Boron and gallium esters derived from 2-(1,3,5-dithiazinan-5-yl)ethanols

Juan Carlos Gálvez-Ruiz, ${ }^{\text {a,b }}$ Esau Solano-Ruiz, ${ }^{\text {a }}$ Sonia A. Sánchez-Ruiz, ${ }^{\text {a }}$ Rosalinda Contreras, ${ }^{a}$ and Angelina Flores-Parra ${ }^{\text {a * }}$
${ }^{a}$ Departamento de Química, Cinvestav México,. A.P. 14-740, C.P. 07000, México D.F., México.
${ }^{b}$ Departamento de Ciencias Químico-Biológicas, Universidad de Sonora, México;
E-mail: aflores@cinvestav.mx

Dedicated to Professor Rosalinda Contreras on the occasion of her $60^{\text {th }}$ birthday

Abstract

Compounds 2-(1,3,5-dithiazinan-5-yl)ethanol (1), 2-methyl-2-(1,3,5-dithiazinan-5-yl)ethanol (2) and 2-phenyl-2-(1,3,5-dithiazinan-5-yl)ethanol (3) reacted with $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ and $\mathrm{BCl}_{3} \cdot \mathrm{DMS}, \mathbf{1}$ and $\mathbf{2}$ with $\left(\mathrm{Ph}_{2} \mathrm{~B}\right) \mathrm{O}$, and $\mathbf{2}$ and $\mathbf{3}$ with GaCl_{3} giving the corresponding chelates, bearing $\mathrm{N} \rightarrow \mathrm{BF}_{2} \mathrm{O}$, $\mathrm{N} \rightarrow \mathrm{BCl}_{2} \mathrm{O} \mathrm{N} \rightarrow \mathrm{BPh}_{2} \mathrm{O}$, and $\mathrm{N} \rightarrow \mathrm{GaCl}_{2} \mathrm{O}$ groups. The internal coordination $\mathrm{N} \rightarrow \mathrm{M}(\mathrm{M}=\mathrm{B}$ or Ga$)$ afforded spiro-compounds, where nitrogen is the central atom. Compounds were mainly characterized by ${ }^{11} \mathrm{~B},{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR. The $\mathrm{N} \rightarrow \mathrm{B}$ or $\mathrm{N} \rightarrow \mathrm{Ga}$ coordination bond was detected in the ${ }^{1} \mathrm{H}$ spectra because coordination stops the ring inversion of the dithiazinane ring differentiating equatorial and axial protons. The presence of a sterogenic center at the ethanol arm (ligands 2 and 3), differentiates $\mathrm{C} 4 \mathrm{H}_{2}$ and $\mathrm{C} 6 \mathrm{H}_{2}$ upon coordination. Minimum energy structures for boron compounds were calculated [ab initio $6-31 \mathrm{G}(\mathrm{d}, \mathrm{p})$]. VT NMR experiments for diphenyl borinic esters were performed in order to estimate the $\mathrm{N} \rightarrow \mathrm{BPh}_{2}$ coordination energy. X-ray diffraction analyses of the hydrochloride of ligand $\mathbf{1}$ and of the gallium compound prepared from 2 were obtained.

Keywords: 2-(1,3,5-dithiazinan-5-yl)ethanols, boron and gallium esters, X-ray diffraction, $a b$ initio calculations, VT NMR

Introduction

Dithiazinanes are very reactive molecules rich in lone pairs and suitable ligands for elements of group 13. They are used as flavouring agents ${ }^{1}$ catalysts, ${ }^{2}$ antibiotics ${ }^{2,3}$ or reagents in organic synthesis. ${ }^{4,5}$ The coordinating ability of the simple dithiazinanes was already tested using BX_{3} reagents $\left(X=H\right.$ or halogen), in all cases the nitrogen is the more basic site, ${ }^{6-13}$ Scheme 1. An
important characteristic of the boron-nitrogen adducts of dithiazinanes is that the equatorial $\mathrm{N} \rightarrow \mathrm{BH}_{3}$ or $\mathrm{N} \rightarrow \mathrm{BF}_{3}$ groups stop the fluxional behavior of the ring by the presence of multiple and cooperative proton-hydride or proton-fluoride interactions. ${ }^{11-13}$

Scheme 1. Borane adducts of N-methyldithiazinanes. ${ }^{11-13}$
In the past, one of us has investigated the reactions of BH_{3} and boric acid with ethanolamines. ${ }^{14}$ It was found that these reactions give selectively boric or boronic esters, amineboranes, amineboranes-boric esters or amineborane-boronic esters depending on the stoichiometry and the reaction conditions. In the reaction products, the nitrogen lone pair could be intramolecularly coordinated to boron, if the steric demand is not very high. Therefore, our interest was focused in exploring how the combination of dithiazinane and ethanolamine groups in compounds 1-3 could give better ligands for boron or gallium compounds, Scheme 2.

Scheme 2. Dithiazinanyl derivatives used as ligands.
The strong intramolecular hydrogen bonds $\mathrm{O}-\mathrm{H}^{\cdots} \mathrm{N}$ of compounds $\mathbf{1 - 3}{ }^{15}$ are indicative that in the corresponding boron or gallium esters, these atoms would occupy the place of the proton, Scheme 2. This idea is supported by the report that diphenyl borinic esters of 4hydroxypiperidine 7 and 1,4-diethanolpiperazine ${ }^{24}$ present strong intramolecular $\mathrm{N} \rightarrow \mathrm{B}$ coordination leading to spiro-compounds.

The preparation and the structural analysis of the dithiazinanyl- N -ethanols ligands (1-3) have been reported. ${ }^{15}$ The solid state structures obtained by X-ray diffraction showed that the ethanol moiety was placed in the axial position with a strong intramolecular hydrogen bond $\mathrm{OH}^{\cdots} \mathrm{N}$, whereas the NMR analyses in CDCl_{3} showed a ring conformational equilibrium at room temperature with a preferred conformation for the N-alkyl group in axial position ${ }^{8}$, the latter phenomenon has been attributed to the electronic repulsion between the lone pairs at sulfur and
nitrogen atoms. ${ }^{16}$ The low temperature spectra of compounds $\mathbf{1 - 3}$ show that the ring conformation is frozen and different signals for equatorial and axial protons are observed. ${ }^{15}$ For ligands $\mathbf{2}$ and $\mathbf{3}$, the low temperature and the presence of a stereogenic center at C-8 (Scheme 2), make the methylene groups at C 4 and C 6 diasterotopic, with different ${ }^{1} \mathrm{H}-\mathrm{NMR}$ chemical shifts.

We have already investigated the reaction of the neutral ligands $\mathbf{2}$ and $\mathbf{3}$ with organoaluminum compounds. ${ }^{17}$ Three types of aluminum derivatives were obtained, shown in Scheme 3.

Scheme 3. Organoaluminum compounds derived from ligands 2 and 3. ${ }^{17}$

These results motivated us to test the reactions of compounds $\mathbf{1 - 3}$ with other group 13 elements: boron and gallium. The expected derivatives are interesting because both elements can react with the OH group giving the corresponding esters and forming chelates by coordination to the nitrogen atom. They are also of interest as gallium coordination compounds have been less well investigated than boron derivatives, despite the fact that gallium has a metallic character and that strong and stable derivatives are expected. The structure of the products was determined by NMR and the minimum energy conformations of the boron compounds were calculated by $a b$ initio $6-31 \mathrm{G}(\mathrm{d}, \mathrm{p})$. The X-ray diffraction analysis of the gallium compound $\left(\mathrm{R}=\mathrm{CH}_{3}, \mathbf{1 2}\right)$ as well as the hydrochloride (15) of compound $\mathbf{1}$ are also reported.

Results and Discussion

Boron Compounds

We have reacted 2-(1,3,5-dithiazinan-5-yl)ethanols $\mathbf{1 - 3}$ with $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}, \mathrm{BCl}_{3} \cdot \mathrm{SMe}_{2}$, and $\mathbf{1}$ and $\mathbf{2}$ with $\left(\mathrm{Ph}_{2} \mathrm{~B}\right)_{2} \mathrm{O}$. Different products were expected because dithiazinanyl-ethanols present two active sites to boron reagents: the OH group which can form boron esters and the nitrogen that can give $\mathrm{N} \rightarrow \mathrm{B}$ coordination compounds. Unfortunately, we were not able to obtain crystals for X-ray diffraction analyses, however we have performed ab initio calculations as an alternative to study the minimum energy structures, and as we will see later, calculations are an excellent tool for the structural analyses of these compounds.

