Synthesis of pseudo saccharide precursors through 'off template site' Michael -Wittig reaction on sugar derived enal ${ }^{\#}$

G. V. M. Sharma*́, A. Subhash Chander ${ }^{\text {a }}$, Palakodety Radha Krishna ${ }^{\text {a }}$, K. Krishnudu ${ }^{\text {a }}$, M. H. V. Ramana Rao ${ }^{\text {b }}$, and A. C. Kunwar ${ }^{\text {b }}$
${ }^{a}$ D-211, Discovery Laboratory, Organic Chemistry Division-III,
${ }^{b}$ NMR Group, Indian Institute of Chemical Technology, Hyderabad-500 007, India E-mail: esmvee@iict.res.in

Dedicated to Dr. A V Rama Rao on his 70 ${ }^{\text {th }}$ birthday April 2, 2005

(received 12 Dec 03; accepted 03 May 04; published on the web 03 Jun 04)

Abstract

[3+3] Annulation protocol at an'off template site' on the sugar derived enal synthon effectively resulted in the formation of C-C linked pseudo saccharide precursors. Thus, the enolate of phosphorane generated from ethyl acetoacetate first undergoes a Michael reaction on the enal followed by a Wittig reaction to furnish the target saccharides, where the chirality is very effectively translated from the parent sugar.

Keywords: 'Off template site', pseudo saccharide precursors, Michael Wittig reaction, [3+3] annulation, nuclear Overhauser effect, molecular mechanics

Introduction

Several antibiotics and compounds of biological interest incorporate glycosides of pseudosugars ${ }^{1-3}$ or carba-sugars ${ }^{4}$, since, they are endowed with relatively greater stability towards glycosidase-induced hydrolysis. Besides the application as enzyme inhibitors, the carba-sugars are discussed as synthetic intermediates for the preparation of more efficient drugs in order to substitute carbohydrate moieties ${ }^{5}$. Thus, development of novel and efficient methods for the enantioselective or enantiospecific construction of carbocycles ${ }^{6}$ resulted in a variety of useful routes such as Diels-Alder approaches, the double Michael cyclisation, 1,3-dipolar cycloaddition and free radical-induced C-C bond formation. As part of our ongoing efforts on the transformation of monosaccharides into new glycosubstances ${ }^{7-15}$, herein we describe the synthesis of C-C linked pseudo saccharide precursors 1-5 (Figure 1), adopting a Michael-Wittig reaction on sugar-derived enal.

Figure 1

Results and Discussion

From the retro synthetic analysis of 1-5 (Scheme 1), it was envisaged that, the enones 6a-d are appropriate late stage intermediates, which could be realized from the condensation of α, β unsaturated aldehyde 7 and Wittig ylide 8 by a Michael-Wittig reaction. The enal 7 in turn could be made from D-glucose through aldehyde $\mathbf{9}$, while $\mathbf{8}$ could be prepared from ethyl acetoacetate.

Scheme 1

Scheme 2. a) $\mathrm{Ph}_{3}=\mathrm{CHCO}_{2} \mathrm{Et}, \mathrm{C}_{6} \mathrm{H}_{6}$, reflux, b) DIBAL-H, $\mathrm{CH}_{2} \mathrm{CL}_{2},-23{ }^{\circ} \mathrm{C}$, c)PDC $\mathrm{CH}_{2} \mathrm{CL}_{2}$, reflux, d) $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCOCH}_{2} \mathrm{CO}_{2} \mathrm{Et}$, $\mathrm{NaH}, 2$ drops water, THF, $50^{\circ} \mathrm{C}$.

