67.2,114.4,120.5,126.0,126.7,127.5,128.1,128.3,128.7,128.8,129.4$, 130.9, 131.1, 135.4, 146.1, 156.4, 170.6, 172.8. Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{O}_{4}$: C, 66.23; H, 5.34; N, 14.85. Found: C, 66.31; H, 5.40; N, 14.80.
(1H-Benzo[d][1,2,3]triazol-1-yl)(phenyl)methanone (12a). Yield: 93\%; colorless microcrystals from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexanes; mp 122-123 ${ }^{\circ} \mathrm{C}$ (Lit. ${ }^{29} \mathrm{mp} 116-117^{\circ} \mathrm{C}$).
(1H-Benzo[d][1,2,3]triazol-1-yl)(4-methoxyphenyl)methanone (12b). Yield: 92\%; colorless microcrystals from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexanes; mp 102-103 ${ }^{\circ} \mathrm{C}$ (Lit. ${ }^{30} \mathrm{mp} 104{ }^{\circ} \mathrm{C}$).
(1H-Benzo[d][1,2,3]triazol-1-yl)(1H-indol-2-yl)methanone (12c). Yield: 95\%; colorless microcrystals from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexanes; mp 214-215 ${ }^{\circ} \mathrm{C}$ (Lit. ${ }^{29} \mathrm{mp} 213-215{ }^{\circ} \mathrm{C}$).

General procedure for amidoximes 2a-c

A mixture of a nitrile (0.1 mol), hydroxylamine hydrochloride (0.13 mol), and sodium carbonate $(0.13 \mathrm{~mol})$ were heated under reflux in ethanol $(300 \mathrm{~mL})$. After 6 hours, the reaction mixture was added another portion of hydroxylamine hydrochloride (0.13 mol) and sodium carbonate $(0.13 \mathrm{~mol})$, and then refluxed for another 14 hours. After cooling to room temperature, inorganic salts were filtered off, and the filtrate was concentrated in vacuum. Resulting white precipitate was filtered and washed on filter with water and small amount of ethanol to give amidoximes 2ac in $88-95 \%$ yield. Amidoximes 2a-c were used without further purification.
N-Hydroxy-4-methylbenzenecarboximidamide (2a). Yield: 91\%; colorless microcrystals, mp $147-148{ }^{\circ} \mathrm{C}$ (Lit. ${ }^{15 \mathrm{c}} \mathrm{mp} 148-149^{\circ} \mathrm{C}$).
N-Hydroxy-4-pyridinecarboximidamide (2b). Yield: 88\%; colorless microcrystals, mp 205$206{ }^{\circ} \mathrm{C}$ (Lit. ${ }^{32} \mathrm{mp} 207-208^{\circ} \mathrm{C}$).
N-Hydroxy-benzeneethanimidamide (2c). Yield: 95\%; colorless microcrystals, mp $67-68{ }^{\circ} \mathrm{C}$ (Lit. ${ }^{33} \mathrm{mp} 68^{\circ} \mathrm{C}$).

