Stereoselective ring opening of dimethyl 5-aryl-2,3-dihydro-3,3-dimethyl-1-oxo-1H,5H-pyrazolo[1,2-a]pyrazole-6,7-dicarboxylates with hydrazine hydrate. Synthesis of rel-(4'R,5'S)-3-[5-Aryl-3,4-bis(hydrazino-carbonyl)]-4,5-dihydro-1 H -pyrazol-1-yl)-3-methylbutano-hydrazides

Cvetka Turk, Ljubo Golič, Lovro Selič, Jurij Svete,* and Branko Stanovnik*
Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, 1000 Ljubljana, Slovenia
E-mail: branko.stanovnik@uni-lj.si

Dedicated to Prof. Emeritus Miha Tišler on the occasion of his $75^{\text {th }}$ birthday

 (received 08 Jan 01; accepted 28 Jan 02; published on the web 05 Feb 02)
Abstract

Reactions of dimethyl 5-aryl-2,3-dihydro-3,3-dimethyl-1-oxo-1H,5H-pyrazolo[1,2-a]pyrazole-6,7-dicarboxylates 3a-e with excess of hydrazine hydrate gave propanohydrazides 5a-e in 70$99 \%$ yields. The ring opening of pyrazolo[1,2-a]pyrazole-6,7-dicarboxylates 3a-e proceeded stereoselectively, furnishing the rel-(4'R,5'S)-isomers of 3-[5-aryl-3,4-bis(hydrazinocarbonyl)-4,5-dihydro-1H-pyrazol-1-yl)-3-methyl-butanohydrazides 5a-e. The X-ray structure of 5a was determined.

Keywords: Heterocycles, pyrazoles, 1H,5H-pyrazolo[1,2-a]pyrazol-1-ones, hydrazides, ring opening, x-ray

Introduction

3-Pyrazolidinones and their fused analogues, 1H,5H-pyrazolo[1,2-a]pyrazol-1-ones, are interesting classes of heterocyclic compounds which, since the beginning of a systematic work in this area more than four decades ago, found a widespread use in various applications. ${ }^{1}$ For example, phenidone and its derivatives and analogues are used in photographic applications ${ }^{2}$ and as inhibitors of cyclooxygenase, lipooxygenase, and γ-aminobutyrate transferase. ${ }^{3}$ Bicyclic pyrazolo[1,2-a]pyrazol-1-ones have been prepared as scaffolds for β-turn mimics. ${ }^{4}$ Such an example is Lilly's bicyclic pyrazolidinone LY 186826 exhibiting antibiotic activity which is larger than that of several penicillins and cephalosporins (Figure 1). ${ }^{5}$

Figure 1

Recently, we have shown that rel-($4 R, 5 R$)-4-benzoylamino-5-phenyl-3-pyrazolidinone and 5,5-dimethyl-3-pyrazolidinone (1) can be used for various synthetic purposes, such as for the regio- and stereoselective preparation of substituted pyrazolo[1,2-a]pyrazol-1-one derivatives, ${ }^{6,7}$ rel-($2 R, 3 R$)-3-alkylamino-3-phenylalaninamides, ${ }^{8}$ rel-($2 R, 3 R$)- N-benzoyl-3-phenyl-3-(pyrazol-1yl)alanine esters, ${ }^{9,10}$ and alkaloid-like tetracyclic system. ${ }^{11}$ In continuation of our work in this field, we now report a stereoselective formation of rel-(4'R,5'S)-3-[5-aryl-3,4-bis(hydrazinocarbonyl)-4,5-dihydro-1 H -pyrazol-1-yl)-3-methylbutanohydrazides $\mathbf{5 a - e}$ from easily available dimethyl 5-aryl-2,3-dihydro-3,3-dimethyl-1-oxo-1H,5H-pyrazolo[1,2-a]pyrazole-6,7-dicarboxylates 3a-e.

Results and Discussion

Starting compounds, dimethyl 5-aryl-2,3-dihydro-3,3-dimethyl-1-oxo-1H,5H-pyrazolo[1,2-a]pyrazole-6,7-dicarboxylates 3a-e were prepared in two steps from 5,5-dimethyl-3pyrazolidinone (1) ${ }^{12}$ via azomethine imines 2a-e according to the general procedure described previously. ${ }^{7}$ Treatment of compounds $\mathbf{3 a - e}$ with excess of hydrazine hydrate in ethanol at room temperature gave rel-(4'R,5'S)-3-[5-aryl-3,4-bis(hydrazinocarbonyl)-4,5-dihydro-1H-pyrazol-1-yl)]-3-methylbutanohydrazides $\mathbf{5 a - e}$ in $70-99 \%$ yields. An explanation for the high stereoselectivity of ring opening transformations of 3a-e with excess of hydrazine hydrate could be initial formation of the ($4{ }^{\prime} R S, 5{ }^{\prime} R S$)-3-[5-aryl-3,4-bis(hydrazinocarbonyl)-4,5-dihydro-1H-pyrazol-1-yl)]-3-methylbutanohydrazides $\mathbf{4 a - e}$ followed by isomerization of 4a-e into thermodynamically more stable rel- $\left(4^{\prime} R, 5^{\prime} S\right)$-isomers $\mathbf{5 a - e}$ with the trans relative configuration. On the other hand, the kinetic factors should not be excluded, since they might also contribute to the stereoselectivity of these transformations (Scheme 1).

Scheme 1

Reagents and conditions: (i) ArCHO, EtOH, $\mathrm{CF}_{3} \mathrm{COOH}, 20^{\circ}$. (ii) dimethyl acetylenedicarboxylate, $110-150^{\circ}$. (iii) $\mathrm{N}_{2} \mathrm{H}_{4} \times \mathrm{H}_{2} \mathrm{O}, \mathrm{EtOH}, 20^{\circ}$.

