Two approaches to a new heterocyclic system of pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidine

Valery V. Mezheritsky, ${ }^{*}$ Vladimir I. Minkin, ${ }^{a}$ Lyudmila G. Minyaeva, ${ }^{a}$
Roman G. Tyurin, ${ }^{a}$ Valery V. Krasnikov, ${ }^{a}$ Eugeny V. Vorobyev, ${ }^{a}$ and Zoya A. Starikova* ${ }^{b}$
${ }^{a}$ Institute of Physical and Organic Chemistry Rostov State University, 194/2, Stachka Av. Rostov on Don, 344090, Russia
E-mail: mezher@ipoc.rsu.ru
${ }^{b}$ A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Science
E-mail: star@xray.ineos.ac.ru

Dedicated to Prof. Alexander T. Balaban on the occasion of his $75^{\text {th }}$ Birthday in recognition of his outstanding contributions to theoretical chemistry and chemistry of heterocyclic compounds
(received 26 May 04; accepted 13 Aug 04; published on the web 10 Dec 04)

Abstract

Derivatives of a new heterocyclic system, viz. pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidine 5, have been synthesized by coupling imidoesters of 1 -substituted- 5 -aminocarbonitriles 2 with acylhydrazides. The thermal recyclization of 1-substituted-4-(2-acylhydrazin-1-yl)pyrazolo[3,4-$d]$-pyrimidines 7 is found to be an alternative approach to the heterocyclic system 5.

Keywords: 2,7-Disubstituted pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidines, bis-heterocyclization, carboxylic acids hydrazides

Introduction

The imidoesters 2 obtained by coupling 5 -amino- $1 H$-pyrazole-4-carbonitriles 1 with triethyl orthoformate react with amines to form a heterocyclic pyrazolo[3,4-d]pyrimidine system, ${ }^{1,2}$ the compounds of which display interesting chemical properties ${ }^{1-6}$ and possess a wide spectrum of biological activities. ${ }^{7-11}$ We have presumed that by employing hydrazides as the amine components of this reaction, the cascade heterocyclization $\mathbf{2 \rightarrow 3} \boldsymbol{\mathbf { 4 } \rightarrow \mathbf { 5 } \text { may occur to afford }}$ derivatives of a new heterocyclic system of pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidine 5 . ${ }^{1}$ Indeed, it has been shown that the imidoesters 2 react with hydrazides under prolonged reflux in bromobenzene to give compounds 5 in about 50% yield. The reaction mechanism illustrated in

[^0]Scheme 1 has been confirmed by isolation of the intermediates $\mathbf{3 a}$ and $\mathbf{4 a}$ in the reaction of imidoester $2(\mathrm{R}=\mathrm{H})$ with 4-methoxybenzoic acid hydrazide under milder conditions. Subsequent heating of a bromobenzene solution of pyrazolopyrimidine $\mathbf{4 a}$ smoothly converts it to the final product 5a.

a) $\mathrm{R}=\mathrm{H}, \mathrm{R}_{1}=4-\mathrm{MeOC}_{6} \mathrm{H}_{4}$
b) $\mathrm{R}=\mathrm{Me}, \mathrm{R}_{1}=\mathrm{Ph}$
c) $\mathrm{R}=\mathrm{Me}, \mathrm{R}_{1}=4-\mathrm{MeOC}_{6} \mathrm{H}_{4}$
d) $\mathrm{R}=\mathrm{PhCH}_{2}, \mathrm{R}_{1}=\mathrm{Ph}$
e) $\mathrm{R}=\mathrm{PhCH}_{2}, \mathrm{R}_{1}=4-\mathrm{MeOC}_{6} \mathrm{H}_{4}$
f) $\mathrm{R}=\mathrm{Ph}, \mathrm{R}_{1}=4-\mathrm{MeOC}_{6} \mathrm{H}_{4}$
g) $\mathrm{R}=\mathrm{Ph}, \mathrm{R}_{1}=4-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{OCH}_{2}$
h) $\mathrm{R}=4-\mathrm{MeC}_{6} \mathrm{H}_{4}, \mathrm{R}_{1}=\mathrm{Ph}$
i) $\mathrm{R}=4-\mathrm{MeC}_{6} \mathrm{H}_{4}, \mathrm{R}_{1}=4-\mathrm{MeC}_{6} \mathrm{H}_{4}$

