Towards the synthesis of pyloricidins: synthesis of ($2 S, 3 R, 4 R, 5 S$)-5-(tert-butyloxycarbonyl)amino-2,3,4,6-tetrahydroxyhexanoyl- β-D-phenylalanine methyl ester

S. Chandrasekhar,* B. Nagendra Babu, N. Ramakrishna Reddy, and L. Chandraiah
Organic Chemistry Division I, Indian Institute of Chemical Technology, Hyderabad 500 007, India
E-mail: srivaric@iict.res.in
Dedicated to Professor S. Swaminathan on his 80 ${ }^{\text {th }}$ birthday
(received 20 Aug 04; accepted 28 Oct 04; published on the web 04 Nov 04)

Abstract

Highly practical and efficient synthesis of ($2 S, 3 R, 4 R, 5 S$)-5-(tert-butyloxycarbonyl)amino-2,3,4,6-tetrahydroxyhexanoyl- β-D-phenylalanine methyl ester was achieved using easily available Garner aldehyde and phenylglycine, which is an advanced intermediate for the synthesis of pyloricidins.

Keywords: Amino acids, antibiotic, dihydroxylation, homologation, debenzylation

Introduction

The pyloricidins 1, isolated ${ }^{1}$ from soil samples of Bacillus sp. HC-70 and Bacillus sp. HC-72, have shown exceptional anti-Helicobacter pylori antibiotic properties. ${ }^{2}$ Helicobacter pylori, a gram-negative bacterium, infection of this is the major causative factor of a number of gastric and duodenal pathologies. Several classes of compounds have been identified as anti-H. Pylori agents. Incomplete eradication of H. pylori has been achieved with some anti-microbial agents such as amoxicillin and clarithromycin due to their degradation by gastric acid. Efforts have been directed to develop or isolate new series of compounds having antibiotic properties, which can totally eradicate this bacteria. ${ }^{3}$ Naturally, the pyloricidin class of molecules have attracted attention of synthetic and medicinal chemistry groups. The first synthesis of pyloricidin $\mathbf{1}$ has recently been achieved by Hasuoka et al., using chiron approach starting from D-galactosamine hydrochloride. ${ }^{4}$

As a part of our continued interest in developing simple and elegant strategies for the synthesis of bioactive natural and unnatural products, ${ }^{5}$ especially combining chiron approach with asymmetric synthesis, herein, we disclose the full findings on the N - and C - terminal
protected ($2 S, 3 R, 4 R, 5 S$)-5-amino-2,3,4,6-tetrahydroxyhexanoyl phenylalanine, which constitutes the key backbone of pyloricidins. This synthesis was taken up as part of designing new hybrid analogues of peptide bioactives. The easily available L-phenylglycine $\mathbf{1 3}$ and Garner aldehyde $\mathbf{6}$ were effectively transformed to the target compound 2 involving very straightforward transformations.

Results and Discussion

In formulating the synthetic plan for 2, we envisioned an amide bond formation between the acid 4 and amine 5, followed by deprotection of acetonide and benzyl groups allowing the synthesis of target compound 2 (scheme 1).

Scheme 1

Synthesis of acid 4 started from readily available Garner aldehyde 6. ${ }^{6}$ Grignard reaction of Garner aldehyde 6 with vinylmagnesium bromide in tetrahydrofuran at $-78^{\circ} \mathrm{C}$ gave the allyl alcohols 8 and 7 with 1:6 syn-anti selectivity. ${ }^{7}$ The two diastereomers were separated by silica gel column chromatography. The ratio of the isomers was determined based on the weight of products isolated. Inversion of hydroxy group in alcohol 7 under Mitsunobu conditions ${ }^{8}$ using triphenylphosphine/diethyl azodicarboxylate and 4-nitrobenzoic acid in THF at $0{ }^{\circ} \mathrm{C}$ to room temperature and followed by hydrolysis of nitro benzoate with $\mathrm{K}_{2} \mathrm{CO}_{3}$ in MeOH produced the syn alcohol 8 in 30% yield for two steps. The spectral data (optical rotation and ${ }^{1} \mathrm{H}$ NMR) of compound 8 and minor diastereomer obtaind during vinylation of Garner aldehyde were
comparable confirming the inversion of hydroxy group. Allylic hydroxy group of compound $\mathbf{8}$ was protected as benzyl ether using NaH and benzyl bromide in THF. Dihydroxylation of olefin 9 using OsO_{4} and NMO in acetone: $\mathrm{H}_{2} \mathrm{O}(8: 2)$ afforded the diol 10. After periodate oxidation of diol 10, the resultant aldehyde was treated with (carboethoxymethylene)triphenylphosphorane in benzene to afford the unsaturated ester 11. Ester $\mathbf{1 1}$ was dihydroxylated using OsO_{4} and NMO in acetone:water (8:2) to furnish the diol 12 with $13: 1$ diastereomeric ratio. ${ }^{9}$ This ratio was determined using hypersil OD reverse phase column and MeOH: water / 70: 30 as eluents at 254 nm.