Structures of novel compounds $\mathbf{2 e}, \mathbf{3 e}$, and $\mathbf{5 a - e}$ were determined by spectroscopic methods and by analyses for C, H, and N . The trans relative configuration around the $\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)$ single bond in the pyrazoline part of compounds 5a-e was established on the basis of the magnitude of the $J_{\mathrm{H} 4^{\prime}, \mathrm{H} 5^{\prime}}$ coupling contants. The coupling constants $\left(J_{\mathrm{H}^{\prime}, \mathrm{H} 5^{\prime}}=7.0-9.8 \mathrm{~Hz}\right)$ in compounds $\mathbf{5 a - e}$ are in agreement with the literature values for the trans-4,5-dihydro-4,5-disubstituted- 1 H pyrazoles $\left(J_{\mathrm{H} 4, \mathrm{H} 5}=3-10 \mathrm{~Hz}\right.$ for the trans-isomers and $J_{\mathrm{H} 4, \mathrm{H} 5}=10-14 \mathrm{~Hz}$ for the cis-isomers). ${ }^{1,13}$ Moreover, configuration of compounds $\mathbf{4 a - e}$ was unambigously established upon X-ray structural determination of a 1:1 adduct of ethanol and 5a (Figure 2).

Figure 2. Ortep view of the adduct of compound $\mathbf{5 a}$ and EtOH at the 50% probability level. H atoms are drawn as circles of arbitrary radii. X-Ray structure determination

Structure of adduct of compound 5a and EtOH was solved by direct method using the SIR92 program. ${ }^{14}$ All hydrogen atoms, except those of the disordered ethanol molecule, were located by difference Fourier synthesis and included in refinement with positional parameters and fixed individual isotropic displacement parameters of the bonded atoms. Full-matrix least-squares refinement on F of all non-hydrogen atoms with anisotropic displacement parameters and an empirical weighting scheme: $w=w_{f^{*}} w_{s}, w f(\mathrm{Fo}<9.5)=(\mathrm{Fo} / 9.5)^{1.5}, w_{f}(\mathrm{Fo}>14.0)=(14.0 / \mathrm{Fo})^{0.7}, w_{f}$ $\left(9.5<\mathrm{F}_{0}<14.0\right)=1.0, \quad w_{s}(\sin \theta / \lambda<0.6)=((\sin \theta / \lambda) / 0.6)^{2}, \quad w_{s}(\sin \theta / \lambda>0.64)=(0.64 /(\sin \theta / \lambda))$, $w_{s}(0.6<\sin \theta / \lambda<0.64)=1.0$ was applied.

Crystal data
$\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{~N}_{9} \mathrm{O}_{6} \quad D_{x}=1.319 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=467.485$
Monoclinic, $C 2 / c$
$a=35.281$ (3) £
Mo K α radiation
$b=8.4045(6) \AA \quad \theta=8.02-14.57^{\circ}$
$c=16.033(1) \AA \quad \mu=0.09484 \mathrm{~mm}^{-1}$
$\beta=97.942(7)^{\circ} \quad T=293(1) \mathrm{K}$
$V=4708.5(6) \AA^{3} \quad$ Irregular form, colorless
$Z=8 \quad 0.42 \times 0.57 \times 0.76 \mathrm{~mm}$

Data collection

Enraf-Nonius CAD-4 diffractometer $\quad \theta \max =28^{\circ}$

Profile data from ω scan

$$
h=-46 \rightarrow 46
$$

Absorption correction: none
$k=-11 \rightarrow 11$
22728 measured reflections
$l=-21 \rightarrow 20$
5657 independent reflections
3414 reflections with $I>2.5 \sigma(I)$
$R_{\text {int }}=0.0181$

3 standard reflections frequency: 333 min intensity decay 1.15%

Refinement

Refinement on F $\quad w=$ empirical
$\begin{array}{ll}R=0.061 & (\Delta / \sigma)_{\max }=0.019 \\ w R=0.073 & (\Delta / \sigma)_{\text {aver }}=0.0007 \\ S=0.979 & \Delta \rho_{\text {max }}=1.0 \mathrm{e}^{-3} \\ 3414 \text { reflections } & \Delta \rho_{\text {min }}=-0.6 \mathrm{e} \AA^{-3}\end{array}$
386 parameters

The atoms of the solvent ethanol molecule have high displacement parameters showing a disorder of the ethyl group. The highest residual electron density in final difference map of 1.0 e \AA^{-3} is close to this group too. The ethanol O atom is hydrogen bonded to $\mathrm{O}(1)$ of one molecule with a distance of 2.682(6) \AA and to $\mathrm{N}(4)$ of another molecule with a distance of $2.780(7) \AA$.

The Xtal3.4 system of crystallographic programs was used for the reduction of data, structure refinement and interpretation. ${ }^{15}$ ORTEPII was used to produce molecular graphics. ${ }^{16}$

Supplementary data for this structure have been deposited at the Cambridge Crystallographic Data Centre and allocated the deposition number CCDC 155999.

