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Abstract 
In the present investigation the applicability of various topological parameters are tested for the 
QSAR study on phenylamino-acridine derivatives. For the modeling of DNA binding affinity of 
phenylamino-acridine derivatives the regression analysis shows that even in the mono-parametric 
correlations the topological and physicochemical parameters give significant regression 
coefficients. Furthermore using combinations of topological, physicochemical parameters along 
with the indicator parameters, a tremendous improvement in the statistics has been observed. The 
results are critically discussed on the basis of regression data and cross-validation parameters. 
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Introduction 
 
Quantitative structure–activity relationship and Quantitative structure–property relationship 
(QSAR/QSPR) studies are indubitably of great importance in modern chemistry and 
biochemistry. To obtain a significant correlation, it is essential that appropriate descriptors are 
employed, whether they are theoretical, empirical or derived from readily available experimental 
characteristics of structures. Many descriptors reflect simple molecular properties and can thus 
provide insight into the physicochemical nature of the activity/ property under consideration.1 

To get an insight into the structure-activity relationship we need molecular descriptors that 
can effectively characterize molecular size, molecular branching or the variations in molecular 
shapes, and can influence the structure and its activities.2-7 

If molecular structure is critical for understanding of a particular structure-activity and 
property-activity relationship, then one should consider structural invariants derived from 
molecular structure.8-19 Several graph theoretical invariants have been generalized so that they 
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produce structure-dependent descriptors.20-23 In such a generalization, most biological activities 
are dominated by molecular size, which is well characterized by most of the physicochemical 
properties.24 

Ideally, the activities and properties are connected by some known mathematical function, F: 
Biological activity = F [structure (in present study topological & physicochemical descriptors are 
used as the structural parameters.)] 

Biological activity can be any measure such as log1/C, Ki, IC50, ED50, EC50, logK and Km. 
The relationship or function is more often than not a mathematical expression derived by 

statistical or related techniques. In present study the multiple linear regression (MLR) technique 
is used. The parameters describing structural and physicochemical properties are used as 
independent variables and the biological activities are dependent variables. 

In the present investigation a QSAR study is performed over a set of 21 phenyl acridine 
derivatives. This is the extension of previous studies based on the application of topological and 
physicochemical parameters in QSAR.25-34 

Acridine derivatives are among the oldest classes of bioactive compounds, widely used as 
antibacterial and antiprotozoal agents. Some work in these areas continues, but recent research 
has mainly focused on their use as anticancer drugs, because of the ability of the acridine 
chromophore to intercalate into DNA and to inhibit topoisomerase enzymes.35 These compounds 
also have been used as chemotherapeutic agents against cancer cells.36 In the field of antitumor 
DNA-binding agents, this class of acridine derivatives play an important role both in the number 
of active compounds and in the importance of DNA binding affinity.37 

The DNA binding affinity (logK) is then modeled using distance- based topological indices: 
Wiener (W)38, Szeged (Sz)39,40 Balaban (J)41 indices and Randic connectivity index (χ)42 related 
to branching of molecules along with physicochemical properties: Molar Refractivity (MR), 
Molar Volume (MV), Parachor (Pc) etc. and indicator parameters accounted for the substitution 
effect on various positions.  

The results obtained are better (discussed in the Result and Discussion part of this study) than 
those of a previous QSAR study performed by Hansch and coworkers43 in their review work on 
applicability of hydrophobic parameters in QSAR. 
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Figure 1. Parent structure of phenylamino-acridine derivatives used in present study. 
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Results and Discussion 
 
The phenylamino-acridine derivatives (Figure 1), their DNA binding affinity and indicator 
parameters are given in Table 1 (see p. 141). 

Various widely used topological indices tested in the present study are recorded in Table 2 
(see p.142). Table 3 (see p. 143) contains the tested physicochemical properties. The details of 
calculation of these indices and the source of calculation of physicochemical properties are given 
in the experimental section of this paper. 

In proposing QSAR models for modeling the DNA binding affinity we have used the 
maximum R2 method.44 Initially we have used Pogliani’s quality factor Q45,46 for investigating 
predictive power of the various parameters and finally we used  the cross validation parameters 
to prove our findings. The comparisons of various models by cross validation parameters are 
shown in Table 5 (see p. 145) 

The inter-correlation of various parameters and the correlation of parameters with biological 
activity (logK) are presented in Table 4 (see p. 144) in a correlation matrix. As shown by the 
correlation matrix, DNA binding affinity has a good correlation with all four topological indices 
as well as with the physicochemical parameters like MR, MV, Pc. Correlation data of univariate 
correlation of Wiener index (W) (r = 0.8118), Randic connectivity index (χ) (r = 0.832), Balaban 
index (J) (r = 0.84), and Szged index (Sz) (r = 0.824) exhibits the significance of topological 
indices in QSAR study of Phenylamino-acridine derivatives. Also a good correlation with 
physicochemical properties like MR (r = 0.886), MV (r = 0.862) and Pc (r = 0.869) expresses the 
importance of the structural and volumetric features in theoretical modeling of DNA binding 
affinity (logK). 

