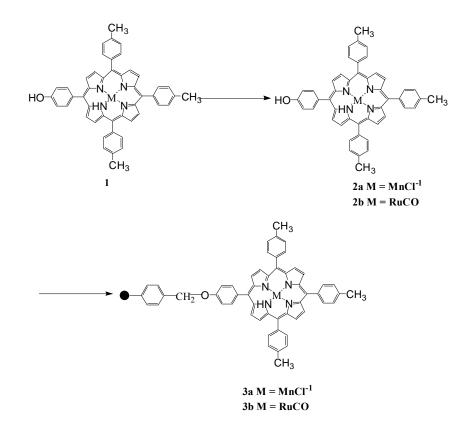
Aziridination and amidation catalyzed by polymer-supported metalloporphyrins with PhI(OAc)2 and TsNH2

Zhi-Wang Zhou, Yuan-Cong Zhao, Yang Yue, Jiang Wu,* Meng Yang, and Xiao-Qi Yu*

Department of Chemistry, Key Laboratory of Green Chemistry and Technology (Ministry of Education), Sichuan University, Chengdu 610064, P. R. China E-mail: <u>schemorg@mail.sc.cninfo.net</u> (X.-Q. Yu) (received 04 Nov 04; accepted 29 Jan 05; published on the web 10 Feb 05)

Abstract

Manganese and ruthenium 5, 10, 15-tris(tolyl)-20-(4-hydroxyphenyl)porphyrins covalently attached to Merrifield's peptide resin(MPR) were prepared respectively. The catalysts efficiently catalyzed the aziridination/amidation of simple hydrocarbons and Δ^5 -steroid derivatives with PhI(OAc)₂ and TsNH₂. Moderate to excellent yields were obtained under mild reaction conditions. The catalysts **3a** and **3b** exhibit different diasteroselectivities towards the Δ^5 -steroid derivatives, the former shows α -selectivity and the later shows β -selectivity under certain reaction conditions.


Keywords: Aziridination, amidation, Δ^5 -steroid derivatives, polymer-supported porphyrins

Introduction

Metal-mediated aziridination/amidation of hydrocarbons offers useful means for the synthesis of aziridines, amides and amines.¹ Metalloporphyrin catalysts as their special high selectivity and catalyst turnover number attract considerable interest in recent years.² However, the expensive price of these catalysts hinders their application. In the early 1980s, aziridination of alkenes and amidation of saturated C-H bonds catalyzed by a simple metalloporphyrin with (N-(p-tolylsulfonyl)imino) phenyliodinane (PhINTs) were firstly reported by Mansuy³ and Breslow⁴ respectively. Since then, a number of nonchiral^{2f, 5} and chiral metalloporphyrin^{2a, 2e, 2i, 6} catalysts have been developed and some progress has been made. In fact, most of the studies focused on the corresponding catalytic efficiency, or the promising application of these catalytic systems.^{2a, 2b, 2e, 2i}

We found that ruthenium⁷ and manganese porphyrins⁸ attached to Merrifield's peptide resin (MPR) show high diastereoselectivity and high stability in epoxidation of glycal and 5-cholest-ene derivatives. Our interest in aziridination/amination reactions has prompted us to survey their efficiency in these reactions. Previous works focused on the aziridination of alkenes and amidation of C-H bond of alkanes with PhINTs catalyzed by various simple

metalloporphyrins. In this paper the results indicated that these polymer-supported porphyrins are also high efficient catalysts for the same aziridination or amidation with PhI(OAc)₂ and TsNH₂. This method for aziridination/amination of hydrocarbons is very convenient and inexpensive.

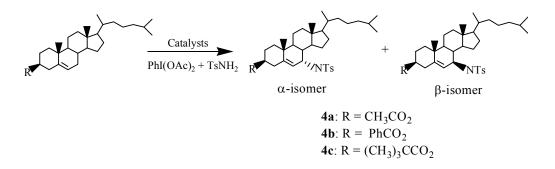
Scheme 1. Metalloporphyrins covalently immobilized onto Merrifield peptide resin.

