Fragmentation patterns in the electron impact mass spectra of 1,3,5-triazin-2-one derivatives

Perry T. Kaye*and Xolani W. Nocanda

Department of Chemistry, Rhodes University, P.O. Box 94, Grahamstown, 6140, South Africa.

Tel: +27 46 6038254; Fax: +27 46 6225109

*Correspondence should be addressed to:

Professor P. T. Kaye, Department of Chemistry, Rhodes University, Grahamstown, 6140, South Africa. Tel: +27 46 6038254; Fax: +27 46 6225109

E-mail: P.Kaye@ru.ac.za

DOI: http://dx.doi.org/10.3998/ark.5550190.0001.610

Abstract

Fragmentation patterns in the electron impact (EI) mass spectra of a series of 5-substituted 1,3,5-triazin-2-ones, prepared from the reaction of dimethylolurea with selected primary amines, have been elucidated using a combination of high-resolution, comparative low-resolution and metastable peak analysis. In addition to characteristic fragmentations, in which the triazine nucleus remains intact, the 5-substituted 1,3,5-triazin-2-ones appear to exhibit a series of extrusion/ring-contraction processes, resulting in the formation of 3- and 4-membered ring fragments. Resonance-stabilised even-electron ions, arising, in each case, from loss of a hydrogen atom from the molecular ion, are considered pivotal in the formation of these heterocyclic fragments.

Keywords: Triazinone, mass spectrometry, fragmentation patterns

Introduction

The emission of formaldehyde from urea-formaldehyde (UF) resins¹ may be reduced by decreasing the formaldehyde content² and adding cross-linking agents such as ammonia or melamine during the resinification process. The inclusion of ammonia has been found to result in the formation of triazine-urea-formaldehyde resins, the presence of three reactive sites in the triazine nucleus permitting cross-linking.³ While the mass spectra of 1,3,5-triazines have been

ISSN 1551-7004 Page 923 [©]ARKAT USA, Inc

investigated,⁴ to our knowledge, no such studies of 1,3,5-triazin-2-ones have been reported. As part of a study of UF resins,⁵ we have prepared a series of 5-substituted 1,3,5-triazin-2-ones and, here, we discuss the electron impact (EI) mass spectra of the latter systems.

Results and Discussion

The triazinones **3-8** were prepared, following Burke's method,⁶ from dimethylolurea **1** and the corresponding primary amines **2** (Scheme 1). A combination of high-resolution, comparative low-resolution and metastable peak data was used to explore the fragmentation of these compounds. Selected MS data are summarised in Table 1 and the proposed fragmentation pathways are outlined in Schemes 2 and 3.

Table 1. Selected peaks (m/z; followed, in parentheses, by % relative abundance) from EI mass spectra of 1,3,5-triazin-2-ones 3-8, classified according to ion types A-I (Scheme 2)

Compd	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3	A	В	C	D	E	F	G	Н	I
3	Me	Н	Н	129 ^a	128 ^a	114 ^a	100 ^b	_c	83 ^b	99 ^a	85 ^a	56 ^a
				(23.1)	(100.0)	(5.2)	(2.4)		(5.5)	(15.8)	(21.9)	(7.6)
4	Me	Н	Me	143 ^a	142 ^b	128 ^a	100 ^b	85 ^b	83 ^b	113 ^b	99ª	56 ^b
				(13.0)d	(28.7)	(100)d	(2.6)	(9.9)	(3.6)	(10.6)	(24.2)d	(62.8)
5	Me	Me	Me	157 ^a	156 ^a	142 ^a	100 ^a	85 ^a	83 ^b	127 ^b	113 ^b	56 ^a
				(8.7)	(5.5)	(88.2)	(13.0)	(3.3)	(2.5)	(0.5)	(17.3)	(6.7)
6	Pr	Н	Н	157 ^a	156 ^a	114 ^a	100 ^a	85 ^a	83 ^b	127ª	113 ^a	56 ^a
				(39.8)	(60.7)	(100)	(4.5)	(63.9)	(2.8)	(17.1)	(19.0)	(15.2)
7	CH ₂ OH	Н	Н	145 ^a	144 ^a	114 ^a	100 ^b	85 ^a	83 ^b	115 ^b	101 ^b	56 ^b
				(3.6)d	(23.1)d	(100)d	(2.4)	(86.6)d	(5.4)	(64.0)	(13.0)	(64.8)
8	Ph	Н	Н	191 ^a	190 ^a	190 ^a	100 ^a	85 ^a	83 ^b	161 ^a	147 ^a	56 ^a
				(2.4)	(12.5)	(0.9)	(45.4)	(1.3)	(5.8)	(1.5)	(4.4)	(2.6)

^a Atomic composition of fragment confirmed by high resolution analysis; % relative abundance from high-resolution spectrum. ^b Low-resolution MS data. ^c In this case, ion **E** has same nominal mass (m/z, 85) as fragment **H.** ^d % Relative abundance from low-resolution spectrum.