Hydrolysis of the diol 12 using LiOH. $\mathrm{H}_{2} \mathrm{O}$ gave the dihydroxy acid 4 (Scheme 2).

a) Vinylmagnesium bromide, THF, $-30^{\circ} \mathrm{C}$; b) i. 4-nitrobenzoic acid, DEAD,TPP,THF; ii. $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}$; c) $\mathrm{NaH}, \mathrm{BnBr}, \mathrm{THF}$; d) OsO_{4}, NMO, acetone:water (8:2); e) i. NaIO_{4}, THF:water(8:2); ii. C_{2} - Wittig f) OsO_{4}, NMO , acetone:water(8:2); g) $\mathrm{LiOH} . \mathrm{H}_{2} \mathrm{O}$, THF.

Scheme 2

β-Phenylalanine methyl ester 5 was prepared from phenylglycine 13. ${ }^{10}$ Homologation of N Boc protected phenyl glycine with ethyl chloroformate, triethylamine, $\mathrm{CH}_{2} \mathrm{~N}_{2}$ and silverbenzoate in MeOH followed by deprotection of Boc group with trifluoroacetic acid in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and subsequent basification with $\mathrm{Na}_{2} \mathrm{CO}_{3}$ gave the β-phenylalanine methyl ester 5. Amide bond between acid 4 and amine 5 using dicyclohexyl carbodiimide, hydroxy benzotriazole in methylenechloride furnished the amide 3 in 60% yield. Deprotection of acetonide group under acidic conditions $(80 \% \mathrm{AcOH})$ gave the triol 15. Finally, debenzylation of the triol 15 yielded the target compound 2 (scheme 3).

a) i. $\mathrm{NaHCO}_{3},(\mathrm{Boc})_{2} \mathrm{O}$, dioxane:water; ii. ethyl chloroformate, TEA; iii) $\mathrm{CH}_{2} \mathbf{N}_{2}$, ether; iv) MeOH , Ag^{+}; b) TFA, DCM, $\mathrm{Na}_{2} \mathrm{CO}_{3}$; c) DCC, HOBt, DCM; d) $\mathbf{6 0 \%} \mathrm{AcOH}$; e) $\mathrm{H}_{2}-\mathrm{Pd} / \mathrm{C}$.

Scheme 3

Conclusions

An efficient synthesis of ($2 S, 3 R, 4 R, 5 S$)-5-(tert-butyloxycarbonyl)amino-2,3,4,6-tetrahydroxyhexanoyl- β-D-phenylalanine methyl ester 2 is described from easily available building blocks ($\mathbf{6}$ and 13). This is a common precursor for the synthesis of all the pyloricidins. This synthesis allows one to prepare various peptide analogs of the target compound for designing robust antibiotics.

Experimental Section

General Procedures. Optical rotations were measured with a JASCO DIP-360 Polarimeter at $26{ }^{\circ} \mathrm{C}$ and IR spectra were recorded with a Perkin Elmer FTIR spectrophotometer. ${ }^{1} \mathrm{H}$ NMR spectra were carried out using a Varian Gemini 200, Varian Unity 400 and Bruker Avance 300 MHz spectrophotometer using TMS as an internal standard in CDCl_{3}. Mass spectra were recorded on Micro mass VG-7070H for EI and VG Autospec M for FABMS mass spectrometers. The progress of all the reactions was monitored by thin-layer chromatography (TLC) using glass plates precoated with silica gel $60 \mathrm{~F}_{254}$ to a thickness of 0.25 mm (Merck). Column chromatography was conducted by elution of columns with silica gel $60-120$ mesh using ethyl acetate and hexane as eluents.

tert-Butyl-4-(1-hydroxy-(1R)-2-propenyl)-2,2-dimethyl-(4S)-1,3-oxazolane-3-carboxylate