The reactions of compounds 1-3 with two equivalents of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ in the presence of NEt_{3} afforded the difluoroborates 4 (85%), $\mathbf{5}(80 \%)$ and $\mathbf{6}(95 \%)$; whereas with BCl_{3} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ or DMS gave the dichloroborates 7 (94\%), 8 (90\%) and 9 (94\%), Scheme 4.

Scheme 4

The reactions of $\mathbf{1 - 2}$ with $\left(\mathrm{Ph}_{2} \mathrm{~B}\right)_{2} \mathrm{O}$ in toluene afforded selectively the diphenyl borinic esters 10 (90\%) and 11 (95\%), Scheme 5.

Scheme 5

From the reaction mixture of compound 7, some crystals were obtained which were the hydrochloride (15) of compound 1, its X-ray diffraction structure was determined, and is discussed below.

The ${ }^{11}$ B NMR spectra show broad signals for compounds $\mathbf{4 - 6}(\mathbf{4}+3.7,5+3.8, \mathbf{6}+3.4 \mathrm{ppm})$ which correspond to $\mathrm{OBF}_{2} \leftarrow \mathrm{~N}$ groups, ${ }^{18,19}$ and for compounds $7-9(7+9.9, \mathbf{8}+10.0, \mathbf{9}+10.3$ ppm) characteristic of $\mathrm{OBCl}_{2} \leftarrow \mathrm{~N}$ groups. ${ }^{18,19}$ Reactions between two equivalents of compounds $\mathbf{1}$ and 2 and $\left(\mathrm{Ph}_{2} \mathrm{~B}\right)_{2} \mathrm{O}$ produced esters $\mathbf{1 0 - 1 1}$, the ${ }^{11} \mathrm{~B}$ signals $(\mathbf{1 0}+44, \mathbf{1 1}+43 \mathrm{ppm})$ were attributed to tricoordinated planar diphenylboronic esters, indicating the absence of nitrogen coordination, however when the ${ }^{11} \mathrm{~B}$ spectra were obtained at $-60^{\circ}(\mathbf{1 0}+3.2, \mathbf{1 1}+1.0 \mathrm{ppm})$ the chemical shifts corresponded to diphenylborinic esters coordinated with nitrogen, Scheme 6. Therefore, for diphenylboron compounds, an equilibrium between the open boron esters and the intramolecular coordinated $\mathrm{N} \rightarrow \mathrm{B}$ molecules is proposed. The experiment indicated that the dithiazinane ring is a weaker base than piperidine or piperazine because the diphenyl borinic
esters derived from 4-hydroxypiperidine $\left[\delta^{11} \mathrm{~B}\left(25^{\circ} \mathrm{C}\right)+3.0 \mathrm{ppm}\right]^{7}$ and 1,4-diethanolpiperazine $\left[\delta^{11} \mathrm{~B}\left(25^{\circ} \mathrm{C}\right)+6.0 \mathrm{ppm}\right]^{24}$ are already coordinated at room temperature.

Scheme 6. Compounds 10-11 are in equilibrium between the open structure and the spirobicyclic compound, $\mathrm{N} \rightarrow \mathrm{B}$ bond energies were calculated from VT NMR experiments.

Esters formation (4-11) was also confirmed by their ${ }^{13} \mathrm{C}$ spectra. Signals for C 8 are shifted to high frequencies $(\Delta \delta \approx 6.7 \mathrm{ppm})$ with respect to the starting ethanol-dithiazinanes $\mathbf{1 - 3}$, Table 1 . The coupling pattern of the ${ }^{1} \mathrm{H}$ NMR spectra of 4-9 and of $\mathbf{1 0 - 1 1}$ at low temperature indicate that the inversion of dithiazinane rings is anchored as a consequence of the $N \rightarrow B$ coordination. The axial and equatorial protons appear at different chemical shift and are coupled due to the presence of stereogenic carbon atoms (C8 bearing methyl or phenyl groups) in compounds 5, $\mathbf{6}$, 8, 9 and 11. The $\mathrm{C}_{4} \mathrm{H}_{2}$ and $\mathrm{C}_{6} \mathrm{H}_{2}$ methylene groups are diasterotopic, and the separation of the diasterotopic signals increases with the strength of the $\mathrm{N} \rightarrow \mathrm{B}$ coordination bond. ${ }^{20}$ In Table 1, NMR data are shown.

The difference in the chemical shift of the CH_{2} protons is also due to the non symmetric contact of the halogen atoms with the methylenic protons in 4-9. As is shown in the calculated molecules that will be discussed below, one of the halogen atoms adopt a pseudoequatorial position with respect to the five membered ring and is close to the two axial C 4 H and C 6 H protons, whereas the second halogen atom is pseudoaxial and lies close to the C 6 H equatorial proton producing an electronic effect. Figure 1 illustrates these interactions. It is therefore expected that the highest frequency signal belongs to the equatorial C 6 H proton; from this assumption and using HETCOR and COSY experiments the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ signals were assigned.

From the NMR experiments the $\mathrm{N} \rightarrow \mathrm{B}$ coordination bond energy of $\mathbf{1 0 - 1 1}$ was calculated and the values are $50.8(\mathbf{1 0})$ and $55.7 \mathrm{~kJ} \mathrm{~mol}^{-1}(\mathbf{1 1})$; these are higher than those found for the free ligands 1 and $2\left(45.4 \text { and } 49.3 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)^{15}$ and N -methyl-dithiazinane ($46 \mathrm{~kJ} \mathrm{~mol}^{-1}$), ${ }^{16,21}$ however they are weak bonds in the range found for $\mathrm{N} \rightarrow \mathrm{B}$ heterocycles $\left(50-81 \mathrm{~kJ} \mathrm{~mol}^{-1}\right) .{ }^{22-24}$

Table 1. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data (δ, ppm) for compounds $\mathbf{1 - 1 4}$ and 16

$\begin{array}{cc} \mathrm{No} & \mathrm{R} \\ 1 & \mathrm{H} \\ 2 & \mathrm{CH}_{3} \\ 3 & \mathrm{C}_{6} \mathrm{H}_{5} \\ 4 & \mathrm{H} \\ 5 & \mathrm{CH}_{3} \\ 6 & \mathrm{C}_{6} \mathrm{H}_{5} \end{array}$	E No. H 7 H 8 H 8 H 9 BF_{2} 10 BF_{2} 11 BF_{2} 12	$\begin{array}{cc} \mathrm{R} & \mathrm{E} \\ \mathrm{H} & \mathrm{BCl}_{2} \\ \mathrm{CH}_{3} & \mathrm{BCl}_{2} \\ \mathrm{C}_{6} \mathrm{H}_{3} & \mathrm{CCl}_{2} \\ \mathrm{H} & \mathrm{Bh}_{2} \\ \mathrm{CH}_{3} \mathrm{BPh}_{2} \\ \mathrm{C}_{6} \mathrm{H}_{5} & \mathrm{BPh}_{2} \end{array}$	$13 \mathrm{R}=\mathrm{CH}_{3}$ $14 R=\mathrm{C}_{6} \mathrm{H}_{5}$						
Compd	2 ax	2 eq	4ax	6ax	4 eq	6 eq	C2	C4	C6
1(-60 ${ }^{\circ} \mathrm{C}$)	4.50	3.54	4.77	4.77	3.97	3.97	33.8	58.4	58.4
4(-10)	4.30	3.44	4.48	4.48	3.97	3.97	30.2	55.8	55.8
$7\left(25^{\circ} \mathrm{C}\right)$	4.22	3.48	4.62	4.62	4.35	4.35	30.7	57.9	57.9
10($-60^{\circ} \mathrm{C}$)	4.43	2.54	4.66	4.66	3.93	3.93	32.2	58.2	57.9
2(-60 $\left.{ }^{\circ} \mathrm{C}\right)$	4.54	3.60	4.73	4.86	3.97	3.97	33.7	55.6	61.2
$5\left(25^{\circ} \mathrm{C}\right)$	4.28	3.42	4.47	4.47	3.98	3.98	30.5	55.1	57.9
$8\left(25^{\circ} \mathrm{C}\right)$	4.26	3.51	4.68	4.53	4.16	4.43	30.7	58.1	58.7
$11\left(-50^{\circ} \mathrm{C}\right)$	4.69	3.59	4.49	4.49	3.43	3.43	31.6	56.5	57.3
$12\left(25^{\circ} \mathrm{C}\right)$	4.34	3.44	4.92	4.69	3.85	4.30	31.2	53.8	57.3
$16\left(25^{\circ} \mathrm{C}\right)$	4.36	3.44	4.85	5.00	3.84	3.86	32.0	56.9	53.5
3(-60 $\left.{ }^{\circ} \mathrm{C}\right)$	4.55	3.60	4.77	4.87	3.98	4.09	33.9	55.6	61.1
6($25^{\circ} \mathrm{C}$)	4.26	3.38	4.47	4.53	3.99	4.16	30.5	57.4	54.8
9($25^{\circ} \mathrm{C}$)	4.19	3.36	4.48	4.66	4.29	4.31	30.6	58.5	57.9
$13\left(25^{\circ} \mathrm{C}\right)$	4.34	3.42	4.67	5.01	4.05	4.20	31.8	57.0	53.6

Figure 1. Minimum energy structure calculated for compound 8. One chlorine atom is close to equatorial $\mathrm{C} 6-\mathrm{H}$, whereas the other is close to axial $\mathrm{C} 4-\mathrm{H}$.