Fractional coordinates and equivalent displacement parameters (\AA^{2}) for adduct of compound $\mathbf{5 a}$ and $\mathrm{EtOH} . \mathrm{U}_{\mathrm{eq}}$ is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	x / a	y / b	z / c	U
$\mathrm{O}(1)$	$0.33594(7)$	$0.8203(3)$	$0.8941(1)$	$0.0618(7)$
$\mathrm{O}(3)$	$0.27187(6)$	$0.4162(2)$	$0.5809(1)$	$0.0579(6)$
$\mathrm{O}(4)$	$0.31768(7)$	$0.2641(2)$	$0.7929(1)$	$0.0614(7)$
$\mathrm{O}(51)$	$0.5199(1)$	$0.2618(5)$	$0.4994(3)$	$0.100(1)$
$\mathrm{O}(52)$	$0.5273(1)$	$0.0548(5)$	$0.5804(3)$	$0.105(1)$
$\mathrm{O}(2)$	$0.3337(1)$	$1.0030(4)$	$1.0304(2)$	$0.111(2)$
$\mathrm{N}(1)$	$0.38447(6)$	$0.5608(2)$	$0.7328(1)$	$0.0421(6)$
$\mathrm{N}(11)$	$0.31206(7)$	$0.5735(3)$	$0.8795(2)$	$0.0521(7)$
$\mathrm{N}(12)$	$0.27364(8)$	$0.6248(4)$	$0.8763(2)$	$0.0583(8)$
$\mathrm{N}(2)$	$0.34821(6)$	$0.6148(3)$	$0.7026(1)$	$0.0411(6)$
$\mathrm{N}(3)$	$0.27362(7)$	$0.6701(3)$	$0.6282(1)$	$0.0470(7)$
$\mathrm{N}(31)$	$0.23744(7)$	$0.7132(3)$	$0.5853(2)$	$0.0501(7)$
$\mathrm{N}(4)$	$0.31661(6)$	$0.0857(2)$	$0.6881(1)$	$0.0428(6)$
$\mathrm{N}(41)$	$0.29546(8)$	$-0.0309(3)$	$0.7252(2)$	$0.0477(7)$
$\mathrm{N}(5)$	$0.51121(8)$	$0.1794(4)$	$0.5571(2)$	$0.072(1)$

${ }^{\circ}$ ARKAT USA, Inc

$\mathrm{C}(1)$	$0.40203(7)$	$0.6409(3)$	$0.8112(2)$	$0.0482(8)$
$\mathrm{C}(11)$	$0.38012(9)$	$0.6041(4)$	$0.8863(2)$	$0.0538(9)$
$\mathrm{C}(12)$	$0.34077(8)$	$0.6751(3)$	$0.8857(1)$	$0.0473(8)$
$\mathrm{C}(13)$	$0.4034(1)$	$0.8191(4)$	$0.7931(2)$	$0.059(1)$
$\mathrm{C}(14)$	$0.44293(9)$	$0.5785(5)$	$0.8331(2)$	$0.065(1)$
$\mathrm{C}(3)$	$0.32789(7)$	$0.5018(3)$	$0.6663(1)$	$0.0387(6)$
$\mathrm{C}(31)$	$0.28836(7)$	$0.5262(3)$	$0.6216(1)$	$0.0401(6)$
$\mathrm{C}(4)$	$0.34698(7)$	$0.3405(3)$	$0.6734(2)$	$0.0400(7)$
$\mathrm{C}(41)$	$0.32510(7)$	$0.2260(3)$	$0.7230(1)$	$0.0390(6)$
$\mathrm{C}(5)$	$0.38639(7)$	$0.3847(3)$	$0.7251(2)$	$0.0422(7)$
$\mathrm{C}(51)$	$0.41975(7)$	$0.3331(3)$	$0.6813(2)$	$0.0432(7)$
$\mathrm{C}(52)$	$0.43364(8)$	$0.4293(4)$	$0.6222(2)$	$0.0522(8)$
$\mathrm{C}(53)$	$0.46354(9)$	$0.3795(4)$	$0.5810(2)$	$0.0566(9)$
$\mathrm{C}(54)$	$0.47906(8)$	$0.2313(4)$	$0.6001(2)$	$0.0548(9)$
$\mathrm{C}(55)$	$0.4660(1)$	$0.1330(4)$	$0.6582(3)$	$0.071(1)$
$\mathrm{C}(56)$	$0.4363(1)$	$0.1850(4)$	$0.6993(3)$	$0.066(1)$
$\mathrm{C}(2)$	$0.3724(5)$	$1.089(1)$	$1.0365(5)$	$0.216(7)$
$\mathrm{C}(21)$	$0.3743(4)$	$1.200(1)$	$0.9844(6)$	$0.179(5)$

Bond Distances ($\left(\AA^{2}\right)$ and Bond Angles $\left({ }^{\circ}\right)$ for adduct of compound 5a and EtOH with e.s.d.'s in parentheses

$\mathrm{O}(1)-\mathrm{C}(12)$	$1.242(3)$	$\mathrm{C}(1)-\mathrm{C}(11)$	$1.549(4)$
$\mathrm{O}(3)-\mathrm{C}(31)$	$1.230(3)$	$\mathrm{C}(1)-\mathrm{C}(13)$	$1.528(4)$
$\mathrm{O}(4)-\mathrm{C}(41)$	$1.228(3)$	$\mathrm{C}(1)-\mathrm{C}(14)$	$1.530(4)$
$\mathrm{O}(51)-\mathrm{N}(5)$	$1.229(6)$	$\mathrm{C}(11)-\mathrm{C}(12)$	$1.510(4)$
$\mathrm{O}(52)-\mathrm{N}(5)$	$1.224(5)$	$\mathrm{C}(3)-\mathrm{C}(31)$	$1.492(3)$
$\mathrm{O}(2)-\mathrm{C}(2)$	$1.53(2)$	$\mathrm{C}(3)-\mathrm{C}(4)$	$1.511(3)$
$\mathrm{N}(1)-\mathrm{N}(2)$	$1.381(3)$	$\mathrm{C}(4)-\mathrm{C}(41)$	$1.524(4)$
$\mathrm{N}(1)-\mathrm{C}(1)$	$1.484(3)$	$\mathrm{C}(4)-\mathrm{C}(5)$	$1.563(3)$
$\mathrm{N}(1)-\mathrm{C}(5)$	$1.487(3)$	$\mathrm{C}(5)-\mathrm{C}(51)$	$1.516(4)$
$\mathrm{N}(11)-\mathrm{N}(12)$	$1.416(4)$	$\mathrm{C}(51)-\mathrm{C}(52)$	$1.386(4)$
$\mathrm{N}(11)-\mathrm{C}(12)$	$1.318(4)$	$\mathrm{C}(51)-\mathrm{C}(56)$	$1.388(4)$
$\mathrm{N}(2)-\mathrm{C}(3)$	$1.280(3)$	$\mathrm{C}(52)-\mathrm{C}(53)$	$1.384(5)$
$\mathrm{N}(3)-\mathrm{N}(31)$	$1.411(3)$	$\mathrm{C}(53)-\mathrm{C}(54)$	$1.378(4)$
$\mathrm{N}(3)-\mathrm{C}(31)$	$1.327(3)$	$\mathrm{C}(54)-\mathrm{C}(55)$	$1.372(5)$
$\mathrm{N}(4)-\mathrm{N}(41)$	$1.412(3)$	$\mathrm{C}(55)-\mathrm{C}(56)$	$1.382(6)$
$\mathrm{N}(4)-\mathrm{C}(41)$	$1.321(3)$	$\mathrm{C}(2)-\mathrm{C}(21)$	$1.26(2)$
$\mathrm{N}(5)-\mathrm{C}(54)$	$1.472(5)$		
$\mathrm{N}(2)-\mathrm{N}(1)-\mathrm{C}(1)$	$114.0(2)$	$\mathrm{O}(3)-\mathrm{C}(31)-\mathrm{N}(3)$	$124.5(2)$