In all cases, loss of a hydrogen atom or an alkyl radical (\mathbb{R}^1 \$) from the 5-substituent of the molecular ion **A** would account for the corresponding even-electron species **B'** and **C** (Scheme 2).

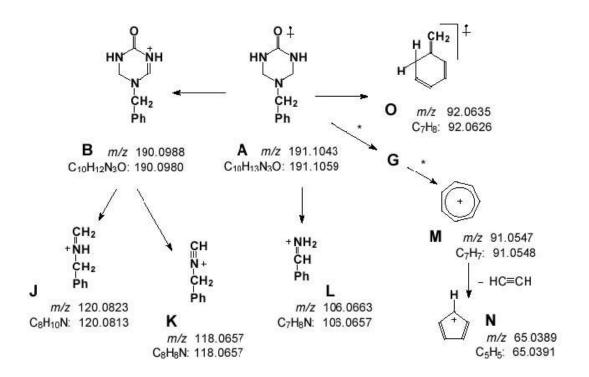
ISSN 1551-7004 Page 924 [©]ARKAT USA, Inc

Scheme 1

However, loss of a *ring* hydrogen would afford fragments of type **B**, in which delocalisation may be extended by involvement of the N(5) lone pair; consequently, ions of structural type **B** are considered more likely than the isomeric systems **B**². Loss of the 5-substituent itself leads to the formation of cation **D** (m/z 100), which is common to all of the compounds examined; there is, in fact, metastable peak evidence for the direct formation of cation **D** from *both* the molecular ion **A** *and* the M-1 fragment **B**.

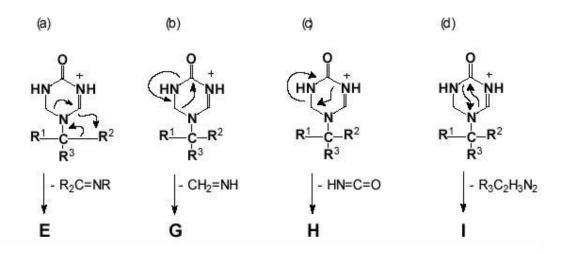
In addition to the foregoing fragmentations, in which the triazine nucleus remains intact, the 5-substituted 1,3,5-triazin-2-ones 3-8 appear to exhibit a series of extrusion/ring-contraction processes, resulting in the formation of 3- and 4-membered ring fragments. The resonance-stabilised cations **B** are considered pivotal in the formation of these heterocyclic fragments (**E-I**). Thus, elimination of a neutral imine (R₂C=NR) from the cation **B** would afford, in each case, the common, diazolium ion **E** (*m*/*z* 85) (see Figure 1a), dehydrogenation of which gives cation **F** (m/z 83). On the other hand, extrusion of the neutral molecules, CH₂=NH or HN=C=O, from cations of type **B** would afford fragments which retain the 5-alkyl substituent and which have been tentatively formulated as the diazetinones **G** and their deoxo analogues **H**, respectively. Access to these latter ions (**G** and **H**) is attributed to the similar, but fragment-specific eliminations depicted in Figures 1b and 1c; while there is metastable peak support for the fragmentation, **BG**, there is similar evidence, in some cases, for the loss of CH₃NH\$ from the molecular ion, *i.e.* **AG**. Elimination of a moiety containing the 5-substituent (Figure 1d) would account for the common cation at *m*/*z* 56, tentatively formulated as the aziriniminium species **I**.

ISSN 1551-7004 Page 925 [©]ARKAT USA, Inc


Scheme 2

Mass-spectral fragmentation pathways for the 1,3,5-triazin-2-ones **3** - **8**. Accurate masses (m/z) are followed, in parentheses, by calculated formula masses for compound **3** ($R^1 = Me$, $R^2 = R^3 = H$); an asterisk indicates a pathway supported by metastable peak data.

