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Abstract  
The conversion of 5-methyl-5-nitrohexan-2-one 1 into 5-methyl-5-nitrosohexan-2-one 5, isolated 
as the dimer 5a, was reexamined. For all compounds prepared full experimental details including 
physical and NMR data with signal assignments are provided.  
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Introduction  
 

The condensation of aromatic nitroso compounds with primary aromatic amines is a general 
method for the preparation of unsymmetrical diazenes (azo compounds).1 By contrast, this 
reaction is much less common in the aliphatic series; nitrosoalkanes appear to react more readily 
if they are substituted with electron-withdrawing groups as in nitrosoperfluoroalkanes.2 However, 
since 4-methyl-4-nitrosopentan-2-one undergoes condensation with aniline furnishing the 
corresponding diazene3 this reaction was considered to be applicable also to the homologous 5-
methyl-5-nitrosohexan-2-one 5 (Scheme 1), and the formation of the desired diazene 6 (Scheme 
2) was anticipated.  

The preparation of the nitroso compound 5 by conversion of 5-methyl-5-nitrohexan-2-one 1 
in the course of a multi-step synthesis has been reported4 in the context of a study of the mass 
spectral fragmentation mechanism of the nitroso ketone dimer 5a; the rather cursory synthetic 
procedures are lacking some physical data, and part of the spectroscopic data (1H NMR) have not 
been unambiguously assigned. This prompts us to describe the detailed preparation of the title 
compound and its precursors; furthermore, all physical and NMR spectroscopic data including 
signal assignments based on two-dimensional NMR techniques are provided. 
 
Results and Discussion  
 

Nitro ketone 1 is readily accessible by base-induced addition of 2-nitropropane to but-3-en-2-
one.5 The strategy to convert the nitro group of 1 into the nitroso functionality of the desired 



Issue in Honor of Prof. Miha Tišler ARKIVOC 2001 (v) 36-41 

ISSN 1424-6376 Page 37 ©ARKAT USA, Inc 

product 5 (Scheme 1) involves reduction to the hydroxylamine derivative and subsequent 
oxidation to the nitroso group. In order to prevent the interaction of the hydroxylamine 
functionality with the carbonyl group the latter has to be masked as ketal. Ketalization6 with 
trimethyl orthoformate in the presence of water-free p-toluenesulfonic acid transformed the nitro 
ketone 1 into the nitro dimethyl ketal 2. The literature lacks any data indicating the physical state 
of 2.4 Compound 2 is colorless oil that turned into a low melting solid (mp 8–10 °C) upon storage 
in the refrigerator. Nitro ketal 2 was reduced with aluminum amalgam7 in ethanol/water yielding 
the hydroxylamine derivative 3, a low-melting solid (the literature4 does not provide any data 
referring to its physical state); in the solid state 3 is stable but solutions rapidly turn green due to 
air oxidation. The hydroxylamine 3 was oxidized with mercuric oxide,8 the turquoise-blue color 
of the reaction solution is indicative of the nitroso functionality of 4; the isolated product was the 
crystalline colorless dimer, the diazene 1,2-dioxide 4a. Hydrolysis of the dimethyl ketal 4/4a 
afforded the nitroso ketone 5, the isolated product was the crystalline colorless dimer 5a. The 
four-step conversion of the nitro ketone 2 into the nitroso ketone dimer 5a was achieved with 
49% overall yield. 

 
Scheme 1. (a) HC(OCH3)3, MeOH, TsOH, 60 °C, 24 h; 85%. (b) Al/Hg, H2O, EtOH; 94%. (c) 
HgO, CHCl3, reflux, 18 h; 75%. (d) TsOH·H2O, MeCN, H2O, 20 °C, 5 min; 81%.  
 