$\mathrm{N}(2)-\mathrm{N}(1)-\mathrm{C}(5)$	$110.4(2)$	$\mathrm{O}(3)-\mathrm{C}(31)-\mathrm{C}(3)$	$119.6(2)$
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(5)$	$120.2(2)$	$\mathrm{N}(3)-\mathrm{C}(31)-\mathrm{C}(3)$	$115.9(2)$
$\mathrm{N}(12)-\mathrm{N}(11)-\mathrm{C}(12)$	$121.8(3)$	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(41)$	$110.7(2)$
$\mathrm{N}(1)-\mathrm{N}(2)-\mathrm{C}(3)$	$110.4(2)$	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$100.4(2)$
$\mathrm{N}(31)-\mathrm{N}(3)-\mathrm{C}(31)$	$122.2(2)$	$\mathrm{C}(41)-\mathrm{C}(4)-\mathrm{C}(5)$	$110.5(2)$
$\mathrm{N}(41)-\mathrm{N}(4)-\mathrm{C}(41)$	$122.9(2)$	$\mathrm{O}(4)-\mathrm{C}(41)-\mathrm{N}(4)$	$123.7(2)$
$\mathrm{O}(51)-\mathrm{N}(5)-\mathrm{O}(52)$	$124.0(4)$	$\mathrm{O}(4)-\mathrm{C}(41)-\mathrm{C}(4)$	$119.9(2)$
$\mathrm{O}(51)-\mathrm{N}(5)-\mathrm{C}(54)$	$118.3(3)$	$\mathrm{N}(4)-\mathrm{C}(41)-\mathrm{C}(4)$	$116.3(2)$
$\mathrm{O}(52)-\mathrm{N}(5)-\mathrm{C}(54)$	$117.7(4)$	$\mathrm{N}(1)-\mathrm{C}(5)-\mathrm{C}(4)$	$103.5(2)$
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(11)$	$111.9(2)$	$\mathrm{N}(1)-\mathrm{C}(5)-\mathrm{C}(51)$	$111.8(2)$
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(13)$	$107.7(2)$	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(51)$	$112.1(2)$
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(14)$	$108.0(2)$	$\mathrm{C}(5)-\mathrm{C}(51)-\mathrm{C}(52)$	$121.4(2)$
$\mathrm{C}(11)-\mathrm{C}(1)-\mathrm{C}(13)$	$112.1(3)$	$\mathrm{C}(5)-\mathrm{C}(51)-\mathrm{C}(56)$	$119.5(3)$
$\mathrm{C}(11)-\mathrm{C}(1)-\mathrm{C}(14)$	$108.1(2)$	$\mathrm{C}(52)-\mathrm{C}(51)-\mathrm{C}(56)$	$119.1(3)$
$\mathrm{C}(13)-\mathrm{C}(1)-\mathrm{C}(14)$	$109.0(3)$	$\mathrm{C}(51)-\mathrm{C}(52)-\mathrm{C}(53)$	$121.0(3)$
$\mathrm{C}(1)-\mathrm{C}(11)-\mathrm{C}(12)$	$118.3(2)$	$\mathrm{C}(52)-\mathrm{C}(53)-\mathrm{C}(54)$	$118.3(3)$
$\mathrm{O}(1)-\mathrm{C}(12)-\mathrm{N}(11)$	$121.9(3)$	$\mathrm{N}(5)-\mathrm{C}(54)-\mathrm{C}(53)$	$118.2(3)$
$\mathrm{O}(1)-\mathrm{C}(12)-\mathrm{C}(11)$	$121.8(3)$	$\mathrm{N}(5)-\mathrm{C}(54)-\mathrm{C}(55)$	$119.5(3)$
$\mathrm{N}(11)-\mathrm{C}(12)-\mathrm{C}(11)$	$116.2(3)$	$\mathrm{C}(53)-\mathrm{C}(54)-\mathrm{C}(55)$	$122.3(3)$
$\mathrm{N}(2)-\mathrm{C}(3)-\mathrm{C}(31)$	$123.0(2)$	$\mathrm{C}(54)-\mathrm{C}(55)-\mathrm{C}(56)$	$118.8(3)$
$\mathrm{N}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$114.6(2)$	$\mathrm{C}(51)-\mathrm{C}(56)-\mathrm{C}(55)$	$120.6(3)$
$\mathrm{C}(31)-\mathrm{C}(3)-\mathrm{C}(4)$	$122.5(2)$	$\mathrm{O}(2)-\mathrm{C}(2)-\mathrm{C}(21)$	$116(1)$