General procedure for 1,2,4-oxadiazoles 4a-k

A mixture of N -hydroxy-4-methylbenzenecarboximidamide (2a) (1 mmol) and N acylbenzotriazole 1a-k (1 mmol) was heated under reflux in ethanol $(30 \mathrm{~mL})$ for 5 minutes in the presence of $\mathrm{Et}_{3} \mathrm{~N}$ (1 mmol) (in case of Fmoc-protected N -(aminoacyl) benzotriazoles $\mathbf{1 g}, \mathbf{i}$ refluxing time was reduced to 3 minutes and only catalytic amount of $\mathrm{Et}_{3} \mathrm{~N}$ was used to avoid deprotection). Completion of the reaction was monitored by TLC. The reaction mixture was cooled down to room temperature and quenched with water to form a white precipitate, which was filtered and subsequently washed on the filter with aq $5 \% \mathrm{Na}_{2} \mathrm{CO}_{3}(10 \mathrm{~mL})$, water (10 mL), $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O} 50 \%$ mixture $(2 \times 10 \mathrm{~mL})$, and hexanes $(10 \mathrm{~mL})$ to give oxadiazoles $4 \mathrm{a}-\mathrm{k}$ in $70-94 \%$ yield. 4a-k were further purified by recrystallization from EtOH-hexanes.
(S)-Benzyl 1-(3-p-tolyl-1,2,4-oxadiazol-5-yl)ethylcarbamate (4a). Yield: 83\%; colorless microcrystals from EtOH-hexanes; mp $89-90{ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{23}=-52.1$ (c 3.1, CHCl_{3}). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.65(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 5.15(\mathrm{~s}, 2 \mathrm{H}), 5.20-5.26(\mathrm{~m}, 1 \mathrm{H}), 5.21(\mathrm{~d}, J=$ $7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.31-7.40(\mathrm{~m}, 5 \mathrm{H}), 7.94(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 20.3,21.8,45.0,67.5,109.7,123.8,127.6,128.4,128.5,128.8,129.8,141.9,168.5$, 176.7, 179.6. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3}$: C, 67.64; H, 5.68; N, 12.45. Found: C, 68.01; H, 5.69; N, 12.56.
(R)-Benzyl 1-(3-p-tolyl-1,2,4-oxadiazol-5-yl)ethylcarbamate (4b). Yield: 84\%; colorless microcrystals from EtOH-hexanes; mp $89-90{ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{23}=+52.4$ (c 2.9, CHCl_{3}). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.63(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 5.14(\mathrm{~s}, 2 \mathrm{H}), 5.20-5.23(\mathrm{~m}, 1 \mathrm{H}), 5.57(\mathrm{~d}, J=$ $7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.36(\mathrm{~m}, 5 \mathrm{H}), 7.94(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 20.3,21.8,44.9,67.5,109.5,123.8,127.6,128.4,128.5,128.8,129.7,141.8,155.6$, 168.5, 179.6. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3}$: C, $67.64 ; \mathrm{H}, 5.68$; N, 12.45. Found: C, 67.98; H, 5.66; N, 12.53.
(S)-Benzyl 2-methyl-1-(3-p-tolyl-1,2,4-oxadiazol-5-yl)propylcarbamate (4c). Yield: 70\%; colorless microcrystals from EtOH-hexanes; mp $68-69{ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{23}=-45.7$ (c 1.5, DMF). ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 0.92(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.00(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.19-2.35(\mathrm{~m}, 1 \mathrm{H}), 2.39$ (s, 3H), 4.73-4.83 (m , 1H), $5.09(\mathrm{~s}, 2 \mathrm{H}), 7.29-7.42(\mathrm{~m}, 7 \mathrm{H}), 7.91(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.29(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): $\delta 18.5,18.7,21.1,31.0,54.4,65.8,123.3,127.0,127.8$, 127.9, 128.4, 129.8, 136.8, 141.6, 156.3, 167.5, 179.6. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{3}$: N, 11.50. Found: N, 11.24.
(S)-tert-Butyl 2-phenyl-1-(3-p-tolyl-1,2,4-oxadiazol-5-yl)ethylcarbamate (4d). Yield: 79\%; colorless microcrystals from EtOH-hexanes; mp 117-118 ${ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{23}=-0.72\left(c 1.7, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.49(\mathrm{~s}, 9 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}), 3.34-3.38(\mathrm{~m}, 2 \mathrm{H}), 5.25-5.28(\mathrm{~m}, 1 \mathrm{H}), 5.42-5.45$ (m, 1H), 7.15-7.18 (m, 2H), 7.29-7.32 (m, 3H), 7.33 (d, J = 8.0 Hz, 2H) 8.0 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 21.8,28.5,40.2,49.7,80.7,123.9,127.5,127.6,128.9,129.5,129.7,130.3$, 135.3, 141.8, 168.4, 178.6. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{3}$: C, 69.64; H, 6.64; N, 11.07. Found: C, 69.38; H, 6.75; N, 11.02.
(S)-Benzyl 2-phenyl-1-(3-p-tolyl-1,2,4-oxadiazol-5-yl)ethylcarbamate (4e). Yield: 91\%; colorless microcrystals from EtOH-hexanes; mp 98-99 ${ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{23}=-30.4\left(c 1.8, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta 2.39(\mathrm{~s}, 3 \mathrm{H}), 3.26-3.31(\mathrm{~m}, 2 \mathrm{H}), 5.10(\mathrm{~s}, 2 \mathrm{H}), 5.43-5.47(\mathrm{~m}, 1 \mathrm{H}), 5.53(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.03-7.07(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.34(\mathrm{~m}, 10 \mathrm{H}), 7.92(d, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 21.7,39.9,50.0,67.4,123.7,127.5,127.6,128.3,128.4,128.7,128.9,129.4,129.7$, 135.0, 136.2, 141.8, 155.7, 168.4, 178.3. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{3}$: C, 72.62; H, 5.61; N, 10.16. Found: C, 72.19 ; H, 5.56; N, 10.07.
(R)-Benzyl 2-phenyl-1-(3-p-tolyl-1,2,4-oxadiazol-5-yl)ethylcarbamate (4f). Yield: 93\%; colorless microcrystals from EtOH-hexanes; mp 99-98 ${ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{23}=+29.8\left(c 2.3, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 2.42(\mathrm{~s}, 3 \mathrm{H}), 3.29-3.34(\mathrm{~m}, 2 \mathrm{H}), 5.13(\mathrm{~s}, 2 \mathrm{H}), 5.40-5.57(\mathrm{~m}, 2 \mathrm{H}), 7.08-7.12$ $(\mathrm{m}, 2 \mathrm{H}), 7.23-7.37(\mathrm{~m}, 10 \mathrm{H}), 7.95(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 21.7,40.0,50.1$, $67.5,123.8,127.6,127.7,128.3,128.4,128.7,128.9,129.5,129.7,135.0,136.2,141.9,155.7$, 168.4, 178.4. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{3}$: C, 72.62; H, 5.61; N, 10.16. Found: C, 72.20; H, 5.56; N, 10.11.
(S)-(9H-Fluoren-9-yl)methyl 2-phenyl-1-(3-p-tolyl-1,2,4-oxadiazol-5-yl)ethyl carbamate $\mathbf{(4 g}$). Yield: 71% (isolated yield), 75% (from $\mathbf{3 g}$); colorless microcrystals from EtOH -hexanes; $\mathrm{mp} 102-103{ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{23}=-33.0\left(c 2.3, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 2.40(\mathrm{~s}, 3 \mathrm{H}), 3.29-3.33(\mathrm{~m}$, $2 \mathrm{H}), 4.20(\mathrm{t}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.41-4.43(\mathrm{~m}, 2 \mathrm{H}), 5.43-5.47(\mathrm{~m}, 2 \mathrm{H}), 7.06(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H})$, $7.22-7.32(\mathrm{~m}, 7 \mathrm{H}), 7.37-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.53-5.57(\mathrm{~m}, 2 \mathrm{H}), 7.75(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.93(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 21.8,39.4,47.3,50.0,67.3,120.2,123.8,125.2,127.3,127.6$, 127.7, 127.9, 128.9, 129.5, 129.8, 135.0, 141.5, 141.9, 143.8, 155.6, 168.4, 178.3. Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{3}$: C, 76.63; H, 5.43; N, 8.38. Found: C, 76.28; H, 5.57; N, 7.94.
(S)-Benzyl 3-(methylthio)-1-(3-p-tolyl-1,2,4-oxadiazol-5-yl)propylcarbamate (4h). Yield: 94%; colorless microcrystals from EtOH-hexanes; mp 59-60 ${ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{23}=-27.8\left(c 1.8, \mathrm{CHCl}_{3}\right)$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 2.08(\mathrm{~s}, 3 \mathrm{H}), 2.17-2.21(\mathrm{~m}, 1 \mathrm{H}), 2.29-2.31(\mathrm{~m}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 2.58(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.14(\mathrm{~s}, 2 \mathrm{H}), 5.29-5.33(\mathrm{~m}, 1 \mathrm{H}), 5.81(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.31-7.35(\mathrm{~m}, 5 \mathrm{H}), 7.93(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 15.5,21.7,29.8,33.3,48.2$, 67.5, 123.7, 127.6, 128.3, 128.4, 128.7, 129.7, 136.1, 141.8, 155.9, 168.4, 178.5. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 63.45$; H, 5.83; N, 10.57. Found: C, 63.73; H, 5.93; N, 10.46.
(S)-(9H-Fluoren-9-yl)methyl 3-(methylthio)-1-(3-p-tolyl-1,2,4-oxadiazol-5-yl)propyl carbamate (4i). Yield: 89%; colorless microcrystals from EtOH-hexanes; mp $88-89{ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{23}=-45.2(\mathrm{c}$ $\left.1.3, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 2.08(\mathrm{~s}, 3 \mathrm{H}), 2.17-2.19(\mathrm{~m}, 1 \mathrm{H}), 2.29-2.31(\mathrm{~m}, 1 \mathrm{H}), 2.39(\mathrm{~s}$, $3 \mathrm{H}), 2.56(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.21(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.29-5.33(\mathrm{~m}$, $1 \mathrm{H}), 5.72(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.41(\mathrm{~m}, 6 \mathrm{H}), 7.57-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.73(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.94(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 15.6,21.7,29.9,33.3,47.3,48.2,67.3,120.1$, 123.7, 125.1, 127.2, 127.6, 127.9, 129.7, 141.4, 141.9, 143.7, 143.9, 155.9, 168.5, 178.5. Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$: C, 69.25; H, 5.60; N, 8.65. Found: C, 69.19; H, 5.76; N, 8.33.
(S)-(9H-Fluoren-9-yl)methyl 2-(1H-indol-3-yl)-1-(3-p-tolyl-1,2,4-oxadiazol-5-yl)ethyl carbamate (4j). Yield: 92%; colorless microcrystals from EtOH-hexanes; mp $169-170{ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{23}=-7.7(c$ 1.3, DMF). ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 2.39(\mathrm{~s}, 3 \mathrm{H}), 3.31-3.55(\mathrm{~m}, 2 \mathrm{H}), 4.18-4.39(\mathrm{~m}, 3 \mathrm{H}), 5.13-$
$5.28(\mathrm{~m}, 1 \mathrm{H}), 6.92-7.0 .5(\mathrm{~m}, 1 \mathrm{H}), 7.05-7.15(\mathrm{~m}, 1 \mathrm{H}), 7.21(\mathrm{~s}, 1 \mathrm{H}), 7.25-7.46(\mathrm{~m}, 7 \mathrm{H}), 7.56-7.72$ $(\mathrm{m}, 3 \mathrm{H}), 7.84-7.96(\mathrm{~m}, 4 \mathrm{H}), 8.44(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 10.92(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{DMSO}-d_{6}\right): \delta$ $21.1,28.3,46.6,49.5,65.8,109.0,111.5,118.1,118.5,120.1,120.4,121.1,123.3,124.1,125.2$, 127.0, 127.6, 129.8, 136.1, 140.7, 141.6, 143.7, 148.2, 155.8, 167.5, 180.0. Anal. Calcd for $\mathrm{C}_{34} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{3}$: C, 75.54 ; H, 5.22; N, 10.36. Found: C, $75.12 ; \mathrm{H}, 5.16 ; \mathrm{N}, 10.30$.
(S)-Benzyl 4-amino-4-oxo-1-(3-p-tolyl-1,2,4-oxadiazol-5-yl)butylcarbamate (4k). Yield: 87 \%; colorless microcrystals from EtOH-hexanes; mp $181-182{ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{23}=-22.4$ (c 1.5, DMF). ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 1.98-2.13(\mathrm{~m}, 1 \mathrm{H}), 2.13-2.31(\mathrm{~m}, 3 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 4.91-5.04(\mathrm{~m}, 1 \mathrm{H})$, $5.09(\mathrm{~s}, 2 \mathrm{H}), 6.87(\mathrm{~s}, 1 \mathrm{H}), 7.20(\mathrm{~s}, 1 \mathrm{H}), 7.38(\mathrm{~s}, 7 \mathrm{H}), 7.89(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 8.27(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): $\delta 21.1,27.7,30.6,48.1,65.8,123.3,127.0,127.8,127.9,128.4$, 129.8, 136.8, 141.6, 156.0, 167.6, 173.1, 180.1. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{4}: \mathrm{C}, 63.95 ; \mathrm{H}, 5.62$; N, 14.20. Found: C, 63.97; H, 5.64; N, 14.19.