 (7). To a $-78{ }^{\circ} \mathrm{C}$ solution of Garner aldehyde $6(5 \mathrm{~g}, 0.021 \mathrm{~mol})$ in dry THF (100 mL) under N_{2} was added vinylmagnesium bromide [prepared from vinyl bromide ($6.94 \mathrm{~g}, 0.065 \mathrm{~mol}$) and magnesium ($1.57 \mathrm{~g}, 0.065 \mathrm{~mol}$) in dry THF] over a 30 min period. The solution was stirred for 2 h at $-78{ }^{\circ} \mathrm{C}$ when the TLC in hexane : ethylacetate (2:1) showed the clean formation of the product. The solution was warmed to $0{ }^{\circ} \mathrm{C}$ and partitioned between 60 mL of saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution and 2 X 300 mL of $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with 100 mL of brine, dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo and crude residue was chromatographed on silica gel using hexane:ethyl acetate (8:1) as an eluent to give $6: 1$ mixture of alcohols 7 and 8 as colorless oil. Alcohols $7(4 \mathrm{~g}, 71 \%)$ and $8(0.67 \mathrm{~g}, 12 \%)$ were further separated by column chromatography on silica gel using ethyl acetate: hexane (1:16) as an eluent (The column chromatography was performing on a glass column of length 50 cm and diameter 28 mm with gravity). $[\alpha]_{\mathrm{D}}{ }^{25}=-54.8^{\circ}(\mathrm{c}=2.1 \mathrm{in} \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$ of 7: δ 5.93-5.72 (m, 1H), 5.42-5.15 (m, 2H), 4.30-3.80 (m, 5H (including OH)), $1.53(\mathrm{~s}, 3 \mathrm{H}), 1.51(\mathrm{~s}$, 3H), 1.45 (s, 9H); IR (KBr): 3453, 2979, 1699, 1457, 1258, $993 \mathrm{~cm}^{-1}$; FABMS: m/z 258 (M+1); Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{NO}_{4}$: C, 60.68; H, 9.01; N, 5.44 Found: C, 60.12; H, 9.15; N, 5.72.tert-Butyl-4-(1-hydroxy-(1S)-2-propenyl)-2,2-dimethyl-(4S)-1,3-oxazolane-3-carboxylate (8). To an ice cooled solution of alcohol $7(4 \mathrm{~g}, 0.015 \mathrm{~mol})$ in THF (120 mL) were successively added 4-nitrobenzoic acid ($5.2 \mathrm{~g}, 0.031 \mathrm{~mol}$), triphenylphosphine ($8.34 \mathrm{~g}, 0.031 \mathrm{~mol}$) then drop wise diethyl azodicarboxylate ($5.4 \mathrm{~g}, 0.031 \mathrm{~mol}$). The reaction was stirred for 15 min at $0^{\circ} \mathrm{C}$ and 90 min at room temperature. After concentration in vacuo, the residue was chromatographed on silica gel (hexane : ethyl acetate $85: 15$) to furnish the nitro benzoate ($4.5 \mathrm{~g}, 71 \%$) as a viscus compound. To a solution of nitro benzoate ($4.5 \mathrm{~g}, 0.011 \mathrm{~mol}$) in $\mathrm{MeOH}(60 \mathrm{~mL})$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}(3.1 \mathrm{~g}, 0.022 \mathrm{~mol})$, after stirring the reaction mixture for 2 h at room temperature, the reaction mixture was filtered then evaporated. The residue chromatographed on silica gel column using hexane:ethyl acetate ($70: 30$) gave syn-alcohol 8 ($2.56 \mathrm{~g}, 90 \%$, over all yield 64%). $[\alpha]_{\mathrm{D}}{ }^{25}=-32.4^{\circ}(\mathrm{c}=2.2 \mathrm{in} \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta 5.90-5.70(\mathrm{~m}, 1 \mathrm{H}), 5.36$ and $5.15(\mathrm{~s}, 1 \mathrm{H}), 5.22$ and $5.17(\mathrm{~s}, 1 \mathrm{H}), 4.25(\mathrm{bs}, 1 \mathrm{H},-\mathrm{OH}), 4.18-3.80(\mathrm{~m}, 4 \mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H}), 1.52(\mathrm{~s}$, 3H), 1.45 (s, 9H); FABMS: m/z 258 (M+1).
tert-Butyl-4-(1-benzyloxy-(1S)-2-propenyl)-2,2-dimethyl-(4S)-1,3-oxazolane-3-carboxylate (9). To a solution of $\mathrm{NaH}(0.22 \mathrm{~g}, 0.009 \mathrm{~mol})$ in dry THF (30 mL) was added alcohol $8(2 \mathrm{~g}$, 0.007 mol) at $0{ }^{\circ} \mathrm{C}$ under inert atmosphere. After stirring the reaction for 10 min at $0{ }^{\circ} \mathrm{C}$, benzyl bromide ($1.45 \mathrm{~g}, 0.0085 \mathrm{~mol}$) was added and stirred for 4 h . The reaction mixture was quenched with ice and extracted with ethyl acetate ($2 \times 30 \mathrm{~mL}$). Solvent was removed under vaccuo, crude compound was purified by silica gel column chromatography using hexane:ethyl acetate to give benzyl ether $9(2.4 \mathrm{~g}, 90 \%$ yield $) .