4-[10-(Methoxybenzyl)-9-anthryl]phenol derivatives as new antitubercular agents ${ }^{\#}$

Gautam Panda, ${ }^{a}$ Jitendra Kumar Mishra, ${ }^{a}$ Sudhir Sinha, ${ }^{b}$ Anil K. Gaikwad, ${ }^{b}$ Anil K. Srivastava, ${ }^{c}$ Ranjana Srivastava, ${ }^{c}$ and Brahm S. Srivastava ${ }^{c}$
${ }^{a}$ Medicinal \& Process Chemistry Division,
${ }^{b}$ Drug Target Discovery and Development Division, ${ }^{c}$ Microbiology Division, Central Drug Research Institute, Lucknow-226001, UP, India
E-mail: gautam_panda@lycos.com; bapi.rm@yahoo.com; bapi@rocketmail.com
Dedicated to Dr. Nitya Anand on the occasion of his $80^{\text {th }}$ birthday
(received 02 Sep 04; accepted 11 Jan 05; published on the web 18 Jan 05)

Abstract

A series of 4-[10-(methoxybenzyl)-9-anthryl]phenyloxyalkylamine derivatives was prepared by aminoalkylation of 4-[10-(methoxybenzyl)-9-anthryl]phenols obtained by Friedel-Crafts reaction of 9-anthryl(methoxyphenyl)methanols. The title compounds were teated against Mycobacterium tuberculosis $\mathrm{H}_{37} \mathrm{R}_{\mathrm{v}}$ and showed antitubercular activity in the range of $12.5-25 \mu \mathrm{~g} / \mathrm{mL}$.

Keywords: 9-Anthryl(methoxyphenyl)methanols, aminopropan-2-ols, Friedel-Crafts reaction, antitubercular agents

Introduction

Tuberculosis (TB) is a growing global health problem because of lack of proper therapeutic agents for its remedy. ${ }^{1}$ There is another serious and alarming problem due to the resurgence of TB especially for the synergy with global human immunodeficiency virus (HIV) and the emergence of multi-drug-resistant (MDR) strains. ${ }^{2}$ Thus, there is an urgent need for developing new anti-tubercular drugs which will effectively kill MDR strains, less toxic, shortened duration of therapy, rapid mycobactericidal mechanism of action in the intracellular environment.

Halogen derivatives of benzo[h]chromene and benzo[a]anthracenes are known for antitumor, antimicrobial and other biological activities. ${ }^{3}$ Benzophenone derivatives also possess antimycobacterial activity. ${ }^{3}$ In our recent paper, ${ }^{4}$ we have described that diaryloxymethanophenanthrenes with basic amino substituents could serve as a lead for antitubercular agents. With this knowledge at hand, we became interested in methoxybenzyl- and hydroxyphenyl-substituted
anthracene derivatives carrying a basic amino side chain and in studying the effect on the growth of M. tuberculosis. These compounds are sufficiently hydrophobic, a requirement for good antitubercular activity. Thus, we chose N-[2-[4-[10-(methoxybenzyl)-9-anthryl]phenoxy]alkyl)amines $\mathbf{8}$ as targets for developing antitubercular agents. The synthesis and biological evaluation of a series of compounds of the structural prototype $\mathbf{8}$ is the subject of this paper.

Retrosynthetic analysis of N-[2-[4-[10-(methoxybenzyl)-9-anthryl]phenoxy]alkyl)amines 8 requires $4-[10-(m e t h o x y b e n z y l)-9-$ anthryl]phenols 5 as precursors obtainable by Friedel-Crafts alkylation of 9 -anthryl(methoxyphenyl)methanols $4,{ }^{5}$ which in turn, can be synthesized by the addition of bromoanisole-derived Grignard reagents 2 to anthracene-9-carbaldehyde 3 (Scheme $1)$.

Scheme 1. Retrosynthesis of target compounds 8.

Results and Discussion

Chemistry

The reaction of Grignard reagents 2a-c derived from bromoanisoles 1a-c with anthracene-9carbaldehyde 3 furnished 9-anthryl(methoxyphenyl)methanols 4a-c in 60-75\% yield (Scheme 2). Subsequent Friedel-Crafts alkylation of 9-anthryl(methoxyphenyl)methanols $\mathbf{4 a}-\mathbf{c}$ with phenol in the presence of $\mathrm{AlCl}_{3} / \mathrm{SnCl}_{4}$ or conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ provided 4-[10-(methoxybenzyl)-9anthryl]phenols $5 \mathbf{a}-\mathbf{c}$. In the case of the 4-methoxy-substituted compound $5 \mathbf{c}$ a sideproduct $4-[9-$ anthryl(4-methoxyphenyl)methyl]phenol $\mathbf{6 c}$ was isolated as well (Scheme 2).

Upon Lewis acid complexation or protonation of 4-[10-(methoxybenzyl)-9-anthryl]phenols 5a-c the formation of a cationic intermediate is presumed, which undergoes electrophilic substitution at phenol. The reaction of 9-anthryl(4-methoxyphenyl)methanol 4c with phenol in the presence of conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ is assumed to proceed via the cationic intermediate 7 c as resembled by resonance structures such as 9 -anthryl(4-methoxyphenyl)methyl cation and 1-(4-methoxy-benzylidene)-9,10-dihydroanthracen-9-yl cation (Scheme 3) giving rise to the formation of 4-[10-(4-methoxybenzyl)-9-anthryl]phenol 5c and 4-[9-anthryl(4-methoxyphenyl)methyl]phenol 6 c as major and minor products, respectively.

Both isomers 5c and $\mathbf{6 c}$ were characterized by ${ }^{1} \mathrm{H}$ NMR spectra: The methylene group of $\mathbf{5 c}$ gives rise to a singlet at $\delta 4.85(2 \mathrm{H})$, the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{6 c}$ exhibits two singlets (1 H each) at $\delta 6.97$ (methine proton) and $\delta 8.44$ ($10-\mathrm{H}$ of the anthracene moiety). The mass spectra of both isomers are characteristic as well: 5c gives rise to a peak $\mathrm{m} / \mathrm{z} 283$, assigned to the [10-(4-hydroxyphenyl)-9-anthryl]methyl cation, whereas the fragment ion $\mathrm{m} / \mathrm{z} 213$ of $\mathbf{6 c}$ is attributed to the (4-hydroxyphenyl)(4-methoxyphenyl)methyl cation.

Scheme 2. Synthesis of 4-[10-(methoxybenzyl)-9-anthryl]phenols 5a-c via 9-anthryl(methoxyphenyl)methanols 4a-c, and formation of 4-[9-anthryl(4-methoxyphenyl)methyl]phenol 6c.

Scheme 3. Resonance structures of carbocation intermediate $\mathbf{7 c}$; formation of phenols $\mathbf{5 c}$ and $\mathbf{6 c}$.

The target as possible antitubercular agents were the aminoalkoxy derivatives $\mathbf{8}$. The reaction of $5 \mathbf{a}-\mathbf{c}$ with different alkylamine hydrochlorides in the presence of $\mathrm{K}_{2} \mathrm{CO}_{3}$ and acetone led to the formation of compounds $\mathbf{8}$ in good yields (Scheme 4). By treatment of amines $\mathbf{8}$ with ethanolic hydrogen chloride the corresponding salts $\mathbf{8} \cdot \mathrm{HCl}$ were prepared. The salts $\mathbf{8} \cdot \mathrm{HCl}$ were tested and found active against M. tuberculosis with MIC in the range of $12.5-25 \mu \mathrm{~g} / \mathrm{mL}$ (Table 1). Therefore, N-[4-[10-(methoxybenzyl)-9-anthryl]phenoxy]alkylamine derivatives were selected as active the pharmacophore, and further synthetic transformations were performed.

Table 1. In vitro antitubercular activity of $\mathbf{8} \cdot \mathrm{HCl}$ and $\mathbf{1 0}$ against M. tuberculosis $\mathrm{H}_{37} \mathrm{R}_{\mathrm{v}}$

MIC $[\mu \mathrm{g} / \mathrm{mL}]$			
Compound	Agar dilution	BACTEC	MABA
	Method	Method	Method
8aa $\cdot \mathrm{HCl}$	n.a.	n.a.	n.a.
8ab $\cdot \mathrm{HCl}$	n.a.	n.a.	n.a.
8ac $\cdot \mathrm{HCl}$	25	12.5	12.5
8ad $\cdot \mathrm{HCl}$	25	n.d.	12.5
8bc $\cdot \mathrm{HCl}$	25	n.d.	12.5
8bd $\cdot \mathrm{HCl}$	n.a.	n.a.	n.a.
8ca $\cdot \mathrm{HCl}$	25	n.a.	12.5
8cb $\cdot \mathrm{HCl}$	25	n.d.	12.5
8cc $\cdot \mathrm{HCl}$	25	n.d.	12.5
8cd $\cdot \mathrm{HCl}$	25	12.5	25
10aa	n.a.	n.a.	n.a.
10ab	n.a.	n.a.	n.a.
10ac	n.a.	n.a.	n.a.
10ad	n.a.	n.a.	n.a.
10ba	25	n.d.	25
10bb	n.a.	n.d.	n.a.
10bc	n.a.	n.d.	25
10bd	25	n.d.	n.a.
10be	n.a.	n.d.	n.a.
10cb	25	n.d.	n.a.
10cc	25	n.d.	25
10cd	n.a.	n.d.	n.a.
10cf	n.a.	n.d.	n.a.

n.a.: not active at $25 \mu \mathrm{~g} / \mathrm{mL}$; n.d.: not determined.

Scheme 4. Synthesis of N-[2-[4-[10-(methoxybenzyl)-9-anthryl]phenoxy]ethyl]-N,N-dialkylamines $\mathbf{8}$ and hydrochlorides $\mathbf{8} \cdot \mathrm{HCl}$.

We were interested to study the effect of 3-amino-2-hydroxy-1-propoxy substituents attached to the [(methoxybenzyl)anthryl]phenyl pharmacophore. Towards this objective, phenols 5a-c were treated with epichlorohydrin in the presence of $\mathrm{K}_{2} \mathrm{CO}_{3}$ to furnish the epoxides $\mathbf{9 a - c}$ in good yields (58-87\%). The epoxides $9 \mathbf{9}-\mathbf{c}$, in turn, reacting with commercially available amines afforded a variety of 1-aminopropan-2-ol derivatives 10 (Scheme 5).

Scheme 5. Synthesis of 3-(dialkylamino)-1-[4-[10-(methoxybenzyl)-9-anthryl]phenoxy]propan-2-ols 10.

Biology

The in vitro activity of the products against M. tuberculosis $\mathrm{H}_{37} \mathrm{R}_{\mathrm{v}}$ was determined by agar micro dilution technique, standard BACTEC radiometric growth assay and micro almar blue assay (MABA). ${ }^{6-8}$ These compounds were tested at different concentrations to evaluate the antitubercular activity of products $\mathbf{8} \cdot \mathrm{HCl}$ and $\mathbf{1 0}$ (Table 1).