Stepwise procedure for $\mathbf{4 c}$ and $\mathbf{4 g}$

A mixture of N-hydroxy-4-methylbenzenecarboximidamide (2a) (1 mmol) and N acylbenzotriazole $\mathbf{1 c}(1 \mathrm{mmol})$ was stirred at room temperature in ethanol (30 mL) for 15 min in the presence of $\mathrm{Et}_{3} \mathrm{~N}(1 \mathrm{mmol})$. The reaction mixture was quenched with water and a white precipitate was filtered and subsequently washed on the filter with aq $5 \% \mathrm{Na}_{2} \mathrm{CO}_{3}(10 \mathrm{~mL})$, water (10 mL), $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O} 50 \%$ mixture ($2 \times 10 \mathrm{~mL}$), and hexanes $(10 \mathrm{~mL})$ to give compound $\mathbf{3 c}$ in 96% yield. Following the above method, $\mathbf{3 g}$ was obtained in 97% yield. Without further purification intermediate $\mathbf{3 a}, \mathbf{g}$ were converted to $\mathbf{4 c}$ and $\mathbf{4 g}$, respectively, by refluxing in ethanol for 5 minutes in the presence of catalytic amount of $\mathrm{Et}_{3} \mathrm{~N}$ and following workup procedure described for preparation of $\mathbf{4 a - k}$.
(S)-Benzyl 1-(amino(p-tolyl)methyleneamino)-3-methyl-1-oxobutan-2-ylcarbamate (3c). Yield: 96%; colorless microcrystals from EtOH; mp $152-153{ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{23}=-3.2$ (c 1.8, DMF). ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 1.12(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) 1.13(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.10-1.15(\mathrm{~m}, 6 \mathrm{H}), 2.28-$ $2.36(\mathrm{~m}, 1 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H}), 4.37(\mathrm{dd}, J=8.9,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{~s}, 2 \mathrm{H}), 7.04(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 7.43-7.50$ $(\mathrm{m}, 5 \mathrm{H}), 7.46(\mathrm{~d}, J=8,1 \mathrm{~Hz}, 2 \mathrm{H}), 7.82(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 8.04(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): $\delta 18.2,19.0,20.9,30.3,59.5,65.6,126.6,127.7,127.8,128.4,128.6,128.9,136.9$, 140.2, 156.4, 156.8, 168.7. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{4}$: C, 65.78 ; H, 6.57; N, 10.96. Found: C, 65.76; H, 6.65; N, 10.98.
(S)-(9H-Fluoren-9-yl)methyl 1-(amino(p-tolyl)methyleneamino)-1-oxo-3-phenylpropan-2ylcarbamate (3g). Yield: 97\%; colorless microcrystals from EtOH; mp 144-145 ${ }^{\circ} \mathrm{C}$, $[\alpha]_{\mathrm{D}}{ }^{23}=-$ 25.9 (c 1.5, DMF). ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 2.36(\mathrm{~s}, 3 \mathrm{H}), 2.88-2.97(\mathrm{~m}, 1 \mathrm{H}), 3.22(\mathrm{dd}, J=13.5$, $4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.12-4.27(\mathrm{~m}, 3 \mathrm{H}), 4.50-4.60(\mathrm{~m}, 1 \mathrm{H}), 6.87$ (br s, 2H), 7.20-7.44 (m, 11H), 7.61$7.69(\mathrm{~m}, 4 \mathrm{H}), 7.88(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.98(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): $\delta 20.9$, $36.8,46.5,55.0,65.8,120.1,125.3,126.5,126.7,127.1,127.6,128.2,128.5,129.0,129.3,137.7$, 140.3, 140.7, 143.7, 156.0, 157.1, 169.3. Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{4}$: C, 73.97; H, 5.63; N, 8.09. Found: C, 73.90; H, 5.58; N, 8.14.