[\alpha]_{\mathrm{D}}{ }^{25}=-69.65^{\circ}(\mathrm{c}=2.4$ in MeOH$) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $200 \mathrm{MHz}): \delta 7.30-7.10(\mathrm{~m}, 5 \mathrm{H}), 5.90-5.65(\mathrm{~m}, 1 \mathrm{H}), 5.35-5.16(\mathrm{~m}, 2 \mathrm{H}), 4.58(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.32(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.10-3.90(\mathrm{~m}, 2 \mathrm{H}), 3.88-3.75(\mathrm{~m}, 2 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H}), 1.5-1.35(\mathrm{~m}, 12 \mathrm{H})$; IR (KBr): 3053, 2985, 1680, 1400, 1210, $723 \mathrm{~cm}^{-1}$; FABMS: m/z 347 (M); Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{NO}_{4}$: C, 69.14; H, 8.41; N, 4.03 Found : C, 69.08; H, 8.51; N, 4.32.
tert-Butyl-4-[1-benzyloxy-3-ethyloxycarbonyl-(1S,2E)-2-propenyl]-2,2-dimethyl-(4S)-1,3-oxazolane-3-carboxylate (11). N-Methylmorpholine N-oxide ($1.4 \mathrm{~g}, 0.012 \mathrm{~mol}$) and the olefin 9 $(2.2 \mathrm{~g}, 0.006 \mathrm{~mol})$ were dissolved in 30 mL of acetone:water ($8: 1$). OsO_{4} (0.02 M in Toluene, 0.4 mL) was added, and the solution was stirred for 12 h at room temperature. After cooling over an ice bath, the reaction was quenched by the addition of 15 mL of saturated NaHSO_{3}. Most of the acetone was removed by rotary evaporation, and the aqueous mixture was extracted three times with ethyl acetate $(3 \times 40 \mathrm{~mL})$. Removed the solvent under reduced pressure and the compound was purified by silica gel column chromatography using hexane: ethyl acetate as an eluent gave the diol $\mathbf{1 0}(2.2 \mathrm{~g}, 91 \%)$. Sodium periodate ($1.84 \mathrm{~g}, 0.008 \mathrm{~mol}$) was added to a stirred solution of diol $\mathbf{1 0}(2.2 \mathrm{~g}, 0.005 \mathrm{~mol})$ in 80% aq THF at $0{ }^{\circ} \mathrm{C}$. After 2 h the reaction mixture was filtered and washed with ether $(3 \times 30 \mathrm{~mL})$. The filtrate was washed with water, brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated the solvent to give aldehyde ($1.8 \mathrm{~g}, 90 \%$), which was used for the next reaction. The aldehyde $(1.8 \mathrm{~g}, 0.005 \mathrm{~mol})$ was dissolved in benzene $(50 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ and (carboethoxymethylene)-triphenylphosphorane ($2.3 \mathrm{~g}, 0.006 \mathrm{~mol}$) was added portion wise under nitrogen atmosphere. The reaction mixture was allowed to stir at room temperature for 4 h and benzene was evaporated under reduced pressure and purification by column chromatography gave conjugated ester 11 ($2 \mathrm{~g}, 83 \%$, over all yield 68%). $[\alpha]_{\mathrm{D}}{ }^{25}=-51.34^{\circ}(\mathrm{c}=1.1$ in MeOH$) ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta 7.30-7.20(\mathrm{~m}, 5 \mathrm{H}), 6.85(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.93(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.60(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.40-4.30(\mathrm{~m}, 1 \mathrm{H}), 4.2(\mathrm{q}, J=7.6$ and $14.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.05-3.80(\mathrm{~m}, 4 \mathrm{H})$, $1.55(\mathrm{~s}, 3 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H}), 1.30(\mathrm{t}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H})$; FABMS: m/z $421(\mathrm{M}+2)$; Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{33} \mathrm{NO}_{6}$: C, 65.85; H, 7.93; N, 3.34 Found : C, 65.94 ; H, 7.99; N, 3.22.
