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Abstract 
The relationship between the plerographs and kenographs (called by Cayley plerograms and 
kenograms) representing acyclic structures, exemplified by octanes, is studied via paths and 
walks.  It is found that the relationship for the net numbers of walks is approximately linear.  
This result in conjuction with several related reports in the literature supports the exclusive use 
of kenographs for acyclic structures in modern chemical graph theory. 
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Introduction 
 
Arthur Cayley (1821-1895), a distinguished 19th century English mathematician, considered in 
his paper on the mathematical theory of isomers (published in 1847) two types of molecular 
graphs that he named plerograms and kenograms.1   In modern chemical graph theory, the 
plerograms (P) are molecular graphs in which all atoms are represented by vertices whilst the 
kenograms (K) are referred to as a hydrogen-suppressed or hydrogen-depleted molecular 
graphs.2  Gutman and Polansky in their book Mathematical Concepts in Organic Chemistry3 

used the terms complete molecular graphs and skeleton graphs for plerograms and kenograms, 
respectively. 

We use here the terms plerographs and kenographs for plerograms and kenograms, 
respectively.  We adopted these terms because plerograms and kenograms are graphs rather than 
types of diagrams, and we also wanted to preserve the roots of Cayley's terms.  Therefore, we 
substituted grams in Cayley's terms with graphs. Cayley could not do this because the name 



Issue in Honor of Prof. Alexander Balaban ARKIVOC 2005 (x) 33-44 

ISSN 1424-6376 Page 34 ©ARKAT USA, Inc 

graph was not yet adopted in 1847.  This happened only after the one-page paper by Sylvester4 
appeared in Nature (in 1877) in which he introduced the term graph, stimulated as he stated by 
chemicographs in Lectures notes for chemical students (London, 1866) by Edward Frankland 
(1825-1899).  Frankland used in his Notes the term graphic-like symbolic formulae. 

The idea to of finding invariants for plerographs from the corresponding kenographs was 
investigated recently by several authors.  In particular, Gutman et al.5 has expressed the Wiener 
index6  W(P) in terms of W(K) and the Harary index7,8 H(P) in terms of H(K) for alkane isomers.  
They found the relationships between W(P) and W(K), and H(P) and H(K) to be linear.  Bonchev 
et al.9,10 derived Wiener indices for plerographs that they called thorny graphs.  The name thorny 
graphs or t-thorn graphs for plerographs was introduced by Gutman.11 

Here we report the computation of paths and walks for plerographs and kenographs 
representing alkanes.  In Figure 1, we give as examples these two types of molecular graphs for 
2,3,3-trimethylpentane.  Molecular graphs will be depicted in a usual way– atoms will be 
replaced by vertices and bonds by edges.12   In alkane graphs, called also molecular trees, the 
maximal vertex-degree is four. 

From Figure 1 we see that the kenograph is much simpler structure than the plerograph.  This 
is a probable reason why the practitioners of chemical graph theory opted for kenographs in their 
work.  Nevertheless, it is of interest to investigate the relationship between plerographs and 
kenographs. 
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Figure 1. Two graph-theoretical representations of 2,3,3-trimethylpentane: plerograph P and 
kenograph K. The plerograph has 3 N + 2 vertices while the kenograph has N vertices.  In this 
case N is 8. 
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Basic Graph-Theoretical Concepts13,14 

 
An acyclic graph is a graph that has no cycles.  A tree is a connected acyclic graph.  A leaf is the 
end-vertex. A path p is any subtree in which all interior vertices have valence 2. Length of a path 
is the number of edges in the path. A walk w is an alternating sequence of vertices and edges, 
with each edge being incident to the vertices immediately preceding and succeeding it in the 
sequence. Length of a walk is the number of edges in the walk. For the sake of simplicity, paths 
(walks) of the length i  shall be called i-paths (i-walks).  