General procedure for 1,2,4-oxadiazoles 6a-c

To a solution of N -hydroxy-4-pyridinecarboximidamide (2b) (1 mmol) and aq $10 \% \mathrm{HCl}$ (1 eq .) in $\mathrm{EtOH}(30 \mathrm{~mL})$, N -acylbenzotriazole 1a,c,e (1 mmol) was added. After a reaction mixture was refluxed for 20 minutes, $\mathrm{Et}_{3} \mathrm{~N}(2 \mathrm{mmol})$ was added and the mixture was refluxed additional 10 minutes. After cooling to a room temperature, EtOH was evaporated under reduced pressure, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ was added to the reaction mixture. The organic solution was consequently washed with aq $5 \% \mathrm{Na}_{2} \mathrm{CO}_{3}(3 \times 30 \mathrm{~mL})$, aq sat. $\mathrm{NH}_{4} \mathrm{Cl}(30 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated under reduced pressure. The residue was subjected to column chromatography to give oxadiazoles 6a-c in $90-93 \%$ yield.
(S)-Benzyl 1-(3-(pyridin-4-yl)-1,2,4-oxadiazol-5-yl)ethylcarbamate (6a). Yield: 91\%; colorless microcrystals from EtOH-hexanes; mp 112-113 ${ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{23}=-50.8\left(c 2.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta 1.65(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 5.15(\mathrm{~s}, 2 \mathrm{H}), 5.23-5.29(\mathrm{~m}, 1 \mathrm{H}), 6.05(\mathrm{~d}, J=7.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.25-7.40(\mathrm{~m}, 5 \mathrm{H}), 7.89(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.75(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta$ 19.9, 44.9, 67.5, 121.4, 128.3, 128.4, 128.7, 134.1, 136.1, 150.7, 155.7, 166.9, 180.9. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{3}$: C, 62.95; H, 4.97; N, 17.27. Found: C, 62.71; H, 5.05; N, 16.52.
(S)-Benzyl 2-methyl-1-(3-(pyridin-4-yl)-1,2,4-oxadiazol-5-yl)propylcarbamate (6b). Yield: 93%; colorless microcrystals from EtOH-hexanes; mp $78-79{ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{23}=-49.6\left(c 2.0, \mathrm{CHCl}_{3}\right)$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.06(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}), 2.35-2.39(\mathrm{~m}, 1 \mathrm{H}), 5.10-5.20(\mathrm{~m}, 3 \mathrm{H}), 5.93(\mathrm{~d}, J=$ $9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.92(\mathrm{~m}, 5 \mathrm{H}), 7.96(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.81(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 18.1,18.8,32.7,54.4,67.6,121.4,128.4,128.5,128.7,134.1,136.1,150.8,156.2$, 166.8, 179.9. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{3}$: C, 64.76; H, 5.72; N, 15.90. Found: C, 64.51; H, 5.69; N, 15.65.
(S)-Benzyl 2-phenyl-1-(3-(pyridin-4-yl)-1,2,4-oxadiazol-5-yl)ethylcarbamate (6c). Yield: 90%; colorless oil, $[\alpha]_{\mathrm{D}}{ }^{23}=-48.3\left(c 1.5, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 3.30-3.34(\mathrm{~m}, 2 \mathrm{H}), 5.11$ (s, 2H), 5.45-5.49 (m, 1H), $5.77(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.05-7.10(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.38(\mathrm{~m}, 8 \mathrm{H}), 7.88$ $(\mathrm{d}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 8.74(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 39.8,50.1,67.5,121.4,127.7$, 128.3, 128.5, 128.7, 129.0, 129.4, 134.0, 134.8, 136.1, 150.8, 155.8, 166.9, 179.6. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{3}$: C, 68.99 ; H, 5.03; N, 13.99. Found: C, 68.73 ; H, 5.16; N, 13.79.