Scheme 1

Results and Discussion

The amidrazone 3a is obtained by short-term reflux of an ethanolic solution of the imidoester 2 $(\mathrm{R}=\mathrm{H})$ and 4-methoxybenzoylhydrazine taken in equimolar amounts. The IR-spectrum of 3a contains the bands characteristic of the stretching vibrations of nitrile ($2200 \mathrm{~cm}^{-1}$), carbonyl ($1675 \mathrm{~cm}^{-1}$), amidine ($1650 \mathrm{~cm}^{-1}$) and imino (3060, $3330,3355 \mathrm{~cm}^{-1}$) groups. Both the initial molecular ion peak M_{1}^{+}(284) and that of the ion M_{2}^{+}(266) related to the pyrazolotriazolopyrimidine 5a formed by elimination of a molecule of water from 3a in the gas phase appear in the mass spectrum of the amidrazone 3a. Heating a dimethylformamide solution of the amidrazone 3a gives rise to 4-iminopyrazolopyrimidine 4a, the IR-spectrum of which does not contain a v_{CN} vibration band, whereas v_{CO} and v_{NH} vibration bands appear at 1650 and 3115 , $3200 \mathrm{~cm}^{-1}$, respectively. The cyclization of $\mathbf{4 a}$ to $5 \mathbf{a}$, via elimination of a molecule of water, proceeds upon reflux in bromobenzene for 3-4 hours. The structure of pyrazolotriazolopyrimidine $\mathbf{5 a}$ was supported by its ${ }^{1} \mathrm{H}$ NMR spectrum that contained signals for a methoxy substituent (3.85 ppm), two doublets (AB-quartet $J 8,7 \mathrm{~Hz}$) for aryl protons (7.1 and
$8.2 \mathrm{ppm})$ and a sharp singlet (9.5 ppm) for the H_{5} proton in the pyrimidine ring. At room temperature, the signals (8.6 and $14.4 \mathrm{ppm}, \mathrm{DMSO}-d_{6}$) of, respectively, CH and NH protons of the pyrazole ring, are substantially broadened, which is due to the fast prototropic exchange process associated with migration of a NH proton between the two nitrogen atoms.

With the goal of the synthesis of derivatives of another heterocyclic system of pyrazolo[4,3-e][1,2,4]triazolo[4,3-c]pyrimidine 8 isomeric to 5 we have prepared a series of 4-acylhydrazinopyrazolo[3,4-d]pyrimidines 7 by coupling 6 -chloropyrazolo[3,4-d]pyrimidines $\mathbf{6}^{3,4}$ with acylhydrazines and studying their cyclization reactions. The energy preference of the amino form of the acylhydrazines 7 over the possible imino tautomer is confirmed by their ${ }^{1} \mathrm{H}$ NMR spectra (DMSO- $d_{6}, 20^{\circ} \mathrm{C}$) which exhibit broadened AB quartet signals for the vicinal NH protons appearing at $9.5-11.0 \mathrm{ppm}$. Dehydration of the acylhydrazines 7 occurs under severe conditions on heating their melts and gives rise not to the expected pyrazolo[4,3-e]-[1,2,4]triazolo[4,3c]pyrimidines 8, but to the isomeric pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]-pyrimidines 5 (Scheme 2). The identity of the products of the dehydration of acylhydrazines 7 with those obtained by cyclization of the intermediate imines 4 was confirmed by comparison of their IR and ${ }^{1} \mathrm{H}$ NMR spectra.

Scheme 2

The decisive evidence for the pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidine structure 5 of the compounds prepared by dehydration of the acylhydrazines 7 is provided by an X-ray determination of the molecular and crystal structure of compound $\mathbf{5 g}$ obtained from $\mathbf{7 g}$ (Figure 1).

Figure 1. Perspective view and atom labeling of the X-ray crystal structure of $\mathbf{5 g}$.