Experimental Section

General Procedures. Melting points were taken with a Kofler micro hot stage. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra were obtained with a Bruker Avance DPX $300(300 \mathrm{MHz})$ spectrometer with $\left[\mathrm{D}_{6}\right] \mathrm{DMSO}$ as solvent and $\mathrm{Me}_{4} \mathrm{Si}$ as internal standard. The microanalyses for C, H, and N were obtained with a Perkin-Elmer CHN Analyser 2400. The mass spectra were recorded with an Autospeck Q (VG-Analytical) spectrometer in Laboratory for Mass Spectroscopy (Jožef Stefan Institute, Ljubljana). All starting materials were commercially available (in most cases from Fluka) and purified following the standard techniques. 5,5-Dimethyl-3-pyrazolidinone (1) ${ }^{12}$ and dimethyl 5-aryl-2,3-dihydro-3,3-dimethyl-1-oxo-1H,5H-pyrazolo[1,2-a]pyrazole-6,7dicarboxylates 3a-d were prepared according to the procedures described previously. ${ }^{7}$

5,5-Dimethyl-1-[(Z)-(2-hydroxyphenyl)methylidene]-3-pyrazolidinone-1-azomethine imine (2e). This compound was prepared according to general procedure described previously. ${ }^{7}$ Trifluoroacetic acid (1 mL) was added to a stirred mixture of 5,5-dimethyl-3-pyrazolidinone $\mathbf{1}$ ($1.14 \mathrm{~g}, 10 \mathrm{mmol}$), 2-hydroxybenzaldehyde ($1.22 \mathrm{~g}, 10 \mathrm{mmol}$), and anhydrous ethanol (40 mL).