When thin-layer chromatography (TLC) of the blue solution of the colorless dimers 4a or 5a 
was carried out immediately after the solution was prepared, only one spot was displayed (with 
upward tailing); this spot is attributed to the dimer 4a or 5a, respectively. Apparently, the 
concentration of the blue monomer (4 or 5) was too low for detection. However, when a 
concentrated solution of 4a or 5a was applied or a solution that was allowed to stand for a while 
(thereby establishing the equilibrium between dimer and monomer) the developing TLC-plate 
displayed a blue moving spot. This spot is attributed to the monomer 4 or 5; it turned colorless 
after the solvent was evaporated (owing to dimer formation) and appeared at higher Rf -value in 
addition to the corresponding dimer spot at lower Rf -value.  
The equilibration of dimers and monomers in solution (4a and 4, 5a and 5) can be followed by 
1H NMR: In acetone-d6 solution at 30 °C recording temperature the equilibrium was reached 
after 2 h, and the integration of significant signals of the two sets of 1H NMR spectra revealed the 
equilibrium ratios between monomers and dimers: 4/4a 90:10, 5/5a 85:15.10 Recording the NMR 
spectra immediately after dissolving the dimer 4a or 5a and observing the sets of shrinking and 



Issue in Honor of Prof. Miha Tišler ARKIVOC 2001 (v) 36-41 

ISSN 1424-6376 Page 38 ©ARKAT USA, Inc 

growing signals allowed the assignment of the signals to dimer and monomer species,. Due to 
the low concentration of the dimers at equilibrium some of the 13C NMR signals of 4a and 5a 
were observable only immediately after dissolution of these compounds. Application of two-
dimensional NMR techniques (HMQC and HMBC) enabled the unambiguous assignment of 1H 
and 13C NMR signals of compounds 1–5, 4a, and 5a.  

 
 
Scheme 2. (a) AcOH or F3CCO2H/AcOH, CH2Cl2, 20 °C, 12 h. (b) Et2O, –10 °C; 
NH4Cl/H2O. (c) Raney-Ni, H2NNH2·H2O, EtOH. (d) AcOH, CH2Cl2, 20 °C, 12 h.  
 

The purpose of the preparation of 5a was to condense monomer 5 with aniline in anticipation 
of the formation of 5-methyl-5-(2-phenyl-1-diazenyl)hexan-2-one 6 (Scheme 2). Despite of 
examples of analogous condensation reaction13 the acid catalyzed reaction (acetic acid, 
trifluoroacetic acid/acetic acid) of 5a/5 and aniline (at ambient temperature, 12 h) failed and led 
only to decomposition products. Also the reaction of 4a/4 with the Mg salt of aniline (prepared 
from aniline with isopropylmagnesium iodide) was unsuccessful.  

 
Alternatively, the condensation of the aliphatic and aromatic reactants with reversed 

functionalities was considered, i.e. the reaction of 5,5-dimethoxy-2-methylhexan-2-amine 7 with 
nitrosobenzene (Scheme 2). To this goal, nitro ketal 2 was reduced with Raney-Ni and hydrazine 
hydrate, and the in situ formed amine 7 was treated with nitrosobenzene in acetic acid. This 
reaction also led only to decomposition products and did not provide the desired diazene 6. 
 