tert-Butyl-4-[1-benzyloxy-3-ethyloxycarbonyl-2,3-dihydroxy-(1R,2R)-propyl]-2,2-dimethyl-(4S)-1,3-oxazolane-3-carboxylate (12). N-Methylmorpholine N-oxide ($0.83 \mathrm{~g}, 0.007 \mathrm{~mol}$) and the olefin $11(2 \mathrm{~g}, 0.0047 \mathrm{~mol})$ were dissolved in 30 mL of acetone:water (8:1). $\mathrm{OsO}_{4}(0.02 \mathrm{M}$ in Toluene, 0.1 mL) was added, and the solution was stirred for 10 h at room temperature. After cooling over an ice bath, the reaction was quenched by the addition of 4 mL of saturated NaHSO_{3}. Most of the acetone was removed by rotary evaporation, and the aqueous mixture was extracted three times with ethyl acetate $(3 \times 10 \mathrm{~mL})$. The organic layer was washed with water, brine, dried over anhydrous sodium sulphate and concentrated under reduced pressure. Crude residue was chromatographed to afford 13:1 [determined by HPLC using hypersil OD column ($250 \times 4.6 \mathrm{~mm}$), MeOH: water / 70: $30, \mathrm{t}_{\mathrm{R}}=11.4$ (major), $\mathrm{t}_{\mathrm{R}}=13.7$ (minor)] mixture of diols in favour of diol $12(1.6 \mathrm{~g}, 74 \%) .[\alpha]_{\mathrm{D}}{ }^{25}=-52.7^{\circ}(\mathrm{c}=1.2$ in MeOH$) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$: $\delta 7.35-7.20(\mathrm{~m}, 5 \mathrm{H}), 4.72(\mathrm{brs}, 1 \mathrm{H}), 4.62(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.40-4.20(\mathrm{~m}, 5 \mathrm{H}), 4.1(\mathrm{q}, J=4.0$ and $9.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.08-3.98(\mathrm{~m}, 1 \mathrm{H}), 3.65(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.60-1.42(\mathrm{~m}$, $15 \mathrm{H}), 1.30(\mathrm{t}, J=6.40 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 174, 138, 124, 123.5, 94, 81, 75, 73, $71,63,62,58,29,26,25$, and 14; FABMS: m/z 354 (M-Boc).
Methyl-(3S)-amino-3-phenyl-propanoate (5). To a stirred solution of compound 14 (1 g, 0.0035 mol) in 5 mL of 50% trifluoroacetic acid in dichloromethane at $0{ }^{\circ} \mathrm{C}$ under inert atmosphere. Stirred the reaction mixture for 1 h and concentrated under reduced pressure. Basify the reaction mixture by adding excess of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in dichloromethane (40 mL), filter the reaction
mixture and the filtrate was concentrated under reduced pressure gave the amine 5 , which was used further without purification. Crude amine gave the satisfactory ${ }^{1} \mathrm{H}$ NMR data. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta 7.34-7.20(\mathrm{~m}, 5 \mathrm{H}), 4.40(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{~d}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H})$.
tert-Butyl-4-[1-benzyloxy-2,3-dihydroxy-3-[2-methyloxycarbonyl-1-phenyl-(1S)-ethylcarb amoyl]-(1R,2R)-propyl]-2,2-dimethyl-(4S)-1,3-oxazolane-3-carboxylate (3). A mixture of ethyl ester $12(1 \mathrm{~g}, 0.002 \mathrm{~mol})$ and LiOH. $\mathrm{H}_{2} \mathrm{O}(0.092 \mathrm{~g}, 0.002 \mathrm{~mol})$ in THF : $\mathrm{H}_{2} \mathrm{O}(8: 2,10 \mathrm{~mL})$ was stirred at room temperature for 2 h . Solvent was removed under vaccuo, residue was acidified with aq. sodium bisulphite and extracted with ethyl acetate ($2 \times 10 \mathrm{~mL}$). Organic layer was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to furnish acid (0.87 g , 90%) 4, which was used further without any purification. To a stirred mixture of acid $4(0.6 \mathrm{~g}$, $0.001 \mathrm{~mol})$, amine $5(0.25 \mathrm{~g}, 0.001 \mathrm{~mol})$ and $\mathrm{HOBt}(0.25 \mathrm{~g}, 0.0018 \mathrm{~mol})$ in dry DCM (10 mL) was added DCC $(0.38 \mathrm{~g}, 0.0018 \mathrm{~mol})$ at $0{ }^{\circ} \mathrm{C}$ under inert atmosphere. After being stirred at this temperature for 1 h , the reaction mixture was warmed to room temperature and stirred for 12 h then filtered the reaction mixture and washed with DCM (2 X 15 mL). The filtrate was washed with 5% citric acid, saturated aq. sodium bicarbonate, brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude compound was purified by silica gel column chromatography yielded $(0.49 \mathrm{~g}, 60 \%)$ the amide 3. $[\alpha]_{\mathrm{D}}{ }^{25}=-1.7^{\circ}(\mathrm{c}=1.2$ in MeOH$) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta$ $7.62(\mathrm{bs}, 1 \mathrm{H}), 7.36-7.22(\mathrm{~m}, 10 \mathrm{H}), 5.35(\mathrm{bs}, 1 \mathrm{H}), 4.70-4.55(\mathrm{~m}, 3 \mathrm{H}), 4.30-4.16(\mathrm{~m}, 3 \mathrm{H}), 4.10-$ $3.90(\mathrm{~m}, 4 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{bs}, 2 \mathrm{H}), 1.50(\mathrm{~m}, 12 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , CDCl_{3}): $172,171.5,154,140,138,129,128,128.5,127.5,126,94,82,80,74,72.5,71.5,64$, $58,52,49.5,40.5,28.5,27,24.5$; IR (KBr): 3343, 2979, 1699, $1657,1539 \mathrm{~cm}^{-1} ;$ HRMS (FAB) Calcd for $\mathrm{C}_{31} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{9}\left(\mathrm{M}^{+}+1\right) 587.2968$ Found : 587.2964.
(2S,3R,4R,5S)-5-(tert-Butyloxycarbonyl)-amino-4-benzyloxy-2,3,6-trihydroxyhexanoyl- β-Dphenyl alanine methyl ester (15). A solution of amide $3(0.1 \mathrm{~g}, 0.0002)$ in 4 mL of $80 \% \mathrm{aq}$. acetic acid was stirred at room temperature for 6 h . The reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$, diluted with chloroform (10 mL) and neutralized with saturated sodium bicarbonate solution in small portions. The organic layer was separated and aqueous layer extracted with chloroform $(2 \times 10 \mathrm{~mL})$. The combined organic extracts were washed with water and brine. After drying over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under vaccuo and crude residue was purified by silicagel column chromatography to give ester $15(0.055 \mathrm{~g}, 60 \%) .[\alpha]_{\mathrm{D}}{ }^{25}=26.19^{\circ}$ (c $=1 \mathrm{in}$ $\mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta 7.65(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.20(\mathrm{~m}, 10 \mathrm{H}), 5.50-5.30$ $(\mathrm{m}, 2 \mathrm{H}), 4.65(\mathrm{~s}, 2 \mathrm{H}), 4.45(\mathrm{bs}, 1 \mathrm{H}), 4.30-4.15(\mathrm{~m}, 2 \mathrm{H}), 4.12-3.70(\mathrm{~m}, 3 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 2.80(\mathrm{~d}$, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), $1.62(\mathrm{bs}, 2 \mathrm{H},-\mathrm{OH}), 1.40(\mathrm{~s}, 9 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 174.8, 173.6, $157.4,142,138.6,130,129.5,129.2,128.5,128,127.4,84.2,82.2,75,73.8,82.4,62.5,54,53$, 50, 42, 29); IR (KBr): 3443, 2950, 1680, 1640,1239 cm ${ }^{-1}$; HRMS (FAB) Calcd for $\mathrm{C}_{28} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{9}$ $\left(\mathrm{M}^{+}\right) 547.2655$ Found : 547.2659.
($2 S, 3 R, 4 R, 5 S$)-5-(tert-Butyloxycarbonyl)-amino-2,3,4,6-tetrahydroxyhexanoyl- $\boldsymbol{\beta}$-D-phenyl alanine methyl ester (2). A suspension of $\mathrm{Pd}(\mathrm{OH})_{2}$ in dry methanol $(5 \mathrm{~mL})$ was added triol 15 $(55 \mathrm{mg}, 0.1 \mathrm{mmol})$ and stirred under hydrogen atmosphere for 3 h . The reaction mixture was
filtered through a pad of celite (to remove the catalyst) washed with methanol and filtrate was concentrated under reduced pressure to give the tetrol 2 in $87 \%(0.04 \mathrm{~g})$ yield. $[\alpha]_{\mathrm{D}}{ }^{25}=36.5^{\circ}$ (c $=1$ in MeOH); ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta 7.85(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.45(\mathrm{~m}, 5 \mathrm{H}), 5.65$ (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.43(\mathrm{q}, J=7.6$ and $15.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{~m}, 1 \mathrm{H}), 4.80(\mathrm{t}, J=11.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.44-$ $4.35(\mathrm{~m}, 1 \mathrm{H}), 4.05-3.70(\mathrm{~m}, 4 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 2.86(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.80(\mathrm{bs}, 2 \mathrm{H},-\mathrm{OH}), 1.45$ (s, 9H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 173.5, 172, 157.5, 140, 129, 128, 126, 81, 74.5, 72, 71.5, $61.5,54,53,50,45.5,28.5$; IR (KBr): 3400, 2979, 1710, 1680, $1450 \mathrm{~cm}^{-1}$; HRMS (FAB) Calcd for $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{9}\left(\mathrm{M}^{+}+1\right) 457.2186$ Found : 457.2179.