The mixture was stirred at 20° for 24 h . Volatile compounds were evaporated in vacuo, the residue was triturated with diethyl ether (30 mL), and the precipitate was collected by filtration to give azomethine imine $\mathbf{2 e}$. Yield: $1.99 \mathrm{~g}\left(91 \%\right.$), white crystals, m.p. $164-167^{\circ} \mathrm{C}$ (from toluene). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 1.75(6 \mathrm{H}, \mathrm{s}, 2 \mathrm{Me}) ; 2.80\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right) ; 6.86(1 \mathrm{H}, \mathrm{s}, 1 \mathrm{H}-\mathrm{Ar}) ; 6.97$ $(1 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}-\mathrm{Ar}) ; 7.28\left(1 \mathrm{H}, \mathrm{s}, 1^{\prime}-\mathrm{H}\right) ; 7.37-7.44(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{H}-\mathrm{Ar}) ; 11.26(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH})$. Anal. calcd. for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{3}$ (218.26): C 66.04, H 6.47, N 12.83; found: C 65.77, H 6.79, N 12.84.
Dimethyl 2,3-Dihydro-3,3-dimethyl-5-(2'-hydroxyphenyl)-1-oxo-1H,5H-pyrazolo-[1,2a]pyrazole (3e). This compound was prepared according to general procedure described previously. ${ }^{7}$ A mixture of 5,5-dimethyl-1-[(Z)-(2-hydroxyphenyl)methylidene]-3-pyrazolidinone-1-azomethine imine $2 \mathrm{e}(2.18 \mathrm{~g}, 10 \mathrm{mmol})$, dimethyl acetylenedicarboxylate $(1.2 \mathrm{~mL}, 10 \mathrm{mmol})$, and xylene (40 mL) was heated under reflux for 30 min . Volatile components were evaporated in vacuo, the residue was triturated with diethyl ether (20 mL), and the precipitate was collected by filtration to give 3e. Yield: 2.32 g (64%), pale yellow crystals, m.p. $185-186^{\circ} \mathrm{C}$ (from toluene/ethanol, 3:1). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-\mathrm{d}_{6}\right): \delta 1.17$ and $1.20(2 \times 3 \mathrm{H}, 2 \mathrm{~s}$, $\left.5-\mathrm{Me}_{2}\right) ; 2.41(1 \mathrm{H}, \mathrm{d}, J=15.7 \mathrm{~Hz}, 2-\mathrm{Ha}) ; 2.84(1 \mathrm{H}, \mathrm{d}, J=15.7 \mathrm{~Hz}, 2-\mathrm{Hb}) ; 3.50$ and $3.87(2 \mathrm{x} 3 \mathrm{H}$, $2 \mathrm{~s}, 2 \mathrm{OMe}) ; 5.89(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}) ; 6.79(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{H}-\mathrm{Ar}) ; 7.08(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{H}-\mathrm{Ph}) ; 9.65(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}) ;$ ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{DMSO}-\mathrm{d}_{6}\right): 19.9,25.2,49.4,52.6,54.0,62.5,65.0,114.5,118.3,121.0,125.2,130.0$, 130.1, 134.7, 155.4, 159.8, 164.0, 166.4; Anal. calcd. for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{6}$ (360.37): C, 59.99; H, 5.59; N, 7.77. Found: C, 60.05; H, 5.75; N, 7.94.
rel-(4'S,5'R)-3-[3,4-Bis(hydrazinocarbonyl)-4,5-dihydro-5-(4-nitrophenyl)-1H-pyrazol-1-yl]-3-methylbutanohydrazide (5a). Hydrazine hydrate ($98 \%, 2 \mathrm{~mL}, 40 \mathrm{mmol}$) was added to a stirred suspension of $\mathbf{3 a}(1.560 \mathrm{~g}, 4 \mathrm{mmol})$ in anhydrous ethanol $(15 \mathrm{~mL})$ and the resulting solution was stirred at 20° until the precipitation of the product $(0.5-1 \mathrm{~h})$. The precipitate was collected by filtration and washed with ethanol to give 5a. Yield: $1.670 \mathrm{~g}(99 \%)$, white ctrystals, m. p. 204-210 ${ }^{\circ} \mathrm{C}$ (from ethanol). MS (FAB): m/z $=422\left(\mathrm{MH}^{+}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-\mathrm{d}_{6}\right): \delta 1.05$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$); $1.09(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}) ; 2.28(1 \mathrm{H}, \mathrm{d}, J=12.9 \mathrm{~Hz}, 2-\mathrm{Ha}) ; 2.57(1 \mathrm{H}, \mathrm{d}, J=12.9 \mathrm{~Hz}, 2-\mathrm{Hb})$; $3.64\left(1 \mathrm{H}, \mathrm{d}, J=9.3 \mathrm{~Hz}, 4^{\prime}-\mathrm{H}\right) ; 4.27\left(6 \mathrm{H}, \mathrm{br} \mathrm{s}, 3 \mathrm{NH}_{2}\right) ; 5.07\left(1 \mathrm{H}, \mathrm{d}, J=9.3 \mathrm{~Hz}, 5^{\prime}-\mathrm{H}\right) ; 7.47(2 \mathrm{H}, \mathrm{d}$, $\left.J=8.7 \mathrm{~Hz}, \mathrm{o}-\mathrm{C}_{6} \mathrm{H}_{4}\right) ; 8.21\left(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{~m}-\mathrm{C}_{6} \mathrm{H}_{4}\right) ; 8.88,9.23$, and $9.35(3 \times 1 \mathrm{H}, 3 \mathrm{br} \mathrm{s}$, 3NHCO). Anal. calcd. for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{~N}_{9} \mathrm{O}_{5}$ (421.42): C, 45.60 ; H, 5.50; N, 29.91. Found: C, 45.60; H, 5.64; N, 29.92 .
rel-(4'S,5'R)-3-[3,4-Bis(hydrazinocarbonyl)-4,5-dihydro-5-(3,4,5-trimethoxyphenyl)-1H-pyrazol-1-yl]-3-methylbutanohydrazide (5b). Hydrazine hydrate ($98 \%, 0.5 \mathrm{~mL}, 10 \mathrm{mmol}$) was added to a stirred suspension of $\mathbf{3 b}(0.434 \mathrm{~g}, 1 \mathrm{mmol})$ in anhydrous ethanol $(5 \mathrm{~mL})$ and the resulting solution was stirred at 20° for 30 min . Volatile components were evaporated in vacuo, and the residue was triturated with with a mixture of diethyl ether ($\sim 5 \mathrm{~mL}$) and ethanol (a few drops). The precipitate was collected by filtration and washed with diethyl ether to give $\mathbf{5 b}$. Yield: $0.448 \mathrm{~g}(96 \%)$, white crystals, m. p. $212-214^{\circ} \mathrm{C}$ (from ethanol). MS (EI): m/z=466(M). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}_{-}\right) \delta$-ppm: $1.06(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}) ; 1.13(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}) ; 2.26(1 \mathrm{H}, \mathrm{d}, J=13.2 \mathrm{~Hz}, 2-$ $\mathrm{Ha}) ; 2.62(1 \mathrm{H}, \mathrm{d}, J=13.2 \mathrm{~Hz}, 2-\mathrm{Hb}) ; 3.57\left(1 \mathrm{H}, \mathrm{d}, J=9.6 \mathrm{~Hz}, 4^{\prime}-\mathrm{H}\right) ; 3.63$ and $3.76(3 \mathrm{H}$ and 6 H , $2 \mathrm{~s}, 3 \mathrm{OMe}) ; 4.20\left(6 \mathrm{H}, \mathrm{br} \mathrm{s}, 3 \mathrm{NH}_{2}\right) ; 4.83\left(1 \mathrm{H}, \mathrm{d}, J=9.6 \mathrm{~Hz}, 5{ }^{\prime}-\mathrm{H}\right) ; 6.48\left(2 \mathrm{H}, \mathrm{s}, o-\mathrm{C}_{6} \mathrm{H}_{2}\right) ; 8.92$ and