The 10-(methoxybenzyl)-substituted anthracenes were synthesized and tested to study the effect of 2-, 3-, and 4-methoxy substituents on the antitubercular activity. It is noteworthy that all anthracene derivatives $\mathbf{8 a a} \cdot \mathrm{HCl}, \mathbf{8 a b} \cdot \mathrm{HCl}$ and $\mathbf{1 0 a a}-\mathbf{a d}$ with o-methoxybenzyl groups showed no antitubercular activity at $25 \mu \mathrm{~g} / \mathrm{mL}$, whereas the m - and p-methoxybenzyl-substituted derivatives except $\mathbf{8 b d} \cdot \mathrm{HCl}$, 10bb, 10be, $\mathbf{1 0} \mathbf{c d}$, and $\mathbf{1 0 c f}$ showed activity in the range of $12.5-25 \mu \mathrm{~g} / \mathrm{mL}$. This is possibly due to better exposed m - and p-methoxy substituents on the anthracene skeleton. Thus, anthracenes with p - and m-methoxybenzyl groups at position 10 and alkylaminoalkoxyphenyl substituents attached to position 9 exhibit a better antitubercular activity in vitro.

Summary

The analysis of in vitro data for the compounds $\mathbf{8} \cdot \mathrm{HCl}$ and $\mathbf{1 0}$ clearly suggests that these classes of compounds are indeed antitubercular. We are reporting for the first time that substituted
anthracenes with methoxybenzyl at 9-position and hydroxyphenyl with alkylaminohydrochloride chains at 10 -position might be a suitable pharmacophore for developing antitubercular agents. A rational and logical design of a compound retaining the antitubercular activity with lower value of MIC may be a favorable molecule. Syntheses of the compounds and their biological evaluation towards this direction are currently underway.

Experimental Section

General Procedures. All the reactions were monitored by thin layer chromatography over silica gel coated TLC plates. The spots on TLC were visualized by spraying the plates with $2 \% \mathrm{CeSO}_{4}$ in $2 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$ and warming on a hot plate or in an oven at about $100{ }^{\circ} \mathrm{C}$. For column chromatography silica gel 60-120 mesh was used. IR spectra were recorded on Perkin Elmer 881 or FT IR 820/PC instrument. Electron impact mass spectra (EI-MS) were recorded on JEOL (Japan) /D-300 instrument, and FAB mass spectra were recorded on JEOL SX 102/DA-6000 mass using Argon /Xenon ($6 \mathrm{KV}, 10 \mathrm{MA}$) as the FAB gas. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Brucker Advance DPX 200 MHz spectrometer using TMS as internal reference. Elemental analyses were carried out on a Carlo ERBA-1108 analyzer. Commercially available grades of organic solvents of adequate purity were used. Acetone after heating at reflux with KMnO_{4} for 4 h was distilled and stored in a bottle over dry $\mathrm{K}_{2} \mathrm{CO}_{3}$. Benzene was refluxed over freshly cut sodium metal pieces and kept over molecular $3 \AA$ sieves. Tetrahydrofuran is dried over calcium sulphate and refluxed over lithium aluminum hydride; peroxides were removed by passage through a column of alumina, followed by distillation and storage over molecular sieves 3Å.

9-Anthryl(2-methoxyphenyl)methanol (4a). To a solution of 2-bromoanisol $\mathbf{1 a}$ (8.98 mL , 72.63 mmol) in dry THF (20 mL) was added magnesium ($1.97 \mathrm{~g}, 82.28 \mathrm{mmol}$), and the mixture was stirred at room temperature for 2 h . To the Grignard reagent 2 a thus formed was added anthracene-9-carbaldehyde $3(5 \mathrm{~g}, 24.2 \mathrm{mmol})$ in THF (25 mL), and the reaction mixture was stirred for 3-4 h. After quenching with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{ca} .20 \mathrm{~mL})$ THF was removed in vacuo. The mixture was extracted three times with ethyl acetate, the extract was washed with brine and dried over sodium sulfate. After concentration of the product solution the residue was chromatographed on silica gel with 10% ethyl acetate in hexane $\left(\mathrm{R}_{f}=0.7\right)$ furnishing $4 \mathrm{a}(4.5 \mathrm{~g}$, 60%) as a yellow semi solid. IR (neat): $3262,1593,1456,1237,1035 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (200 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 8.43(1 \mathrm{H}, \mathrm{s}), 8.42(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 7.94(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.39-7.30(7 \mathrm{H}, \mathrm{m})$, $6.86(1 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}), 6.63(1 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}), 6.57(1 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}), 4.08(1 \mathrm{H}, \mathrm{s}), 3.81(3 \mathrm{H}, \mathrm{s})$. ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 158.0,132.3,131.4,130.9,129.6,128.9,126.5,125.9,125.3$, 121.1, 111.0, 69.4, 55.9. MS (FAB): m/z (\%) 314 (100) [M ${ }^{+}$], 297 (90) [M -OH]. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{O}_{2}$ (314.38): C, 84.05; H, 5.77. Found: C, 84.99; H, 5.80.
9-Anthryl(3-methoxyphenyl)methanol (4b). As described for 4a, 3-bromoanisol $\mathbf{1 b}$ (9.19 mL ,
72.5 mmol) in dry THF (25 mL), magnesium ($1.97 \mathrm{~g}, 82.0 \mathrm{mmol}$) and anthracene-9carbaldehyde $3(5 \mathrm{~g}, 24.2 \mathrm{mmol})$ in THF (25 mL) furnished $\mathbf{4 b}(5.75 \mathrm{~g}, 75 \%)$ as a yellow semi solid, $\mathrm{R}_{f}=0.7$ (10% ethyl acetate/hexane). IR (neat): $\widetilde{v} 3409,1599,1488,1256,1045,760 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.46(1 \mathrm{H}, \mathrm{s}), 8.34(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), 8.01(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz})$, $7.46-7.35(4 \mathrm{H}, \mathrm{m}), 7.17(1 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}), 7.06(1 \mathrm{H}, \mathrm{s}), 6.86(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 6.75(1 \mathrm{H}, \mathrm{d}, J$ $=7.6 \mathrm{~Hz}), 3.72(3 \mathrm{H}, \mathrm{s}), 2.62(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=3.8 \mathrm{~Hz}) . \mathrm{MS}(\mathrm{FAB}): \mathrm{m} / \mathrm{z}(\%) 314(100)\left[\mathrm{M}^{+}\right], 297(90)$ [M - OH]. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{O}_{2}$ (314.38): C, 84.05; H, 5.77. Found: C, $84.19 ; \mathrm{H}, 5.81$.
9-Anthryl(4-methoxyphenyl)methanol (4c). As described for 4a, 4-bromoanisol 1c (16.15 g, $0.086 \mathrm{~mol})$ in dry THF $(20 \mathrm{~mL})$, magnesium $(2.06 \mathrm{~g}, 0.086 \mathrm{~mol})$ and anthracene-9-carbaldehyde $3(5.94 \mathrm{gm}, 0.028 \mathrm{~mol})$ in THF $(25 \mathrm{~mL})$ furnished $\mathbf{4 c}(6.0 \mathrm{~g}, 66 \%)$ as a yellow semisolid. $\mathrm{R}_{f}=0.7$ (10% ethyl acetate/hexane). IR (neat): $\widetilde{v} 3510,2362,1604,1507,1242,1169,732 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.46(1 \mathrm{H}, \mathrm{s}), 8.36(2 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}), 8.03(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 8.01$ $(1 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}), 7.47-7.34(5 \mathrm{H}, \mathrm{m}), 7.27(1 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}), 6.79(2 \mathrm{H}, \mathrm{d}, J=10 \mathrm{~Hz}), 3.74(3 \mathrm{H}$, s), $2.64(1 \mathrm{H}, \mathrm{d}, J=5.4 \mathrm{~Hz}) . \mathrm{MS}(\mathrm{EI}): m / \mathrm{z}(\%) 314$ (100) [M $\left.{ }^{+}\right], 297$ (90) [M -OH], 107 (20) [$\mathrm{OCH}_{3} \mathrm{C}_{6} \mathrm{H}_{5}$]. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{O}_{2}$ (314.38): C, 84.05; H, 5.77. Found: C, 84.22; H, 5.78.
4-[10-(2-Methoxybenzyl)-9-anthryl]phenol (5a). To a solution of carbinol 4a (3.0 g, $9.55 \mathrm{mmol})$ and phenol ($3.15 \mathrm{~mL}, 38.22 \mathrm{mmol}$) in dry benzene $(40 \mathrm{~mL})$ was added a catalytic amount of conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$, and the mixture was heated at $80^{\circ} \mathrm{C}$ for 1 h . After cooling, the reaction mixture was neutralized with saturated aq. NaHCO_{3} and extracted with ethyl acetate. The concentrated extract was subjected to column chromatography on silica gel and elution with 15% ethyl acetate in hexane ($\mathrm{R}_{f}=0.6$) furnishing $5 \mathbf{a}(2.6 \mathrm{~g}, 69 \%)$ as a white solid; mp $115{ }^{\circ} \mathrm{C}$ (dichloromethane). IR (KBr): $\widetilde{v} 3441,1599,1490,1232 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $8.16(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 7.74(2 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 7.41-7.24(6 \mathrm{H}, \mathrm{m}), 7.23(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 7.05$ $(2 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 6.90(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 6.61(1 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}), 6.46(1 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}), 5.20(1 \mathrm{H}$, bs), $4.98(2 \mathrm{H}, \mathrm{s}), 4.06(3 \mathrm{H}, \mathrm{s})$. MS (FAB): m/z (\%) $390(100)\left[\mathrm{M}^{+}\right], 297(60)\left[\mathrm{M}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OH}\right], 121$ (30) $\left[\mathrm{OCH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}\right]$. Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{O}_{2}$ (390.47): C, 86.13 ; H, 5.68. Found: C, 86.51; H 5.91.