Optimized structures of boron compounds 4-11

The preferred conformation of molecules 4-11 was calculated [ab initio $6-31 \mathrm{G}(\mathrm{d}, \mathrm{p})$] and found to be the same conformation for all compounds. The six membered rings have a chair conformation, the ethanol groups are in an axial position and the boron is in an equatorial position. The five membered rings formed by the coordination show an envelope conformation. For compounds 5, 6, 8, 9 and 11, the methyl or phenyl groups are found in pseudoequatorial positions, some examples of which are shown in Figures 1-4.

In the calculated molecules bearing boron halogen bonds, the $\mathrm{N} \rightarrow \mathrm{B}$ bond lengths are (4 1.70; $51.75,61.73,81.72,91.71 \AA$). The $\mathrm{N} \rightarrow \mathrm{B}$ distances indicate this coordination and are comparable with the $\mathrm{N} \rightarrow \mathrm{B}$ bond distance of $1.63 \AA$ found by X-ray diffraction analysis in the $\mathrm{N} \rightarrow \mathrm{BH}_{2} \mathrm{Cl}$ adduct of N -methyl dithiazinane. ${ }^{25}$ The calculated preferred conformations are similar to that found by X-ray diffraction analyses for the aluminium derivatives ${ }^{17}$, and for the gallium compound (12) reported here. For example, the calculated angles around the nitrogen (which can be related to the coordination bond) in compounds 5 (C4-N-C6 112.2; C6-N-C7 113.9 and $\mathrm{C} 4-\mathrm{N}-\mathrm{C} 7114.9^{\circ}$) and 8 (C4-N-C6 110.8; C6-N-C7 112.3 and $\mathrm{C} 4-\mathrm{N}-\mathrm{C} 7114.4^{\circ}$) are similar to those found in the X-ray analysis of the gallium compound 12 (C4-N-C6 110.6; C6-NC7 111.6 and $\mathrm{C} 4-\mathrm{N}-\mathrm{C} 7113.3^{\circ}$), see below. The boron atoms are also pyramidal. For example, in compound 5 the angles are: $\mathrm{O}-\mathrm{B}-\mathrm{F}_{\mathrm{A}} 116.5, \mathrm{O}-\mathrm{B}-\mathrm{F}_{\mathrm{B}} 117.5, \mathrm{~F}_{\mathrm{A}}-\mathrm{B}-\mathrm{F}_{\mathrm{B}} 112.1^{\circ}$ and in $8 \mathrm{O}-\mathrm{B}-\mathrm{Cl}_{\mathrm{A}}$ $113.9, \mathrm{O}_{\mathrm{B}}-\mathrm{Cl}_{\mathrm{B}} 115.6, \mathrm{Cl}_{\mathrm{A}}-\mathrm{B}-\mathrm{Cl}_{\mathrm{B}} 110.0^{\circ}$.

Figure 2. Preferred conformer of compound 4 found by ab initio $6-31 \mathrm{G}(\mathrm{d}, \mathrm{p})$ calculations.

A view of compounds 5 and 9 in the C7-C8 bond axis (left in Figures 3 and 4) shows the preferred envelope conformation of the five membered ring, with the nitrogen atom out of the ring plane, and that the phenyl or methyl group is in the equatorial position.

Figure 3. Two views of the calculated preferred conformation of compound 5.

Figure 4. Two views of the calculated minimum energy structure of compound 9.

The coordinated $\mathrm{N} \rightarrow \mathrm{B}$ structures of compounds $\mathbf{1 0 - 1 1}$ were also calculated. The most stable conformation observed for $\mathbf{1 1}$ is shown in Figure 5. Angles around the boron and nitrogen atoms and the $\mathrm{N} \cdots \mathrm{B}$ distances $(\approx 3.05 \AA)$ indicate a weak interaction, shorter than the sum of the van der Waals radii $(3.84 \AA) .{ }^{26}$ In these molecules, the boron sp^{3} hybridization is minimum ($\approx 0.4 \%$) disfavouring the $\mathrm{N} \rightarrow \mathrm{B}$ bond coordination as was also deduced from the NMR analysis. In the preferred conformation of $\mathbf{1 1}$, it is noted that the plane of the phenyl groups is close to the C 4 H and C 6 H equatorial protons, which explains the shielding effect found in the ${ }^{1} \mathrm{H}$ spectra of $\mathbf{1 1}$ ($\mathrm{C} 4-\mathrm{H}$ and $\mathrm{C} 6-\mathrm{H} 3.43 \mathrm{ppm}$) when compared with $\mathbf{8}$ (C4-H 4.16 and $\mathrm{C} 6-\mathrm{H} 4.43 \mathrm{ppm}$).

Figure 5. Structure of compound 11 found by ab initio 6-31G(d,p) calculations.

Gallium compounds

The gallium (dithiazinyl)ethanol compounds $\mathbf{1 2}$ and $\mathbf{1 3}$ were prepared from the reaction of the sodium ethanolate of compounds 2 and $\mathbf{3}$ and GaCl_{3} in toluene, $\mathbf{1 2}$ (90 \%) and $\mathbf{1 3}$ (90 \%), Scheme 7. After the reaction they were directly dissolved in dried CDCl_{3} and analysed by NMR. Compound 12, crystallized directly from the NMR tube.

Compounds $\mathbf{1 2 - 1 3}$, show very complex NMR coupling patterns, due to the fact that the gallium is strongly bonded to the ligand and to the stereogenic carbon atoms of the racemic ligands. The behaviour is similar to that found in the boron compounds, and the explanation was confirmed by the X-ray diffraction analyses.

Scheme 7

Compound $\mathbf{1 2}$ crystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as a dimer, and X-ray analysis was performed at 25 ${ }^{\circ} \mathrm{C}$, Figure 6 . Compound $\mathbf{1 2}$ is pentacyclic with two six membered rings, two five membered rings and one four membered ring. The dithiazinane rings have a chair conformation, with the gallium coordinated to the nitrogen atom in an equatorial position, and the ethanolic chain in an axial position. The five membered rings have an envelope conformation with C 7 and C 7 a out of the ring plane and the methyl group in an equatorial position. Both stereogenic C 8 carbon atoms have the same configuration in each dimer, and enantiomeric dimers are found in the crystal. The four membered ring is planar, and is formed by oxygen and gallium atoms. The gallium geometry is a distorted tbp with one oxygen and one nitrogen atoms in apical positions (angles O-Ga-N 151.27° and 153.40°), Table 2. In equatorial positions, the gallium has two chlorine and one oxygen atom. The $\mathrm{Cl}-\mathrm{Ga}-\mathrm{O}$ angles are unequal around each gallium center. For the chlorine atom which is pseudoequatorial in the five membered ring, the angles are 133.5° and 137.4°, while for the pseudoaxial chlorine the angles are 109.7° and 111.0°). The angles between $\mathrm{Cl}-\mathrm{Ga}-$ Cl are 112.8° and 115.4°. The gallium atoms form the longest bonds with the nitrogen atoms (2.23 and $2.22 \AA$) and the shortest with the gallium equatorial oxygen atoms ($1.89 \AA$), whereas with the axial oxygen atoms are $1.96 \AA$. The $\mathrm{Ga}-\mathrm{Cl}$ bond lengths are $\approx 2.18 \AA$.

Figure 6. X-Ray diffraction structure of compound 12.