 
Experimental Section 
 
General procedures. Spectroscopic data were recorded with the following instruments: Mattson 
Galaxy Series GL-3020 (IR); Bruker AM 300 (NMR: 1H at 300 MHz, 13C at 75 MHz). The 
assignment of 1H and 13C NMR signals is based on two-dimensional NMR techniques, 
heteronuclear multiple-quantum correlation (HMQC) and heteronuclear multiple-bond 
correlation (HMBC; weak correlations are placed in parentheses). Melting points (mp) were 
determined with a Kofler hot stage microscope (Reichert). Thin layer chromatography (TLC) 
was carried out on silica gel (Macherey-Nagel Polygram Sil G/UV254). PE refers to the 
petroleum ether fraction with boiling range 40–60 °C.  
5-Methyl-5-nitrohexan-2-one (1). Prepared as described in the literature.5 Colorless oil, bp 69–
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71 °C (0.02 mbar), lit.11 bp 88–91 °C (0.2 mm); n20 = 1.4460, lit.11 n20 = 1.4450; Rf = 0.32 
(ether/PE 1:1). IR (film): ν [cm-1] 2993, 2941, 2876, 1718 (C=O), 1537 (νasNO2), 1474, 1398, 
1373, 1348 (νsNO2), 1165, 856. 1H NMR (CDCl3): δ 2.36 (t, J = 8.2 Hz, 2H, 3-CH2), 2.07 (t, J 
= 8.2 Hz, 2H, 4-CH2), 2.05 (s, 3H, 1-CH3), 1.47 (s, 6H, 2 CH3). 13C NMR (CDCl3): δ 206.1 
(C=O), 87.2 (5-C), 37.9 (3-CH2), 33.7 (4-CH2), 29.6 (1-CH3), 25.5 (2 CH3); HMQC1H/13C: 
2.36/37.9; 2.07/33.7; 2.05/29.6; 1.47/25.5. HMBC 1H/13C: 2.36/206.1, 87.2, (33.7);12 2.07/206.1, 
87.2, (37.9), 25.5; 2.05/206.1, 37.9; 1.47/87.2, 33.7.  
2,2-Dimethoxy-5-methyl-5-nitrohexane4 (2). A stirred mixture of nitro ketone 1 (1.59 g, 
10 mmol), trimethyl orthoformate (1.273 g, 12 mmol) and water-free p-toluenesulfonic acid13 