4-[10-(3-Methoxybenzyl)-9-anthryl]phenol (5b). As described for $\mathbf{5 a}, \mathbf{4 b}(3.83 \mathrm{~g}, 12.19 \mathrm{mmol})$ and phenol ($4.02 \mathrm{~g}, 48.79 \mathrm{mmol}$) furnished $5 \mathbf{b}(2.69 \mathrm{~g}, 56 \%)$ as white solid; $\mathrm{mp} 108{ }^{\circ} \mathrm{C}$ (dichloromethane), $\mathrm{R}_{f}=0.6$ (15% ethyl acetate/hexane). IR (KBr): $\widetilde{v} 3414,1601,1440,1379$, 1253, 1141, 1037, $757 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.23(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 7.77(2 \mathrm{H}, \mathrm{d}$, $J=8.4 \mathrm{~Hz}), 7.49-7.27(6 \mathrm{H}, \mathrm{m}), 7.19(1 \mathrm{H}, \mathrm{s}), 7.14(2 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 6.75(2 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 6.71$ $(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 4.99(2 \mathrm{H}, \mathrm{s}), 3.66(3 \mathrm{H}, \mathrm{s}), 3.03(1 \mathrm{H}, \mathrm{bs}) ;{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $164.9,162.0,147.7,142.4,137.4,136.3,135.6,135.3,134.6,133.1,130.7,129.8,125.8,120.6$, 119.7, 115.8, 60.1, 38.7. MS(FAB): $m / z(\%) 390(100)\left[\mathrm{M}^{+}\right], 283(40)\left[\mathrm{M}-\mathrm{OCH}_{3} \mathrm{C}_{6} \mathrm{H}_{5}\right]$. Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{O}_{2}$ (390.47): C, 86.13; H, 5.68. Found: C, 87.22; H, 5.89.
4-[10-(4-Methoxybenzyl)-9-anthryl]phenol (5c). As described for 5a, 4c ($2.85 \mathrm{~g}, 9.07 \mathrm{mmol}$) and phenol ($1.28 \mathrm{~g}, 13.61 \mathrm{mmol}$) furnished $5 \mathrm{c}(1.6 \mathrm{~g}, 55 \%)$ as a white solid; $\mathrm{mp} 194{ }^{\circ} \mathrm{C}$ (dichloromethane); $\mathrm{R}_{f}=0.6$ (15% ethyl acetate/hexane). ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.04$ $(1 \mathrm{H}, \mathrm{s}), 8.15(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 7.72(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 7.3(2 \mathrm{H}, \mathrm{t}, J=6.9 \mathrm{~Hz}), 7.22(2 \mathrm{H}, \mathrm{d}, J$
$=8.1 \mathrm{~Hz}), 7.16(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.02(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 6.98(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 6.64(2 \mathrm{H}$, $\mathrm{d}, J=8.4 \mathrm{~Hz}), 4.85(2 \mathrm{H}, \mathrm{s}), 3.58(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 157.2,156.2,136.6$, $132.4,131.8,131.3,130.0,129.5,129.1,128.5,127.4,125.0,124.2,124.1,115.0,113.3,54.6$, 32.2. MS (FAB): $m / z(\%) 390(100)\left[\mathrm{M}^{+}\right], 297(10)\left[\mathrm{M}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OH}\right), 283(30)\left[\mathrm{M}-\mathrm{OCH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right]$. Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{O}_{2}$ (390.47): C, 86.13; H, 5.68. Found: C, 87.41; H, 5.71.
4-[9-Anthryl(4-methoxyphenyl)methyl]phenol (6c). To a solution of carbinol 4a (2.85 g , $9.07 \mathrm{mmol})$ and phenol $(1.28 \mathrm{~g}, 13.61 \mathrm{mmol})$ in dry benzene $(40 \mathrm{~mL})$ was added a catalytic amount of conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$, and the mixture was heated at $80^{\circ} \mathrm{C}$ for 1 h . After cooling, the reaction mixture was neutralized with saturated aq. NaHCO_{3} and extracted with ethyl acetate. The concentrated extract was subjected to column chromatography on silica gel and elution with 15% ethyl acetate in hexane furnishing $5 \mathbf{c}\left(\mathrm{R}_{f}=0.6\right)$ and $\mathbf{6 c}\left(\mathrm{R}_{f}=0.5\right)$ as a brown solid $(100 \mathrm{mg}, 5 \%)$; $\mathrm{mp} 78{ }^{\circ} \mathrm{C}$ (dichloromethane). IR (KBr): $\widetilde{v} 3431,1605,1507,1443,1245,1172,1028 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.44(1 \mathrm{H}, \mathrm{s}), 8.14(2 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}), 8.00(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 7.45-$ $7.20(4 \mathrm{H}, \mathrm{m}), 7.14-6.90(4 \mathrm{H}, \mathrm{m}), 6.97(1 \mathrm{H}, \mathrm{s}), 6.77(2 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 6.69(2 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz})$, $3.75(3 \mathrm{H}, \mathrm{s})$. MS (FAB): m/z (\%) 390 (100) [$\left.\mathrm{M}^{+}\right], 297$ (40) [M $\left.-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OH}\right)$. Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{O}_{2}$ (390.47): C, 86.13; H, 5.68. Found: C, 86.31; H, 5.78.
N-[2-[4-[10-(2-Methoxybenzyl)-9-anthryl]phenoxy]ethyl]- \mathbf{N}, \mathbf{N}-dimethylamine (8aa). A mixture of $5 \mathbf{a}(0.99 \mathrm{~g}, 2.56 \mathrm{mmol})$, anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(1.769 \mathrm{~g}, 12.8 \mathrm{mmol})$, 1-(2-chloroethyl)dimethylamine hydrochloride $(0.554 \mathrm{~g}, 3.846 \mathrm{mmol})$ and dry acetone $(50 \mathrm{~mL})$ was heated at reflux for $7 \mathrm{~h} . \mathrm{K}_{2} \mathrm{CO}_{3}$ was filtered off and acetone was distilled off. The residue was extracted with ethyl acetate, the extract was washed with water, brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Column chromatography on silica gel and elution with 35% ethylacetate in hexane ($\mathrm{R}_{f}=0.4$) furnished 8aa ($1.1 \mathrm{~g}, 93 \%$) as a brown solid; mp $112{ }^{\circ} \mathrm{C}$. IR (KBr): $\widetilde{v} 3440,1633,769 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.19(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.40(2 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 7.40-7.20(7 \mathrm{H}, \mathrm{m})$, $7.12(2 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 6.90(1 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}), 6.53(1 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}), 6.36(1 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}), 4.98$ $(2 \mathrm{H}, \mathrm{s}), 4.22(2 \mathrm{H}, \mathrm{t}, J=6.2 \mathrm{~Hz}), 4.07(3 \mathrm{H}, \mathrm{s}), 2.84(2 \mathrm{H}, \mathrm{t}, J=6.2 \mathrm{~Hz}), 2.41(6 \mathrm{H}, \mathrm{s}) . \mathrm{MS}(\mathrm{FAB}):$ $\mathrm{m} / \mathrm{z}(\%) 462$ (100) $\left[\mathrm{M}^{+}\right], 390(10)\left[\mathrm{M}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right], 354$ (10) $\left[\mathrm{M}-\mathrm{OCH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right]$.
2-[4-[10-(2-Methoxybenzyl)-9-anthryl]phenoxy]- N, N-dimethylethanamine hydrochloride (8aa•HCl). Product 8aa was dissolved in absolute ethanol (20 mL) and ethanolic HCl was added dropwise until the pH of the mixture was acidic. After removing ethanol the residue was recrystallized from a mixture of absolute ethanol and dry ether to give $\mathbf{8 a a} \cdot \mathrm{HCl}(1.2 \mathrm{~g}, 95 \%)$ as a brown solid; mp $134{ }^{\circ} \mathrm{C}$. Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{32} \mathrm{ClNO}_{2}$ (498.05): C, 77.17; H, 6.48; N, 2.81. Found: C, 76.20; H, 6.66; N 2.45.
N-[2-[4-[10-(2-Methoxybenzyl)-9-anthryl]phenoxy]ethyl]- N, \mathbf{N}-diethylamine (8ab). As described for $\mathbf{8 a a}, 5 \mathbf{5 a}(0.99 \mathrm{~g}, 2.56 \mathrm{mmol})$, anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(1.769 \mathrm{~g}, 12.8 \mathrm{mmol})$, 1-(2-chloroethyl)diethylamine hydrochloride ($0.661 \mathrm{~g}, 3.846 \mathrm{mmol}$) and dry acetone (20 mL) furnished 8ab $(1.05 \mathrm{~g}, 83 \%)$ as a yellow solid, mp $144{ }^{\circ} \mathrm{C}$ (dichloromethane). $\mathrm{R}_{f}=0.5(50 \%$ ethyl acetate/hexane). IR (KBr): \widetilde{v} 2927, 1507, 1244, $759 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.09$ $(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 7.66(2 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 7.36-7.26(7 \mathrm{H}, \mathrm{m}), 7.14(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 6.90$ $(1 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}), 6.53(1 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}), 6.38(1 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}), 4.91(2 \mathrm{H}, \mathrm{s}), 4.12(2 \mathrm{H}, \mathrm{t}, J=$
$6.2 \mathrm{~Hz}), 3.98(3 \mathrm{H}, \mathrm{s}), 2.91(2 \mathrm{H}, \mathrm{t}, J=6.2 \mathrm{~Hz}), 2.64(4 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}), 1.06(6 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz})$. MS (FAB): m / z (\%) 490 (100) [M $\left.{ }^{+}\right], 390(20)\left[\mathrm{M}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\right]$.
2-[4-[10-(2-Methoxybenzyl)-9-anthryl]phenoxy]- N, N-diethylethanamine hydrochloride ($\mathbf{8 a b} \cdot \mathbf{H C l}$). As described for $\mathbf{8 a a} \cdot \mathrm{HCl}$, product $\mathbf{8 a b}$ was converted into $\mathbf{8 a b} \cdot \mathrm{HCl}(1.272 \mathrm{~g}, 94 \%)$, as a brown solid; mp $154{ }^{\circ} \mathrm{C}$. Anal. Calcd for $\mathrm{C}_{34} \mathrm{H}_{36} \mathrm{ClNO}_{2}$ (526.11): C, $77.62 ; \mathrm{H}, 6.90 ; \mathrm{N}, 2.66$. Found: C, 77.99; H, 7.10; N, 2.90.
N-[2-[4-[10-(3-Methoxybenzyl)-9-anthryl]phenoxy]ethyl]- N, N-dimethylamine (8ba). As described for $\mathbf{8 a a}, 5 \mathbf{b}(250 \mathrm{mg}, 0.64 \mathrm{mmol})$, anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(0.44 \mathrm{~g}, 3.2 \mathrm{mmol})$, 1-(2-chloroethyl)dimethylamine hydrochloride ($0.144 \mathrm{~g}, 0.96 \mathrm{mmol}$) and dry acetone (50 mL) furnished 8ba. $160 \mathrm{mg}, 54 \%$) as a white solid; $\mathrm{mp} 122{ }^{\circ} \mathrm{C} . \mathrm{R}_{f}=0.6(60 \%$ ethyl acetate/hexane). IR (KBr): $\widetilde{v} 2934,1601,1451,1243,1175,1035 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.25(2 \mathrm{H}, \mathrm{d}, J=8.6$ $\mathrm{Hz}), 7.73(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.45-7.27(6 \mathrm{H}, \mathrm{m}), 7.16(1 \mathrm{H}, \mathrm{s}), 7.14(2 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 6.74(2 \mathrm{H}$, $\mathrm{d}, J=8 \mathrm{~Hz}), 6.72(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 5.03(2 \mathrm{H}, \mathrm{s}), 4.22(2 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}), 3.69(3 \mathrm{H}, \mathrm{s}), 2.84(2 \mathrm{H}$, $\mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}$), $2.41(6 \mathrm{H}, \mathrm{s}) . \mathrm{MS}(\mathrm{FAB}): m / z(\%) 462(100)\left[\mathrm{M}^{+}\right], 390(50)\left[\mathrm{M}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right]$.
2-[4-[10-(3-Methoxybenzyl)-9-anthryl]phenoxy]- N, N-dimethylethanamine hydrochloride ($\mathbf{8 b a} \cdot \mathbf{H C l}$). As described for $\mathbf{8 a a} \cdot \mathrm{HCl}$, product $\mathbf{8} \mathbf{b a}$ yielded $\mathbf{8 b a} \cdot \mathrm{HCl}$. ($190 \mathrm{mg}, 94 \%$) as a white solid; mp $131{ }^{\circ} \mathrm{C}$. Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{32} \mathrm{ClNO}_{2}$ (498.05): C, $77.17 ; \mathrm{H}, 6.48 ; \mathrm{N}, 2.81$. Found: C, 77.11; H, 6.95; N, 2.85.
N-[2-[4-[10-(3-Methoxybenzyl)-9-anthryl]phenoxy]ethyl]- N, N-diethylamine (8bb). As described for 8aa, $5 \mathbf{b}$ ($400 \mathrm{mg}, 1.02 \mathrm{mmol}$), anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($709 \mathrm{mg}, 5.12 \mathrm{mmol}$), 1-(2-chloroethyl)diethylamine hydrochloride ($265 \mathrm{mg}, 1.53 \mathrm{mmol}$) and dry acetone (20 mL) furnished $\mathbf{8 b b}$, $400 \mathrm{mg}, 80 \%$) as a white solid; $\mathrm{mp} 115{ }^{\circ} \mathrm{C} . \mathrm{R}_{f}=0.5$ (60% ethyl acetate/hexane). IR (KBr): \widetilde{v} 2932. 1597, 1507, 1454, 1240, $1038 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.25(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6$ $\mathrm{Hz}), 7.73(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.45-7.27(6 \mathrm{H}, \mathrm{m}), 7.16(1 \mathrm{H}, \mathrm{s}), 7.14(2 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 6.74(2 \mathrm{H}$, $\mathrm{d}, J=8 \mathrm{~Hz}), 6.72(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 5.03(2 \mathrm{H}, \mathrm{s}), 4.19(2 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}), 3.70(3 \mathrm{H}, \mathrm{s}), 2.98(2 \mathrm{H}$, $\mathrm{t}, J=7 \mathrm{~Hz}), 2.72(4 \mathrm{H}, \mathrm{q}, J=7 \mathrm{~Hz}), 1.15(6 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}) . \mathrm{MS}(\mathrm{FAB}): m / z(\%) 490(70)\left[\mathrm{M}^{+}\right]$, 390 (20) $\left[\mathrm{M}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\right]$.
2-[4-[10-(3-Methoxybenzyl)-9-anthryl]phenoxy]- N, N-diethylethanamine hydrochloride ($\mathbf{8 b b} \cdot \mathbf{H C l}$). As described for $\mathbf{8 a a} \cdot \mathbf{H C l}$, product $\mathbf{8 b b}$ yielded $\mathbf{8 b b} \cdot \mathrm{HCl}$. ($450 \mathrm{mg}, \mathbf{9 8 \%}$) as a yellow solid; mp $126{ }^{\circ} \mathrm{C}$. Anal. Calcd for $\mathrm{C}_{34} \mathrm{H}_{36} \mathrm{ClNO}_{2}$ (526.11): C, $77.62 ; \mathrm{H}, 6.90 ; \mathrm{N}, 2.66$. Found: C, 77.99; H, 7.04; N, 2.80.