For a set of vertices X, we use G(X) to denote the induced subgraph of G whose vertex set is 
X and whose edge set is the subset of E(G) consisting of those edges with both ends in X.  A 
subgraph is induced by a walk if it is induced by set of vertices of the walk. A walk W in graph G 
is complete if G(W)=G. 

Let pi,P (pi,K) be the number of different i-paths in a plerograph (kenograph), and  wi,P (wi,K) 
the number of different i-walks in a plerograph (kenograph).  The dependency of pi,P and wi,P 
( 51 ≤≤ i ) on the number and valency of vertices in kenograph is determined in this paper.  
 
Paths 
In the case of alkanes, all vertices in the related kenographs correspond to carbon atoms, while in 
plerographs the mono-valent vertices correspond to hydrogen atoms while four-valent vertices 
correspond to carbon atoms.  So, let h  be the number of vertices of degree one in the plerograph 
and c  the number of four-valent vertices in the plerograph. Obviously, the total number of 
vertices in plerograph is 
 

vP = c + h            (1) 
 
In the plerograph, 1-paths correspond to edges, so we have 
 

p1,P = eP = vP  - 1           (2) 
 
since the plerograph of any alkane is a tree. Note that  
 

eP = (4 c + h)/ 2           (3) 
 
and, since the plerograph is also a tree, it follows that 
 

eP = vP  - 1 = c + h - 1          (4) 
 
Thus, we have 
 

(4 c + h)/ 2 = c + h - 1          (5) 
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h = 2 c + 2           (6) 
 
and, therefore, 
 

vP  = c + h = 3 c + 2 = 3 vK  + 2       (7) 
 
where vK is the total number of vertices in kenograph. Finally, we get  
 

p1,P = 3 vK + 1          (8) 
 

If we consider i-paths in the plerograph, 2≥i , we see that leaves of any such path can 
correspond to both, hydrogen and carbon atoms, but interior vertices have to correspond to 
carbon atoms since they are not mono-valent. For any path p let the interior of the path, denoted 
by int(p), be a subgraph of the path induced in a graph by the interior vertices of the path. Thus, 
we can conclude that the interior of any path in the plerograph is a subgraph of the kenograph.  If 
the interior of the path (of length ≥ 3) in the kenograph is fixed, each of the terminal leaves of p 
can be chosen in 3 different ways, so there are 9 different paths in the plerograph with that 
interior.  The number pi,P  will be determined if we count how many subgraphs of the kenograph 
can be the interior of an i-path in the plerograph. 

The interior of any 2-path in the plerograph is a single vertex in the kenograph, so for the 
given vertex the path in the plerograph can be chosen in 4

2
⎛ ⎞
⎜ ⎟
⎝ ⎠

 = 6 different ways. Therefore, 

 
p2,P = 6 vK          (9) 

 
The interior of any 3-path in the plerograph is an edge in the kenograph and can be chosen in 

eK different ways (i.e., vK  - 1 since the kenograph is a tree). We get 
 

p3,P = 9 (vK – 1) = 9 vK – 9       (10) 
 

The interior of any 4-path in the plerograph is a 2-path in the kenograph, therefore, 
 

p4,P  = 9 p2,K         (11) 
 

Now, consider any 2-path in the kenograph. There are vK possible ways to choose u (where u 
is the interior vertex of the path), and for u  chosen there are ( )

   2
Kd u⎛ ⎞

⎜ ⎟
⎝ ⎠

 different ways to choose 

leaves. Thus, we have 
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∑ ∑    (12) 

 
where M1 is the first Zagreb index, defined as15-18 
 

M1 (G) =   ∑  [dG(u)] 2          (13) 
                     u∈V(G) 
 
where dG(u)  is the degree (=the number of the first neighbors) of a vertex u. Finally, 
 

p4,P = 9 p2,K   = 9 M1 (K)/2 – 9 vK  + 9       (14) 
 
The interior of any 5-path in the plerograph is a 3-path in the kenograph, so 
 

p5,P = 9 p3,K             (15) 
 