The bond lengths in the tricyclic system are the following: $\mathrm{C}(2)-\mathrm{N}(2) 1.318, \mathrm{C}(3)-\mathrm{N}(3) 1.322$, $\mathrm{C}(5)-\mathrm{N}(5) 1.324, \mathrm{C}(7)-\mathrm{N}(4) 1.301 \AA$), C(2)-N(3) 1.360, C(3)-N(2) $1.375, \mathrm{C}(6)-\mathrm{N}(4) 1.362, \mathrm{C}(6)-$ $\mathrm{N}(6) 1.361, \mathrm{C}(7)-\mathrm{N}(2) 1.375 \AA$. The dihedral angles $\mathrm{C}(6) \mathrm{N}(6)-\mathrm{C}(14) \mathrm{C}(19)$ and $\mathrm{C}(1) \mathrm{O}(1)-$ $\mathrm{C}(8) \mathrm{C}(13)$ are 34.9° and 20.6°, respectively.

Of certain interest is the mode of crystal packing for compound $\mathbf{5 g}$. Due to the formation of a network of C-HN bonds, the molecules of 5 g are assembled in the crystal in almost planar layers. The attractive $\pi-\pi$ stacking interaction between the neighboring layers of the tricyclic aromatic systems of $5 \mathbf{g}$ is manifested by their almost parallel (the dihedral angle between the planes is 5.5°) orientation (Figures 2 and 3).

Figure 2. The layered crystal packing of molecules $5 \mathbf{g}$. The $\mathrm{N} \ldots \mathrm{H}$ distances in the $\mathrm{C}-\mathrm{H} \ldots \mathrm{N}$ hydrogen bridges are $2.54,2.29$ and $2.55 \AA$ for $\mathrm{N}(1) \ldots \mathrm{H}(5)-\mathrm{C}(5), \mathrm{N}(3) \ldots \mathrm{H}(3)-\mathrm{C}(7)$ and $\mathrm{N}(5) \mathrm{H}(9)-\mathrm{C}(9)$, respectively.

Figure 3. A fragment of the crystal structure of compound $5 \mathbf{g}$. The shortest distance between the nearly parallel layers of the molecules is that between the $\mathrm{N}(5)$ and $\mathrm{C}(6)$ atoms of the fivemembered heterocyclic moiety.

Conclusions

Two new routes to the preparation of derivatives of a new fused heterocyclic system of pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidine 5 have been elaborated. The heterocyclization of the acylhydrazines 7 involves a rearrangement $\mathbf{7 \rightarrow 5}$, the direction of which is opposite to that of the base-catalyzed Dimroth rearrangement. ${ }^{1}$ It is suggested here that the initial step of the $\mathbf{7 \rightarrow 5}$ rearrangement involves tandem migration of hydride and an acyl group $(\mathbf{B} \rightarrow \mathbf{C})$. The 1-acyl-1hetarylhydrazine (C) undergoes cleavage of the $\mathrm{N}-\mathrm{N}$ bond with the intermediate formation of the tight ionic pair (D) of the resonance-stabilized anion and the aminium cation, which then quenches to the N -amine \mathbf{E}. The mechanism of the last stage is similar to that operating in the N amination of nitrogen heterocycles with hydroxylaminosulfuric acid ${ }^{14}$. The subsequent dehydration of \mathbf{E} affords the final product (Scheme 3).