General procedure for 1,2,4-oxadiazole 7a-d

A mixture of N-hydroxy-benzeneethanimidamide (2c) (1 mmol) and N -protected (aminoacyl) benzotriazole 1a,e,h,i $(1 \mathrm{mmol})$ was heated under reflux in ethanol $(30 \mathrm{~mL})$ for 1.5 hours in the presence of $\mathrm{Et}_{3} \mathrm{~N}$ (1 mmol) (In case of Fmoc-protected N -acylbenzotriazole 1i, refluxing time was reduced to 1 hour, and only catalytic amount of $\mathrm{Et}_{3} \mathrm{~N}$ was used to avoid deprotection.). After cooling to room temperature, EtOH was evaporated under reduced pressure and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ was added to the reaction mixture. The organic solution was consequently washed with aq 5% $\mathrm{Na}_{2} \mathrm{CO}_{3}(3 \times 30 \mathrm{~mL})$, aq sat. $\mathrm{NH}_{4} \mathrm{Cl}(30 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated under reduced pressure. The residue was subjected to column chromatography to give oxadiazoles 7a-d in 83$89 \%$ yield.
(S)-Benzyl 1-(3-benzyl-1,2,4-oxadiazol-5-yl)ethylcarbamate (7a). Yield: 87\%; yellowish oil, $[\alpha]_{\mathrm{D}}{ }^{23}=-19.3\left(c 4.4, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.50(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 4.02(\mathrm{~s}, 2 \mathrm{H}), 5.02-$ $5.14(\mathrm{~m}, 3 \mathrm{H}), 5.74(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.33(\mathrm{~m}, 10 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 19.9,32.3$, 44.7, 67.3, 127.2, 128.3, 128.4, 128.6, 128.8, 129.1, 135.3, 136.1, 155.6, 169.5, 179.9. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3}$: C, 67.64; H, 5.68; N, 12.45. Found: C, $67.31 ; \mathrm{H}, 5.91 ; \mathrm{N}, 12.07$.
(S)-Benzyl 1-(3-benzyl-1,2,4-oxadiazol-5-yl)-2-phenylethylcarbamate (7b). Yield: 83\%; colorless microcrystals from EtOH-hexanes; mp $71-72{ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{23}=-19.7$ (c 2.0, $\left.\mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta 3.17-3.22(\mathrm{~m}, 2 \mathrm{H}), 4.02(\mathrm{~s}, 2 \mathrm{H}), 5.07,5.08(\mathrm{AB} \mathrm{q}, J=2.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.35-5.39$ $(\mathrm{m}, 2 \mathrm{H}), 6.93(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.14-7.32(\mathrm{~m}, 13 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 32.3,40.0,50.0$, $67.5,127.3,127.5,128.3,128.4,128.7,128.9,129.1,129.4,134.8,135.4,136.1,155.6,169.5$, 178.5. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{3}$: C, 72.62; H, 5.61; N, 10.16. Found: C, 72.75; H, 5.63; N, 10.20 .
(S)-Benzyl 1-(3-benzyl-1,2,4-oxadiazol-5-yl)-3-(methylthio)propylcarbamate (7c). Yield: 89%; colorless oil, $[\alpha]_{\mathrm{D}}{ }^{23}=-34.7\left(c 1.7, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 2.00-2.23(\mathrm{~m}, 5 \mathrm{H}), 2.44-$ $2.55(\mathrm{~m}, 2 \mathrm{H}), 4.02(\mathrm{~s}, 2 \mathrm{H}), 5.08(\mathrm{~s}, 2 \mathrm{H}), 5.14-5.25(\mathrm{~m}, 1 \mathrm{H}), 5.81(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.38$ $(\mathrm{m}, 10 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 15.4,29.7,32.2,33.0,48.0,67.4,127.2,128.2,128.3,128.6$, 128.7, 129.0, 135.2, 136.2, 155.8, 169.5, 178.8. HRMS m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S} 398.1538$ $\left(\mathrm{M}+\mathrm{H}^{+}\right)$, found 398.1523.
(S)-(9H-Fluoren-9-yl)methyl 1-(3-benzyl-1,2,4-oxadiazol-5-yl)-3-(methylthio)propyl carbamate (7d). Yield: 85%; colorless oil, $[\alpha]_{\mathrm{D}}{ }^{23}=-23.8$ (c 1.5, CHCl_{3}). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 2.12(\mathrm{~s}, 3 \mathrm{H}), 2.14-2.34(\mathrm{~m}, 2 \mathrm{H}), 2.57(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.12(\mathrm{~s}, 2 \mathrm{H}), 4.27(\mathrm{t}, J=$ $6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.30(\mathrm{dd}, J=13.9,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.69(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.28-7.41(\mathrm{~m}, 7 \mathrm{H}), 7.43-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.62-7.68(\mathrm{~m}, 2 \mathrm{H}), 7.82(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 15.5,29.8,32.3,33.1,47.2,48.1,67.3,120.1,125.1,127.2,127.3,127.9,128.8$, 129.1, 135.2, 141.4, 143.7, 143.9, 155.8, 169.6, 178.8. Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 69.25$; H, 5.60; N, 8.65. Found: C, 69.37; H, 5.63; N, 8.58.

General procedure for 1,2,4-oxadiazoles 11a-f

A mixture of N-hydroxy-4-methylbenzenecarboximidamide (2a) (1 mmol) and N acylbenzotriazole 10a-f $(1 \mathrm{mmol})$ was heated under reflux in ethanol $(30 \mathrm{~mL})$ for 10 minutes in the presence of $\mathrm{Et}_{3} \mathrm{~N}(1 \mathrm{mmol})$. The reaction mixture was cooled down to room temperature and quenched with water. Resulting white precipitate was filtered and subsequently washed on the filter with aq $5 \% \mathrm{Na}_{2} \mathrm{CO}_{3}(10 \mathrm{~mL})$, water (10 mL), $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O} 50 \%$ mixture $(2 \times 10 \mathrm{~mL})$, and hexanes (10 mL) to give 1,2,4-oxadiazoles 11a-f in 79-94 yield. Recrystallization from EtOHhexanes, or column chromatography was used for purification.
Benzyl (S)-1-oxo-3-phenyl-1-((S)-1-(3-p-tolyl-1,2,4-oxadiazol-5-yl)ethylamino) propan-2ylcarbamate (11a). Yield: 83%; colorless microcrystals from EtOH-hexanes; mp 141-142 ${ }^{\circ} \mathrm{C}$, $[\alpha]_{\mathrm{D}}{ }^{23}=-16.3\left(c 2.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 1.51(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 3.06$ (d, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.50-4.57(\mathrm{~m}, 1 \mathrm{H}), 5.04(\mathrm{~s}, 2 \mathrm{H}), 5.31-5.42(\mathrm{~m}, 1 \mathrm{H}), 5.65(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $6.93(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.08-7.38(\mathrm{~m}, 12 \mathrm{H}), 7.91(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta$
19.6, 21.7, 38.9, 42.8, 56.4, 67.3, 123.8, 127.2, 127.6, 128.1, 128.4, 128.7, 128.8, 129.4, 129.7, 136.2, 141.8, 156.2, 168.4, 170.8, 178.9. Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{4}$: C, 69.40; H, 5.82; N, 11.56. Found: C, 69.02 ; H, 5.83; N, 11.28.