Accurate masses (m/z) are followed, in parentheses, by calculated formula masses; an asterisk indicates a pathway supported by metastable peak data.


The 5-benzyl derivative **8**, not surprisingly, exhibits a number of additional, characteristic fragmentations, all of which are supported by high-resolution data (Scheme 3). The base peak, in this case, corresponds to the tropylium cation \mathbf{M} (m/z 91), metastable peak data supporting its formation *via* the sequence, **AGM**.

ISSN 1551-7004 Page 926 [©]ARKAT USA, Inc

Scheme 3

Additional mass-spectral fragmentation pathways for 5-benzyl-1,3,5-triazin-2-one 8.

Figure 1. Proposed fragmentations of the cations of type B to account for the formation of the heterocyclic fragments, E, G, H and I.

ISSN 1551-7004 Page 927 [©]ARKAT USA, Inc

Experimental Section

General Procedures. NMR spectra were recorded in CDCl₃ on a Bruker AMX 400 NMR spectrometer and referenced using the solvent signals (δ_H 7.25 and δ_C 77.0 ppm). Low-resolution mass spectra were obtained on Hewlett-Packard 5988A and Finnigan Mat GCQ mass spectrometers. High-resolution EI data were collected on a VG-70SEQ mass spectrometer equipped with an MSS MASPEC II/32 data station (Cape Technikon Mass Spectrometry Unit), using high-resolution magnetic scans and B/E metastable scanning. Dimethylourea **1** [m.p. 129-130 °C (lit. 126-129 °C)] was prepared following a reported method. The synthesis of the 1,3,5-triazone derivatives, of which compounds **3** and **7** [158-159 °C (lit. 158 °C)] are known, is illustrated by the following example.

5-(2-hydroxyethyl)hexahydro-1,3,5-triazin-2-one (**7**). 2-Aminoethanol (2.5 ml, 0.042 mol) was added, with cooling, to dimethylolurea **1** (5 .0 g, 0.042 mol) in water (7 ml). The resulting solution was heated at 90-100 °C for two hours and then kept at room temperature overnight. The reaction mixture was concentrated under reduced pressure, and the solid residue recrystallised twice from ethanol to afford 5-(2-hydroxyethyl)hexahydro-1,3,5-triazin-2-one **7** (2.9 g, 47 %), (Found: \mathbf{M}^+ 145.0853. Calc. for $\mathbf{C_5H_{11}N_3O_2}$: M, 145.0851); ν_{max} (KBr/cm⁻¹) 3320 (OH), 3220 (NH) and 1660 (CO); δ_{H} (400 MHz; DMSO- d_{6}) 2.65 (2H, t, 1'-CH₂), 3.50 (2H, m,2'-CH₂), 3.99 (4H, s, 2xCH₂), 4.51 (IH, br s, OH) and 6.27 (2H, br s, NH); δ_{C} (100 MHz; DMSO- d_{6}) 52.1 (1'-CH₂), 59.7 (2'-CH₂), 61.6 (2 x CH₂) and 154.7 (CO); m/z 145 (M⁺, 3.6 %) and 114 (100).

Analytical data for the new 1,3,5-traizinone derivatives prepared in this study are as follows.

5-Ethylhexahydro-1,3,5-triazin-2-one (3).⁸ (2.0 g, 19 %), m.p. 156-158 °C. (Found: \mathbf{M}^+ 129.0910. $C_5H_{11}N_3O$ requires: M, 129.0902); ν_{max} (KBr/cm⁻¹) 3220 (NH) and1650 (CO); δ_H (400 MHz; DMSO- d_6) 1.03 (3H, t, CH₃), 2.61 (2H, q, 1'-CH₂), 3.99 (4H, d, 2xCH₂) and 6.15 (2H, br s, NH); δ_C (100 MHz; DMSO- d_6) 13.0 (CH₃), 43.1 (1'-CH₂), 60.4 (2xCH₂) and 154.8 (CO); m/z 129 (M⁺, 30.2 %) and 128 (100).