Scheme 3

Experimental Section

General Procedures. NMR spectra were recorded on a Varian Unity-300 spectrometer (300 MHz) using DMSO and CDCl_{3} as solvents. IR spectra were recorded on a Specord 71 spectrophotometer in nujol or KBr tablets. Mass spectra were obtained on a Kratos instrument using an ionization energy of 71 eV and a directing voltage of 1.75 kV . Single-crystal X-ray diffraction experiments were carried out with a Bruker SMART 1000 CCD area detector using graphite monochromated $\mathrm{Mo}-\mathrm{K} \alpha$ radiation $(\lambda=0.71073 \AA)$, ω-scans with a 0.3° step in w and 10s per frame exposure, $2 \theta<58^{\circ}$) at 120 K . A total of 12416 reflections were measured, 4436 $\left(\mathrm{R}_{\text {int }}=0.0531\right)$. The structures were solved by direct method and refined by the full-matrix leastsquares against F^{2} in anisotropic (for no-hydrogen atoms) approximation. The hydrogen atom positions were calculated and were refined isotropically in riding model approximation. The final refinements were converged to $\mathrm{R} 1=0.0576$ (from 3549 unique reflections with $I>2 \sigma(I)$) and $w R 2=0.1693$ (from all 4436 unique reflections; the number of the refined parameters is 244 . All calculations were performed on an IBM PC/AT using the SHELXTL software ${ }^{13}$.
Crystal data for 5 g . Colorless plate $\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{ClN}_{6} \mathrm{O}(\mathrm{M}=376.80)$, monoclinic, space group $P 2_{l} / c$ (no. 14), $a=19.047(7) \AA, b=12.206(5) \AA, c=7.226(3) \AA, \beta=93.292(8)^{\circ}, V=1677(1) \AA^{3}, Z=4$, $d_{\text {calc }}=1.492 \mathrm{~g} \mathrm{~cm}^{-3}, \mu=0.252 \mathrm{~mm}^{-1}, \mathrm{~F}(000)=$, crystal size $0.07 \times 0.40 \times 0.50 \mathrm{~mm}$.

5-Amino-1H-pyrazole-4-carbonitriles (1) were prepared by coupling ethoxymethylenemalodinitrile with hydrazine hydrate and the corresponding monosubstituted hydrazines according to the previously described procedure. ${ }^{4}$ By treatment of 5 -amino- $1 H$-pyrazole- 4 carbonitriles 1 with ethyl orthoformate, imidoesters 2 were prepared following a literature method. ${ }^{2}$ Chloropyrazolopyrimidines 6 were obtained by the method described by Robins. ${ }^{3,4}$
5-[2-(4-methoxyphenyl)-1-hydrazinomethylidenamino]-1H-4-pyrazolecarbonitrile (3a). To a solution of imidoester $2 \mathrm{a}(0.082 \mathrm{~g}, 0.5 \mathrm{mmol})$ in 2 ml of ethanol a solution 4-methoxybenzoyl hydrazine ($0.083 \mathrm{~g}, 0.5 \mathrm{mmol}$) in 1 ml of ethanol was added and the reaction mixture was allowed to stand at room temperature for 1 h . The precipitate formed was filtered off, washed with ethanol and water and dried ($0.060 \mathrm{~g}, 0.21 \mathrm{mmol}, 42.3 \%$): m.p. $304-306{ }^{\circ} \mathrm{C}$, molecular ion $m / e 284$; IR $\left(v, \mathrm{~cm}^{-1}\right)$: $3555,3330,3060,2200,1673$, 1650. Anal. Calcd. for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{6} \mathrm{O}_{2}$: C, 54.92; H, 4.23; N, 29.58. Found: C, 54.71; H, 4.35; N, 29.63.

4-Amino-5-(4-methoxyphenylcarboxamido)-4,5-dihydro-1H-pyrazolo[3,4-d]pyrimidine

(4a). A suspension of carbonitrile $3 \mathbf{a}(0.060 \mathrm{~g}, 0.21 \mathrm{mmol})$ in 2 ml of DMF was heated to reflux for 10 min . The precipitate formed was filtered off, washed with hexane and dried (0.050 g , $0.17 \mathrm{mmol}, 92 \%$): m.p. $345-346{ }^{\circ} \mathrm{C}$; IR ($\mathrm{v}, \mathrm{cm}^{-1}$): 3200, 3115, 1650. Anal. Calcd. for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{6} \mathrm{O}_{2}$: C, 54.92; H, 4.23; N, 29.58. Found: C, 55.12; H, 4.35; N, 29.71.
2-(4-Methoxyphenyl)-7H-pyrazolo[4,3-e]triazolo[1,5-c]pyrimidine (5a). A suspension of pyrimidine $4 \mathrm{a}(0.100 \mathrm{~g}, 0.35 \mathrm{mmol})$ in 2 ml of bromobenzene was refluxed for 10 h , then cooled to room temperature and the formed colorless precipitate was filtered off, washed with ethanol, and dried ($0.060 \mathrm{~g}, 0.225 \mathrm{mmol}, 64 \%$): m. p. $274-275{ }^{\circ} \mathrm{C}$; IR ($\mathrm{v}, \mathrm{cm}^{-1}$): 3167, 3100, 1650; ${ }^{1} \mathrm{H}$