Considering 3-paths in the kenograph, let u  and v  be the interior vertices of any such path. 
Any member of )(KE  can be uv  and if we fix that edge, the leaf adjacent to u  can be chosen in 

1)( −udK  different ways and the leaf adjacent to v  can be chosen in dK(v) - 1 different ways. 
Therefore,  
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where M2 is the first Zagreb index, defined as15,16,18,19 
 

M2 (G) =     ∑    dG(u) dG(v)         (17) 
          u,v∈E(G) 
 
Finally, we get 
 

p5,P  = 9 p3,K  = 9 M2 (K) - 9 M1 (K) + 9 vK - 9      (18) 



Issue in Honor of Prof. Alexander Balaban ARKIVOC 2005 (x) 33-44 

ISSN 1424-6376 Page 38 ©ARKAT USA, Inc 

Walks 
Every 1-walk in the plerograph induces an edge in the plerograph. For each edge in the 
plerograph there are two different 1-walks that induce that edge. So, we have  
 

w1,P = 2 eP  = 2 (vP – 1) = 2 (3 vK + 2 – 1) = 6 vK +  2     (19) 
 

Let us consider 2-walks. We shall divide all such walks in two groups: Walks that induce 1-
paths in the plerograph and walks that induce 2-paths in the plerograph. 

For each 1-path (i.e., edge uv ) in the plerograph there are two complete 2-walks on that path: 
One starting at vertex u  and other starting at vertex v . Therefore, there are 2 p1,P  2-walks in the 
plerograph that induce 1-paths in the plerograph. For each 2-path in the plerograph, there are two 
complete 2-walks on that path: One starting at one leaf and the other walk starting at another 
leaf. Therefore there are 2 p2,P  2-walks in the plerograph that induce 2-paths in the plerograph.  

Since every 2-walk induces a 1-path or 2-path and no 2-walk induces both, i.e., the above 
division in groups partitions the set of all 2-walks in the plerograph, we can conclude 
 

w2,P = 2 p1,P + 2 p2,P          (20) 
 

All 3-walks of any plerograph can be divided into three disjoint sets of walks: 
1. walks that induce 1-paths in the plerograph 
2. walks that induce 2-paths in the plerograph  
3. walks that induce 3-paths in the plerograph. 

Analogous to 2-walks we can conclude that there are 2p1,P  3-walks in the plerograph that 
induce 1-paths in the plerograph and 2p3,P  3-walks in the plerograph that induce 3-paths in the 
plerograph.   

For each 2-path in the plerograph there are 4 different complete 3-walks on that path: One 
starting at each leaf and two starting at each interior vertex. Therefore there are 4 p2,P  3-walks in 
the plerograph that induce 2-paths in the plerograph. 

Since, the above division partitions the set of all 3-walks in plerograph (i.e., every 3-walk is 
in one group and no 3-walk is in two groups) we can conclude  
 

w3,P  = 2 p1,P  + 4 p2,P  + 2 p3,P         (21) 
 

For 4-walks and 5-walks we need to consider the following graphs: 
 

G1 G2  
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All 4-walks of the plerograph can be divided into 5 disjoint sets of walks: 
1. walks that induce 1-paths in the plerograph 
2. walks that induce 2-paths in the plerograph 
3. walks that induce 3-paths in the plerograph 
4. walks that induce 4-paths in the plerograph 
5. walks that induce subgraphs of the plerograph isomorphic to G1. 

Analogous to 2-walks we can conclude that there are 2p1,P  4-walks in the plerograph that 
induce 1-paths in the plerograph and 2p4,P  4-walks in the plerograph that induce 4-paths in the 
plerograph. 

For each 2-path in the plerograph there are 8 different complete 4-walks on that path: Three 
starting at each leaf and two starting at each interior vertex. Therefore there are 8 p2,P  4-walks in 
the  plerograph that induce 2-paths in the plerograph. 