(10 mg, 0.06 mmol) in absolute methanol (20 mL) was heated to 60 °C for 24 h. Methyl formate 
as it was formed was continuously distilled off; after 20 h the distillation ceased. The reaction 
mixture was brought to ambient temperature, and a few drops of a methanolic solution of sodium 
methoxide [prepared by dissolving Na (0.5 g) in absolute methanol (10 mL)] were added. After 
addition of ether (20 mL) and water (20 mL) the organic layer was extracted with satd. NaCl 
solution (3 x 20 mL), the aqueous layer was extracted with ether (20 mL). The ether extracts 
were combined and dried (K2CO3), and the solvent was evaporated. The residual yellowish oil 
was distilled in high-vacuum yielding a colorless oil 2 (1.74 g, 8.49 mmol, 85%); bp 55 °C (0.03 
mbar); n 20 = 1.4433. Upon storage in theDrefrigerator the oil turned into a colorless solid 2, mp 
8–10 °C. IR (film): ~ν[cm-1] 2991, 2947, 2831 (νH−CO), 1537 (νasNO2), 1456, 1398, 1379, 
1348 (νsNO2), 1295, 1275, 1246, 1193, 1175, 1115 (νC−O), 1092, 1053 (νC−O), 854. 1H NMR 
(acetone-d6): δ 3.09 (s, 6H, 2 CH3O), 1.93 (m, 2H, 4-CH2), 1.58 (s, 6H, 2 CH3), 1.52 (m, 2H, 3-
CH2), 1.20 (s, 3H, 1-CH3).13C NMR (acetone-d6): δ 101.1 (2-C), 88.4 (5-C), 47.5 (CH3O), 35.6 
(4-CH2), 31.2 (3-CH2), 25.4 (2 CH3), 20.7 (1-CH3). HMQC 1H/13C: 3.09/47.5; 1.93/35.6; 
1.58/25.4; 1.52/31.2; 1.20/20.7. HMBC 1H/13C: 3.09/101.1; 1.93/(101.1), (88.4), (31.2), (25.4); 
1.58/88.4, 35.6; 1.52/(101.1), (88.4), (35.6), (20.7); 1.20/101.1, (47.5), 31.2.  
2-(Hydroxyamino)-5,5-dimethoxy-2-methylhexane4 (3). Aluminum foil6 (3 g, 110 mmol, 
0.02–0.03 mm thick) was cut to ribbons (25 x 2.5 cm), and each strip (approx. 190 mg) was 
rolled to a cylinder (1 cm diameter). Each aluminum coil was dipped (15 sec) into a solution of 
HgCl2 (0.81 g, 3 mmol) in water (40 mL); each amalgamated coil was rinsed with ether followed 
by ethanol before it was inserted into a 3-necked round-bottom flask (250 mL) equipped with a 
dropping funnel, a heavy-duty reflux condenser and filled with ether (150 mL) and water 
(10 mL). To the vigorously magnetically stirred heterogeneous mixture was added drop-wise (at 
such a rate to keep the ether refluxing) a solution of the nitro ketal 2 (11.9 g, 58 mmol) in ether 
(10 mL). The initial reaction (for 5−7 min) was very fierce, and additional cooling with an ice-
bath was necessary to keep the reaction under control. After complete addition of 2, stirring was 
continued for another 30 min (or until gas evolution had ceased). The gelatinous precipitate was 
left to settle (up to 1 h), and the supernatant colorless solution was decanted and filtered through 
a funnel with a cotton plug. The residual grey sludge was washed with ether (2 x 50 mL), and the 
extracts were combined with the filtrate. The ether solution was washed, in turn, with NaOH 
solution (2 M, 2 x 25 mL) and satd. NaCl solution. After drying (MgSO4) the solvent was 
removed under vacuum at a maximum temperature of 40 °C, and the color of the solution turned 
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slightly green. The residual crude product was distilled in high-vacuum affording a colorless oil 
3, bp 92 °C (0.04 mbar); when ~νstored in the refrigerator the strongly fishy smelling oil turned 
into a colorless crystalline [cmsolid 3 (800 mg, 4.18 mmol, 94%), mp 20–22 °C; Rf = 0.69 
(ether/PE 1:1). IR (film): ] 3430 (sh), 3340 (sh), 3254, 2961, 2829 (νH−CO), 1458, 1433, 1379, 
1363, 1290, 1278, 1242, 1194, 1173, 1117 (νC−O), 1078, 1055 (νC−O), 849. 1H NMR (acetone-
d6): δ 7.5–4.5 (2 very broad s, 2H, OH, NH), 3.09 (s, 6H, 2 CH3O), 1.63–1.52 (m, 2H, 4-CH2), 
1.46–1.36 (m, 2H, 3-CH2), 1.18 (s, 3H, 6-CH3), 1.02 (s, 6H, 2 CH3). 13C NMR (acetone-d6): δ 
101.9 (5C), 56.6 (2-C), 47.4 (br s, CH3O), 32.9 (3-CH2), 30.9 (4-CH2), 24.1 (2 CH3), 20.7 (6-