NMR ($\delta, \operatorname{ppm}$, DMSO): $3.85(\mathrm{~s}, 3 \mathrm{H}), 7.1(\mathrm{~d}, 2 \mathrm{H}), 8.2(\mathrm{~d}, 2 \mathrm{H}), 8.6(\mathrm{~s}, 1 \mathrm{H}), 14,4(\mathrm{~s}, 1 \mathrm{H})$. Molecular ion m / e 266. Anal. Calcd. for $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{6} \mathrm{O}$: C, 58.65 ; H, 3.76; N, 31.58. Found: C, 58.78; H, 3.83; N, 31.46.

General procedure for the preparation of 2,7-disubstituted 7H-pyrazolo[4,3-e][1,2,3]-triazolo[1,5-c]pyrimidine 7b-i
A suspension of equimolar amounts of 1-substituted 4- chloro-pyrazolopyrimidines 6 and the corresponding acylhydrazine in ethanol was refluxed for $0.5-1.0 \mathrm{~h}$. On heating, the suspension passes into solution and a precipitate of 2,7- disubstituted 7H-pyrazolo[4,3-e][1,2,3]-triazolo[1,5c]pyrimidine $\mathbf{7 b} \mathbf{- i}$ is gradually formed. It was filtered off, washed with ethanol and water and crystallized from DMF.
1-(1-Methyl-1H-pyrazolo[3,4-d]pyrimidin-4-yl)-2-(4-phenylcarboxamido)hydrazine (7b). Yield 69%; m. p. $245-246{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (δ, ppm, DMSO- d_{6}): $3.95(\mathrm{~s}, 1 \mathrm{H}), 7.4-8.2(\mathrm{~m}, 6 \mathrm{H}), 9.8$ - 11.0 (m, 2H). Anal. Calcd. for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{6} \mathrm{O}$: C, 58.21 ; H, 4.48; N, 31.34. Found: C, 58.42; H, 4.54; N, 31.26.

1-(1-Methyl-1H-pyrazolo[3,4-d]pyrimidin-4-yl)-2-(4-methoxyphenylcarboxamido)hydrazine (7c). Yield 78%, m. p. $228-230{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (δ, ppm, DMSO- d_{6}): $3.80(\mathrm{~s}, 3 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 7.0-8.5(\mathrm{~m}, 6 \mathrm{H})$, $11.0-11.2(\mathrm{~d}, 1 \mathrm{H}), 12.2(\mathrm{~s}, 1 \mathrm{H})$. Anal. Calc. for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{6} \mathrm{O}: \mathrm{C}, 56.37$; H, 4.70; N, 28.19. Found: C, 56.48; H, 4.91; N, 28.31.

1-(1-Benzyl-1H-pyrazolo[3,4-d]pyrimidin-4-yl)-2-(4-phenylcarboxamido)hydrazine (7d). Yield 73%; m. p. $230-232{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (δ, ppm, DMSO- d_{6}): $5.50(\mathrm{~s}, 1 \mathrm{H}), 7.2-8.0(\mathrm{~m}, 10 \mathrm{H})$, $8.12(\mathrm{~s}, 1 \mathrm{H}), 8.38(\mathrm{~s}, 1 \mathrm{H}), 11.5(\mathrm{~d}, 1 \mathrm{H}), 12.5(\mathrm{~s}, 1 \mathrm{H})$. Anal. Calc. for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~N}_{6} \mathrm{O}: \mathrm{C}, 66.28 ; \mathrm{H}$, 4.65; N, 24.42. Found: C, 66.41; H, 4.72; N, 24.36.

