The synthesis of new N^3 -aryl- N^1 -(2-phenylquinazolin-4-yl)thioureas

Walid Fathalla and Pavel Pazdera *

Department of Organic Chemistry, Faculty of Science, Masaryk University, Brno E-mail: <u>pazdera@chemi.muni.cz</u>

Abstract

Domino-reactions between N^2 -(2-cyanophenyl)- N^l -thioxomethylidenebenzene-1-carboximidamide and aryl amines leading to the N^3 -aryl- N^l -(2-phenylquinazolin-4-yl)thioureas are described. FTIR, ¹H NMR, ¹³C NMR, mass spectroscopy and X-ray structural analysis made identity of the synthesized compounds.

Keywords: Thioureas, domino-reactions, aryl amines, spectral analysis

Introduction

Our recent work provides a convenient method for the preparation of several quinazoline derivatives bearing a thiourea functional group at position $C4^{1,2}$. This functional group have a respectable evaluation in the eye of heterocyclic chemists since it could be used as a building block of a number of heterocycles such as pyrimidines, pyrazoles, oxathioles, thiazoles, etc.

The demand for novel active compounds led to the synthesis of analogues compounds containing the quinazoline ring system.

Results and Discussion

We have prepared the N^3 -R- N^1 -(2-phenylquinazolin-4-yl)thioureas and N^3 , N^3 -di-R- N^1 -(2-phenyl-3,4-dihydroquinazolin-4-yliden)thioureas by the domino-reaction of amines to N^2 -(2-cyanophenyl)- N^1 -thioxo-methylidenebenzene-1-carboximidamide **1**.

This carboximidamide was easily prepared from N^{l} -(2-cyanophenyl)benzamide, which was further transformed to N^{1} -(2-cyanophenyl)benzene-1-carboximidoyl chloride and finally to N^{2} -(2-cyanophenyl)- N^{l} -thioxo-methylidenebenzene-1-carboximidamide by the reaction with PCl₅ and KSCN, respectively. The reaction of N^{2} -(2-cyanophenyl)- N^{l} -thioxo-methylidenebenzene-1carboximidamide **1** with anilines gave the intermediary thiourea derivative **2** that underwent a spontaneous intramolecular cycloaddition reaction at the cyano group to afford the quinazolinyl thiourea **3** like the intermediates and finally Dimroth rearrangement product to give the N^3 -aryl- N^1 -(2-phenylquinazolin-4yl)thioureas **4**².

The reaction was extended to involve further aryl substituents as shown in Table 1. The structures of the synthesized compounds were confirmed by the comparison between the ¹H and ¹³C NMR spectra of the prepared compounds with the spectrum of the aniline derivative **4a**. The X-ray structural analysis and the computational results of **4a** indicate among others hydrogen bond interaction between arylamino N-H...N3 of quinazoline ring with a bond distance about 1.86 Å and 1.94 Å, respectively.

However, this hydrogen bond interaction was identified once again from the ¹H NMR spectra of compounds **4**, measurement into $CDCl_3$ or DMSO, giving a chemical shifts ranging from 13.99–14.26 ppm. The ¹H NMR spectra also show chemical shift ranging from 8.91–8.96 ppm for the quinazolinyl-4-amine N-H group of **4**.

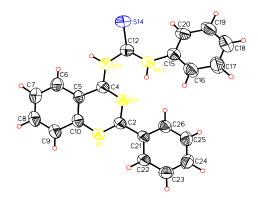
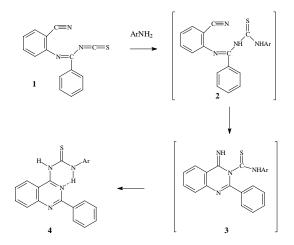



Figure 1. The ORTEP diagram of 4a.

Scheme 1. The reaction pathway for the 4 compounds formation.

 13 C NMR spectra gave good agreement with the proposed structures **4**. It gave a chemical shift at 178.62–180.85 corresponding to C=S group. The measured 13 C and 1 H NMR spectra were correlated with those obtained by simulation. The IR spectra was our last tool for the confirmation of the arylamino N-H...N3 of quinazoline ring hydrogen bond giving an absorption band at 3205–3374 cm⁻¹ referring to vNH band. Additional spectral data used for compounds **4** are represented at Tables 2 and 3.