CH3). HMQC 1H/13C: 3.09/47.4; 1.63–1.52/30.9; 1.46–1.36/32.9; 1.18/20.7. HMBC 1H/13C: 
3.09/101.9; 1.63–1.52/101.9, 56.6, 32.9, 20.7; 1.46–1.36/101.9, 56.6, 30.9, 24.1; 1.18/101.9, 
(47.4), 30.9; 1.02/56.6, 32.9, 24.1.  
2,2-Dimethoxy-5-methyl-5-nitrosohexane4 4  and  (E ,Z)-1,2-bis(4,4-dimethoxy-
1,1-di-methylpentyl)diazene 1,2-dioxide4 (4a). To a solution of hydroxylamine 3 (0.80 g, 
4.2 mmol) in chloroform (10 mL) was added HgO (1.30 g, 6 mmol). The reaction mixture was 
vigorously stirred and heated to reflux; after 30 min the solution turned blue, and a black sludge 
(Hg) separated. After 18 h the solvent was evaporated, the residue was mixed with a small 
volume of ether, and the sludge consisting of Hg and HgO was removed by filtration through a 
short silica gel column. The turquoise-blue filtrate was dried (MgSO4), the solvent was 
evaporated, and the residue turned crystalline upon adding some pentane, cooling in an ice-bath 
and scratching. The crystals were filtered off, and treatment of the filtrate in the same way 
afforded an additional crop. The collected product was recrystallized from pentane to yield 
colorless prisms 4a (600 mg, 1.59 mmol, 75%); mp 57–58 °C (pentane), lit.4 mp 57– 58 °C 
(pentane); Rf = 0.38 (dimer 4a), 0.65 (monomer 4) (ether/PE 1:1). Dimer 4a: IR (KBr): ~ν[cm-1] 
3008, 2999, 2988, 2955, 2833 (νΗ−CO), 1637, 1618, 1474, 1458, 1383, 1370, 1294, 1265 (νas 
ON=NO), 1244, 1221, 1188, 1175, 1117 (νC−O), 1092, 1072, 1057 (νC−O), 1038, 851. 1H 
NMR (acetone-d6; 10% 4a)14 : δ 3.11 (s, 12H, 4 CH3O), 2.10 (m, 4H, 2-CH2), 1.54 (s, 12H, 4 
CH3), 1.50 (m, 4H, 3-CH2), 1.20 (s, 6H, 5-CH3). 13C NMR (acetone-d6):15 δ = 101.40 (4-C), 
79.0 (1-C), 47.5 (CH3O), 32.0 (2-CH2), 31.4 (3-CH2), 24.0 (1,1-(CH3)2), 20.8 (5-CH3). HMQC 
1H/13C: 3.11/47.5; 2.10/32.0; 1.54/24.0; 1.50/31.4; 1.20/20.8. HMBC 1H/13C: 3.11/101.40; 
2.10/101.40, (79.0), (31.4), 24.0; 1.54/79.0, 32.0; 1.50/(101.40), 79.0, (32.0), 20.8; 
1.20/(101.40), 31.4.  
Monomer 4. 1H NMR (acetone-d6; 90% 4)14: δ3.08 (s, 6H, 2 CH3O) 2.04 (m, 2H, 4-CH2), 1.36 
(m, 2H, 3-CH2), 1.23 (s, 3H, 1-CH3), 1.13 (s, 6H, 2 CH3). 13C NMR (acetone-d6): δ101.43 (2-
C), 99.0 (5-C), 47.4 (2 CH3O), 31.8 (4-CH2), 30.6 (3-CH2), 24.0 (2 CH3), 20.6 (1CH3), 20.5 (2 
CH3). HMQC 1H/13C: 3.08/47.4; 2.04/31.8; 1.36/30.6; 1.23/20.6; 1.13/20.5. HMBC 1H/13C: 
3.08/101.43; 2.04/(101.43), 99.0, 30.6, 20.5; 1.36/101.43, (99.0), 31.8, (20.6); 1.23/101.43, 30.6; 
1.13/99.0, 31.8.  
5-Methyl-5-nitrosohexan-2-one4 5 and (E,Z)-1,2-bis(1,1-dimethyl-4-oxopentyl)diazene 1,2-
dioxide4 (5a). A mixture of nitroso dimethyl ketal dimer 4a (529 mg, 2.75 mmol) in moist 
acetonitrile (10 mL, 3% H2O) and p-toluenesulfonic acid monohydrate (10 mg) was stirred at 
ambient temperature for 5 min. The mixture was washed with satd. aqueous NaHCO3 solution 
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followed by satd. aqueous NaCl solution; the organic layer was dried (MgSO4) and concentrated 
in vacuum at ambient temperature. The residual blue oil upon cooling in the refrigerator and 
scratching in the presence of little pentane turned into a colorless crystalline solid 5a (320 mg, 
1.12 mmol, 81%); mp 54-55 °C (pentane), lit.4 mp 53–55 °C (pentane); Rf = 0.14 (dimer 5a), 
0.51 (monomer 5) (ether/PE 1:1).Dimer 5a: IR (KBr): ~ν[cm-1] 3009, 2997, 2979, 2941, 1713 
(C=O), 1637, 1473, 1448, 1414, 1389, 1369, 1358, 1300, 1267 (νas ON=NO), 1238, 1211, 1177, 
1157, 1130. 1H NMR (acetone-d6, 15% 5a)14: δ 2.43 (m, 4H, 3-CH2), 2.26 (m, 4H, 4-CH2), 2.08 
(s, 6H, 5-CH3), 1.51 (s, 12H, 4 CH3). 13C NMR (acetone-d6):15 δ 206.33 (C=O), 78.9 (1-C), 38.4 
(3-CH2), 31.2 (2-CH2), 29.22 (5-CH3), 23.6 (1,1-(CH3)2). HMQC 1H/13C: 2.43/38.4; 2.26/31.2; 
2.08/29.22; 1.51/23.6. HMBC 1H/13C: 2.43/206.33, 78.9, (31.2), (29.22); 2.26/ 206.33, 78.9, 
(38.4), 29.22, 23.6; 2.08/206.33, 38.4; 1.51/ 78.9, 31.2.  
 