1-(1-Benzyl-1H-pyrazolo[3,4-d]pyrimidin-4-yl)-2-(4-p-methoxyhenylcarboxamido)hydrazine (7e). Yield 73%; m. p. $217-219{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (δ, ppm, DMSO- d_{6}): $3.80(\mathrm{~s}, 3 \mathrm{H}), 5.6(\mathrm{~d}, 2 \mathrm{H})$, $7.1-8.5(\mathrm{~m}, 12 \mathrm{H}), 11.1(\mathrm{~s}, 1 \mathrm{H})$. Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{6} \mathrm{O}_{2}$: C, 64.17; H, 4.81; N, 22.46. Found: C, 64.53; H, 4.68; N, 22.72.
1-(1-Phenyl-1H-pyrazolo[3,4-d]pyrimidin-4-yl)-2-(4-methoxyphenylcarboxamido)hydrazine (7f). Yield 69\%; m. p. 233-235 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (δ, ppm, DMSO- d_{6}): $3.90(\mathrm{~s}, 3 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H})$, $7.0-8.6(\mathrm{~m}, 11 \mathrm{H}), 9.8-11.6(\mathrm{~m}, 2 \mathrm{H})$. Anal. Calcd. for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~N}_{6} \mathrm{O}_{2}: \mathrm{C}, 63.34 ; \mathrm{H}, 4.45 ; \mathrm{N}$, 23.33. Found: C, 63.27; H, 4.51; N, 23.15.

1-(1-Phenyl-1H-pyrazolo[3,4-d]pyrimidin-4-yl)-2-(4-chlorophenyloxyacetylcarboxamido) hydrazine (7g). Yield 86%; m. p. $218-220{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (δ, ppm, DMSO- d_{6}): $5.50(\mathrm{~s}, 2 \mathrm{H}$), 3.90 $(\mathrm{s}, 3 \mathrm{H}), 7.0-8.6(\mathrm{~m}, 11 \mathrm{H}), 9.8-11.6(\mathrm{~m}, 2 \mathrm{H})$. Anal. Calcd. for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~N}_{6} \mathrm{O}_{2}$: C, 63.34; H, 4.45; N, 23.33. Found: C, 63.27; H, 4.51; N, 23.15.
1-[1-(4-Methylphenyl)-1H-pyrazolo[3,4-d]pyrimidin-4-yl]-2-(4-phenylcarboxamido)
hydrazine (7h). Yield 89 \%, M. p. 263-265 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (δ, ppm, DMSO- d_{6}): 2.50 (s, 3H), 7.2 - $8.2(\mathrm{~m}, 11 \mathrm{H}), 10.0-11.1(\mathrm{~m}, 2 \mathrm{H})$. Anal. Calcd. for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~N}_{6} \mathrm{O}: \mathrm{C}, 66.28 ; \mathrm{H}, 4.65 ; \mathrm{N}, 24.42$. Found: C, 66.41; H, 4.70; N, 24.65.
1-[1-(4-Methylphenyl)-1H-pyrazolo[3,4-d]pyrimidin-4-yl]-2-[4-(4-methylphenyl)
carboxamido] hydrazine (7i). Yield 89%, M. p. $263-265{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (δ, ppm, DMSO- d_{6}): $2.50(\mathrm{~s}, 3 \mathrm{H}), 7.2-8.2(\mathrm{~m}, 11 \mathrm{H}), 10.0-11.1(\mathrm{~m}, 2 \mathrm{H})$. Anal. Calc. for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~N}_{6} \mathrm{O}: \mathrm{C}, 66.28 ; \mathrm{H}$, 4.65; N, 24.42. Found: C, 66.41; H, 4.70; N, 24.65.

General procedure for the preparation of 2,7-disubstituted-7H-pyrazolo[4,3$e][1,2,4]$ triazolo[1,5-c]pyrimidines 5b-i
Method (a). A bromobenzene solution of equimolar amounts of imidoester $2\left(\mathrm{R}=\mathrm{Me}, \mathrm{CH}_{2} \mathrm{Ph}\right.$, $\mathrm{Ph}, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-p$) and the corresponding acylhydrazine was refluxed for $5-10 \mathrm{~h}$, allowed to reach room temperature and the precipitate formed was filtered off, washed with ethanol, dried and crystallized from DMF.
Method (b). 4-Acylhydrazino derivatives of pyrazolo[3,4-d]pyrimidines 7b-i were melted in an open vessel until evaporation of the eliminated water ceased. The remaining solid was crystallized from DMF. The melting points and yields of compounds 5a-i obtained by the methods (a) and (b) are given in Table 1.