For each 3-path in the plerograph there are 4 different complete 4-walks on that path: One 
starting at each leaf and one starting at each of the interior vertices. Therefore there are 4 p3,P  4-
walks in the plerograph that induce 3-paths in the plerograph. 

For each subgraph of the plerograph that is isomorphic to G1, there are 6 different complete 
4-walks on that subgraph: Two starting at each leaf. Here, we also have to determine how many 
such subgraphs of the plerograph there are. An interior vertex of G1 can be any vertex in 
kenograph and for the interior vertex chosen, we choose leaves in the plerograph, which can be 
done in 4

4
3
⎛ ⎞

=⎜ ⎟
⎝ ⎠

 different ways. So, there are 4vK subgraphs of the plerograph isomorphic to G1. 

Therefore, there are 24vK different 4-walks in the plerograph that induce subgraphs of the 
plerograph isomorphic to G1. 

Since the above division partitions the set of all 4-walks in the plerograph, we have 
 

w4,P  = 2 p1,P  + 8 p2,P  + 4 p3,P + 2 p4,P  + 24 vK      (22) 
 

Finally, all 5-walks of the plerograph can be divided into 7 disjoint sets of walks: 
1. walks that induce 1-paths in the plerograph 
2. walks that induce 2-paths in the plerograph 
3. walks that induce 3-paths in the plerograph 
4. walks that induce 4-paths in the plerograph 
5. walks that induce 5-paths in the plerograph 
6. walks that induce subgraphs of the plerograph isomorphic to G1 
7. walks that induce subgraphs of the plerograph isomorphic to G2. 

Analogous to 2-walks we can conclude that there are 2p1,P  5-walks in the plerograph that 
induce 1-paths in the plerograph and 2p5,P  5-walks in the plerograph that induce 5-paths in the 
plerograph. 
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For each 2-path in plerograph there are 12 different complete 5-walks on that path: Three 
starting at each leaf and six starting at interior vertex. Therefore, there are 12p2,P  5-walks in the 
plerograph that induce 2-paths in the plerograph. 

For each 3-path in the plerograph there are 12 different complete 5-walks on that path: Four 
starting at each leaf and two starting at each interior vertex. Therefore, there are 12p3,P  5-walks 
in plerograph that induce 3-paths in the plerograph. 

For each 4-path in the plerograph there are 4 different complete 5-walks on that path: One 
starting at each leaf and one starting at each interior vertex adjacent to a leaf. Therefore, there are 
4p4,P  5-walks in the plerograph that induce 4-paths in the plerograph. 

For each subgraph of the plerograph that is isomorphic to G1, there are 12 different complete 
5-walks on that subgraph: Two starting at each leaf and 6 starting at an interior vertex. We 
already have determined that there are 4vK subgraphs of the plerograph isomorphic to G1. 
Therefore, there are 12 × 4vK  = 48vK different 5-walks in the plerograph that induce subgraphs 
of the plerograph isomorphic to G1. 

For each subgraph of the plerograph that is isomorphic to G2, there are 4 different complete 
5-walks on that subgraph. Let vertices of G2 be labeled as on the following picture. 
 

G2

v1 v2 v3

v4

v5

 
 

Then two of those walks start at 1v , one at 4v  and one at 5v . Now, as to the number of 
subgraphs of the plerograph isomorphic to G2, any edge of the kenograph can be chosen as 32vv  
and for that edge chosen leaf 1v  can be chosen in 3 different ways and pair of leaves 4v  and 5v  

can be chosen in 4
6

2
⎛ ⎞

=⎜ ⎟
⎝ ⎠

 different ways. Therefore, there are 18eK = 18(vK – 1) = 18vK – 18 

subgraphs of the plerograph isomorphic to G2. Finally, we get that number of 5-walks that induce 
subgraphs of the plerograph isomorphic to G2 is equal to 4(18vK – 18) = 72vK – 72. 