1-[2-[4-[10-(3-Methoxybenzyl)-9-anthryl]phenoxy]ethyl]pyrrolidine (8bc). As described for 8aa, 5b ($400 \mathrm{mg}, 1.02 \mathrm{mmol}$), anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}$ (709 mg , 5.13 mmol), 1-(2-chloroethyl)pyrrolidine hydrochloride ($265 \mathrm{mg}, 3.846 \mathrm{mmol}$) and dry acetone $(50 \mathrm{~mL})$ yielded $\mathbf{8 b c}(400 \mathrm{mg}$, 80%) as a yellow solid; $\mathrm{mp} 131^{\circ} \mathrm{C}$ (dichloromethane). $\mathrm{R}_{f}=0.6$ (50\% ethylacetate/hexane). IR $(\mathrm{KBr}): \widetilde{v} 2926,1507,1246,756 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.25(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz})$, $7.72(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.46-7.27(6 \mathrm{H}, \mathrm{m}), 7.16(1 \mathrm{H}, \mathrm{s}), 7.14(2 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 6.73(2 \mathrm{H}, \mathrm{d}, J=$ $8 \mathrm{~Hz}), 6.72(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 5.03(2 \mathrm{H}, \mathrm{s}), 4.26(2 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}), 3.70(3 \mathrm{H}, \mathrm{s}), 3.01(2 \mathrm{H}, \mathrm{t}, J=$ 7 Hz), 2.71-2.68 (4H, m), 1.90-1.82 (4H, m). MS (FAB): m/z (\%) $488(40)\left[\mathrm{M}^{+}\right], 390(20)[\mathrm{M}-$ $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{4}\right]$, $98(100)\left[\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{4}\right]$.

1-[2-[4-[10-(3-Methoxybenzyl)-9-anthryl]phenoxy]ethyl]pyrrolidine hydrochloride (8bc-HCl). As described for $\mathbf{8 a a} \cdot \mathrm{HCl}$, product $\mathbf{8 b c}$ afforded $\mathbf{8 b c} \cdot \mathrm{HCl}$. $(444 \mathrm{mg}, 90 \%$) as a brown solid; mp $141{ }^{\circ} \mathrm{C}$. Anal. Calcd for $\mathrm{C}_{34} \mathrm{H}_{34} \mathrm{ClNO}_{2}$ (524.09): C, 77.92; H, 6.54; N, 2.67. Found: C, 78.02; H, 6.87; N, 2.83.

1-[2-[4-[10-(3-Methoxybenzyl)-9-anthryl]phenoxy]ethyl]piperidine (8bd). As described for 8aa, 5b ($400 \mathrm{mg}, 1.02 \mathrm{mmol}$), anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($709 \mathrm{mg}, 1.54 \mathrm{mmol}$), 1-(2-chloroethyl)piperidine hydrochloride ($250 \mathrm{mg}, 1.54 \mathrm{mmol}$) and dry acetone (50 mL) gave 8bd (460 mg , 90%) as a yellow solid; mp $138{ }^{\circ} \mathrm{C}$ (dichloromethane). $\mathrm{R}_{f}=0.6$ (50\% ethylacetate/hexane). IR (KBr): $\widetilde{v} 2929,1507,1246,755 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.25(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz})$, $7.73(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.47-7.27(6 \mathrm{H}, \mathrm{m}), 7.16(1 \mathrm{H}, \mathrm{s}), 7.14(2 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 6.74(2 \mathrm{H}, \mathrm{d}, J=$ $8 \mathrm{~Hz}), 6.72(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 5.03(2 \mathrm{H}, \mathrm{s}), 4.25(2 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}), 3.70(3 \mathrm{H}, \mathrm{s}), 2.87(2 \mathrm{H}, \mathrm{t}, J=$ $7 \mathrm{~Hz}), 2.61-2.56(4 \mathrm{H}, \mathrm{m}), 1.70-1.48(6 \mathrm{H}, \mathrm{m}) . \mathrm{MS}(\mathrm{FAB}): \mathrm{m} / \mathrm{z}(\%) 502(100)\left[\mathrm{M}^{+}\right], 390(10)[\mathrm{M}-$ $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{5}\right]$.
1-[2-[4-[10-(3-Methoxybenzyl)-9-anthryl]phenoxy]ethyl]piperidine hydrochloride (8bd•HCl). As described for 8aa $\cdot \mathrm{HCl}$, product $\mathbf{8 b d}$ afforded $\mathbf{8 b d} \cdot \mathrm{HCl}(480 \mathrm{mg}, 89 \%)$ as a yellow solid; mp $145{ }^{\circ} \mathrm{C}$. Anal. Calcd for $\mathrm{C}_{35} \mathrm{H}_{36} \mathrm{ClNO}_{2}$ (538.12): C, 78.12; H, 6.74; N, 2.60. Found: C, 78.19; H, 7.01; N, 2.87.
N-[2-[4-[10-(4-Methoxybenzyl)-9-anthryl]phenoxy]ethyl]- N, N-dimethylamine (8ca). As described for 8aa, 5c ($250 \mathrm{mg}, 0.641 \mathrm{mmol}$), anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($443 \mathrm{mg}, 3.205 \mathrm{mmol}$), 1-(2chloroethyl)dimethylamine hydrochloride ($138 \mathrm{mg}, 0.961 \mathrm{mmol}$) and dry acetone (30 mL) furnished 8ca ($200 \mathrm{mg}, 67 \%$) as a white solid; $\mathrm{mp} 110{ }^{\circ} \mathrm{C}$ (dichloromethane). $\mathrm{R}_{f}=0.6(40 \%$ ethylacetate/hexane). IR (KBr): $\widetilde{v} 3468,2930,2361,1241,778 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (200 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 8.26(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 7.73(2 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 7.47-7.25(6 \mathrm{H}, \mathrm{m}), 7.14(2 \mathrm{H}, \mathrm{d}, J=8$ $\mathrm{Hz}), 7.09(2 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 6.77(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 5.00(2 \mathrm{H}, \mathrm{s}), 4.23(2 \mathrm{H}, \mathrm{t}, J=6 \mathrm{~Hz}), 3.73$ $(3 \mathrm{H}, \mathrm{s}), 2.85(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6 \mathrm{~Hz}), 2.42(6 \mathrm{H}, \mathrm{s}) . ; \mathrm{MS}(\mathrm{FAB}): \mathrm{m} / \mathrm{z}(\%) 461(100)\left[\mathrm{M}^{+}\right], 390(20)[\mathrm{M}-$ $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}$].
N-[2-[4-[10-(4-Methoxybenzyl)-9-anthryl]phenoxy]ethyl]- N, N -dimethylamine hydrochloride ($\mathbf{8 c a} \cdot \mathbf{H C l}$). As described for $\mathbf{8 a a} \cdot \mathrm{HCl}$, product $\mathbf{8 c a}$ afforded $\mathbf{8 c a} \cdot \mathrm{HCl}(295 \mathrm{mg}, 92 \%)$, as a white solid; mp $119{ }^{\circ} \mathrm{C}$. Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{32} \mathrm{ClNO}_{2}$ (498.05): C, 77.17; H, 6.48; N, 2.81. Found: C, 77.13; H, 6.85; N, 2.84.
N-[2-[4-[10-(4-Methoxybenzyl)-9-anthryl]phenoxy]ethyl]- N, N-diethylamine (8cb). As described for 8aa, compound 5c ($300 \mathrm{mg}, 0.796 \mathrm{mmol}$), anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($532 \mathrm{mg}, 3.845 \mathrm{mmol}$), 1-(2chloroethyl)diethylamine hydrochloride ($198 \mathrm{mg}, 1.154 \mathrm{mmol}$) and dry acetone (20 mL) gave 8cb ($370 \mathrm{mg}, 99 \%$) as a yellow solid; $\mathrm{mp} 129{ }^{\circ} \mathrm{C}$ (dichloromethane). $\mathrm{R}_{f}=0.6$ (65% ethylacetate/hexane) IR (KBr): $\widetilde{v} 3459,2962,2361,1507,1239,778 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (200 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 8.26(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 7.74(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 7.47-7.28(6 \mathrm{H}, \mathrm{m}), 7.14(2 \mathrm{H}, \mathrm{d}, J=$ $8 \mathrm{~Hz}), 7.09(2 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 6.77(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 5.00(2 \mathrm{H}, \mathrm{s}), 4.20(2 \mathrm{H}, \mathrm{t}, J=6 \mathrm{~Hz}), 3.73$ $(3 \mathrm{H}, \mathrm{s}), 2.99(2 \mathrm{H}, \mathrm{t}, J=6 \mathrm{~Hz}), 2.71(4 \mathrm{H}, \mathrm{q}, J=6 \mathrm{~Hz}), 1.13(6 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}) . \mathrm{MS}(\mathrm{FAB}): m / \mathrm{z}(\%)$ $489(50)\left[\mathrm{M}^{+}\right], 390(100)\left[\mathrm{M}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\right]$.
N-[2-[4-[10-(4-Methoxybenzyl)-9-anthryl]phenoxy]ethyl]- N, N-diethylamine hydrochloride ($\mathbf{8 c b} \cdot \mathbf{H C l}$). As described for $\mathbf{8 a a} \cdot \mathrm{HCl}$, product $\mathbf{8 c b}$ afforded $\mathbf{8 c b} \cdot \mathrm{HCl}$., $(380 \mathrm{mg}, 90 \%)$ as a white solid; mp $135{ }^{\circ} \mathrm{C}$. Anal. Calcd for $\mathrm{C}_{34} \mathrm{H}_{36} \mathrm{ClNO}_{2}$ (526.11): C, $77.62 ; \mathrm{H}, 6.90 ; \mathrm{N}, 2.66$. Found: C, 77.20; H, 7.05; N, 2.58.