Table 1. Melting points and yields of derivatives of $7 H$-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidine 5 synthesized by the methods (a) and (b)

Compound	M. $\mathrm{p} .,{ }^{\circ} \mathrm{C}$	Yield by method (a)	Yield by method (b)
$\mathbf{5 a}$	$274-275$	64	-
$\mathbf{5 b}$	$247-249$	45	75
$\mathbf{5 c}$	$242-243$	39	65
$\mathbf{5 d}$	$278-280$	42	65
$\mathbf{5 e}$	$208-209$	54	76
$\mathbf{5 f}$	$233-235$	43	72
$\mathbf{5 g}$	$190-192$	58	70
$\mathbf{5 h}$	$282-283$	38	66
$\mathbf{5 i}$	$310-311$	56	71

2-Phenyl-7-methyl-7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidine (5b). ${ }^{1} \mathrm{H}$ NMR (δ, ppm, DMSO- d_{6}): $4.20(\mathrm{~s}, 3 \mathrm{H}), 7.5-8.3(\mathrm{~m}, 5 \mathrm{H}), 8.40(\mathrm{~s}, 1 \mathrm{H})$. Anal. Calc. for $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{6}$: C, 62.40; H, 4.01; N, 33.60 Found: C, 62.30; H, 4.00; N, 33.75

2-(4-Methoxyphenyl-7-methyl-7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidine (5c).
${ }^{1} \mathrm{H}$ NMR (δ, ppm, DMSO- d_{6}): $3.9(\mathrm{~s}, 3 \mathrm{H}), 4.2(\mathrm{~s}, 3 \mathrm{H}), 7.0-8.0(\mathrm{~m}, 4 \mathrm{H}), 8.40(\mathrm{~s}, 1 \mathrm{H}), 9.1(\mathrm{~s}$, $1 \mathrm{H})$. Anal. Calc. for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{6} \mathrm{O}: \mathrm{C}, 60.04 ; \mathrm{H}, 4.30$; N, 30.00. Found: C, 60.30; H, 4.10; N, 29.91. 2-Phenyl-7-benzyl-7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidine (5d). NMR ${ }^{1} \mathrm{H}(\delta$, ppm, DMSO- d_{6}): $5.70(\mathrm{~s}, 2 \mathrm{H}), 7.3-8.3(\mathrm{~m}, 10 \mathrm{H}), 8.40(\mathrm{~s}, 1 \mathrm{H}), 9.11(\mathrm{~s}, 1 \mathrm{H})$. Anal. Calc. for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{~N}_{6}$: C, 69.94; H, 4.30; N, 25.77 Found: C, 69.50; H, 4.15; N, 25.80.
2-(4-Methoxyphenyl-7-benzyl-7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidine (5e).
${ }^{1} \mathrm{H}$ NMR (δ, ppm, DMSO- d_{6}): $3.90(\mathrm{~s}, 3 \mathrm{H}), 5.70(\mathrm{~s}, 2 \mathrm{H}), 7.0-7.4(\mathrm{~m}, 9 \mathrm{H}), 8.40(\mathrm{~s}, 1 \mathrm{H}), 9.20(\mathrm{~s}$, $1 \mathrm{H})$. Anal. Calc. for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{6} \mathrm{O}: \mathrm{C}, 67.42 ; \mathrm{H}, 4.49$; N, 23.60. Found: C, 67.50; H, 4.20; N, 23.59.

2-(4-Methoxyphenyl-7-phenyl-7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidine (5f).
${ }^{1} \mathrm{H}$ NMR ($\delta, \mathrm{ppm}, \mathrm{DMSO}-d_{6}$): $7.4-8.4(\mathrm{~m}, 12 \mathrm{H}), 8.60(\mathrm{~s}, 1 \mathrm{H}), 9.20(\mathrm{~s}, 1 \mathrm{H})$. Anal. Calc. for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{~N}_{6} \mathrm{O}: \mathrm{C}, 66.66$; H, 4.03; N, 24.56. Found: C, 66.50; H, 4.10; N, 24.60.
2-(4-Chlorophenoxymethyl-7-phenyl-7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]
pyrimidine (5g). ${ }^{1} \mathrm{H}$ NMR (δ, ppm, DMSO- d_{6}): $5.4(\mathrm{~s}, 2 \mathrm{H}), 7.0-8.2(\mathrm{~m}, 9 \mathrm{H}), 8.50(\mathrm{~s}, 1 \mathrm{H}), 9.20$
$(\mathrm{s}, 1 \mathrm{H})$. Anal. Calc. for $\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{~N}_{6} \mathrm{OCl}$: C, 60.56; H, 3.45; N, 22.31; Cl, 9.43. Found: C, 60.72; H, 3.56; N, 22.46; Cl, 9.62.