Table 2. Compound 12, selected bond lengths and angles

Bond lengths					
Cl2-Ga1	2.1791(8)	Ga1-O10	1.8919(2)	Ga1-N5	2.235(2)
Ga2-O10	1.968(2)	Ga1-Cl1	2.1860 (8)	N5-C6	1.486(4)
O10-C8	1.439(3)	S1-C6	1.801(3)	S1-C2	1.804(4)
N5-C4	1.484(4)	C8-C9	$1.515(5)$	S3-C2	1.803(4)
N5-C7	1.485(4)	C8-C7	1.520(4)	S3-C4	1.813(3)
Bond angles					
C6-N5-Ga1	109.99(2)	$\begin{aligned} & \text { O10-Ga1- } \\ & \text { Cl2 } \end{aligned}$	109.71(7)	C2-S3-C4	97.51(2)
C2a-S3a-C4a	97.15(2)	N5-C4-S3	116.5(2)	$\begin{aligned} & \text { O10-Ga1- } \\ & \text { Cl1 } \end{aligned}$	137.43(7)
C8-O10-Ga1	121.69(2)	S3-C2-S1	112.22(2)	C8-O10- Gala	133.21(2)
Cl2-Ga1-Cl1	112.85(4)	Ga1-O10- Gala	104.99(9)	O10-Ga1-N5	79.96(9)
O10-C8-C9	110.8(3)	Cl2-Ga1-N5	97.66(6)	Cl1-Ga1-N5	93.44(6)
C6-S1-C2	96.77(2)	C7-N5-C6	111.7(2)	$\begin{aligned} & \text { O10-Ga1a- } \\ & \text { Cl2a } \end{aligned}$	102.40(7)
C4-N5-C7	113.3(2)	C4-N5-Ga1	109.95(2)	C4-N5-C6	110.6(2)
C7-N5-Ga1	100.99(2)	$\begin{aligned} & \text { O10-Ga1a- } \\ & \text { Cl1a } \end{aligned}$	94.34(6)	O10-C8-C7	107.0(2)
$\begin{aligned} & \mathrm{Cl1a-Ga1a-} \\ & \mathrm{Cl2a} \end{aligned}$	115.40(4)	C9-C8-C7	110.7(3)	N5-C7-C8	110.6(2)
N5-C6-S1	116.3(2)				

The position of the chlorine atoms with respect to the C 4 and C 6 methylene hydrogen bonds is important. There are four intramolecular $\mathrm{Cl} \cdots \mathrm{H}$ bonds with distances between 2.67-3.16 \AA. These bonds produce a very complex NMR spectrum as we have already discussed for the boron compounds, Figure 7.

Figure 7. Short contacts between the chlorine atoms and the methylene protons found by X-ray diffraction analyses in compound 12.

It is interesting to compare the gallium compound $\mathbf{1 2}$ with an analogous reported aluminum compound $\mathbf{1 7}$ prepared from ligand $\mathbf{1},{ }^{17}$ Figure 8 . The aluminum oxygen bonds vary between 1.82 to $1.92 \AA$, the longest bonds are the Al-N $(2.47 \AA)$ and the shortest the Al-C 1.96-1.97 $\AA .{ }^{17}$ The angles N -Al-O are similar to those of the gallium compound $\left(151,152^{\circ}\right)$. The angles C-Al-C $\left(124^{\circ}\right)$ are more open than the $\mathrm{Cl}-\mathrm{Ga}-\mathrm{Cl}$ angles.

Figure 8. Aluminum compound $\mathbf{1 7}$ prepared from ligand $\mathbf{1}$ and $\mathrm{AlMe}_{2} \mathrm{Cl}^{17}{ }^{17}$

In the cell of compound 12, the chlorine atoms have intermolecular hydrogen bonds as is shown in Figure 9.

Figure 9. Compound $\mathbf{1 2}$ forms polymers by $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds and sulfur sulfur weak contacts.

Compound 15, the hydrochloride of $\mathbf{1}$, was obtained as a by-product, from the reaction of $\mathbf{1}$ with BCl_{3} and its solid state structure was determined by X-ray diffraction. Selected bond lengths and angles are presented in Table 3. The ring is a chair with an unusual conformation for a protonated dithiazinane, bearing the N -ethanol group in axial and the $\mathrm{N}-\mathrm{H}$ proton in equatorial positions. The opposite conformation, with the biggest group in an equatorial position was expected, because the electronic repulsion between the lone pairs of the nitrogen and the sulfur atoms no longer exists, Figure 10. One possible explanation for this unusual conformation could be the presence of two hydrogen bonds formed between the $\mathrm{N}-\mathrm{CH}_{2}$ protons and the sulfur atoms (2.94 and $2.80 \AA$) [$\left.\sum_{\mathrm{vdw}}=3.26 \AA\right] .{ }^{26}$ The NH proton has a hydrogen bond with the oxygen and the OH proton with the chloride ($2.22 \AA$).

Figure 10. Solid state structure of the hydrochloride of compound 14 that shows the hydrogen bonds formed with oxygen sulfur and chloride.

Table 3. Compound $\mathbf{1 5}$ selected bond lengths and angles

Bond lengths					
S1-C6	$1.792(2)$	O9-C8	$1.421(2)$	N5-C6	$1.505(2)$
S1-C2	$1.802(2)$	N5-C7	$1.501(2)$	C7-C8	$1.501(3)$
S3-C4	$1.794(2)$	S3-C2	$1.801(2)$	N5-C4	$1.505(2)$
Bond angles					
C6-S1-C2	$97.76(9)$	C7-N5-C6	$115.77(1)$	S3-C2-S1	$112.48(1)$
C4-S3-C2	$97.59(1)$	C4-N5-C6	$111.51(1)$	N5-C4-S3	$113.68(1)$
C7-N5-C4	$112.14(1)$	O9-C8-C7	$109.4(2)$	N5-C6-S1	$113.94(1)$
C8-C7-N5	$112.4(2)$				

In the net of compound 15, the chloride ion forms five hydrogen bonds with four molecules of the ligand, Figure 11. There is also an intermolecular bond of a geminal proton to OH with one sulfur atom, as well as $\mathrm{S} \cdots \mathrm{S}(3.5 \AA)$ and $\mathrm{S} \cdots \mathrm{Cl}(3.78 \AA)$ short contacts. The oxygen atom has also two cooperative intermolecular hydrogen bonds with one proton of the chain ($2.57 \AA$) and one proton of the ring ($2.56 \AA$), Figure 12.

Figure 11. Intermolecular chloride connections with different dithiazinanium ions for compound 15. The values of the atomic distances in $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}, \mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds are shown.

Figure 12. Molecular association of the crystalline net of compound 15 showing $\mathrm{CH} \cdots \mathrm{O}$, $\mathrm{CH} \cdots \mathrm{S}, \mathrm{CH} \cdots \mathrm{Cl}, \mathrm{OH} \cdots \mathrm{Cl}$, hydrogen bonds.

Conclusions

New boron and gallium esters derived from ethanol dithiazinanes were prepared and their structures were studied by NMR and in one gallium compound by X-ray diffraction. The difluoro and dichloroboron compounds gave spiranic compounds formed by the $\mathrm{N} \rightarrow \mathrm{B}$ coordination whereas diphenylborinic esters were not coordinated in the same conditions. VT NMR experiments were performed for diphenylboron compounds in order to estimate the $\mathrm{N} \rightarrow \mathrm{B}$ energy. The minimum energy conformation for all boron compounds was calculated, and they are similar to the solid state gallium structure. The boron and gallium coordination stops the fluxional behaviour of the dithiazinane and the equatorial hydrogen atoms become different from the axial ones. The presence of a stereogenic center in the ethanol arm, differentiates the C 4 and C6 methylene groups upon coordination. Therefore the ${ }^{1} \mathrm{H}$ spectra are useful tools for the structural study of these interesting ligands.

Internal coordination $\mathrm{N} \rightarrow \mathrm{B}$ was found for difluoro, dichloro and diphenylborinic esters, the $\mathrm{N} \rightarrow \mathrm{B}$ energy for the latter indicating weak coordination. The X-ray diffraction structure of the gallium compound $\mathbf{1 2}$ showed formation of hypervalent tbp gallium atoms by dimeric association.