1-[2-[4-[10-(4-Methoxybenzyl)-9-anthryl]phenoxy]ethyl]pyrrolidine (8cc). As described for 8aa, compound 5c ($300 \mathrm{mg}, 0.769 \mathrm{mmol}$), anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(532 \mathrm{mg}, 3.84 \mathrm{mmol})$, 1-(2-chloroethyl)pyrrolidine hydrochloride ($195 \mathrm{mg}, 1.154 \mathrm{mmol}$) and dry acetone (30 mL) yielded 8cc (300 $\mathrm{mg}, 80 \%$) as a yellow solid; $\mathrm{mp} 138^{\circ} \mathrm{C}$ (dichloromethane). $\mathrm{R}_{f}=0.5(50 \%$ ethylacetate/hexane). IR (KBr): $\widetilde{v} 2938,2360,1510,1244,1035 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.25(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $8.6 \mathrm{~Hz}), 7.73(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 7.47-7.28(6 \mathrm{H}, \mathrm{m}), 7.15(2 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 7.09(2 \mathrm{H}, \mathrm{d}, J=8$ $\mathrm{Hz}), 6.76(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 4.99(2 \mathrm{H}, \mathrm{s}), 4.26(2 \mathrm{H}, \mathrm{t}, J=6 \mathrm{~Hz}), 3.72(3 \mathrm{H}, \mathrm{s}), 3.00(2 \mathrm{H}, \mathrm{t}, J=6$ Hz), 2.71-2.70 (4H, m), 1.89-1.82 (4H, m); MS (FAB): m/z (\%) 487 (40) [M $\left.{ }^{+}\right], 390$ (100) [M $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{4}\right]$.
1-[2-[4-[10-(4-Methoxybenzyl)-9-anthryl]phenoxy]ethyl]pyrrolidine hydrochloride (8cc•HCl). As described for $\mathbf{8 a a} \cdot \mathrm{HCl}$, product $\mathbf{8 c c}$ afforded $\mathbf{8 c c} \cdot \mathrm{HCl}$., ($360 \mathrm{mg}, 89 \%$) as a white solid; mp $143{ }^{\circ} \mathrm{C}$. Anal. Calcd for $\mathrm{C}_{34} \mathrm{H}_{34} \mathrm{ClNO}_{2}$ (524.09): C, 77.92; H, 6.54; N, 2.67. Found: C, 77.99; H, 6.73; N, 2.60.

1-[2-[4-[10-(4-Methoxybenzyl)-9-anthryl]phenoxy]ethyl]piperidine (8cd). As described for 8aa, 5c ($300 \mathrm{mg}, \quad 0.769 \mathrm{mmol}$), anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($532 \mathrm{mg}, 3.845 \mathrm{mmol}$), 1-(2chloroethyl) piperidine hydrochloride ($212 \mathrm{mg}, 1.154 \mathrm{mmol}$) and dry acetone (30 mL) furnished 8cd ($310 \mathrm{mg}, 80 \%$) as a yellow solid; mp $152{ }^{\circ} \mathrm{C}$ (dichloromethane). $\mathrm{R}_{f}=0.6(55 \%$ ethylacetate/hexane). IR (KBr): $\widetilde{v} 2935,1607,1510,1245,1036,756 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}(200 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 8.26(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 7.73(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 7.47-7.27(6 \mathrm{H}, \mathrm{m}), 7.14(2 \mathrm{H}, \mathrm{d}, J=$ $8 \mathrm{~Hz}), 7.09(2 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 6.76(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 4.99(2 \mathrm{H}, \mathrm{s}), 4.25(2 \mathrm{H}, \mathrm{t}, J=6 \mathrm{~Hz}), 3.72$ $(3 \mathrm{H}, \mathrm{s}), 2.87(2 \mathrm{H}, \mathrm{t}, J=6 \mathrm{~Hz}), 2.61-2.55(4 \mathrm{H}, \mathrm{m}), 1.69-1.42(6 \mathrm{H}, \mathrm{m}) . \mathrm{MS}(\mathrm{FAB}): \mathrm{m} / \mathrm{z}(\%) 501$ (100) $\left[\mathrm{M}^{+}\right], 416(10)\left[\mathrm{M}-\mathrm{N}\left(\mathrm{CH}_{2}\right)_{5}\right], 390(30)\left[\mathrm{M}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{5}\right]$.

1-[2-[4-[10-(4-Methoxybenzyl)-9-anthryl]phenoxy]ethyl]piperidine hydrochloride (8cd•HCl). As described for 8aa $\cdot \mathbf{H C l}$, product $\mathbf{8 c d}$ afforded $\mathbf{8 c d} \cdot \mathrm{HCl}$., ($380 \mathrm{mg}, 91 \%$) as a yellow solid; mp $159{ }^{\circ} \mathrm{C}$. Anal. Calcd for $\mathrm{C}_{35} \mathrm{H}_{36} \mathrm{ClNO}_{2}$ (538.12): C, 78.12; H, 6.74; N, 2.60. Found: C, 78.99; H, 6.99; N, 2.57.

2-[[4-[10-(2-Methoxybenzyl)-9-anthryl]phenoxy]methyl]oxirane (9a). A mixture of compound $5 \mathbf{a}(2 \mathrm{~g}, 5.12 \mathrm{mmol})$, anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(2.52 \mathrm{~g}, 18.23 \mathrm{mmol})$ and epichlorohydrin $(75 \mathrm{~mL})$ was heated at reflux for $12 \mathrm{~h} . \mathrm{K}_{2} \mathrm{CO}_{3}$ was filtered off and epichlorohydrin was removed in vacuo. The residue was extracted with ethyl acetate, the extract was washed with water, brine and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Column chromatography on silica gel and elution with 20% ethylacetate in hexane $\left(\mathrm{R}_{f}=0.6\right)$ furnished $9 \mathrm{a}(1.97 \mathrm{~g}, 86 \%)$ as a white solid; $\mathrm{mp} 190^{\circ} \mathrm{C}$ (dichloromethane). IR (KBr): $\widetilde{v} 2952,2312,1620,1520,1252,786 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.17(2 \mathrm{H}, \mathrm{d}, J$ $=8 \mathrm{~Hz}), 7.71(2 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 7.41-7.27(7 \mathrm{H}, \mathrm{m}), 7.14(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 7.00(1 \mathrm{H}, \mathrm{d}, J=$ $7.5 \mathrm{~Hz}), 6.61(1 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}), 6.46(1 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}), 4.98(2 \mathrm{H}, \mathrm{s}), 4.36(2 \mathrm{H}, \mathrm{dd}, J=7,3.2 \mathrm{~Hz})$, $4.15(1 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}), 4.06(3 \mathrm{H}, \mathrm{s}), 3.4(1 \mathrm{H}, \mathrm{m}), 2.98(1 \mathrm{H}, \mathrm{m}), 2.84(1 \mathrm{H}, \mathrm{m}) . \mathrm{MS}(\mathrm{FAB}):$
$\mathrm{m} / \mathrm{z}(\%) 446$ (100) $\left[\mathrm{M}^{+}\right]$, 391 (30) $\left[\mathrm{M}-\mathrm{CH}_{2} \mathrm{CHCH}_{2} \mathrm{O}\right], 339$ (10) [$\left.\mathrm{M}-\mathrm{OCH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right]$. Anal. Calcd for $\mathrm{C}_{31} \mathrm{H}_{26} \mathrm{O}_{3}$ (446.54): C, 83.38; H, 5.87. Found: C, 82.99; H, 6.05.
2-[[4-[10-(3-Methoxybenzyl)-9-anthryl]phenoxy]methyl]oxirane (9b). As described for 9a, compound $5 \mathbf{b}$ ($2.68 \mathrm{~g}, 6.87 \mathrm{mmol}$), anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(4.6 \mathrm{~g}, 33.3 \mathrm{mmol})$ and epichlorohydrin $(75 \mathrm{~mL})$ furnished $9 \mathbf{b}(1.80 \mathrm{~g}, 58 \%)$ as a white solid; $\mathrm{mp} 182{ }^{\circ} \mathrm{C}$ (dichloromethane). $\mathrm{R}_{f}=0.6$ (20% ethylacetate/hexane). IR (KBr): \widetilde{v} 2929, 2360, 1615, 1525, 1247, $782 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (200 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.25(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 7.69(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.44-7.31(6 \mathrm{H}, \mathrm{m}), 7.18(1 \mathrm{H}$, s), $7.16(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 7.12(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 6.73(2 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 6.72(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz})$, $5.03(2 \mathrm{H}, \mathrm{s}), 4.36(2 \mathrm{H}, \mathrm{dd}, J=9,3.2 \mathrm{~Hz}), 4.11(1 \mathrm{H}, \mathrm{dd}, J=9,3.4 \mathrm{~Hz}), 3.70(3 \mathrm{H}, \mathrm{s}), 3.4(1 \mathrm{H}, \mathrm{m})$, $2.97(1 \mathrm{H}, \mathrm{m}), 2.83(1 \mathrm{H}, \mathrm{m}) . \mathrm{MS}(\mathrm{FAB}): m / \mathrm{z}(\%) 446(100)\left[\mathrm{M}^{+}\right], 391(30)\left[\mathrm{MCH}_{2} \mathrm{CHCH}_{2} \mathrm{O}\right\}$, 326 (15) [$\mathrm{M}-\mathrm{OCH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}$]. Anal. Calcd for $\mathrm{C}_{31} \mathrm{H}_{26} \mathrm{O}_{3}$ (446.54): C, 83.38; H, 5.87. Found: C, 83.49; H, 6.15.