2-Phenyl-7-(4-methylphenyl)-7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidine (5h). ${ }^{1} \mathrm{H}$ NMR (δ, ppm, DMSO- d_{6}): 2.40 (s, 3H), $7.4-8.4(\mathrm{~m}, 9 \mathrm{H}), 8.60(\mathrm{~s}, 1 \mathrm{H}), 9.20(\mathrm{~s}, 1 \mathrm{H})$. Anal. Calc. for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{~N}_{6}$: C, 69.94; H, 4.30; N, 25.77 Found: C, 70.15; H, 4.16; N, 25.91.
2-(4-Methylphenyl)-7-(4-methylphenyl)-7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidine (5i). ${ }^{1} \mathrm{H}$ NMR (δ, ppm, DMSO- d_{6}): $2.40(\mathrm{~s}, 6 \mathrm{H}), 7.3-8.2(\mathrm{~m}, 8 \mathrm{H}), 8.60(\mathrm{~s}, 1 \mathrm{H}), 9.20(\mathrm{~s}, 1 \mathrm{H})$. Anal. Calc. for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{6}$: C, 70.59; H, 4.71; N, 24.71 Found: C, 70.72; H, 4.83; N, 24.93.

Acknowledgments

This work was supported by Grants N. Sh. 945. 03. 2003 from Ministry of Education and Science RF and REC-004 from CRDF and Ministry of Education and Science RF.

References

1. Taylor, E. C.; Mc Killop, A. The Chemistry of Cyclic Enaminonitriles and o-Aminonitriles in Adv. in Org. Chem., J. Wiley-Interscience: New York, 1970; Vol. 7, p 415.
2. Taylor, E. C.; Loeffler, R. K. J. Am. Chem. Soc. 1960, 82, 3147.
3. Robins, R. K. J. Am. Chem. Soc. 1956, 78, 784.
4. Cheng, C. C.; Robins, R. K. J. Org. Chem.1956, 21, 1240.
5. Cheng, C. C.; Robins, R. K. J. Org. Chem. 1958, 23, 191.
6. Cheng, C. C.; Robins, R. K. J. Org. Chem. 1958, 23, 852
7. Bhat, G. A.; Montero, J. G.; Panzica, R. P.; Warting, L. L.; Towsend, L. B. J. Med. Chem. 1981, 24, 1165.
8. Petrie, C. R.; Cottam, H. B.; Mc Kernan, P. A.; Robins, R. K.; Revankar, G. R. J. Med. Chem. 1985, 28, 1010.
9. Avila, J. L.; Polegre, M. A.; Avila, A. R.; Robins, R. K. Comp. Biochem. Physiol. 1986, 83 C, 285.
10. Anderson, J. D.; Cottam, H. B.; Larson, S. B.; Nord, L. D.; Revankar, G. R.; Robins, R. K. J. He terocycl. Chem. 1990, 27, 439.
11. Zaharie, C. B.; Connolly, T. P.; Rej, R.; Attardo, G.; Penney, C. L. Tetrahedron 1996, 52, 2271.
12. Krasnikov, V. V.; Milgizina, G. R.; Tyurin, R. V.; Minyaeva, L. G.; Mezheritskii, V. V. In: Abstracts of reports at the $1^{s t}$ International Conference "Chemistry and Biological Activity of NitrogenContaining Heterocycles and Alkaloids" Moscow, 2001; Vol. 1, p 356.
13. Sheldrick, G. M. SHELXTL-97, Version 5.10, Bruker AXS Inc., Madison, WI-53719, USA.
14. Rees, C. W.; Storr, R. C. Chem. Commun. 1965, 193.

[^0]: ${ }^{1}$ A preliminary communication on this transformation has been made in the form of the conference report. ${ }^{12}$