Benzyl (R)-1-oxo-3-phenyl-1-((S)-1-(3-p-tolyl-1,2,4-oxadiazol-5-yl)ethylamino) propan-2ylcarbamate (11b). Yield: 79\%; colorless microcrystals from EtOH-hexanes; mp 101-102 ${ }^{\circ} \mathrm{C}$, $[\alpha]_{\mathrm{D}}{ }^{23}=-12.1\left(c 2.9, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.40(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 3.02-$ $3.18(\mathrm{~m}, 2 \mathrm{H}), 4.53-4.58(\mathrm{~m}, 1 \mathrm{H}), 5.05(\mathrm{~s}, 2 \mathrm{H}), 5.27-5.39(\mathrm{~m}, 1 \mathrm{H}), 5.62(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.76$ $(\mathrm{d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.14-7.34(\mathrm{~m}, 12 \mathrm{H}), 7.87(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 19.5$, $21.7,38.8,42.8,56.3,67.3,123.8,127.3,127.6,128.2,128.4,128.7,128.9,129.5,129.7,136.2$, 136.4, 141.8, 156.2, 168.4, 170.7, 179.0. Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{4}: \mathrm{C}, 69.40 ; \mathrm{H}, 5.82$; N , 11.56. Found: C, 69.05; H, 5.94; N, 11.43.

Benzyl (S)-1-((S)-2-methyl-1-(3-p-tolyl-1,2,4-oxadiazol-5-yl)propylamino)-1-oxopropan-2ylcarbamate (11c). Yield: 87%; colorless microcrystals from EtOH-hexanes; mp 101-102 ${ }^{\circ} \mathrm{C}$, $[\alpha]_{\mathrm{D}}{ }^{23}=-37.6\left(c 2.3, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 0.99(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 6 \mathrm{H}), 1.46(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, $3 \mathrm{H}), 2.31-2.39(\mathrm{~m}, 1 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 4.41-4.48(\mathrm{~m}, 1 \mathrm{H}), 5.18(\mathrm{~s}, 2 \mathrm{H}), 5.33(\mathrm{dd}, J=8.9,5.9 \mathrm{~Hz}$, $1 \mathrm{H}), 5.53(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.42(\mathrm{~m}, 7 \mathrm{H}), 8.00(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 18.0,18.8,21.7,32.7,50.7,52.3,67.4,123.9,127.6,128.2,128.4$, 128.7, 129.7, 136.3, 141.8, 156.4, 168.4, 172.4, 178.3. Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{4}$: C, 66.04; H, 6.47; N, 12.83. Found: C, 65.81; H, 6.61; N, 12.47.

Benzyl (R)-1-((S)-2-methyl-1-(3-p-tolyl-1,2,4-oxadiazol-5-yl)propylamino)-1-oxopropan-2ylcarbamate (11d). Yield: 85%; colorless microcrystals from EtOH-hexanes; mp 94-95 ${ }^{\circ} \mathrm{C}$, $[\alpha]_{\mathrm{D}}{ }^{23}=-20.6\left(c 3.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.01(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 6 \mathrm{H}), 1.49(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, $3 \mathrm{H}), 2.31-2.39(\mathrm{~m}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 4.42-4.52(\mathrm{~m}, 1 \mathrm{H}), 5.18(\mathrm{~s}, 2 \mathrm{H}), 5.32(\mathrm{dd}, J=8.9,6.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.59(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.40(\mathrm{~m}, 7 \mathrm{H}), 7.97(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 18.1,18.6,18.9,21.7,32.7,50.8,52.2,67.4,123.9,127.6,128.2$, 128.4, 128.7, 129.7, 136.2, 141.8, 156.4, 168.3, 172.5, 178.3. Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{4}$: C, 66.04; H, 6.47; N, 12.83. Found: C, 66.05; H, 6.67; N, 12.51.

Benzyl (S)-1-oxo-1-((S)-2-phenyl-1-(3-p-tolyl-1,2,4-oxadiazol-5-yl)ethylamino) propan-2ylcarbamate (11e). Yield: 91\%; colorless microcrystals from EtOH-hexanes; mp 133-134 ${ }^{\circ} \mathrm{C}$, $[\alpha]_{\mathrm{D}}{ }^{23}=-5.6\left(c 2.5, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 1.41(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}), 3.26-$ $3.44(\mathrm{~m}, 2 \mathrm{H}), 4.28-4.40(\mathrm{~m}, 1 \mathrm{H}), 5.15(\mathrm{AB} \mathrm{q}, J=12.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.31(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.66-$ $5.75(\mathrm{~m}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.09-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.47(\mathrm{~m}, 10 \mathrm{H}), 7.97(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 18.3,21.8,39.6,48.1,50.6,67.4,123.8,127.6,127.7,128.3$, $128.5,128.8,128.9,129.5,129.8,134.3,135.0,141.9,168.4,169.7,172.1,178.0$. Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{4}$: C, $69.40 ; \mathrm{H}, 5.82$; N, 11.56. Found: C, 69.05 ; H, 5.91; N, 11.43.
Benzyl (S)-1-oxo-1-((R)-2-phenyl-1-(3-p-tolyl-1,2,4-oxadiazol-5-yl)ethylamino) propan-2ylcarbamate (11f). Yield: 94\%; colorless microcrystals from EtOH-hexanes; mp 122-123 ${ }^{\circ} \mathrm{C}$, $[\alpha]_{\mathrm{D}}{ }^{23}=21.3\left(c 1.7, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 1.28(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 3.18-$ $3.36(\mathrm{~m}, 2 \mathrm{H}), 4.31(\mathrm{~m}, 1 \mathrm{H}), 5.1(\mathrm{~s}, 2 \mathrm{H}), 5.50(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.64(\mathrm{dd}, J=14.3,7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.08(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.29(\mathrm{~m}, 12 \mathrm{H}), 7.89(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta$
$18.7,21.7,39.5,47.9,50.6,67.3,123.7,126.8,127.5,127.6,128.2,128.4,128.7,128.9,129.5$, 129.7, 135.1, 136.2, 141.9, 168.4, 172.3, 178.1. Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{4}$: C, $69.40 ; \mathrm{H}, 5.82$; N, 11.56. Found: C, 69.11; H, 5.86; N, 11.43.