5-Isopropylhexahydro-1,3,5-triazin-2-one (**4**). (1.9 g, 51 %), m.p.179-180 °C. (Found: **M**⁺ 143.1064 C₆H₁₃N₃O requires: M, 143.1058); v_{max} (hexachlorobutadiene mull / cm⁻¹) 3226 (NH) and 1673 (CO); $δ_H$ (400 MHz; DMSO- d_6) 1.05 (6H, d, 2xCH₃), 2.93 (1H, septet, CH), 4.06 (4H, d, 2xCH₂) and 6.18 (2H, br s, NH); $δ_C$ (100 MHz; DMSO- d_6) 21.0 (2xCH₃), 45.9 (CH), 58.5 (2xCH₂) and 155.0 (CO); m/z 143 (M⁺,13.0%) and 128 (100).

5-t-Butylhexahydro-1,3,5-triazin-2-one (5). (2.7 g, 41 %), m.p. 181-182 °C. (Found: M⁺

ISSN 1551-7004 Page 928 [©]ARKAT USA, Inc

157.1209. $C_7H_{15}N_3O$ requires: M, 157.1215); v_{max} (KBr/cm⁻¹) 3220 (NH) and1690 (CO); δ_H (400 MHz; DMSO- d_6) 28.2 (3xCH₃), 52.9 [(CH₃)₃C)], 56.7 (2xCH₂) and 155.4 (CO); m/z 157 (M⁺, 11.6 %) and 58 (100)

5-Butylhexahydro-1,3,5-triazin-2-one (**6**). (1.5 g, 23 %), m.p.128-130 °C (Found: **M**⁺ 157.1218. C₇H₁₅N₃O requires: M, 157.1215); v_{max} (hexachlorobutadiene mull /cm⁻¹) 3223 (NH) and 1666 (CO); $δ_{\text{H}}$ (400 MHz; DMSO- d_{6}) 0.88 (3H, t, CH₃), 1.32 (2H, m, CH₃CH₂), 1.40 (2H, m, NCH₂CH₂), 2.55 (2H, t, NCH₂CH₂), 3.97 (4H, d, 2xCH₂) and 6.25 (2H, br s, NH); $δ_{\text{C}}$ (100 MHz; DMSO- d_{6}) 13.7 (CH₃), 19.8, 29.5 and 48.8 ([CH₂]₃), 60.8 (2xCH₂) and 154.7 (CO); m/z 157 (M⁺, 27.5 %) and 42 (100).

5-Benzylhexahydro-1,3,5-triazin-2-one (**8**). (0.4 g, 5 %), m.p.190-192 °C. (Found: **M**⁺ 191.1050. C₁₀H₁₃N₃O requires: M, 191.1058); v_{max} (hexachlorobutadiene mull /cm⁻¹) 3062 (NH) and 1681 (CO); δ_{H} (400 MHz; DMSO- d_6) 3.78 (2H, s, CH₂Ph), 3.99 (4H, d, 2xCH₂), 6.35 (2H, br s, NH), 7.25 - 7.34 (5H, ArH); δ_{C} (100 MHz; DMSO- d_6) 53.3 (CH₂Ph), 60.5 (2xCH₂), 127.1, 128.2, 128.7 and 138.2 (ArC) and 154.6 (CO); m/z 191 (M⁺, 0.9%) and 91 (100).

Acknowledgements

We thank FORMALCHEM Ltd., Rhodes University and the National Research Foundation (NRF) for generous financial support, Mr. A. Sonemann (Rhodes University) for low-resolution MS data and Dr P. Boshoff (Cape Technikon) for high-resolution data.

References

- 1. Su, Y.; Quanyin, R.; Weizhong, W.; Xinwei, M. Thermochimica Acta, 1995, 253, 307.
- 2. Pizzi, A.; Lipschitz, L.; Valenzuela, J. Holzforschung, 1994, 48, 254.
- 3. Christjanson, P.; Siimer, K.; Suurpere, A. Tallina Tehnikaülik Toim., 1994, 744, 24.
- 4. Quirke, J. M. E. In *Comprehensive Heterocyclic Chemistry*, Eds. Katritzky, A. R.; Rees, C. W. Pergamon, Oxford, 1984, Vol. 3, p 465.
- 5. Nocanda, X. W. MSc thesis, Rhodes University, 1998.
- 6. Burke, W. J. J. Am. Chem. Soc. 1947, 69, 2136.
- 7. Ludlam, P. R. Analyst (London) **1973**, 98, 107.
- 8. This compound has been reported as a component in a resin mixture, but does not appear to have been isolated or characterized previously.

ISSN 1551-7004 Page 929 [©]ARKAT USA, Inc