2-[[4-[10-(4-Methoxybenzyl)-9-anthryl]phenoxy]methyl]oxirane (9c). As described for 9a, compound $5 \mathbf{c}(1.30 \mathrm{~g}, 3.33 \mathrm{mmol})$, anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(2.3 \mathrm{~g}, 16.65 \mathrm{mmol})$ and epichlorohydrin $(75 \mathrm{~mL})$ furnished $9 \mathrm{c}(1.3 \mathrm{~g}, 87 \%)$ as a white solid; $\mathrm{mp} 171^{\circ} \mathrm{C}$ (dichloromethane). $\mathrm{R}_{f}=0.6(20 \%$ ethylacetate/hexane). IR (KBr): $\widetilde{v} 2927,2362,1608,1510,1244,1033,761 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (200 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.26(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 7.71(2 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 7.42-7.26(6 \mathrm{H}, \mathrm{m}), 7.27(2 \mathrm{H}$, $\mathrm{d}, J=8 \mathrm{~Hz}), 7.16(2 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 6.76(2 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 5.00(2 \mathrm{H}, \mathrm{s}), 4.35(2 \mathrm{H}, \mathrm{dd}, J=6.2$, $3.2 \mathrm{~Hz}), 4.15(1 \mathrm{H}, \mathrm{m}), 3.73(3 \mathrm{H}, \mathrm{s}), 3.45(1 \mathrm{H}, \mathrm{m}), 2.97(1 \mathrm{H}, \mathrm{m}), 2.82(1 \mathrm{H}, \mathrm{m})$. MS (FAB): m/z (\%) 446 (100) [$\left.\mathrm{M}^{+}\right], 391$ (25) [$\left.\mathrm{M}-\mathrm{CH}_{2} \mathrm{CHCH}_{2} \mathrm{O}\right], 339$ (15) [M $\left.-\mathrm{OCH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right]$. Anal. Calcd for $\mathrm{C}_{31} \mathrm{H}_{26} \mathrm{O}_{3}$ (446.54): C, 83.38; H, 5.87. Found: C, 83.99; H, 6.15.
1-[4-[10-(2-Methoxybenzyl)-9-anthryl]phenoxy]-3-pyrrolidin-1-ylpropan-2-ol (10aa). A mixture of 9a ($300 \mathrm{mg}, 0.672 \mathrm{mmol}$), pyrrolidine ($71 \mathrm{mg}, 1.00 \mathrm{mmol}$) in ethanol (10 mL) was heated at reflux for 7 h . Ethanol was removed, and the residue was extracted with ethyl acetate. The extract was washed with brine and dried. Column chromatography on silica gel and elution with 90% ethyl acetate in hexane $\left(\mathrm{R}_{f}=0.4\right)$ furnished 10aa ($300 \mathrm{mg}, 86 \%$) as a white solid, mp $138{ }^{\circ} \mathrm{C}$ (dichloromethane), IR (KBr): $\widetilde{v} 3420,2929,1560,1440,1382,1245,1152,760 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (200 MHz, DMSO-d $)_{6}: \delta 8.17(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 7.71(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 7.41-7.27(7 \mathrm{H}$, m), $7.14(2 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 7.00(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 6.61(1 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}), 6.46(1 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz})$, $4.98(2 \mathrm{H}, \mathrm{s}), 4.20-4.12(3 \mathrm{H}, \mathrm{m}), 4.05(3 \mathrm{H}, \mathrm{s}), 3.74(1 \mathrm{H}, \mathrm{bs}), 3.00-2.60(6 \mathrm{H}, \mathrm{m}), 1.86-1.84(4 \mathrm{H}$, m). MS (FAB): m/z (\%) 518 (100) [M ${ }^{+}$], $390(30)\left[\mathrm{M}-\mathrm{CH}_{2} \mathrm{CHOHCH}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{4}\right]$. Anal. Calcd for $\mathrm{C}_{35} \mathrm{H}_{35} \mathrm{NO}_{3}$ (517.66): C, 81.21; H, 6.81; N, 2.71. Found: C, 80.99; H, 7.01; N, 3.00.
1-[4-[10-(2-Methoxybenzyl)-9-anthryl]phenoxy]-3-piperidin-1-ylpropan-2-ol (10ab). As described for 10aa, 9a ($300 \mathrm{mg}, 0.768 \mathrm{mmol}$) and piperidine $(0.104 \mathrm{~mL}, 1.05 \mathrm{mmol})$ in ethanol $(20 \mathrm{~mL})$ furnished 10ab ($340 \mathrm{mg}, 83 \%$) as a white solid; mp $174{ }^{\circ} \mathrm{C}$ (dichloromethane). $\mathrm{R}_{f}=0.4$ (90% ethyl acetate in hexane). IR (KBr): $\widetilde{v} 2929,2862,1245,1045,775 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (200 MHz, DMSO-d d_{6}) $\delta 8.17(2 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 7.71(2 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 7.41-7.27(7 \mathrm{H}, \mathrm{m}), 7.14$ $(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 7.00(1 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}), 6.61(1 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}), 6.46(1 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}), 4.99$ $(2 \mathrm{H}, \mathrm{s}), 4.22-4.07(3 \mathrm{H}, \mathrm{m}), 4.02(3 \mathrm{H}, \mathrm{s}), 2.60(2 \mathrm{H}, \mathrm{m}), 2.50(2 \mathrm{H}, \mathrm{m}), 2.40(2 \mathrm{H}, \mathrm{m}), 2.00(1 \mathrm{H}, \mathrm{bs})$, $1.65-1.63(4 \mathrm{H}, \mathrm{m}), 1.57-1.49(2 \mathrm{H}, \mathrm{m}) . \mathrm{MS}(\mathrm{FAB}): \mathrm{m} / \mathrm{z}(\%) 532$ (100) [$\left.{ }^{+}\right]$, 391 (20) [M -
$\left.\mathrm{CH}_{2} \mathrm{CHOHCH}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{5}\right]$. Anal. Calcd for $\mathrm{C}_{36} \mathrm{H}_{37} \mathrm{NO}_{3}$ (531.68): C, 81.32; H, 7.01; N, 2.63. Found: C, 82.19; H, 7.15; N, 2.99.
1-[4-[10-(2-Methoxybenzyl)-9-anthryl]phenoxy]-3-(4-methylpiperazin-1-yl)propan-2-ol (10ac). A mixture of $9 \mathbf{a}(300 \mathrm{mg}, 0.672 \mathrm{mmol})$ and N-methylpiperazine $(0.11 \mathrm{~mL}, 1.00 \mathrm{mmol})$ in ethanol (20 mL) was heated at reflux for 7 h . Ethanol was removed, and the residue was extracted with ethyl acetate. The extract was washed with brine and dried. Column chromatography on silica gel and elution with 5% methanol in chloroform $\left(\mathrm{R}_{f}=0.4\right)$ furnished 10ac ($210 \mathrm{mg}, 57 \%$) as a white solid; $\mathrm{mp} 170^{\circ} \mathrm{C}$ (dichloromethane). IR (KBr): \widetilde{v} 2932, 2362, $1509,1244,1172,1034,740 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta 8.17(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}$), $7.71(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 7.41-7.27(7 \mathrm{H}, \mathrm{m}), 7.14(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 7.00(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz})$, $6.61(1 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}), 6.46(1 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}), 4.98(2 \mathrm{H}, \mathrm{s}), 4.20-4.07(3 \mathrm{H}, \mathrm{m}), 4.06(3 \mathrm{H}, \mathrm{s}), 2.77-$ $2.40(10 \mathrm{H}, \mathrm{m}), 2.60(1 \mathrm{H}, \mathrm{bs}), 2.23(3 \mathrm{H}, \mathrm{s}) . \mathrm{MS}(\mathrm{FAB}): m / \mathrm{z}(\%) 546(100)\left[\mathrm{M}^{+}\right], 390(30)[\mathrm{M}-$ $\mathrm{CH}_{2} \mathrm{CHOHCH}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{NCH}_{3}$]. Anal. Calcd for $\mathrm{C}_{36} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{3}$ (546.70): C, 79.09; H, 7.01; N, 5.12. Found: C, 79.33; H, 7.15; N, 5.19.

1-(Cyclohexylamino)-3-\{4-[10-(2-methoxybenzyl)-9-anthryl]phenoxy\}propan-2-ol (10ad). A mixture of $9 \mathbf{9}(300 \mathrm{mg}, 0.672 \mathrm{mmol})$, cyclohexylamine ($100 \mathrm{mg}, 1.00 \mathrm{mmol}$) in ethanol (20 mL) was heated at reflux for 7 h . Ethanol was removed, and the residue was extracted with ethyl acetate. The extract was washed with brine and dried. Column chromatography on alumina and elution with 5% methanol in chloroform $\left(\mathrm{R}_{f}=0.4\right)$ furnished $\mathbf{1 0 a d}(330 \mathrm{mg}, 90 \%)$ as a white solid; mp $155{ }^{\circ} \mathrm{C}$ (dichloromethane), IR (KBr): $\widetilde{v} 3434,2378,1650,1212,1048,1161 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (200 MHz, DMSO-d $)^{2}: \delta 8.17(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 7.71(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.41-7.27(7 \mathrm{H}$, $\mathrm{m}), 7.14(2 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 7.00(1 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}), 6.61(1 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}), 6.46(1 \mathrm{H}, \mathrm{d}, J=8$ $\mathrm{Hz}), 5.00(2 \mathrm{H}, \mathrm{s}), 4.19-4.17(3 \mathrm{H}, \mathrm{m}), 4.09(3 \mathrm{H}, \mathrm{s}), 3.00(1 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}), 2.95(1 \mathrm{H}, \mathrm{m}), 2.5(1 \mathrm{H}$, m), $2.00(1 \mathrm{H}, \mathrm{bs}), 1.99(1 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}), 1.70(1 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}), 1.50(1 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}), 1.40-$ $1.10(8 \mathrm{H}, \mathrm{m})$. MS (FAB): $\mathrm{m} / \mathrm{z}(\%) 546(100)\left[\mathrm{M}^{+}\right], 390(25)\left[\mathrm{M}-\mathrm{CH}_{2} \mathrm{CHOHCH}_{2} \mathrm{NHCH}\left(\mathrm{CH}_{2}\right)_{5}\right]$. Anal. Calcd for $\mathrm{C}_{37} \mathrm{H}_{39} \mathrm{NO}_{3}$ (545.71): C, 81.43; H, 7.20; N, 2.57. Found: C, 81.34; H, 7.17; N, 2.69 .