Results and Discussion

Aziridination/amidation of hydrocarbons catalyzed by polymer-supported metalloporphyrins 3a and 3b

Polymer-supported aziridination/amidation catalysts are less developed previously. Che and coworkers reported the aziridination of hydrocarbons by porphyrin catalyst attached onto polyethylene glycol (PEG) in 76%-88% aziridine yields.⁹ Herein, the aziridination/amidation of hydrocarbons with PhI(OAc)₂ and TsNH₂ catalyzed by MPR-supported porphyrins were firstly reported. All reactions were carried out in a sealed flask under nitrogen atmosphere with dichloromethane as solvent. The results were summarized in **Table 1**. The yields of aziridination/amidation products range from 20% to 85% with substrate conversions of 12%-53% as shown in **Table 1**. The main product in the aziridination of cyclohexene was the allylic N-tosylamides (entry 2).

Entry	Substrate	Product	Catalyst	Conversion [%]	Yields [%] ^[b]
1		NTs	3 a	53	20
2			3 b	44	28
3	\bigcap	NHTs 	3 a	33	75 ^[c]
4			3 b	27	65 ^[c]
5	CO ₂ CH ₃	TsN	3 a	30	44
6		CO ₂ CH ₃	3 b	26	32
7	CH ₂ OH	NTs CH ₂ OH	3 a	35	52
8			3b	25	65
9		Ts	3 a	20	15
10			3b	12	45
11	\sim	NTs	3 a	38	68
12			3b	32	72
13	CN	TsN	3 a	41	63
14		CN	3 b	26	85
15	O ₂ N	O ₂ N	3 a	43	32
16			3 b	35	26
17		NHTs 	3 a	33	25
18			3b	24	28
19		NHTs 	3 a	33	38
20			3b	23	45


Table 1. Aziridination/amidation of hydrocarbons with "PhI(OAc)₂+ TsNH₂" catalyzed by 3a and $3b^{[a]}$

^[a] Reaction conditions: CH₂Cl₂, 40 °C, 6h; **3a** : substrate : PhI(OAc)₂ : TsNH₂ (molar ratio) = 1 : 2500 : 3150 : 3750; **3b** : substrate : PhI(OAc)₂ : TsNH₂ (molar ratio) = 1 : 3000 : 3750 : 4500. ^[b]Yields of isolated product based on the substrate used. ^[c]The aziridination product has also been detected.¹⁰

Amidation of Δ^5 -steroids derivatives catalyzed by 3a and 3b

Amino steroids show a noteworthy biological activity. However the catalytic synthesis of this

substance remains sparse. Dodd and Dauban¹¹ demonstrated the copper-catalyzed aziridination of 1-pregnene-3, 20-dione in 53% yield with PhI=NSes (Ses = 2-(trimethylsilyl) ethanesulfonyl). Breslow¹² reported the amidation of equilenin acetate with PhI=NTs catalyzed by [Mn (TPFPP) Cl] (TPFPP = meso-tetrakis (pentafluorophenyl)porphyrinato dianion) in 47% yield. Che recently reported the amidation of chlosteryl acetate catalyzed by a chiral Ru(II)-salen complex¹³ and a chiral Mn porphyrin²ⁱ with high diasteroselectivities. Herein, we studied the amidation of Δ^5 -steroids derivatives catalyzed by MPR-supported porphyrins with commercially available reagents PhI(OAc)₂ and TsNH₂. We found two catalysts show moderate diastereoselectivity in the amidation (**Table 2**). It demonstrated that **3a** is β -selective (entries 1, 3 and 5) and **3b** is α -selectivity (entries 2, 4 and 6) at 40 °C for 6h. The stereoselectivity together with the amide selectivity was investigated according to previously literature.^{2i, 13}

Scheme 2. Amidation of Δ^5 -steriod derivatives with "PhI(OAc)₂ + TsNH₂ " catalyzed by polymer-supported metalloporphyrins **3a** and **3b**.