Experimental Section

General Procedures. All solvents were freshly distilled before use. The ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{11} \mathrm{~B}$ NMR spectra were recorded with a JEOL GXS-270 ($\left.{ }^{1} \mathrm{H} 270 \mathrm{MHz}\right)$ or a JEOL Eclipse (${ }^{1} \mathrm{H} 400 \mathrm{MHz}$). ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{11} \mathrm{~B} \delta(\mathrm{ppm})$ are referenced to TMS and $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$. Melting points were measured on a Gallenkamp apparatus and are uncorrected. Elemental analyses were performed by Oneida

Research Services, Whitesboro, New York and at Cinvestav Mexico on an Eager 300. The MS spectra were obtained to 20 eV in a HP 5989 spectrometer. Compounds $\mathbf{1 - 3}$ were prepared as reported. ${ }^{15}$ Compounds $\mathbf{2}$ and $\mathbf{3}$ are racemic. For the crystallographic study, data were measured on a Nonius Kappa CCD instrument with area detector using graphite-monochromated Mo K α radiation. Intensities were measured using $\varphi+\omega$ scans. All structures were collected at rt. Crystals of 15 were obtained from CHCl_{3}, they are triclinic space group $\mathrm{P}-1[\mathrm{a}=6.569(1), \mathrm{b}=$ $\left.7.854(2), \mathrm{c}=8.848(2) \AA ; \alpha=79.09(3), \beta=89.35(3), \gamma=79.48(3) ; \mathrm{R}_{1}=0.0418 ; \mathrm{wR}_{2}=0.0694\right]$. Crystals of compound $\mathbf{1 2}$ were obtained from CHCl_{3}, they are orthorombic space group Pbca [a $\left.=12.0621(2), b=18.8830(3), c=21.0366(4) ; \mathrm{R}_{1}=0.0666 ; \mathrm{wR}_{2}=0.086\right]$. In both structures, all hydrogen atoms were located and their positions were refined and solved by direct methods using SHELX-97, and the refinement (based on F^{2} of all data) was performed by full matrix least-squares techniques. All non-hydrogen atoms were refined anisotropically. Crystallographic data have been deposited at the Cambridge Crystallographic Data Centre as numbers: 653943 (15) and 653944 (12). Copies of the data can be obtained, free of charge, on applications to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [fax: +44-(0)1223-336033 or e-mail: deposit@ccdc.cam.ac.uk].

General Procedure for the reaction of 2-(dithiazinyl)ethanol 1-3 with haloboranes

1,1-Difluoro-2-oxa-7,9-dithia-5-aza-1-bora-spiro[4.5]decane (4). To a solution of $\mathbf{1}$ (100 mg , $0.6 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(20 \mathrm{~mL})$ and $\mathrm{NEt}_{3}(0.16 \mathrm{~mL}, 1.2 \mathrm{mmol})$ at $-40{ }^{\circ} \mathrm{C}, \mathrm{BF}_{3} \cdot \mathrm{OEt}_{3}(1.2 \mathrm{mmol}, 0.1$ mL) was slowly added. After 5 min , the solvent was evaporated and the mixture was dissolved in toluene, filtered and compound 4 was obtained as a white solid ($120 \mathrm{mg}, 94 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta=4.38(\mathrm{~s}, 4 \mathrm{H}, 2 \mathrm{H}-4,2 \mathrm{H}-6), 4.02(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}-2), 3.87\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{H}-8,{ }^{3} J 6.70 \mathrm{~Hz}\right), 3.67(\mathrm{t}$, $\left.2 \mathrm{H}, \mathrm{H}-7,{ }^{3} \mathrm{~J} 6.70 \mathrm{~Hz}\right) .{ }^{13} \mathrm{C} \delta=57.8(\mathrm{C}-8), 55.8(\mathrm{C}-4, \mathrm{C}-6), 49.9(\mathrm{C}-7), 30.2(\mathrm{C}-2) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3},-10{ }^{\circ} \mathrm{C}\right) \delta=4.48\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}-4_{\mathrm{ax}}, \mathrm{H}-6_{\mathrm{ax}},{ }^{2} J 14.0 \mathrm{~Hz}\right.$), 3.97 (br d, $2 \mathrm{H}, \mathrm{H}-4_{\mathrm{eq}}, \mathrm{H}-6_{\mathrm{eq}},{ }^{2} J 14.0$ $\mathrm{Hz}), 4.30\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-2_{\mathrm{ax}},{ }^{2} J 14.0 \mathrm{~Hz}\right.$), $3.44\left(\mathrm{br} \mathrm{d}, 1 \mathrm{H}, \mathrm{H}-2_{\mathrm{eq}},{ }^{2} J 14.0 \mathrm{~Hz}\right), 3.84\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{H}-8,{ }^{3} J 8.0\right.$ Hz), 3.67 (t, 2H, H-7, ${ }^{3} J 8.0 \mathrm{~Hz}$). ${ }^{11} \mathrm{~B}$ NMR $\delta=+3.7$ (br t, ${ }^{1} J 18.5 \mathrm{~Hz}$). Anal. Calcd. for $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{NOS}_{2} \mathrm{BF}_{2}$: C (31.45), H (6.16), N (6.11). Found: C (32.02), H (6.26), N (6.40).
1,1-Difluoro-3-methyl-2-oxa-7,9-dithia-5-aza-1-bora-spiro[4.5]decane (5) was prepared, following the same procedure as for $\mathbf{4}$. Compound $2(107 \mathrm{mg}, 0.6 \mathrm{mmol}), \mathrm{NEt}_{3}(0.16 \mathrm{~mL}, 1.2$ $\mathrm{mmoL})$ and $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{3}(0.1 \mathrm{~mL}, 1.2 \mathrm{mmol})$. A white solid was obtained, $136 \mathrm{mg}, 92 \%$. NMR $\left(\mathrm{CDCl}_{3}\right){ }^{1} \mathrm{H} \delta=4.60\left(\mathrm{ddq}, 1 \mathrm{H}, \mathrm{H}-8,{ }^{3} J 9.4,6.0,5.9 \mathrm{~Hz}\right), 4.47\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}-4_{\mathrm{ax}}, \mathrm{H}-6_{\mathrm{ax}},{ }^{2} J 13.9 \mathrm{~Hz}\right)$, 4.28 (d, 1H, H-2 ax,${ }^{2} J 13.9 \mathrm{~Hz}$), 4.18 (dd, 1H, H-7A, ${ }^{2} J 12.5,{ }^{3} J 6.0 \mathrm{~Hz}$), 3.98 (br d, 2H, H-4 eq, H$\left.6_{\text {eq }},{ }^{2} J 13.9 \mathrm{~Hz}\right), 3.42\left(\mathrm{br} \mathrm{d}, 1 \mathrm{H}, \mathrm{H}-2_{\mathrm{eq}},{ }^{2} J 13.9 \mathrm{~Hz}\right), 2.71\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-7 \mathrm{~B},{ }^{2} J 12.5,{ }^{3} J 9.4 \mathrm{~Hz}\right), 1,21$ (d, 3H, H-9, ${ }^{3} J 6.0 \mathrm{~Hz}$). ${ }^{13} \mathrm{C} \delta=65.0(\mathrm{C}-8), 57.9$ (br s, C-6), 57.0 (C-7), 55.1 (br s, C-4), 30.5 (C-2), 21.6 (C9). ${ }^{11} \mathrm{~B} \delta=+3.8$ (br s). Anal. Calcd. for $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{NOS}_{2} \mathrm{BF}_{2}$: C (34.58), $\mathrm{H}(6.63), \mathrm{N}$ (5.76). Found: C (34.30), H (6.60), N (5.63).

1,1-Difluoro-3-phenyl-2-oxa-7,9-dithia-5-aza-1-bora-spiro[4.5]decane (6) was prepared as 4. Compound $3(145 \mathrm{mg}, 0.6 \mathrm{mmol}), \mathrm{NEt}_{3}(0.16 \mathrm{~mL}, 1.2 \mathrm{mmoL})$ and $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{3}(0.1 \mathrm{~mL}, 1.2 \mathrm{mmol})$. A white solid was obtained, $136 \mathrm{mg}, 92 \%$. NMR $\left(\mathrm{CDCl}_{3}\right){ }^{1} \mathrm{H} \delta=5.01\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-8,{ }^{3} \mathrm{~J} 6.7,7.7\right.$
$\mathrm{Hz}), 4.53\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-4_{\mathrm{ax}},{ }^{2} J 13.0 \mathrm{~Hz}\right), 4.47\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-\mathrm{G}_{\mathrm{ax}},{ }^{2} J 14.0 \mathrm{~Hz}\right), 4.44\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-7 \mathrm{~A},{ }^{2} J 12.2\right.$, $\left.{ }^{3} J 6.7 \mathrm{~Hz}\right), 4.41\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-7 \mathrm{~B},{ }^{2} J 12.2,{ }^{3} J 7.7 \mathrm{~Hz}\right), 4.26\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-2_{\mathrm{ax}},{ }^{2} J 13.8 \mathrm{~Hz}\right), 4.16$ (br d, $1 \mathrm{H}, \mathrm{H}-4_{\mathrm{eq}},{ }^{2} J 13.0 \mathrm{~Hz}$), 3.99 (br d, $1 \mathrm{H}, \mathrm{H}-\mathrm{b}_{\mathrm{eq}},{ }^{2} J 14.0 \mathrm{~Hz}$), $3.38\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-2\right.$ eq,$\left.{ }^{2} J 13.8 \mathrm{~Hz}\right) .{ }^{13} \mathrm{C} \delta=$ $138.2\left(\mathrm{C}_{i}\right), 128.8\left(\mathrm{C}_{o}\right), 128.2\left(\mathrm{C}_{p}\right), 125.7\left(\mathrm{C}_{m}\right), 70.6(\mathrm{C}-8), 57.4(\mathrm{br} \mathrm{s}, \mathrm{C}-6), 57.0(\mathrm{C}-7), 54.8(\mathrm{br} \mathrm{s}$, $\mathrm{C}-4), 30.5(\mathrm{C}-2) .{ }^{11} \mathrm{~B} \delta=+3.4$ (br s). Anal. Calcd. for $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{NOS}_{2} \mathrm{BF}_{2}$: C (34.58), H (6.63), N (5.76). Found: C (34.30), H (6.60), N (5.63).