General procedure for 1,2,4-oxadiazoles 13a-d

A mixture of amidoxime (2a,c) (1 mmol) and N-acylbenzotriazole (12a-c) (1 mmol) was heated under reflux in ethanol (30 mL) for 7 hours in the presence of $\mathrm{Et}_{3} \mathrm{~N}(1 \mathrm{mmol})$. Completion of the reaction was monitored by TLC (AcOEt/hexanes $=1 / 2$). The reaction mixture was cooled down to room temperature and quenched with water. Resulting white precipitate was filtered and subsequently washed on the filter with aq $5 \% \mathrm{Na}_{2} \mathrm{CO}_{3}(10 \mathrm{~mL})$, water (10 mL), $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O} 50 \%$ mixture ($2 \times 10 \mathrm{~mL}$), and hexanes (10 mL) to give oxadiazoles 13a-d in $73-82 \%$ yield.
3-(4-Methylphenyl)-5-phenyl-1,2,4-oxadiazole (13a). Yield: 77\%; colorless microcrystals from EtOH-hexanes; mp 101-102 ${ }^{\circ} \mathrm{C}$ (Lit. $\left.{ }^{15 \mathrm{c}} \mathrm{mp} 105-106{ }^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 2.42(\mathrm{~s}, 3 \mathrm{H}), 7.30$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.50-7.59(\mathrm{~m}, 3 \mathrm{H}), 8.06(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 8.20(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 21.8,124.3,124.6,127.6,128.3,129.2,129.7,132.8,141.7,169.1,175.7$.
5-(4-Methoxyphenyl)-3-(4-methylphenyl)-1,2,4-oxadiazole (13b). Yield: 82\%; colorless microcrystals from EtOH-hexanes; mp 109-110 ${ }^{\circ} \mathrm{C}\left(\mathrm{Lit}^{34}{ }^{34} \mathrm{mp} 110{ }^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 2.41$ (s, 3H), $3.87(\mathrm{~s}, 3 \mathrm{H}), 7.01(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.04(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, $8.14(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 21.8,55.7,114.6,117.1,124.5,127.6,129.7$, 130.2, 141.5, 163.3, 169.0, 175.6.

2-[3-(4-Methylphenyl)-1,2,4-oxadiazol-5-yl]-1H-indole (13c). Yield: 73\%; colorless microcrystals from EtOH-hexanes; mp 149-150 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 2.41(\mathrm{~s}, 3 \mathrm{H}), 7.17-7.21$ $(\mathrm{m}, 1 \mathrm{H}), 7.27-7.46(\mathrm{~m}, 5 \mathrm{H}), 7.72(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 9.22(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 21.8,108.4,112.0,121.5,121.8,122.6,124.0,125.9,127.6,128.1,129.8$, 137.6, 141.9, 168.8, 170.0. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}: \mathrm{C}, 74.17$; H, 4.76; N, 15.26. Found: C, 73.85; H, 4.86; N, 14.96.

3-Benzyl-5-phenyl-1,2,4-oxadiazole (13d). Yield: 74\%; colorless microcrystals from EtOHhexanes; mp 79-80 ${ }^{\circ} \mathrm{C}\left(\mathrm{Lit}^{35} \mathrm{mp} 81-83{ }^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 4.22(\mathrm{~s}, 2 \mathrm{H}), 7.30-7.65(\mathrm{~m}$, $8 \mathrm{H}), 8.15-8.20(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 32.6,124.4,127.2,128.2,128.8,129.1,129.2$, 132.8, 135.7, 170.2, 175.9.

Acknowledgements

We thank Dr. C. Dennis Hall (University of Florida) for reading our manuscript and giving us useful advice.

References

1. (a) Andersen, K. E.; Jørgensen, A. S.; Bræstrup, C. Eur. J. Med. Chem. 1994, 29, 393. (b) Diana, G. D.; Volkots, D. L.; Nitz, T. J.; Bailey, T. R.; Long, M. A.; Vescio, N.; Aldous, S.;