Table 2. The results of catalytic amidation of Δ^5 -steroid derivatives with "PhI(OAc) ₂ + TsNH ₂ "
by polymer-supported metalloporphyrins 3a and 3b

Entry	Catalyst	Product ^[a]	Conversion [%]	Yield [%] ^[b]	Ratio of $\alpha/\beta^{[c]}$
1	3 a	4 a	28	40	1:1.6
2	3 b	4 a	42	69	1.5:1
3	3a	4 b	26	53	1:1:2
4	3 b	4 b	35	56	1.4:1
5	3a	4 c	32	43	1:1.8
6	3 b	4 c	46	62	2.2:1

^[a] Reaction conditions: 40 °C, 6h; **3a** : Substrate : PhI(OAc)₂ : TsNH₂ (molar ratio) = 1 : 2500 : 3150 : 3750; **3b**: Substrate: PhI (OAc)₂ : TsNH₂ (molar ratio) = 1 : 3000 : 3750 : 4500 . ^[b]Yields of isolated product based on the amount of substrate consumed. ^[c] Determined by ¹H NMR spectroscopy according to literature method.¹⁵

Experimental Section

General Procedures. Merrifield's peptide resin (Aldrich, 2% cross-linked, 200-400 mesh, 2mmol Cl/g), Mn(OAc)₂·4H₂O, PhI(OAc)₂ (Acros), TsNH₂ (Aldrich) and Ru₃(CO)₁₂ (Strem) were used as received. All alkenes of the highest quality available from commercial were purified as literature.^{2d} The Δ^5 -steroid derivatives were commercially available from Sigma and Aldrich. All reaction solvents were AR grade and distilled before use according to standard procedures. 5, 10, 15-Tris (4-tolyl)-20-(4-hydroxyphenyl) porphyrin (1) was synthesized as reported procedures.¹⁴ **2a, 2b, 3a** and **3b** were synthesized according to our previous reports.^{7, 8}

¹H NMR spectra were measured on Varian INOVA-400 spectrometer (400 MHz) by using tetramethylsilane (TMS) as an internal standard. UV-Vis spectra were measureed on a Shimadzu UV-240 spectrophotometer. The metal contents were determined on a Thermo Elemental IRIS-Adv ICP spectrometer. Elemental analyses were performed by using a Carlo-Elba 1106 elemental analytical instrument.

5,10,15-Tris(4-tolyl)-20-(4-hydroxyphenyl)porphyrin (1). Yield 14.3%; blue purple crystal, mp>300 °C; IR(KBr, cm⁻¹): 3420, 3310, 3019, 2908, 2846, 1607, 1508, 1471; UV(CHCl₃, nm) λ_{max} 416.5 (Soret), 517.5, 553.5, 591.5, 648.0; Anal. Calcd. for C₄₇H₃₆N₄O: C, 83.93; H, 5.36; N, 7.96. Found: C, 83.32; H, 5.16; N, 7.93.

Manganese 5,10,15-tris(4-tolyl)-20-(4-hydroxyphenyl)porphyrin chloride (2a). Yield 86%, red purple crystal, mp>300 . UV(CHCl₃, nm): λ_{max} 480 (Soret).

Ruthenium 5,10,15-tris(4-tolyl)-20-(4-hydroxyphenyl)porphyrin carbonyl (2b). Yield, 83%, mp>300 °C. UV(CHCl₃, nm): λ_{max} 418 (Soret), 530. IR(KBr, cm⁻¹): 1941(CO); FAB-MS: m/z 800(M⁺), 772([M⁺-CO]).

Polymer-supported manganese porphyrin (3a). Green solid, Mn content: 0.13 mmol/g. **Polymer-supported ruthenium porphyrin (3b).** Red solid, Ru content: 0.083 mmol/g.