1-\{4-[10-(3-Methoxybenzyl)-9-anthryl]phenoxy\}-3-pyrrolidin-1-ylpropan-2-ol (10ba). As described for 10aa a mixture of $\mathbf{9 b}(300 \mathrm{mg}, 0.672 \mathrm{mmol})$, pyrrolidine ($71 \mathrm{mg}, 1.00 \mathrm{mmol}$) in ethanol (10 mL) furnished 10ba ($300 \mathrm{mg}, 86 \%$) as a white solid; $\mathrm{mp} 142{ }^{\circ} \mathrm{C}$ (dichloromethane); $\mathrm{R}_{f}=0.4$ (90% ethyl acetate/hexane). IR (KBr): $\widetilde{v} 3429,2928,1595,1446,1379,1244,1161$, 1035, $765 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (200 MHz, DMSO-d d_{6}): $\delta 8.37(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 7.62(2 \mathrm{H}, \mathrm{d}, J=8.6$ $\mathrm{Hz}), 7.53(2 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 7.42(2 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 7.34(2 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 7.21(1 \mathrm{H}, \mathrm{s}), 7.17$ $(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 7.11(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 6.76(2 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}), 6.66(1 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}), 5.05$ $(2 \mathrm{H}, \mathrm{s}), 4.94(1 \mathrm{H}, \mathrm{d}, J=4 \mathrm{~Hz}), 4.05-3.99(2 \mathrm{H}, \mathrm{m}), 3.66(3 \mathrm{H}, \mathrm{s}), 2.54-2.49(6 \mathrm{H}, \mathrm{m}), 1.70-1.60$ $(4 \mathrm{H}, \mathrm{m}) . \mathrm{MS}(\mathrm{FAB}): m / z(\%) 518$ (100) $\left[\mathrm{M}^{+}\right], 390$ (30) $\left[\mathrm{M}-\mathrm{CH}_{2} \mathrm{CHOHCH}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{4}\right]$. Anal. Calcd for $\mathrm{C}_{35} \mathrm{H}_{35} \mathrm{NO}_{3}$ (517.66): C, 81.21; H, 6.81; N, 2.71. Found: C, 81.69; H, 7.11; N, 3.03.
1-[4-[10-(3-Methoxybenzyl)-9-anthryl]phenoxy]-3-piperidin-1-ylpropan-2-ol (10bb). As described for 10aa, a mixture of $\mathbf{9 b}(300 \mathrm{mg}, 0.671 \mathrm{mmol})$, piperidine ($74 \mathrm{mg}, 0.874 \mathrm{mmol}$) in ethanol (20 mL) furnished 10bb ($300 \mathrm{mg}, 84 \%$) as a white solid; $\mathrm{mp} 149{ }^{\circ} \mathrm{C} . \mathrm{R}_{f}=0.4(5 \%$
methanol/chloroform). IR (KBr): \tilde{v} 2929, 1596, 1449, 1247, 1161, 1037, $768 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (200 MHz, DMSO- d_{6}): $\delta 8.36(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 7.62(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 7.52(2 \mathrm{H}, \mathrm{t}, J=8$ $\mathrm{Hz}), 7.48(2 \mathrm{H}, \mathrm{t}, J=8 \mathrm{~Hz}), 7.43(2 \mathrm{H}, \mathrm{t}, J=8.2 \mathrm{~Hz}), 7.29(1 \mathrm{H}, \mathrm{s}), 7.26(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 7.14$ $(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 6.75(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 6.71(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 5.04(2 \mathrm{H}, \mathrm{s}), 4.99(1 \mathrm{H}, \mathrm{m})$, 4.14-4.02 (4H, m), $3.62(3 \mathrm{H}, \mathrm{s}), 3.30-3.25(4 \mathrm{H}, \mathrm{m}), 1.52-1.48(6 \mathrm{H}, \mathrm{m}) . \mathrm{MS}(\mathrm{FAB}): \mathrm{m} / \mathrm{z}(\%) 532$ (100) $\left[\mathrm{M}^{+}\right], 390$ (30) $\left[\mathrm{M}-\mathrm{CH}_{2} \mathrm{CHOHCH}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{5}\right]$. Anal. Calcd for $\mathrm{C}_{36} \mathrm{H}_{37} \mathrm{NO}_{3}$ (531.68): C, 81.32; H, 7.01; N, 2.63. Found: C, 80.99; H, 7.05; N, 2.99.

1-[4-[10-(3-Methoxybenzyl)-9-anthryl]phenoxy]-3-(4-methylpiperazin-1-yl)propan-2-ol

 (10bc). As described for 10ac, a mixture of $\mathbf{9 b}(300 \mathrm{mg}, 0.672 \mathrm{mmol}), N$-methylpiperazine ($101 \mathrm{mg}, 1.00 \mathrm{mmol}$) in ethanol (20 mL) furnished 10bc ($160 \mathrm{mg}, 43 \%$) as a white solid; mp $140{ }^{\circ} \mathrm{C} . \mathrm{R}_{f}=0.4$ (5\% methanol/chloroform). IR (KBr): $\widetilde{v} 2932,1605,1448,1383,1243,1147$, $1041 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (200 MHz, DMSO- d_{6}): $\delta 8.36(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 7.63-7.28(8 \mathrm{H}, \mathrm{m}), 7.20$ $(1 \mathrm{H}, \mathrm{s}), 7.16(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 7.10(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 6.74(2 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 6.66(1 \mathrm{H}, \mathrm{d}, J=8$ $\mathrm{Hz}), 5.03(2 \mathrm{H}, \mathrm{s}), 4.92(1 \mathrm{H}, \mathrm{m}), 3.90-3.00(5 \mathrm{H}, \mathrm{m}), 3.63(3 \mathrm{H}, \mathrm{s}), 2.53(3 \mathrm{H}, \mathrm{s}), 2.48-2.44(8 \mathrm{H}$, m). MS (FAB): m/z (\%) 547 (100) [M $\left.{ }^{+}\right], 390(40)\left[\mathrm{M}-\mathrm{CH}_{2} \mathrm{CHOHCH}_{2} \mathrm{~N}_{\left.\left(\mathrm{CH}_{2}\right)_{4} \mathrm{NCH}_{3}\right] \text {. Anal. }}\right.$ Calcd for $\mathrm{C}_{36} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{3}$ (546.70): C, 79.09; H, 7.01; N, 5.12. Found: C, 79.55; H, 6.00; N, 5.22.1-[4-[10-(3-Methoxybenzyl)-9-anthryl]phenoxy]-3-morpholin-4-ylpropan-2-ol (10bd). As described for 10aa, 9b ($300 \mathrm{mg}, 0.672 \mathrm{mmol}$), morpholine ($87 \mathrm{mg}, 1.00 \mathrm{mmol}$) in ethanol $(10 \mathrm{~mL})$ gave 10bd ($300 \mathrm{mg}, 83 \%$) as a white solid; mp $177{ }^{\circ} \mathrm{C} . \mathrm{R}_{f}=0.4(90 \%$ ethyl acetate/hexane). IR (KBr): $\widetilde{v} 3446,2936,1606,1512,1452,1243,1116,1042,764 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (200 MHz, DMSO-d $)^{2}: \delta 8.25(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 7.71(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 7.44-7.24(7 \mathrm{H}$, $\mathrm{m}), 7.16(2 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 6.71(3 \mathrm{H}, \mathrm{m}), 5.04(2 \mathrm{H}, \mathrm{s}), 4.17-4.13(3 \mathrm{H}, \mathrm{m}), 3.80-3.75(4 \mathrm{H}, \mathrm{m})$, $3.69(3 \mathrm{H}, \mathrm{s}), 2.74-2.50(6 \mathrm{H}, \mathrm{m}), 1.54(1 \mathrm{H}, \mathrm{bs})$; MS (FAB): m/z (\%) $534(100)\left[\mathrm{M}^{+}\right], 390(30)[\mathrm{M}$ $-\mathrm{CH}_{2} \mathrm{CHOHCH}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{O}$]. Anal. Calcd for $\mathrm{C}_{35} \mathrm{H}_{35} \mathrm{NO}_{4}$ (533.66): C, 78.77; H, 6.61; N, 2.62. Found: C, 78.00; H, 7.01; N, 2.68.

1-(4-Benzylpiperazin-1-yl)-3-[4-[10-(3-methoxybenzyl)-9-anthryl]phenoxy]propan-2-ol

 (10be). As described for 10aa, a mixture of $\mathbf{9 b}$ ($300 \mathrm{mg}, 0.671 \mathrm{mmol}$), N-Benzylpiperidine ($177 \mathrm{mg}, 1.00 \mathrm{mmol}$) in ethanol (10 mL) furnished 10be ($250 \mathrm{mg}, 59 \%$) as a brown solid; mp $147{ }^{\circ} \mathrm{C} . \mathrm{R}_{f}=0.4$ (90% ethyl acetate/hexane). IR (KBr): $\widetilde{v} 3422,2934,1604,1451,1278,1241$, 1146, 1043, $767 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta 8.37(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}$), 7.64-7.09 $(16 \mathrm{H}, \mathrm{m}), 6.76(2 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}), 6.67(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 5.04(2 \mathrm{H}, \mathrm{s}), 4.91(1 \mathrm{H}, \mathrm{m}), 4.14-3.99$ ($4 \mathrm{H}, \mathrm{m}$), $3.66(3 \mathrm{H}, \mathrm{s}), 2.51-2.40(10 \mathrm{H}, \mathrm{m})$. MS (FAB): m/z (\%) 624 (100) [M+2], 390 (30) [M $\left.\mathrm{CH}_{2} \mathrm{CHOHCH}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{NCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right\}$. Anal. Calcd for $\mathrm{C}_{42} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{3}$ (622.79): C, 81.00; H, 6.80; N, 4.50. Found: C, 81.29; H, 7.00; N, 3.99.1-[4-[10-(4-Methoxybenzyl)-9-anthryl]phenoxy]-3-piperidin-1-ylpropan-2-ol (10cb). As described for 10ac, a mixture of 9c ($300 \mathrm{mg}, 0.673 \mathrm{mmol}$), piperidine ($85 \mathrm{mg}, 1.008 \mathrm{mmol}$) in ethanol (20 mL) furnished $\mathbf{1 0 c b}(225 \mathrm{mg}, 62 \%)$ as a white solid; $\mathrm{mp} 194{ }^{\circ} \mathrm{C}$ (dichloromethane); $\mathrm{R}_{f}=0.4\left(5 \%\right.$ methanol in chloroform). IR (KBr): $\widetilde{v} 2927,2857,1240,1033,761 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (200 MHz, DMSO-d d_{6}): $\delta 8.37(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}$), $7.61(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 7.52(2 \mathrm{H}, \mathrm{t}, J=7$ $\mathrm{Hz}), 7.41(2 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 7.34(2 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}), 7.18(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 4.99(2 \mathrm{H}, \mathrm{s}), 4.98$
$(1 \mathrm{H}, \mathrm{m}), 4.02-3.96(2 \mathrm{H}, \mathrm{m}), 3.71(3 \mathrm{H}, \mathrm{s}), 3.68-3.64(4 \mathrm{H}, \mathrm{m}), 1.52-1.22(6 \mathrm{H}, \mathrm{m}) . \mathrm{MS}(\mathrm{FAB}):$ $\mathrm{m} / \mathrm{z}(\%) 532$ (100) $\left[\mathrm{M}^{+}\right], 390(30)\left[\mathrm{M}-\mathrm{CH}_{2} \mathrm{CHOHCH}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{5}\right]$. Anal. Calcd for $\mathrm{C}_{36} \mathrm{H}_{37} \mathrm{NO}_{3}$ (531.68): C, 81.32; H, 7.01; N, 2.63. Found: C, 81.93; H, 7.61; N, 2.32.