Monomer 5. 1H NMR (acetone-d6, 85%)14: δ 2.35 (m, 2H, 3-CH2), 2.20 (m, 2H, 4-CH2), 2.07 
(s, 3H, 1-CH3), 1.09 (s, 6H, 2 CH3). 13C NMR (acetone-d6): δ 206.40 (C=O), 98.6 (5-C), 37.4 
(3-CH2), 30.7 (4-CH2), 29.17 (1-CH3), 20.4 (2 CH3). HMQC 1H/13C: 2.35/37.4; 2.20/30.7; 
2.07/29.17; 1.09/20.4. HMBC 1H/13C: 2.35/206.40, 98.6, 30.7, (29.17); 2.20/206.40, 98.6, 37.4, 
20.4; 2.07/206.40, 37.4; 1.09/98.6, 30.7.  
 
References and Notes  
 
1. Boyer, J. H. In The Chemistry of the Nitro and Nitroso Groups, Feuer, H., Ed.; Wiley: New 

York, 1969, Pt. 1; p 278.  
2. Marsden, H. M.; Shreve, J. M. J. Fluorine Chem. 1985, 27, 275.  
3. Rettenbacher, A. R. Doctoral Thesis, University of Innsbruck, 2001.  
4. Konopski, L. Org. Mass. Spectrom. 1990, 25, 204.  
5. Ballini, R.; Bosica, G. Tetrahedron Lett. 1996, 37, 8027.  
6. Napolitano, E.; Fiaschi, R.; Mastrorilli, E. Synthesis 1986, 122.  
7. Calder, A.; Forrester, A. R.; Hepburn, S. P. Org. Synth. 1972, 52, 77.  
8. Originally, 4 sodium hypobromite has been employed for the oxidation of 3; yellow or red 

mercuric oxide proved to be a more convenient oxidation reagent providing a higher yield of 
4a.  

9. Reported overall yield: 4 26%.  
10. In CDCl3 solution different monomer/dimer ratios have been reported.4 4/4a 70:30, 5/5a 

35:65; it is not clear if these figures refer to equilibrium conditions.  
11. Feuer, H.; Miller, R. J. Org. Chem. 1961, 26, 1348.  
12. No HMBC 1H/13C correlation cross-peak was observed at 2.36/29.  
13. p-Toluenesulfonic acid monohydrate was dehydrated at 100 °C for 1 h.  
14. Equilibrium ratio.  
15. Some 13C signals were detectable only with a freshly prepared solution of the dimer 4a or 5a 

before the equilibrium shifted to the predominant monomer 4 or 5, respectively.  