1,1-Dichloro-2-oxa-7,9-dithia-5-aza-1-bora-spiro[4.5]decane (7). To a solution of $\mathbf{1}$ (100 mg , $0.6 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and $\mathrm{NEt}_{3}(0.16 \mathrm{~mL}, 1.2 \mathrm{mmol})$ at $-78{ }^{\circ} \mathrm{C}, \mathrm{BCl}_{3} \cdot(1.2 \mathrm{mmol}, 0.16$ mL) was slowly added, after 1 h , the solvent was evaporated. The mixture was dissolved in toluene and filtered, then, the toluene was evaporated in vacuum and 7 was obtained as a white solid (120 mg, 94\%). NMR $\left(\mathrm{CDCl}_{3}\right){ }^{1} \mathrm{H} \delta=4.62\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}-4_{\mathrm{ax}}, \mathrm{H}-6_{\mathrm{ax}},{ }^{2} J 14.1 \mathrm{~Hz}\right), 4.35(\mathrm{dt}, 2 \mathrm{H}$, $\left.\mathrm{H}-4_{\mathrm{eq}}, \mathrm{H}_{-6 \mathrm{eq}},{ }^{2} J 14.1,{ }^{4} J 1.5 \mathrm{~Hz}\right), 4.22\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-2_{\mathrm{ax}},{ }^{2} J 14.1 \mathrm{~Hz}\right), 4.04(\mathrm{t}, 2 \mathrm{H}, \mathrm{H}-7, J 6.6 \mathrm{~Hz}), 3.90$ $(\mathrm{t}, 2 \mathrm{H}, \mathrm{H}-8, J 6.6 \mathrm{~Hz}), 3.48\left(\mathrm{dt}, 1 \mathrm{H}, \mathrm{H}-2_{\mathrm{eq}},{ }^{2} J 14.1,{ }^{4} J 1.5 \mathrm{~Hz}\right) .{ }^{13} \mathrm{C} \delta=59.5(\mathrm{C}-8), 57.9(\mathrm{C}-4, \mathrm{C}-$ 6), 48.6 (C-7), $30.7(\mathrm{C}-2) .{ }^{11} \mathrm{~B} \delta=+9.9$. Anal. Calcd. for $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{BCl}_{2} \mathrm{NOS}_{2}$: C (24.41), $\mathrm{H}(4.10), \mathrm{N}$ (5.69). Found: C (25.13), H (4.54), N (5.11).