1-[4-[10-(4-Methoxybenzyl)-9-anthryl]phenoxy]-3-(4-methylpiperazin-1-yl)propan-2-ol

 (10cc). As described for 10ac, a mixture of 9c ($300 \mathrm{mg}, 0.672 \mathrm{mmol}$), N-methylpiperazine $(0.11 \mathrm{~mL}, 1.00 \mathrm{mmol})$ in ethanol (20 mL) furnished $\mathbf{1 0 c c}(210 \mathrm{mg}, 57 \%)$ as a white solid; mp $173{ }^{\circ} \mathrm{C}$ (dichloromethane); $\mathrm{R}_{f}=0.4$ (5\% methanol in chloroform). IR (KBr): $\widetilde{v} 2932,2362$, $1509,1244,1172,1034,740 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta 8.37(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}$), $7.61(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 7.52(2 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}), 7.41(2 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 7.34(2 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz})$, $7.18(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 7.07(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 6.80(2 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}), 4.99(2 \mathrm{H}, \mathrm{s}), 4.98(1 \mathrm{H}$, m), 4.03-3.97 (4H, m), $3.70(3 H, s), 3.68-3.66(8 H, m), 2.15(3 H, s)$. MS (FAB): m/z (\%) 546 (100) $\left[\mathrm{M}^{+}\right], 433\left[\mathrm{M}-\mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{NCH}_{3}\right], 390\{30)\left[\mathrm{M}-\mathrm{CH}_{2} \mathrm{CHOHCH}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{NCH}_{3}\right]$. Anal. Calcd for $\mathrm{C}_{36} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{3}$ (546.70): C, 79.09; H, 7.01; N, 5.12. Found: C, 78.87; H, 6.25; N, 5.20.1-[4-[10-(4-Methoxybenzyl)-9-anthryl]phenoxy]-3-morpholin-4-ylpropan-2-ol (10cd). As described for 10aa, 9c ($300 \mathrm{mg}, 0.672 \mathrm{mmol}$), morpholine ($87 \mathrm{mg}, 1.00 \mathrm{mmol}$) in ethanol $(10 \mathrm{~mL})$ furnished $\mathbf{1 0 c d}(215 \mathrm{mg}, 60 \%)$ as a white solid; $\mathrm{mp} 196{ }^{\circ} \mathrm{C}$ (dichloromethane); $\mathrm{R}_{f}=0.4$ (90% ethyl acetate/hexane). IR (KBr): $\widetilde{v} 2928,2361,1244,1034,769 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (200 $\left.\mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta 8.37(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 7.61(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 7.55(2 \mathrm{H}, \mathrm{t}, J=6.6 \mathrm{~Hz})$, $7.41(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 7.33(2 \mathrm{H}, \mathrm{t}, J=6.6 \mathrm{~Hz}), 7.18(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 7.08(2 \mathrm{H}, \mathrm{d}, J=8.8$ $\mathrm{Hz}), 6.78(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 4.99(2 \mathrm{H}, \mathrm{s}), 4.10-3.90(3 \mathrm{H}, \mathrm{m}), 3.66-3.54(4 \mathrm{H}, \mathrm{m}), 3.65(3 \mathrm{H}, \mathrm{s})$, $3.49-3.26 \quad(6 \mathrm{H}, \quad \mathrm{m})$. $\mathrm{MS} \quad(\mathrm{FAB}): \quad \mathrm{m} / \mathrm{z} \quad(\%) \quad 533 \quad(100) \quad\left[\mathrm{M}^{+}\right], 390 \quad$ (30) $\quad[\mathrm{M}-$ $\mathrm{CH}_{2} \mathrm{CHOHCH}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{O}$]. Anal. Calcd for $\mathrm{C}_{35} \mathrm{H}_{35} \mathrm{NO}_{4}$ (533.66): C, $78.77 ; \mathrm{H}, 6.61 ; \mathrm{N}, 2.62$. Found: C, 78.99; H, 7.03; N, 2.70.
1-(Cyclopropylamino)-3-\{4-[10-(4-methoxybenzyl)-9-anthryl]phenoxy\}propan-2-ol (10cf). As described for 10ad, a mixture of 9c ($300 \mathrm{mg}, 0.672 \mathrm{mmol}$), cyclopropylamine (57 mg , $1.00 \mathrm{mmol})$ in ethanol (10 mL) furnished $\mathbf{1 0 c f}(129 \mathrm{mg}, 38 \%)$ as a white solid; $\mathrm{mp} 136{ }^{\circ} \mathrm{C}$ (dichloromethane); $\mathrm{R}_{f}=0.4$ (5% methanol in chloroform). IR (KBr): $\widetilde{v} 3437,2364,1611,1244$, $1034 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta 8.26(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 7.71(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz})$, $7.44-7.25(4 \mathrm{H}, \mathrm{m}), 7.14(4 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 6.76(2 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 6.74(2 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 5.00$ $(2 \mathrm{H}, \mathrm{s}), 4.21-4.14(2 \mathrm{H}, \mathrm{m}), 3.79-3.75(1 \mathrm{H}, \mathrm{m}), 3.73(3 \mathrm{H}, \mathrm{s}), 3.05-2.98(2 \mathrm{H}, \mathrm{m}), 2.2(1 \mathrm{H}, \mathrm{m})$, $0.53-0.44(4 \mathrm{H}, \mathrm{m})$. MS (FAB): m/z (\%) 503 (100) [M $\left.{ }^{+}\right], 433(50)\left[\mathrm{M}-\mathrm{CH}_{2} \mathrm{NHCH}\left(\mathrm{CH}_{2}\right)_{2}\right], 390$ (30) $\left[\mathrm{M}-\mathrm{CH}_{2} \mathrm{CHOHCH}_{2} \mathrm{NHCH}\left(\mathrm{CH}_{2}\right)_{2}\right]$. Anal. Calcd for $\mathrm{C}_{33} \mathrm{H}_{31} \mathrm{NO}_{3}$ (489.60): C, 80.95; H, 6.38; N, 2.86. Found: C, 81.00; H, 6.31; N, 2.98.

Agar micro dilution method. Twofold dilutions of each test compound were added to 7 H 10 agar, and M. tuberculosis $\mathrm{H}_{37} \mathrm{R}_{\mathrm{v}}$ was used as test organism. MIC is the concentration of the compound that completely inhibits the growth and colony forming ability of M. tuberculosis.

In a 24 well plate 3 mL middle brook 7 H 11 agar medium with OADC supplement was dispensed in each well. The test compound was added to the middle brook medium agar before in duplicate so that the final concentration of the test compound in each well was $25,12.5,6.25$,
3.125 and $1.56 \mu \mathrm{~g} / \mathrm{mL}$, respectively. The known CFU of the $\mathrm{H}_{37} \mathrm{R}_{\mathrm{v}}$ culture was dispensed on top of agar in each well in a negative pressure biosafety hood. The plates were then incubated at $37{ }^{\circ} \mathrm{C} \mathrm{CO}_{2}$ incubator. The concentration at which complete inhibition of colonies was observed was taken as MIC of test drug.
BACTEC Method. A stock solution of the test compounds in DMSO ($1 \mathrm{mg} / \mathrm{mL}$) was prepared and sterilized by passage through $0.22 \mu \mathrm{~m}$ filters. $50 \mu \mathrm{~L}$ were added to 4 mL radiometric 7 H 12 broth (BACTEC 12B; Becton Dickinson Diagnostic Instrument System US) to achieve the final concentrations. Controls received $50 \mu \mathrm{~L}$ DMSO. Isoniazid and rifampin (Sigma Chemical Co. St. Louis, MO) were included as positive drug control. In the BACTEC method, 10^{4} to $10^{5} \mathrm{CFU} / \mathrm{mL}$ of M. tuberculosis $\mathrm{H}_{37} \mathrm{R}_{\mathrm{v}}$ was inoculated in 4 mL fresh BACTEC 12B broth. containing the test compounds. An additional control was inoculated with 1:100 dilution of the inoculum to represent 1% of the bacterial population. (102 to $10^{3} \mathrm{CFU} / \mathrm{mL}$). The vials were incubated at $37^{\circ} \mathrm{C}$, and GI readings were recorded daily until the GI in $1: 100$ control had reached 30 . The concentration of the drug producing final GI reading lower than those in 1:100 control was considered to have inhibited more than 90% of the bacteria and was defined as the MIC.
Micro almar blue assay (MABA). M. tuberculosis, $\mathrm{H}_{37} \mathrm{R}_{\mathrm{a}}$ was used as a suitable surrogate for the virulent $\mathrm{H}_{37} \mathrm{R}_{\mathrm{v}}$ strain. The standard antitubercular agents Rifamycin, isoniazid, p-aminosalicylic acid, ethambutol and ethionamide were taken as positive controls. A compound is considered active only if it shows inhibition greater than or equal to 90%.

Acknowledgments

We thank the Director for his encouragement and interest in this project. This research project was supported by Department of Science and Technology (SR/FTP/CSA-05/2002), New Delhi, India. JKM thanks CSIR for providing a fellowship. We also thank Mr. Pramod Kumar for his technical help in this project.

References

\# CDRI communication No. 6584.

1. (a) World Health Organization. Antituberculosis drug resistance in the world. The WHO/IUATLD global project on anti-tuberculosis drug resistance surveillance, 1997. (b) Bastian, I.; Colebunders, R. Drugs 1999, 58, 633. (c) Butler, D. Nature 2000, 406, 670, and references cited therein.
2. (a) Gazdic, A. Med. Arch. 1998, 52, 207. (b) Bodiang, C. K. Scot. Med. J. 2000, 45, 25, and references cited therein.
3. (a) de Souza, A. O.; Alderete, J. B.; Schimidt, F.; Sato, D. N.; Duran, N.; Drug Research 1999, 49, 1025. (b) Karash, N.; Terzioglu, N.; Gursoy, A. Arzneim. Forsch, Drug Res. 1998,

48, 758. (c) Wunz, T. P.; Craven, M. T.; Karol, M. D.; Hill, G. C.; Remers, W. A. J. Med. Chem. 1990, 33, 1549. (d) Wunz, T. P.; Dorr, R. T.; Alberts, D. S.; Tunget, C. L.; Einspahr, J.; Milton, S.; Remers, W. A. J. Med. Chem. 1987, 30, 1313. (e) Khafagy, M. M.; Abd.ElWaheb, A. H. F.; Eid, F. A.; El-Agrody, A. M. Farmaco 2002, 57, 715.
4. (a) Panda, G.; Shagufta, Mishra, J. K.; Chaturvedi, V.; Srivastava, A. K.; Srivastava, R.; Srivastava, B. S. Bioorg. Med. Chem. 2004, 12, 5269. (b) Panda G.; Shagufta, Srivastava A. K.; Das S. K.; Srivastav, A. K.; Srivastava, R.; Srivastava, B. S.; Gaikwad A.N.; Sinha S. Bioorg. Med. Chem. submitted.
5. Mehta, G.; Panda, G. Tetrahedron Lett. 1997, 38, 2145.
6. Siddiqi, S. Clinical Microbiology Handbook; ASM Press: Washington, D.C., 1992; Vol. 1.
7. Saito, H.; Tomioka, H.; Sato, K.; Emori, M.; Yamane, T.; Yamashita, K.; Hosoe, K.; Hidaka, T. Antimicrob. Agents Chemother. 1991, 35, 542.
8. Collins, L. A.; Franzblau, S. G. Antimicrob. Agents Chemother. 1997, 41, 1004.