This also shows the dependence of activity on structural features of the molecule as well as 
justifies the structural numerates of molecules in the form of topological indices. 

For the QSAR study of the same series we tested the bivariate combinations of the 
parameters. The results obtained form the bivariate combinations are encouraging and better 
models are shown below with their statistics. 
 
logK = 2.2577 x 10-4(± 7.3634 x 10-5) W + 0.3477 (± 0.0942) IDS + 5.528      (1) 
n = 21, r = 0.9034, Se = 0.1509, Q = 5.99 
 
logK = 0.1318(± 0.0402) χ + 0.3228(± 0.0955) IDS + 4.1899          (2) 
n = 21, r = 0.9018, Se = 0.1474, Q = 6.16 
 
logK = 5.070(± 2.3533) J + 0.2876(± 0.1433) IDS – 1.3198           (3) 
n = 21, r = 0.8818, Se = 0.166, Q = 5.31 
 
logK= 1.4387 x 10-4 (± 4.6158 x 10-5) Sz + 0.3309(±0.097) IDS + 5.4601       (4) 
n = 21, r = 0.9046, Se = 0.1501, Q = 6.03 
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logK = 0.0387 (± 0.004) MR + 0.2056 (±0.0739) I3 + 1.3645          (5) 
n = 21, r = 0.928, Se = 0.1312, Q = 7.07 
 
logK = 0.126(± 0.0015) MV + 0.2341(±0.0813) I3 + 2.1679           (6) 
n = 21, r = 0.9112, Se = 0.145, Q = 6.28 
 
logK = 0.0081(± 0.0019) MV + 0.3076(±0.0802) IDS + 3.6349          (7) 
n = 21, r = 0.9293, Se = 0.13, Q = 7.15 
 
logK = 0.0043(± 4.5587 x 10-4) Pc + 0.2416(± 0.0739) I3 + 2.2095        (8) 
n = 21, r = 0.927, Se = 0.132, Q = 7.02 
 
logK = 0.0029(±6.455 x 10-4) Pc + 0.2874 (±0.0823) IDS + 3.6082         (9) 
n = 21, r = 0.9308, Se = 0.1287, Q = 7.23 
 
logK = 0.0267(± 0.0053) MR + 0.2734(±0.0767) IDS + 2.8931          (10) 
n = 21, r = 0.9398, Se = 0.1203, Q = 7.81 
 

When earlier work43 was repeated using an entirely new set of parameters, the new results 
should show either better statistics or be of an equivalent quality. In the present study the models 
(Eq 1 to 6) have competitive statistics with less and totally different parameters then the model 
proposed by Hansch and co-workers43 in their review study on positive hydrophobic parameters. 

The remaining biparametric models (Eq 7 to 10) containing combinations of MR, MV, PC, 
and indicator parameter IDS and I3 gives slightly better statistics with less standard error of 
estimation (Se) and higher Q value then that of model proposed by Hansch and co-workers43 (n = 
21, r = 0.92951, Se = 0.134, Q = 6.94). The models proposed in the present study are also better 
in terms of parameters because the present models have less parameter than the model proposed 
by Hansch and co-workers.43 

Eq 1 to 10 also exhibit the applicability of topological and physicochemical parameters for 
the QSAR study of phenylamino-acridine derivatives. 

For detailed SAR studies we tested the trivariate combinations which resulted in an 
excellent improvement in statistics. The best triparametric model was obtained from the 
combination of MR, IDS and I3 as below. 
 
logK = 0.029(± 0.0054) MR + 0.2085(± 0.0861) IDS + 0.1132 (± 0.0761) I3 + 2.5501  (11) 
n = 21, r = 0.947, Se = 0.1164, Q = 8.14 
 