Pevear, D. C.; Dutko, F. J. J. Med. Chem. 1994, 37, 2421. (c) Saunders, J.; Cassidy, M.; Freedman, S. B.; Harley, E. A.; Iversen L. L.; Kneen, C.; MacLeod, A. M.; Merchant, K. J.; Snow, R. J.; Baker, R. J. Med. Chem. 1990, 33, 1128. (d) Jochims, J. C In Comprehensive Heterocyclic Chemistry II; Katritzky, A. R.; Rees, C. W.; Scriven, E. F. V., Eds; Pergamon press: New York, 1996; Vol. 4, p 179.
2. (a) Showell, G. A.; Gibbons, T. L.; Kneen, C. O.; MacLeod, A. M.; Merchant, K.; Saunders, J.; Freedman, S. B.; Patel, S.; Baker, R. J. Med. Chem. 1991, 34, 1086. (b) Messer, W. S. Jr.; Abuh, Y. F.; Liu, Y.; Periyasamy, S.; Ngur, D. O.; Edgar, M. A. N.; El-Assadi, A. A.; Sbeih, S.; Dunbar, P. G.; Roknich, S.; Ryo, T.; Fang, Z.; Ojo, B.; Zhang, H.; Huzl, J. J. III; Nagy, P. I. J. Med. Chem. 1997, 40, 1230. (c) Orlek, B. S.; Blaney, F. E.; Brown, F.; Clark, M. S. G.; Hadley, M. S.; Hatcher, J.; Riley, G. J.; Rosenberg, H. E.; Wadsworth, H. J.; Wyman, P. J. Med. Chem. 1991, 34, 2726. (d) Macor, J. E.; Ordway, T.; Smith, R. L.; Verhoest, P. R.; Mack, R. A. J. Org. Chem. 1996, 61, 3228.
3. (a) Watjen, F.; Baker, R.; Engelstoff, M.; Herbert, R.; MacLeod, A.; Knight, A.; Merchant, K.; Moseley, J.; Saunders, J.; Swain, C. J.; Wang, E.; Springer, J. P. J. Med. Chem. 1989, 32, 2282. (b) Tully, W. R.; Gardner, C. R.; Gillespie, R. J.; Westwood, R. J. Med. Chem. 1991, 34, 2060.
4. Chen, C.-Y.; Senanayake, C. H.; Bill, T. J.; Larsen, R. D.; Verhoeven, T. R.; Reider, P. J. J. Org. Chem. 1994, 59, 3738.
5. Swain, C. J.; Baker, R.; Kneen, C.; Moseley, J.; Saunders, J.; Seward, E. M.; Stevenson, G.; Beer, M.; Stanton, J.; Watling, K. J. Med. Chem. 1991, 34, 140.
6. Clitherow, J. W.; Beswick, P.; Irving, W. J.; Scopes, D. I. C.; Barnes, J. C.; Clapham, J.; Brown, J. D.; Evans, D. J.; Hayes, A. G. Bioorg. Med. Chem. Lett. 1996, 6, 833.
7. Ankersen, M.; Peschke, B.; Hansen, B. S.; Hansen, T. K. Bioorg. Med. Chem. Lett. 1997, 7, 1293.
8. Nicolaides, D. N.; Fylaktakidou, K. C.; Litinas K. E.; Hadjipavlou-Litina, D. Eur. J. Med. Chem. 1998, 33, 715.
9. Chimirri, A.; Grasso, S.; Montforte, A.-M.; Rao, A.; Zappala, M. Farmaco 1996, 51, 125.
10. (a) Buchanan, J. L.; Vu, C. B.; Merry, T. J.; Corpuz, E. G.; Pradeepan, S. G.; Mani, U. N.; Yang, M.; Plake, H. R.; Varkhedkar, V. M.; Lynch, B. A.; MacNeil, I. A.; Loiacono, K. A.; Tiong, C. L.; Holt, D. A. Bioorg. Med. Chem. Lett. 1999, 9, 2359. (b) Vu, C. B.; Corpuz, E. G.; Merry, T. J.; Pradeepan, S. G.; Bartlett, C.; Bohacek, R. S.; Botfield, M. C.; Eyermann, C. J.; Lynch, B. A.; MacNeil, I. A.; Ram, M. K.; van Schravendijk, M. R.; Violette, S.; Sawyer, T. K. J. Med. Chem. 1999, 42, 4088.
11. Matsumoto, J.; Takahashi, T.; Agata, M.; Toyofuku, H.; Sasada, N. Japanese Journal of Pharmacology 1994, 65, 51.
12. Ohmoto, K.; Yamamoto, T.; Horiuchi, T.; Imanishi, H.; Odagaki, Y.; Kawabata, K.; Sekioka, T.; Hirota, Y.; Matsuoka, S.; Nakai, H.; Toda, M. J. Med. Chem. 2000, 43, 4927.
13. Rudolph, J.; Theis, H.; Hanke, R.; Endermann, R.; Johannsen, L.; Geschke, F.-U. J. Med. Chem. 2001, 44, 619.
14. Carroll, F. I.; Gray, J. L.; Abraham, P.; Kuzemko, M. A.; Lewin, A. H.; Boja, J. W.; Kuhar, M. J. J. Med. Chem. 1993, 36, 2886.
15. (a) Rice, K. D.; Nuss, J. M. Bioorg. Med. Chem. Lett. 2001, 11, 753. (b) Chiou, S.; Shine, H. J. J. Heterocycl. Chem. 1989, 26, 125. (c) Meyer, E.; Joussef, A. C.; Gallardo, H. Synthesis 2003, 6, 899.
16. Sams, C. K.; Lau, J. Tetrahedron Lett. 1999, 40, 9359.
17. (a) Liang, G.-B.; Feng, D. D. Tetrahedron Lett. 1996, 37, 6627. (b) Borg, S.; EstenneBouhtou, G.; Luthman, K.; Csöregh, I.; Hesselink, W.; Hacksell, U. J. Org. Chem. 1995, 60, 3112. (c) Borg, S.; Vollinga, R. C.; Labarre, M.; Payza, K.; Terenius, L.; Luthman, K. J. Med. Chem. 1999, 42, 4331.
18. Braga, A. L.; Lüdtke, D. S.; Alberto, E. E.; Dornelles, L.; Filho, W. A. S.; Corbellini, V. A.; Rosa, D. M.; Schwab, R. S. Synthesis 2004, 10, 1589.
19. (a) Hébert, N.; Hannah, A. L.; Sutton, S. C. Tetrahedron Lett. 1999, 40, 8547. (b) Hamzé, A.; Hernandez, J.-F.; Martinez, J. Tetrahedron Lett. 2003, 44, 6079. (c) Hamzé, A.; Hernandez, J.-F.; Fulcrand, P.; Martinez, J. J. Org. Chem. 2003, 68, 7316.
20. (a) Poulain, R. F.; Tartar, A. L.; Déprez, B. P. Tetrahedron Lett. 2001, 42, 1495. (b) Evans, M. D.; Ring, J.; Schoen, A.; Bell, A.; Edwards, P.; Berthelot, D.; Nicewonger, R.; Baldino, C. M. Tetrahedron Lett. 2003, 44, 9337.
21. Deegan, T. L.; Nitz, T. J.; Cebzanov, D.; Pufko, D. E.; Porco, J. A. Jr. Bioorg. Med. Chem. Lett. 1999, 9, 209.
22. Young, J. R.; DeVita, R. J. Tetrahedron Lett. 1998, 39, 3931.
23. Srivastava, R. M.; de Almeida Lima, A.; Viana, O. S.; da Costa Silva, M. J.; Catanho, M. T. J. A.; de Morais, J. O. F. Bioorg. Med. Chem. 2003, 11, 1821.
24. Katritzky, A. R.; Suzuki, K.; Singh, S. K. ARKIVOC 2004, (i), 12.
25. Katritzky, A. R.; Wang, M.; Yang, H.; Zhang, S.; Akhmedov, N. G. ARKIVOC 2002, (viii), 134.
26. (a) Katritzky, A. R.; Shestopalov, A. A.; Suzuki, K. Synthesis 2004, 1806. (b) Katritzky, A. R.; Suzuki, K.; Singh, S. K. Synthesis 2004, 2645. (c) Katritzky, A. R.; Hoffmann, S.; Suzuki, K. ARKIVOC 2004, (vii), 14.
27. Katritzky, A. R.; Angrish, P.; Hür, D.; Suzuki, K. Synthesis 2004, in press.
28. Katritzky, A. R.; Angrish, P.; Suzuki, K. in preparation.
29. Katritzky, A. R.; Zhang, Y.; Singh S. K. Synthesis 2003, 2795.
30. Katritzky, A. R.; Jiang, R.; Suzuki, K. in preparation.
31. Ried, W.; Schoen, M. Chem. Ber. 1965, 98, 3142.
32. Bedford, C. D.; Howd, R. A.; Dailey, O. D.; Miller, A.; Nolen, H. W. III; Kenley, R. A.; Kern, J. R.; Winterle, J. S. J. Med. Chem. 1986, 29, 2174.
33. Dost, J.; Leisner, R. Z. Chem. 1975, 15, 57.
34. Berger, H.; Siegrist, A. E. Helv. Chim. Acta 1979, 62, 1411.
35. Buscemi, S.; Cicero, M. G.; Vivona, N.; Caronna, T. J. Heterocycl. Chem. 1988, 25, 931.