$9.20(1 \mathrm{H}$ and $2 \mathrm{H}, 2 \mathrm{br} \mathrm{s}$, 3 NHCO$)$. HRMS calcd. for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{~N}_{8} \mathrm{O}_{6}$: 466.228831. Found: 466.229930. Anal. calcd. for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{~N}_{8} \mathrm{O}_{6}$ (466.49): C, 48.92; H, 6.48; N, 24.02. Found: C, 48.91; H, 6.79; N, 24.20.
rel-(4'S,5'R)-3-[3,4-Bis(hydrazinocarbonyl)-4,5-dihydro-5-(2,4,6-trimethoxyphenyl)-1H-pyrazol-1-yl]-3-methylbutanohydrazide (5c). Hydrazine hydrate ($98 \%, 1 \mathrm{~mL}, 20 \mathrm{mmol}$) was added to a stirred suspension of $\mathbf{3 c}(0.868 \mathrm{~g}, 2 \mathrm{mmol})$ in anhydrous ethanol (10 mL) and the resulting solution was stirred at 20° for 30 min . Volatile components were evaporated in vacuo, and the residue was triturated with anhydrous ethanol $(5 \mathrm{~mL})$. The precipitate was collected by filtration and washed with ethanol to give 5c. Yield: 0.730 g (78%), white crystals, m. p. 131$133^{\circ} \mathrm{C}$ (from ethanol). MS (EI): m/z = $466\left(\mathrm{M}^{+}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}_{6}\right) \delta-\mathrm{ppm}: 1.01(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}) ;$ $1.06(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}) ; 2.16(1 \mathrm{H}, \mathrm{d}, J=13.6 \mathrm{~Hz}, 2-\mathrm{Ha}) ; 2.69(1 \mathrm{H}, \mathrm{d}, J=13.6 \mathrm{~Hz}, 2-\mathrm{Hb}) ; 3.66,3.74$, and $3.76(3 \times 3 H, 3 \mathrm{~s}, 3 \mathrm{OMe}) ; 3.79\left(1 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, 4^{\prime}-\mathrm{H}\right) ; 4.03,4.15$, and $4.27(3 \mathrm{x} 2 \mathrm{H}, 3 \mathrm{br} \mathrm{s}$, $\left.3 \mathrm{NH}_{2}\right) ; 5.28\left(1 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, 5^{\prime}-\mathrm{H}\right) ; 6.18$ and $6.23(2 \mathrm{x} 1 \mathrm{H}, 2 \mathrm{~s}, \mathrm{~m}-\mathrm{C} 6 \mathrm{H} 2) ; 8.59$ and $9.06(1 \mathrm{H}$ and $2 \mathrm{H}, 2 \mathrm{br} \mathrm{s}, 3 \mathrm{NHCO}$). HRMS calcd. for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{~N}_{8} \mathrm{O}_{6}: 466.228831$. Found: 466.229930. Anal. calcd. for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{~N}_{8} \mathrm{O}_{6}$ (466.49): C, 48.92; H, 6.48; N, 24.02. Found: C, 48.82; H, 6.55; N, 23.62. rel-(4'S,5'R)-3-[3,4-Bis(hydrazinocarbonyl)-4,5-dihydro-5-(2,6-dichlorophenyl)-1H-pyrazol-1-yl]-3-methylbutanohydrazide (5d). Hydrazine hydrate ($98 \%, 0.5 \mathrm{~mL}, 10 \mathrm{mmol}$) was added to a stirred suspension of $\mathbf{3 d}(0.434 \mathrm{~g}, 1 \mathrm{mmol})$ in anhydrous ethanol $(5 \mathrm{~mL})$ and the resulting solution was stirred at 20° until the precipitation of the product $(0.5-1 \mathrm{~h})$. The precipitate was collected by filtration and washed with ethanol to give 5d. Yield: $0.334 \mathrm{~g}(75 \%)$, white crystals, m. p. $149-152^{\circ} \mathrm{C}$ (from ethanol). MS (EI): $\mathrm{m} / \mathrm{z}=444\left(\mathrm{M}^{+}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO-d ${ }_{6}$) δ-ppm: 1.03 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$); 1.08 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$); $2.27(1 \mathrm{H}, \mathrm{d}, J=12.8 \mathrm{~Hz}, 2-\mathrm{Ha}) ; 2.54$ ($1 \mathrm{H}, \mathrm{d}, J=12.8 \mathrm{~Hz}, 2-\mathrm{Hb}$); $3.97\left(1 \mathrm{H}, \mathrm{d}, J=9.8 \mathrm{~Hz}, 4^{\prime}-\mathrm{H}\right) ; 4.25\left(6 \mathrm{H}, \mathrm{br}\right.$ s, $\left.3 \mathrm{NH}_{2}\right) ; 5.55\left(1 \mathrm{H}, \mathrm{d}, J=9.8 \mathrm{~Hz}, 5^{\prime}-\mathrm{H}\right) ; 7.32(1 \mathrm{H}$, $\left.\mathrm{m}, p-\mathrm{C}_{6} \mathrm{H}_{3}\right) ; 7.45\left(2 \mathrm{H}, \mathrm{m}, m-\mathrm{C}_{6} \mathrm{H}_{3}\right) ; 8.77,9.20$, and $9.25(3 \mathrm{x} 1 \mathrm{H}, 3 \mathrm{br} \mathrm{s}, 3 \mathrm{NHCO})$. HRMS calcd. for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{Cl}_{2} \mathrm{~N}_{8} \mathrm{O}_{3}$: 444.119192. Found: 444.118211. Anal. calcd. for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{~N}_{8} \mathrm{O}_{4}$ (392.42): C, 43.16; H, 4.98; N, 25.16. Found: C, 42.31; H, 5.24; N, 24.71.
rel-(4'S,5'R)-3-[3,4-Bis(hydrazinocarbonyl)-4,5-dihydro-5-(2-hydroxyphenyl)-1H-pyrazol-
1-yll-3-methylbutanohydrazide (5e). Hydrazine hydrate ($98 \%, 1 \mathrm{~mL}, 20 \mathrm{mmol}$) was added to a stirred suspension of $3 \mathbf{e}(0.721 \mathrm{~g}, 2 \mathrm{mmol})$ in anhydrous ethanol $(10 \mathrm{~mL})$ and the resulting solution was stirred at 20° for 2 h . Volatile components were evaporated in vacuo, and the residue was triturated with anhydrous ethanol (5 mL). The precipitate was collected by filtration and washed with ethanol to give 5e. Yield: $0.550 \mathrm{~g}(70 \%)$, white crystals, m. p. $184-186^{\circ} \mathrm{C}$ (from ethanol). MS (EI): m/z = $392\left(\mathrm{M}^{+}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-\mathrm{d}_{6}\right) \delta$-ppm: 1.07 (3H, s, Me); 1.09 $(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}) ; 2.30(1 \mathrm{H}, \mathrm{d}, J=12.8 \mathrm{~Hz}, 2-\mathrm{Ha}) ; 2.55(1 \mathrm{H}, \mathrm{d}, J=12.8 \mathrm{~Hz}, 2-\mathrm{Hb}) ; 3.59(1 \mathrm{H}, \mathrm{br}$ d, J $\left.=7 \mathrm{~Hz}, 4^{\prime}-\mathrm{H}\right) ; 4.16$ and $4.27\left(4 \mathrm{H}\right.$ and $2 \mathrm{H}, 2 \mathrm{br}$ s, $\left.3 \mathrm{NH}_{2}\right) ; 5.18\left(1 \mathrm{H}, \mathrm{brd}, J=7 \mathrm{~Hz}, 5^{\prime}-\mathrm{H}\right) ; 6.73-$ $6.78(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{H}-\mathrm{Ar}) ; 7.01-7.06(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{H}-\mathrm{Ar}) ; 8.86,9.12$, and $9.15(3 \mathrm{x} 1 \mathrm{H}, 3 \mathrm{br} \mathrm{s}, 3 \mathrm{NHCO})$; $9.44(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH})$. HRMS calcd. for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{~N}_{8} \mathrm{O}_{4}: 392.192052$. Found: 392.193050. Anal. calcd. for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{~N}_{8} \mathrm{O}_{4}$ (392.42): C, 48.97; H, 6.16; N, 28.55. Found: C, 48.47; H, 6.34; N, 28.58.