Acknowledgements

B.N.B, N.R.K and L.C thank CSIR and S.C thanks DST for funding the project.

References

IICT communication no. 040812.

1. Nagano, Y.; Ikedo, K.; Fujishima, A.; Izawa, M.; Tsubotani, S.; Nishimura, O.; Fujino, M. J. Antibiot. 2001, 54, 934.
2. Nakao, M.; Miyagawa, K.; Nakano, Y.; Shakane, T.; Tada, M.; Nishimura, O.; Fujino, M. J. Antibiot. 2001, 54, 926.
3. Muri, E. M. F.; Williamson, J. S. Mini Rev. Med. Chem. 2004, 4, 201.
4. (a) Hasuoka, A.; Nishikimi, Y.; Nakayama, Y.; Kamiyama, K.; Nakao, M.; Miyagawa, K.; Nishimura, O.; Fujino, M. J. Antibiot. 2002, 55, 191. (b) Hasuoka, A.; Nishikimi, Y.; Nakayama, Y.; Kamiyama, K.; Nakao, M.; Miyagawa, K.; Nishimura, O.; Fujino, M. J. Antibiot. 2002, 55, 322. (c) Hasuoka, A.; Nishikimi, Y.; Nakayama, Y.; Kamiyama, K.; Nakao, M.; Miyagawa, K.; Nishimura, O.; Fujino, M. J. Antibiot. 2002, 55, 499.
5. (a) Chandrasekhar, S.; Reddy, M. V. Tetrahedron 2000, 56, 1111. (b) Chandrasekhar, S.; Reddy, C. R. Tetrahedron Asymmetry 2002, 13, 261. (c) Chandrasekhar, S.; Jagadeshwar, V.; Narsihmulu, Ch.; Sarangapani, M.; Krishna, D.; Vidyasagar, J.; Dolly vijay; Shastry, G. N. Bioorg. Med. Chem. Lett. 2004, 687.
6. Garner, P.; Park, J. M. J. Org. Chem. 1987, 52, 2361.
7. (a) Garner, P.; Park, J. M. J. Org. Chem. 1988, 53, 2979. (b) Coleman, R. S.; Carpenter, A. J. Tetrahedron Lett. 1992, 33, 1697.
8. Jean-Philippe Surivet, J. P.; Vatèle, J. M. Tetrahedron 1999, 55, 13011.
9. Cha, J. K.; Kim, N. -S. Chem. Rev. 1995, 95, 1761.
10. Podlech, J.; Seebach, D. Liebigs Ann. 1995, 1217.