4	Ar	4	Ar	4	Ar
a		d	но	g	Cl
b	I	e	CH ₃ -C	h	
c	Br	- f	N=N-N=N-	i	

Table 1. The aryl substituent representations of 4

Compd.	Formula	M.p., °C	Calculated / found				
	(M.wt.)	Yield, %	% C	% H	% N	% S	others
4a	$C_{21}H_{16}N_4S$	165-166	70.76	4.52	15.72	8.99	
	(356.44)	43%	70.58	4.52	15.64	8.83	
4 b	$C_{21}H_{15}IN_4S$	186-187	52.29	3.13	11.62	6.65	26.31 % I
	(482.34)	46%	52.12	2.98	11.45	6.59	26.28 % I
4 c	$C_{21}H_{15}BrN_4S$	175-176	57.94	3.47	12.87	7.36	18.35 % Br
	(435.34)	49%	57.78	3.41	12.67	7.25	18.24 % Br
4d	$C_{21}H_{16}N_4OS$	220-221	67.72	4.33	15.04	8.61	
	(372.44)	53%	67.57	4.24	14.86	8.59	
4 e	$C_{23}H_{18}N_4OS$	169-170	69.33	4.55	14.06	8.05	
	(398.48)	48%	69.29	4.43	14.01	7.88	
4 f	$C_{27}H_{22}N_6S$	200-201	70.41	4.38	18.25	6.96	
	(460.55)	39%	70.38	4.37	18.11	6.76	
4 g	$C_{21}H_{14}Cl_2N_4S$	182-183	59.30	3.32	13.17	7.54	16.67 % Cl
	(435.33)	73%	59.28	3.26	13.08	7.35	16.55 % Cl
4h	$C_{25}H_{18}N_4S$	168-169	73.87	4.46	13.78	7.89	
	(406.50)	45%	73.83	4.46	13.77	7.84	
4 i	$C_{25}H_{18}N_4S$	179-180	73.87	4.46	13.78	7.89	
	(406.50)	66%	73.74	4.38	13.61	7.80	

	¹ HNMR (δ, ppm)				¹³ CNMR			I.R		
	CHAr	N(11)	N(13)	others	C=S	C(2)	others	NH	C=N	others
4a	8.35-7.29	8.93	14.26		178.62	158.57		3436	1617	
	(14H)	(1H)	(1H)					3418		
4b	8.30-7.53	8.94	14.36		178.59	155.95		3350	1618	
	(13H)	(1H)	(1H)					3215		
4 c	8.33-7.56	8.95	14.39		179.43	159.64		3328	1621	
	(13H)	(1H)	(1H)					3246		
4d	8.39-7.43	8.91	14.43		178.74	157.32		3387	1617	1138 C-O
	(13H)	(1H)	(1H)					3250		
4e	8.31-7.56	8.96	14.62	2.65	178.32	158.74	27.8	3335	1621	1672 C=O
	(13H)	(1H)	(1H)	(3H)	169.72	C=O		3205		
4f	8.36-7.47	8.96	14.57		178.32	158.53		3424	1619	
	(18H)	(1H)	(1H)					3285		
4g	8.36-7.37	9.09	13.99		180.85	156.98		3348	1621	
	(12H)	(1H)	(1H)					3270		
4h	8.28-7.29	9.16	14.27		180.79	156.24		3429	1619	
	(19H)	(1H)	(1H)					3250		
4i	8.72-7.63				179.30	156.98		3429	1618	
	(19H)							3374		

Table 3. Spectral^a data of prepared compounds 4

 $^{\rm a}$ All the NMR samples were measured in CDCl_3 except for compound 4i was measured in CF_3COOD

Experimental Section

General Procedures. Melting points of all the compounds were measured on a Boetius Rapido PHMK 79/2106 (Wägetechnik) instrument. TLC was carried out on Silufol UV 254 plates (Kavalier, Votice). TLC detected by Fluotes universal (Quarzlampen, Hanau) and iodine vapors. Purity of compounds **4a-i** was proved by the elemental analysis on an (Erba) instrument 1102. Eluent used was the mixture of acetone/benzene 20: 80. FTIR spectra were taken on a spectrometer Genesis (Unicam) in potassium bromide pellets. ¹H, ¹³C NMR spectra were measured on a Bruker Avance DRX-500 spectrometer at 25 °C and CDCl₃ for compounds **4a-h** or CF₃COOD for compound **4i** were used. Tetramethylsilane was applied as an internal standard. The measured NMR spectra were correlated with those obtained by simulation (Advanced Chemistry Development, Inc., Toronto, Canada).

 N^{l} -(2-Cyanophenyl)benzamide, N^{l} -(2-cyanophenyl)benzene-1-carboximidoyl chloride and N^{2} -(2-cyanophenyl)- N^{l} -thioxo-methylidenebenzene-1-carboximidamide were prepared as reported^{1,2}.

 N^3 -Aryl- N^1 -(2-phenylquinazolin-4yl)thioureas 4. General method. To the solution of N^2 -(2cyanophenyl)- N^1 -thioxo-methylidenebenzene-1-carboximidamide in acetone, the corresponding equimolar amount of aniline was added portion wise while stirring at room temperature over a period of 1h. The reaction mixture was then stirred for 24h. The precipitated quinazoline 4 was filtered off and crystallized from ethyl alcohol. Spectral data are given Tables 2 and 3.

Acknowledgements

This work was supported by the grants of the Ministry of Education of the Czech Republic (Grant No. CEZ: J07/98: 143100011) and the Grant Agency of the Czech Republic (Grant No. 203/01/1333). We would like to thank analytical department of Pliva-Lachema Co., Brno, Czech Republic for elemental analysis.

References

- 1. Fathalla, W.; Cajan, M.; Marek, J.; Pazdera, P. Molecules 2001, 6, 588.
- 2. Fathalla, W.; Cajan, M.; Marek, J.; Pazdera, P. Molecules 2001, 6, 574.