Acknowledgements

The financial support from the Ministry of Science and Technology, Slovenia, is gratefully acknowledged.

References and Notes

1. For a review on 3-pyrazolidinones see: (a) Dorn H., Chem. Heterocycl. Comp. USSR 1981, 3. (b) Claramunt R. M.; Elguero, J. Org. Proc. Prep. Int. 1991, 23, 275. (c) Elguero, J. "Pyrazoles" In Comprehensive Heterocyclic Chemistry II, Katritzky, A. R.; Rees, C. W.; Scriven, E. F. V., Eds; Shinkai, I., Ed.; Elsevier: Oxford, 1996; Vol. 3, pp 1-75.
2. For the illustration see: (a) Kendall, J. D. Brit. Pat., 650,911 1951; Chem Abstr. 1952, 46, 144g. (b) Eubanks, R. J. I.; Johnson, L. K. U.S. Pat. US 4,835,285 1989. Chem Abstr. 1989, 111, 194757. (c) Washizu, S.; Yamaguchi, J.; Shinozaki F.; Shimomura, A.; Usami, T.; Endo, T.; Saeki, K. Ger. Offen. DE 3,835,062, 1989; Chem Abstr. 1989, 111, 222120. (d) Kamitakahara, A.; Ogi, K. U.S. Pat. US 4,840,879, 1989; Chem Abstr. 1989, 111, 222036.
3. (a)Abe, Y.; Osanai, S.; Tenmyo, H. Yakugaku 1978, 27, 230; Chem. Abstr. 1978, 89, 191670. (b) Challand, S. R.; Copp, F. C.; Denyer, C. V.; Eakins, K. E.; Walker, J. M. G.; Whittaker, N.; Caldwell, A. G. Eur. Pat. Appl. 22,578 1981; Chem. Abstr. 1981, 95, 62193. (c) Ling, Y.; Li, W.; Liu, W.; Pei, Y. Yiyao Gongye 1986, 17, 66; Chem. Abstr. 1986, 105, 172347. (c) Frigola, J.; Colombo, A.; Parés, J.; Martinéz, L.; Sagarra, R.; Roser, R. Eur. J. Med. Chem. 1989, 24, 435. (d) Riendeau, D.; Falgueyret, J. P.; Nathaniel, D. J.; Rokach, J.; Ueda, N.; Yamamoto, S. Biochem. Pharmacol. 1989, 38, 2313. (e) Marshall, L. A.; Chang, J. Y.; Calhoun, W.; Yu, J.; Carlson, R. P. J. Cell Biochem. 1989, 40, 147.
4. For a review see: Hanessian, S.; McNaughton-Smith, G.; Lombart, H.-G.; Lubell, W. D. Tetrahedron 1997, 53, 12789.
5. (a)Jungheim, L. N.; Sigmund, S. K. J. Org. Chem. 1987, 52, 4007. (b) Indelicato, J. M.; Pasini, C. E. J. Med. Chem. 1988, 31, 1227. (c) Jungheim, L. N.; Ternansky, R. J. Chem. β [Beta]-Lactams 1992, 306; Chem. Abstr. 1993, 119, 180561.
6. Svete, J.; Prešeren, A.; Stanovnik, B.; Golič, L.; Golič-Grdadolnik, S. J. Heterocyclic Chem. 1997, 34, 1323.
7. Turk, C.; Svete, J.; Stanovnik, B.; Golič, L.; Golič-Grdadolnik, S.; Golobič, A.; Selič, L. Helv. Chim. Acta, submitted for publication.
8. Zupančič, S.; Svete, J.; Stanovnik, B. J. Heterocyclic Chem. 1999, 36, 607.
9. Prešeren, A.; Svete, J.; Stanovnik, B. J. Heterocyclic Chem. 1999, 36, 799.
10. Svete, J.; Stanovnik, B. Heterocycles 1999, 51, 2073.
11. Turk, C.; Svete, J.; Stanovnik, B.; Golič, L.; Golobič, A.; Selič, L. Org. Lett. 2000, 2, 423.
12. Lieser, T.; Kemmner, K. Chem. Ber. 1951, 84, 4.
13. (a) Hassner, A.; Michelson, M. J. J. Org. Chem. 1962, 27, 3974. (b) Elguero, J.; Fruchier, A.
J. Chem. Res. (S) 1990, 200 [(M) 1501-1556].
14. Altomare, A.; Burla, M. C.; Camalli, M.; Dascarano, G.; Giacovazzo, C.;Guagliardi, A.; Polidori G. J. Appl. Cryst. 1994, 27, 435.
15. Hall, S. R.; King, G. S. D.; Stewart J. M. The Xtall3.4 User's Manual University of Western Australia, Lamb: Perth, 1995.
16. Johnson, C. K.; ORTEPII, Report ORNL-5138, Oak Ridge National Laboratory, Tennessee, USA, 1976.