General procedure for aziridination/amidation of simple hydrocarbons with "PhI(OAc)₂+ TsNH₂" catalyzed by complex 3a and 3b

To a well stirred suspension of molecular sieves (4Å, 50 mg) in dry dichloromethane (4mL) containing catalyst **3a** (Mn: 1.0×10^{-4} mmol) or **3b** (Ru: 0.83×10^{-4} mmol) at room temperature, the substrate (0.25 mmol) was added by means of a syringe. After 10 min, TsNH₂ (0.37 mmol) and PhI(OAc)₂ (0.31 mmol) were added quickly and the mixture were stirred at 40 °C for 6h. The solution was then filtered and the products were purified by column chromatography on silica gel with n-hexane/ethyl acetate (6/1, v/v) as eluent. The products were analyzed by GC-MS and their ¹H NMR spectra were consistent with the known structures.^{2f, 15}

General procedure for amidation of Δ^5 -steroids derivatives with "PhI(OAc) $_2$ + TsNH $_2$ " catalyzed by catalyst 3a and 3b

In the same manner as described above, Δ^5 -steriod derivatives were converted into the amidation

products. The ratios of α/β -isomers were determined by the ¹H NMR spectra of α/β -isomers mixture as in literature.^{2i, 15}

Acknowledgements

This work was financially supported from the National Natural Science Foundation of China (Nos.20272039, 20328203) and the Grant from Education Ministry of China for Returnee.

References

- (a) Kohmura, Y.; Katasuki, T. *Tetrahedron Lett.* 2001, *42*, 3339. (b) Evans, D. A.; Woerpel K. A.; Hinman, M. M.; Faul, M. M. J. Am. Chem. Soc. 1991, *113*, 726. (c) Tanner, D.; Johansson, F.; Andersson, P. G. *Tetrahedron* 1998, *54*, 15731. (d) Muller, P.; Baud, C.; Jacquier, Y. *Tetrahedron* 1996, *52*, 1543. (e) Harm, A. M.; Knight, J. G.; Stemp, G. *Tetrahedron Lett.* 1996, *37*, 6189. (f) Cho, D.-J.; Jeon, S.-J.; Kim, H.-S.; Cho, C.-S.; Shim, S.-C.; Kim, T.-J. *Tetrahedron* 1999, *55*, 12929. (h) Nishikori, H.; Katasuki, T. *Tetrahedron Lett.* 1996, *37*, 9245. (i) Albone, D. P.; Aujla, P. S.; Taylor, P. C. J. Org. Chem. 1998, *63*, 9569. (j) Au, S.-M.; Huang, J.-S.; Che, C.-M.; Yu, W.-Y. J. Org. Chem. 2000, *65*, 7858. (k) Huang, J.-S.; Yuan, S.-X.; Chan, P. W. H.; Che, C.-M. *Tetrahedron Lett.* 2003, *342*, 301. (m) Llewellyn, D. B.; Adamson, D.; Arndtsen, B. A. Org. Lett. 2000, *2*, 4165. (l) Ho, C.-M.; Lau, T.-C.; Kwong, H.-L.; Wong, W.-T. J. Chem. Soc., Dalton. Trans. 1999, 2411. (m) Taylor, S.; Gullick, J.; McMorn, P.; Bethell, D. P.; Page, C. B.; Hancock, F. E.; King, F.; Hutchings, G. J. J. Chem. Soc., Perkin Trans. 2 2001, 1724.
- (a) Lai, T.-S.; Kwong, H.-L.; Che, C.-M.; Peng, S.-M. J. Chem. Soc., Chem. Commun. 1997, 2373. (b) Au, S.-M.; Fung, W.-H.; Cheng, M.-C.; Che, C.-M.; Peng, S.-M. J. Chem. Soc., Chem. Commun. 1997, 1655. (c) Au, S.-M.; Zhang, S.-B.; Fung, W.-H.; Yu, W.-Y.; Che, C.-M.; Cheung, K.-K. J. Chem. Soc., Chem. Commun. 1998, 2677. (d) Au, S.-M.; Huang, J.-S.; Yu, W.-Y.; Fung, W.-H.; Che, C.-M. J. Am. Chem. Soc. 1999, 121, 9120. (e) Zhou, X.-G.; Yu, X.-Q.; Huang, J.-S.; Che, C.-M. J. Chem. Soc., Chem. Commun. 1999, 2377. (f) Yu, X.-Q.; Huang, J.-S.; Zhou, X.-G.; Che, C.-M. Org. Lett. 2000, 2, 2233. (g) Brandt, P.; Sodergren, M. J.; Andersson, P. G.; Norrby, P. O. J. Am. Chem. Soc. 2000, 122, 8013. (h) Au, S.-M.; Huang, J.-S.; Che, C.-M.; Yu, W.-Y. J. Org. Chem. 2000, 65, 7858. (i) Liang, J.-L.; Huang, J.-S.; Yu, X.-Q.; Zhu, N.-Y.; Che, C.-M. Chem. Eur. J. 2002, 8, 1563.
- 3. Mansuy, D.; Mahy, J. P.; Dureault, A.; Bedi, G.; Battioni, P. J. Chem. Soc., Chem. Commun. 1984, 1161.