The statistics obtained from Eq 11 demonstrates the role of the parameter MR in the 
modeling of DNA binding affinity. The parameter MR is a physicochemical parameter and is a 
combined effect of size and polarizability of the substituents. It characterizes deformation of 
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molecular electrons distribution. The equation also shows the direct relationship between MR 
and logK, i.e., an increase in Molar Refractivity enhances the DNA binding of phenylamino-
acridine derivatives. The equation also expresses the significance of the indicator parameter IDS 
(which accounts for the presence of di-substitution) in DNA binding, i.e., di- substitution in 
phenylamino-acridine derivatives enhances their DNA binding affinity. Similarly the positive 
correlation coefficient of indicator parameter I3 accounting for substitution at the 3rd position 
shows the direct relationship between substitution at the 3rd position and DNA binding affinity. 
The presence of the indicator parameter IDS in most of the models and its high magnitude in eq 
11 demonstrates the dominating role of di-substitution in DNA binding affinity of phenylamino-
acridine derivatives as compared to other indicator parameter and topological parameters. The 
estimated DNA binding affinities from Eq. 11 are shown in Table 6 (see p. 146) and are 
graphically presented in Figure 2 (see p 147). 

As opposed to traditional regression methods, the method of cross-validation estimates the 
trustworthiness of a model by predicting data. This method uses cross-validated fewer 
parameters: PRESS (predicted residual sum squares), SSY (sum of the squares of response 
value), r2

cv (overall predictive ability), and adjusted r2. 
PRESS (predicted residual sum of squares) is an important cross-validation parameter as it is 

a good approximation of the real predictive error of the models. Its value being less than SSY 
(sum of the squares of response value) points out that the model predicts better than chance and 
can be considered statistically important. In the present case all the proposed models have 
PRESS << SSY demonstrating them to be better than chance and statistically significant. 

Furthermore, the ratio PRESS/SSY is used to estimate the confidence interval of the DNA 
binding affinity. To have a dependable QSAR model, PRESS/SSY should be smaller than 0.4. In 
our case the ratio PRESS/SSY ranges between 0.11-0.29 indicating that all the proposed models 
are reliable QSAR models. 

The indication of the performance of the model is obtained from r2
cv (the overall predictive 

ability). In our case, the highest r2
cv is found for the model expressed by equation (11), indicating 

that it has an outstanding predictive power. 
 
 
Conclusions 
 
On the basis of the results discussed above, it can be concluded that the DNA binding affinity of 
phenylamino-acridine derivatives are structure specific in nature and most of the topological and 
structural parameters like W, 1χ, Sz, MV, Pc and MR can be applicable for the modeling of DNA 
binding affinity of the phenylamino-acridine derivatives. It can be also concluded that the di-
substitution and substitution at 3rd position have a significant role in the DNA binding affinity 
and the models proposed in the present investigation are better then the previously proposed 
models.43 
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Experimental Section 
 
Biological activity (logK)- DNA binding affinity expressed as logK, was taken from the 
literature.43 
Topological indices- All the topological indices used are calculated from the hydrogen 
suppressed molecular graphs. Though their calculations are exclusively discussed in the 
literature, we give below the expressions used for their calculations. 
Wiener index (W)38-Wiener index W = W(G) of G is defined as the half sum of the elements of 
the distance matrix. 
 
W = W (G) = ½ Σ     Σ (D)ij                     (12) 

i=1,    j=1 
 

Where, (D)ij is the ijth element of the distance matrix which denotes the shortest graph – 
theoretical distance between sites i and j of G. 
 
The connectivity index(1χ)42- the connectivity index 1χ= 1χ(G) of G is defined by Randic as 
1χ = 1χ(G) = Σ [ d(i) . d(j)]-0.5                     (13) 

i,j 
 
Balaban index (J)41 - The Balaban index J = J(G) of G is defined as  
J = M/(µ+1) ∑(di.dj)-0.5                       (14) 

Bonds 
 

Where M is the number of bonds in G, µ is the cyclomatic number of G, and di (i = 1,2,3, N; 
N is the number of vertices in G) is the distance sum. 

The cyclomatic number µ = µ(G) of a cyclic graph G is equal to the minimum number of 
edges necessary to be erased from G in order to transform it into the related acyclic graph. In 
case of monocyclic graph µ = 1 otherwise it is calculated by means of the following expression 
 
Μ = M-N+1                          (15) 
 
Szeged index (Sz)39,40- the Szeged index, Sz = Sz(G), is calculated according to the following 
expression:  
Sz = Sz (G) = Σ nu. nv 

Edges 
 

Where nu is the number of vertices lying closer to one end of the edge e = uv; the meaning of 
nv is analogous. Edges equidistance from both the ends of an edges, e = uv are not taken into 
account. 
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Physicochemical parameters- In present study molar refractivity (MR), molar volume (MV), 
parachor (Pc), index of refraction (η), surface tension (ST), density (D), shown in Table 3 are 
tested and calculated from the computer software acdlabs (Chem sketch 5.0).46 
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