1,1-Dichloro-3-methyl-2-oxa-7,9-dithia-5-aza-1-bora-spiro[4.5]decane (8) was prepared following the same procedure as for 7 . Compound $2(107 \mathrm{mg}, 0.6 \mathrm{mmol}), \mathrm{NEt}_{3}(0.16 \mathrm{~mL}, 1.2$ $\mathrm{mmoL})$ and $\mathrm{BCl}_{3}(0.16 \mathrm{~mL}, 1.2 \mathrm{mmol})$. A white solid was obtained, $143 \mathrm{mg}, 92 \%$. NMR $\left(\mathrm{CDCl}_{3}\right){ }^{1} \mathrm{H} \delta=4.68\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-6_{\mathrm{ax}},{ }^{2} J 14.1 \mathrm{~Hz}\right), 4.53\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-4_{\mathrm{ax}},{ }^{2} J 14.1 \mathrm{~Hz}\right), 4.43(\mathrm{dt}, 1 \mathrm{H}, \mathrm{H}-$ $4_{\text {eq }},{ }^{2} J 14.1,{ }^{4} J 3.0 \mathrm{~Hz}$), $4.16\left(\mathrm{dt}, 1 \mathrm{H}, \mathrm{H}-6_{\text {eq }},{ }^{2} J 14.1,{ }^{4} J 3.0 \mathrm{~Hz}\right.$), 4.28 (qdd, $1 \mathrm{H}, \mathrm{H}-8,{ }^{3} J 11.2,5.7$, $4.5 \mathrm{~Hz}), 4.26\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-2_{\mathrm{ax}},{ }^{2} J 13.9 \mathrm{~Hz}\right), 4.23\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-7 \mathrm{~A},{ }^{2} J 13.9,{ }^{3} J 4.5 \mathrm{~Hz}\right.$), 3.51 (dt, $1 \mathrm{H}, \mathrm{H}-$ $\left.2_{\text {eq }},{ }^{2} J 13.9,{ }^{4} J 3.0 \mathrm{~Hz}\right), 3.19\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-7 \mathrm{~B},{ }^{3} J 11.2,{ }^{2} J 13.9 \mathrm{~Hz}\right), 1.28\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{H}-9,{ }^{3} J 5.7 \mathrm{~Hz}\right) .{ }^{13} \mathrm{C}$ $\delta=67.9(\mathrm{C}-8), 58.7(\mathrm{C}-4), 58.1(\mathrm{C}-6), 54.9(\mathrm{C}-7), 30.7(\mathrm{C}-2), 21.1(\mathrm{C}-9) . .{ }^{11} \mathrm{~B} \delta=+10.0$. Anal. Calcd. for $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{BCl}_{2} \mathrm{NOS}_{2} .1 / 5 \mathrm{C}_{7} \mathrm{H}_{8}$: C (31.92), $\mathrm{H}(4.92)$, N (5.03). Found: C (31.37), H (5.54), N (5.11).
1,1-Dichloro-3-phenyl-2-oxa-7,9-dithia-5-aza-1-bora-spiro[4.5]decane (9) was obtained following the same procedure as for 7 . Compound $\mathbf{3}(145 \mathrm{mg}, 0.6 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and $\mathrm{NEt}_{3}(0.16 \mathrm{~mL}, 1.2 \mathrm{mmol}), \mathrm{BCl}_{3} \cdot(1.2 \mathrm{mmol}, 0.16 \mathrm{~mL})$. Compound 9 was obtained as a white solid, (120 mg, 94\%). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta=7.25(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}), 5.06\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-8,{ }^{3} J 7.8,7.0 \mathrm{~Hz}\right)$, $4.66\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-4_{\mathrm{ax}},{ }^{2} J 14.6 \mathrm{~Hz}\right), 4.48\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-6_{\mathrm{ax}},{ }^{2} J 14.1 \mathrm{~Hz}\right), 4.40\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-7 \mathrm{~A},{ }^{2} J 10.4,{ }^{3} J\right.$ 7.0 Hz), 4.31 (br d, $1 \mathrm{H}, \mathrm{H}-4_{\mathrm{eq}},{ }^{2} J 13.5 \mathrm{~Hz}$), 4.29 (br d, $\left.1 \mathrm{H}, \mathrm{H}-6_{\mathrm{eq}},{ }^{2} J 13.5 \mathrm{~Hz}\right), 4.19\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-2_{\mathrm{ax}}\right.$, ${ }^{2} J 13.8 \mathrm{~Hz}$), $3.40\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-7 \mathrm{~B},{ }^{2} J 10.4,{ }^{3} J 7.8 \mathrm{~Hz}\right.$), $3.36\left(\mathrm{br} \mathrm{d}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{eq}^{2},{ }^{2} J 13.8 \mathrm{~Hz}\right) .{ }^{13} \mathrm{C} \delta=$ $139.6(\mathrm{Ci}), 128.7$ (Co), 128.2 (Cp), 125.8 (Cp), 73.0 (C-8), 58.5 (C-6), 57.9 (C-4), 55.5 (C-7), $30.6(\mathrm{C}-2) .{ }^{11} \mathrm{~B} \delta=+10.3$. Anal. Calcd. for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{BCl}_{2} \mathrm{NOS}_{2}$. Calcd: C 41.02, H 4.38, $\mathrm{N}, 4.35$. Found C 41.53, H 4.45, N, 4.74
2-(1,3,5-Dithiazinan-5-yl)ethyl]diphenylborinic ester (10). A solution of $\mathbf{1}$ ($140 \mathrm{mg}, 0.83$ $\mathrm{mmol})$ and $\left(\mathrm{Ph}_{2} \mathrm{~B}\right)_{2} \mathrm{O}(140 \mathrm{mg}, 0.41 \mathrm{mmol})$ in toluene $(60 \mathrm{~mL})$ was refluxed for 12 h , the solvent was evaporated and compound $\mathbf{1 0}$ was obtained as a viscous yellow liquid, $270 \mathrm{mg}, 90 \%$. NMR ${ }^{1} \mathrm{H}\left(\mathrm{CDCl}_{3}\right) \delta=7.67(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{Ph}), 7.32(\mathrm{~m}, 8 \mathrm{H}, \mathrm{Ph}), 4.30(\mathrm{~s}, 4 \mathrm{H}, 2 \mathrm{H}-4,2 \mathrm{H}-6), 4.21\left(\mathrm{t},{ }^{3} J 5.50\right.$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{H}-8$), 4.02 (s, 2H, H-2), 3.31 (t, 2H, H-7, ${ }^{3} J 5.50 \mathrm{~Hz}$). ${ }^{1} \mathrm{H}$ NMR (THF- $d_{8},-60{ }^{\circ} \mathrm{C}$) $\delta=$
7.79 (s, 2H, Ph), $7.40(\mathrm{br} \mathrm{s}, 8 \mathrm{H}, \mathrm{Ph}), 4.66\left(\mathrm{~d},{ }^{3} J 12.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-4_{\mathrm{ax}}, \mathrm{H}_{\mathrm{ax}}\right.$), $4.43\left(\mathrm{~d},{ }^{3} \mathrm{~J} 13.0 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{H}-2_{\mathrm{ax}}$), 4.25 (br s, 2H, H-7), 3.93 (d, ${ }^{3} J 12.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-4_{\mathrm{eq}}, \mathrm{H}-6_{\mathrm{eq}}$), $2.54\left(\mathrm{~d},{ }^{3} J 13.0 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{H}-2 \mathrm{eq}$), $3.40(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{H}-8) .{ }^{13} \mathrm{C} \delta=137.8(\mathrm{Ci}), 134.28(\mathrm{Co}) 129.8(\mathrm{Cp}), 127.5(\mathrm{Cm}), 65.5(\mathrm{C}-8)$, $58.8(\mathrm{C}-4, \mathrm{C}-6), 50.7(\mathrm{C}-7), 33.3(\mathrm{C}-2) .{ }^{13} \mathrm{C}\left(\mathrm{THF}-d_{8},-60{ }^{\circ} \mathrm{C}\right) \delta=140.3(\mathrm{C} i), 129.7(\mathrm{Cp}), 131.6$ (Co), $130.0(\mathrm{Cm}), 63.7(\mathrm{C}-8), 58.2,57.9(\mathrm{C}-4, \mathrm{C}-6), 50.2(\mathrm{C}-7), 32.2(\mathrm{C}-2) .{ }^{11} \mathrm{~B}\left(\mathrm{THF}-d_{8}\right) \delta=$ +44.0 at $25^{\circ} \mathrm{C}$; +3.2 at $-60^{\circ} \mathrm{C}$. Anal. Calcd. of $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{BNOS}_{2}$: $\mathrm{C}(62.01), \mathrm{H}(6.12), \mathrm{N}(4.25)$. Found: C (62.38), H (6.21), N (4.77).
[2-(1,3,5-Dithiazinan-5-yl)-1-methylethyl]diphenylborinic ester (11) was prepared following the procedure described for $\mathbf{1 0}$. Compound $2(150 \mathrm{mg}, 0.84 \mathrm{mmol})$ and $\left(\mathrm{Ph}_{2} \mathrm{~B}\right)_{2} \mathrm{O}(140 \mathrm{mg}, 0.42$ mmol) in toluene (60 mL). Compound 11 is a yellow liquid, $274 \mathrm{mg}, 95 \%$. NMR (THF- d_{8}, $\left.50^{\circ} \mathrm{C}\right){ }^{1} \mathrm{H} \delta=8.35-7.44(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ph}), 4.57(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{H}-8), 4.69\left(\mathrm{~d},{ }^{2} J 13.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2_{\mathrm{ax}}\right), 4.49$ (d, ${ }^{2} J 13.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-4_{\mathrm{ax}}, \mathrm{H}-6_{\mathrm{ax}}$), 3.93 (br d, $\left.{ }^{2} J 12.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7 \mathrm{~A}\right), 3.59\left(\mathrm{~d},{ }^{2} J 13.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\right.$ $2_{\text {eq }}$), 3.43 (d, ${ }^{2} J 13.4,2 \mathrm{H}, \mathrm{H}-4_{\text {eq }}, ~ \mathrm{H}-6_{\text {eq }}$), 2.88 (br d, $\left.{ }^{2} J 12.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7 \mathrm{~B}\right) .{ }^{13} \mathrm{C}\left(\mathrm{THF}-\mathrm{d}_{8},-90^{\circ} \mathrm{C}\right)$ $\delta=141.8,136.7,135.2,134.8,133.2,131.6,128.5,128.2,127.9,127.6$ (2Ph), 69.3 (C8), 60.15 (C-7), 57.3, 56.5 (C-4, C-6), 31.6 (C-2), 20.6 (C-9). ${ }^{11} \mathrm{~B}$ (THF- d_{8}) $\delta=+43.0$ at $25^{\circ} \mathrm{C} ;+1.0$ at $-50^{\circ} \mathrm{C}$. Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{BNOS}_{2}$: C (62.97), H (6.46), N (4.08). Found: C (63.45), H (6.77), N (4.57).