- 4. Breslow, R.; Gellman, S. H. J. Chem. Soc., Chem. Commun. 1982, 1400.
- (a) Mahy, J. P.; Battioni, P.; Mansuy, D. J. Am. Chem. Soc. 1986, 108, 1079. (b) Mahy, J. P.; Bedi, G.; Battioni, P.; Mansuy, D. Tetrahedron Lett. 1988, 29, 1927. (c) Mahy, J. P.; Bedi, G.; Battioni, P.; Mansuy, D. New J. Chem. 1989, 13, 651. (d) Yang, J.; Weinberg, R.; Breslow, R. Chem. Commun. 2000, 531.
- 6. Simonato, J. P.; Pecaut, J.; Scheidt, W. R.; Marchon, J. C. J. Chem. Soc., Chem. Commun. 1999, 989.
- 7. Yu, X.-Q.; Huang, J.-S.; Yu, W.-Y.; Che, C.-M. J. Am. Chem. Soc. 2000, 122, 5337.
- 8. Du, C.-P.; Li, Z.-K.; Wen, X.-M.; Wu, J.; Yu, X.-Q.; Yang, M.; Xie, R.-G. J. Mol. Catal. A: Chem. 2004, 216, 7.
- 9. Zhang, J.-L.; Che, C.-M. Org. Lett. 2002, 4, 1911.
- 10. Evans, D. A.; Faul, M. M.; Bilodeau, M. T. J. Am. Chem. Soc. 1994, 116, 2742.
- 11. (a) Chenna, P. H. D.; Dauban, P.; Ghini, A.; Baggio, R.; Garland, M. T.; Burton, G.; Dodd, R. H. *Tetrahedron* 2003, *59*, 1009. (b) Chenna, P. H. D.; Dauban, P.; Ghini, A.; Burton, G.; Dodd, R. H. *Tetrahedron Lett.* 2000, *41*, 7041.
- 12. Yang, J.; Weinberg, R.; Breslow, R. J. Chem. Soc., Chem. Commun. 2000, 531.
- 13. Liang, J.-L.; Yu, X.-Q.; Che, C.-M. J. Chem. Soc., Chem. Commun. 2002, 124.
- 14. Little, R. G.; Anton, J. A.; Loach, P. A.; Ibers, J. A. J. Heterocycl. Chem. 1975, 12, 343.
- 15. Li, M.; Zhao, Y.-C.; Sun, L.; Cheng, H.; Yu, X.-Q.; Xie, R.-G. Chin. J. Org. Chem. 2004, 24, 1559.