Since the above division partitions the set of all 5-walks in the plerograph, we have 
 

w5,P  = 2 p1,P  + 12 p2,P  + 12 p3,P + 4 p4,P  + 2 p5,P  + 48 vK + 72 vK  - 72   (23) 
 
Correlation between walks in plerographs and kenographs 
We correlated the number of walks in plerographs against the number of walks in kenographs of 
18 octanes.  Octanes were selected following Randić's advice:20,21 He recommended octanes as a 
test set because it consists of only 18 isomers that possess structural properties that are also 
present in other alkanes.   



Issue in Honor of Prof. Alexander Balaban ARKIVOC 2005 (x) 33-44 

ISSN 1424-6376 Page 41 ©ARKAT USA, Inc 

In Table 1 we report the number of walks with up to the length 7 and in Figure 2 we give the 
scatter-plot between the number of said walks in octane kenographs and plerographs. 

The number of walks was obtained by the matrix multiplication since it is well-established 
that the number of walks of length λ beginning at vertex i and ending at vertex j is given by the 
element (Aλ)ij, the ij-element, in the λ-th power of the adjacency matrix A.22-24  The computation 
was carried out by means of a C++ program.   
 
Table 1. The number of walks with up to the length 7 for kenographs and plerographs 
representing isomeric octanes 

Octane Number of walks of length 
at most 7 in the kenograph 

Number of walks of length 
at most 7 in the plerograph 

n-Octane 1254 29006 
2-Methylheptane 1528 29834 
3-Methylheptane 1676 30176 
4-Methylheptane 1712 30212 
3-Ethylhexane 1856 30554 
2,2-Dimethylhexane 2284 31490 
2,3-Dimethylhexane 2136 31328 
2,4-Dimethylhexane 1994 31040 
2,5-Dimethylhexane 1822 30680 
3,3-Dimethylhexane 2602 32138 
3,4-Dimethylhexane 2272 31652 
3-Ethyl-2-methylpentane 2304 31688 
3-Ethyl-3-methylpentane 2882 32750 
2,2,3-Trimethylpentane 3072 33236 
2,2,4-Trimethylpentane 2634 32372 
2,3,3-Trimethylpentane 3218 33524 
2,3,4-Trimethylpentane 2592 32462 
2,2,3,3-Tetramethylbutane 4094 35072 
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Figure 2. The scatter-plot between the number of walks in the plerographs w(P) and the number 
of walks in the kenographs w(K) representing 18 octanes. 
 

The obtained relationship between the number of walks in octane-kenographs w(K) and the 
number of walks in octane-plerographs w(P) is approximately linear: 
 

w(P) = 26678.9 + 2.1 w(K)         (24) 
 
with the correlation coefficient r=0.995 and the standard deviation of the linear correlation 
s=160. Therefore, if the walks are used, for example, in the QSPR or QSAR25,26 modeling of 
acyclic structures, it appears that it is sufficient to use kenographs for representing molecules 
under study.  The use of plerographs may possibly bring slight new insights, but the computation 
will be more time-consuming since plerographs are more complex structures than kenographs as 
shown by the computed walks for octanes in Table 1.  However, it should be pointed out that the 
plerographs correspond more closely to molecular structures than the kenographs.  

 
 
Conclusions 
 
In the present work, we reported the relationship between paths and walks in kenographs and 
plerographs of acyclic molecules, exemplified in this case by octanes.  It appears that the 
relationship between these two representations of octanes is nearly linear.  Thus, the kenographs 
appear as a satisfactory graph-theoretical representation for computing paths and walks of 
alkanes that can be of use, for example, in QSAR or QSPR.  Therefore, until it is found the case 
when the kenographs and plerographs deviate considerably from the linear correlation, the use of 
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simpler kenographs is justified.  So let the search for such a case continue.  It should also be 
especially interesting to study the comparison between plerographs and kenographs for hetero-
systems. 
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