O-Dichlorogallium-1-methyl-2-(1,3,5-dithiazinan-5-yl)ethanolate dimer (12). To a suspension of $\mathrm{NaH}(1.34 \mathrm{mmol})$ in THF $(0.5 \mathrm{~mL})$ at rt , a solution of $2(200 \mathrm{mg}, 1.11 \mathrm{mmol})$ in THF (30 mL) was added. After 30 min , the excess of NaH was filtered and the solvent evaporated. The colourless viscous liquid obtained was dissolved in toluene (30 mL) and a 0.05 M solution of $\mathrm{GaCl}_{3}(210 \mathrm{mg}, 1.19 \mathrm{mmol})$ in toluene $(30 \mathrm{~mL})$ was added. The mixture was stirred for 30 min , filtered and the solvent evaporated. Compound $\mathbf{1 2}$ was obtained as a white solid which was crystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ or CDCl_{3} ($350 \mathrm{mg}, 90 \%$). Mp 147-149 ${ }^{\circ} \mathrm{C}$. NMR $\left(\mathrm{CDCl}_{3}\right){ }^{1} \mathrm{H}=4.92\left(\mathrm{~d}, \operatorname{Hax}-6,{ }^{2} \mathrm{~J}=14.4 \mathrm{~Hz}\right), 4.69\left(\mathrm{~d}, \operatorname{Hax}-4,{ }^{2} \mathrm{~J}=14.2 \mathrm{~Hz}\right), 4.34\left(\mathrm{~d}, \operatorname{Hax}-2,{ }^{2} \mathrm{~J}=\right.$ 13.8 Hz), $4.31\left(\mathrm{dd}, \mathrm{H}-7 \mathrm{~b},{ }^{2} \mathrm{~J}=12.4,{ }^{3} \mathrm{~J}=5.8 \mathrm{~Hz}\right), 4.30\left(\mathrm{dt}, \mathrm{Hec}-4,{ }^{2} \mathrm{~J}=14.20,{ }^{4} \mathrm{~J}=2.2 \mathrm{~Hz}\right), 4.13$ $\left(\mathrm{m}, \mathrm{H}-8,{ }^{3} \mathrm{~J}=6.0,11.4,5.8 \mathrm{~Hz}\right), 3.85\left(\mathrm{dt}, \mathrm{Hec}-6,{ }^{2} \mathrm{~J}=14.4,{ }^{4} \mathrm{~J}=2.2 \mathrm{~Hz}\right), 3.44\left(\mathrm{dt}, \mathrm{Hec}-2,{ }^{2} \mathrm{~J}=\right.$ $13.8,{ }^{4} \mathrm{~J}=2.2 \mathrm{~Hz}$), $2.46\left(\mathrm{dd}, \mathrm{H}-7 \mathrm{a},{ }^{2} \mathrm{~J}=12.4,{ }^{3} \mathrm{~J}=11.4 \mathrm{~Hz}\right), 1.40\left(\mathrm{~d}, 3 \mathrm{H}-9,{ }^{3} \mathrm{~J}=6.0 \mathrm{~Hz}\right) .{ }^{13} \mathrm{C} \delta=$ 62.9 (C-8), 57.3 (C-4), 53.8 (C-6), 52.9 (C-7), 31.8 (C-2), 21.0 (C-9). Anal. Calc. for $\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{Cl}_{4} \mathrm{Ga}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{4}$: C (22.60), H (3.79), N (4.39). Found: C (22.42), H (4.12), N (4.20).
\boldsymbol{O}-Dichlorogallium-1-phenyl-2-(1,3,5-dithiazinan-5-yl)ethanolate dimer (13). The procedure followed was as described for $\mathbf{1 2}(210 \mathrm{mg}, 0.87 \mathrm{mmol})$ and a 0.05 M solution of $\mathrm{GaCl}_{3}(0.15 \mathrm{~g}$, 0.85 mmol) in toluene (30 mL). Compound $\mathbf{1 3}$ was obtained as a yellow powder ($300 \mathrm{mg}, 90 \%$). Mp 175-177 ${ }^{\circ} \mathrm{C}$. NMR $\left(\mathrm{CDCl}_{3}\right){ }^{1} \mathrm{H} \delta=7.40-7.20(\mathrm{br} \mathrm{s}, 5 \mathrm{H}), 5.01\left(\mathrm{~d}, \operatorname{Hax}-6,{ }^{2} \mathrm{~J}=14.3 \mathrm{~Hz}\right), 5.00$ $\left(\mathrm{dd}, 1 \mathrm{H}-8,{ }^{3} \mathrm{~J}=4.4,4.0 \mathrm{~Hz}\right), 4.67\left(\mathrm{~d}, \operatorname{Hax}-4,{ }^{2} \mathrm{~J}=14.3 \mathrm{~Hz}\right), 4.41\left(\mathrm{dd}, 1 \mathrm{H}-7 \mathrm{~b},{ }^{2} \mathrm{~J}=12.6,{ }^{3} \mathrm{~J}=4.0\right.$ Hz), $4.34\left(\mathrm{~d}\right.$, Hax-2, $\left.{ }^{2} \mathrm{~J}=13.9 \mathrm{~Hz}\right), 4.20\left(\mathrm{dt}\right.$, Heq-6, $\left.{ }^{2} \mathrm{~J}=14.3,{ }^{4} \mathrm{~J}=2.6 \mathrm{~Hz}\right), 4.05\left(\mathrm{dt}\right.$, Heq-4, ${ }^{2} \mathrm{~J}=$ $\left.14.3,{ }^{4} \mathrm{~J}=2.6 \mathrm{~Hz}\right), 3.42\left(\mathrm{dt}\right.$, Heq-2, $\left.{ }^{2} \mathrm{~J}=13.9,{ }^{4} \mathrm{~J}=2.6 \mathrm{~Hz}\right), 2.85\left(\mathrm{dd}, 1 \mathrm{H}-7 \mathrm{a},{ }^{2} \mathrm{~J}=12.6,{ }^{3} \mathrm{~J}=4.4\right.$ $\mathrm{Hz}) .{ }^{13} \mathrm{C} \delta=137.9\left(\mathrm{C}_{i}\right), 129.1\left(2 \mathrm{C}_{m}\right), 128.62\left(\mathrm{C}_{p}\right), 127.9\left(\mathrm{C}_{o}\right), 69.0(\mathrm{C}-8), 57.0(\mathrm{C}-4), 53.6(\mathrm{C}-6)$, 53.0 (C-7), 31.8 (C-2). Anal. calcd. for $\mathrm{C}_{12} \mathrm{H}_{28} \mathrm{Cl}_{4} \mathrm{Ga}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{4}: \mathrm{C}$ (34.68), H (3.70), N (3.68). Found: C (34.49), H (3.82), N (4.00).

Acknowledgements

Thanks to Cinvestav for financial support and Conacyt for grant 41642 and scholarship of J. C. G.-R. We acknowledge I.Q. Marco Leyva Ramírez for technical support and J. Guthrie for helpful discussion.

References

1. Moody, C. J. Comprehensive Heterocyclic Chemistry, Pergamon Press: Oxford, 1984; Vol. 3, p1084.
2. Nohyaku, N. Chem. Abstr. 1985, 102, 149292d (JP 6004,177 [85 04, 177]).
3. Hughes, S.; McCall, E. Chem. Abstr. 1964, 60, 5528a (Brit. 943, 273 [Cl. C 07d]).
4. Paulsen, H.; Heiker, F. R. Liebigs. Ann. Chem. 1981, 2180.
5. Balanson, R. D.; Kobal, V. M.; Schumaker, R. R. J. Org. Chem. 1977, 42, 393.
6. Cadenas-Pliego, G. PhD Thesis, Cinvestav-México, 1995.
7. Flores-Parra, A.; Farfán, N.; Hernández-Bautista, A.; Fernández-Sánchez, L.; Contreras, R. Tetrahedron 1991, 47, 6903.
8. Flores-Parra, A.; Cadenas-Pliego, G.; Martínez-Aguilera, L. M. R.; García-Nares, M. L.; Contreras R. Chem. Ber. 1993, 126, 863.
9. Cadenas-Pliego, G.; Rosales-Hoz, M.-J.; Contreras, R.; Flores-Parra, A. Tetrahedron Asymm. 1994, 5, 633.
10. Flores-Parra, A.; Sánchez-Ruiz, S.; Guadarrama-Pérez, C. Eur. J. Inor. Chem. 1999, 2063.
11. Gálvez-Ruiz, J. C.; Guadarrama-Pérez, C.; Nöth, H.; Flores-Parra, A. Eur. J. Inorg. Chem. 2004, 601.
12. Güizado-Rodríguez, M.; Flores Parra, A.; Sánchez-Ruíz, S. A.; Tapia-Benavides, R.; Contreras, R.; Bakhmutov, V. I. Inorg. Chem. 2001, 40, 3243.
13. Flores-Parra, A.; Sánchez-Ruiz, S. A.; Guadarrama-Pérez, C.; Nöth, H.; Contreras, R. Eur. J. Inorg. Chem. 1999, 11, 2069.
14. (a) Mancilla, T.; Santiesteban, F.; Contreras, R.; Klaébé, A. Tetrahedron Lett. 1982, 23, 1561. (b) Santiesteban, F.; Mancilla, T.; Klaébé, A.; Contreras, R. Tetrahedron Lett. 1983, 24, 759.
15. Gálvez-Ruiz, J. C.; Jaen-Gaspar, J. C.; Castellanos-Arzola, I. G.; Contreras R.; Flores-Parra, A. Heterocycles 2004, 63, 2269-2285.
16. L. Angiolini, R. P.; Duke, R. A. Y.; Jones, R.; Katritzky, J. Chem. Soc. Perkin 2 1972, 674.
17. Gálvez-Ruiz, J. C.; Nöth, H.; Flores-Parra, A. Inorg. Chem. 2003, 42, 7569.
18. Nöth, H.; Wrackmeyer, B. In Nuclear Magnetic resonance Spectroscopy of Boron Compounds in NMR Basic Principles and Progress, Diehl, E.; Fluck, E.; Kosfeld, R., Eds.; Springer: Berlin, 1978; Vol. 14.
19. Wrackmeyer, B. Annu. Rep. NMR Spectrosc. 1988, 20, 61.
20. Flores-Parra, A.; Cadenas-Pliego, G.; Contreras, R.; Zúñiga-Villareal, N.; Paz-Sandoval, A. J. Chem. Educ. 1993, 70, 556.
21. Flores-Parra, A.; Farfán, N.; Hernández-Bautista, A. I.; Fernández-Sánchez, L.; Contreras, R. Tetrahedron 1991, 47, 6903.
22. Santiesteban, F.; Marcos, M. A.; Morales, H.; Contreras, R. Polyhedron 1984, 1, 589.
23. Contreras, R.; García, C.; Mancilla, T.; J. Organometal. Chem. 1983, 246, 213.
24. Höpfl, H.; Farfán, N.; Castillo, D.; Santillan, R.; Contreras, R.; Martínez-Martínez, F.J.; Galván, M.; Alvarez, R.; Fernández, L.; Halut, S.; Daran, J. C. J. Organometal. Chem. 1997, 544, 175.
25. Flores-Parra, A.; Sánchez-Ruiz, S. A.; Guadarrama, C.; Nöth, H.; Contreras, R. Eur. J. Inorg. Chem. 1999, 2069.
26. Batsanov, S. S. Inorg. Materials 2001, 37, 871.