Aldehyde $\mathbf{9}^{16}$ was subjected to Wittig olefination (Scheme 2) with (ethoxycarbonyl methylene)triphenylphosphorane in benzene at reflux to give the ester 10, which on reduction with DIBAL-H in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ afforded $\mathbf{1 1}$ in 86% yield. Oxidation of $\mathbf{1 1}$ with PDC in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at reflux gave enal 7 (95\%), which on reaction with $\mathbf{8}^{17}$ in the presence of NaH and two drops of
water ${ }^{18}$ in THF at $50{ }^{0} \mathrm{C}$ for 10 min ., resulted in the formation of $\mathbf{6 a - d}$ as a partially separable mixture of diastereoisomers in (6:1.5:1.5:1) 75% overall yield. The stereochemical outcome of each of the annulated products was unambiguously determined by ${ }^{1} \mathrm{H}$ NMR spectra. The formation of 6a as major product, in the present study, indicates that the initial Michael-addition of nucleophile (sodium enolate of $\mathbf{8}$) on the γ-alkoxy enal system 7 results in the formation of a syn product ${ }^{19}$ and the aldehyde moiety of the adduct concomitantly undergoes a Wittig reaction in affording the cyclohexenone derivatives 6a-d.

The mixture of diastereoisomers $\mathbf{6 a}$ and $\mathbf{6 b}$ were separated from $\mathbf{6 c}$ and $\mathbf{6 d}$ by column chromatography and both the mixtures were independently treated with NaBH_{4} in ethanol (Scheme 3) in the presence of $\mathrm{CeCl}_{3} .7 \mathrm{H}_{2} \mathrm{O}$ under Luche's reaction conditions ${ }^{20}$. $\mathbf{6 a}$ and $\mathbf{6 b}$ afforded a mixture of alcohols $\mathbf{1 2}$ (major), $\mathbf{1 3}$ (minor) and $\mathbf{1 4}$ (single isomer) in the ratio of 4:1:2 respectively in a combined yield of 88%, while $\mathbf{6 c}$ and $\mathbf{6 d}$ furnished $\mathbf{1 5}$ as an inseparable mixture of alcohols. Acetylation of alcohols 12-14 with acetic anhydride in pyridine independently gave the corresponding acetates 16, 17 and 18 respectively, while 15 gave 19, 20 and 21a-b. All the acetates were thoroughly identified by spectral data.

Scheme 3. a) $\mathrm{NaBH}_{4}, \mathrm{CeCl}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$, Et $\mathrm{OH}, 0{ }^{\circ} \mathrm{C}$ to RT , b) $\mathrm{Ac}_{2} \mathrm{O}-\mathrm{Py}$, c) $\mathrm{OsO}_{4}-\mathrm{NMO}$, $\mathrm{CH}_{3} \mathrm{COCH}_{3}: \mathrm{H}_{2} \mathrm{O}(3: 1)$.

Stereoselective cis-hydroxylation of the olefins $\mathbf{1 6 - 2 0}$ was affected using $\mathrm{OsO}_{4}-\mathrm{NMO}$ in acetone-water (3:1) system to afford the diols 22-26. The stereochemical outcome, anti-to the OAc group, is in accordance with literature ${ }^{21}$ precedence. Acetylation of diols 22-26 with acetic anhydride in pyridine afforded the corresponding pseudo saccharide precursors 1-5 in quantitative yields.

The structures of 1-5 were fully confirmed with the help of detailed NMR analysis using the vicinal couplings (J) as well as the data from the NOESY experiments. For compound 1, the characteristic NOE cross peaks (Figure 2) H6-H8, H6-H10a, H8-H10a and H7-H5 and $\mathrm{J}_{5,6}, \mathrm{~J}_{6,7}$, $\mathrm{J}_{7,8}$ and $\mathrm{J}_{5,10 \mathrm{a}}$ values of about 10 Hz are in consensus with a chair conformation, ${ }^{8} \mathrm{C}_{5}$, for the carbocycle ring. Interestingly, most of the substituents in this conformation take energetically favored equatorial position. For compound 2, the structure and conformation are supported by strong NOE cross peaks between $\mathrm{H} 5-\mathrm{H} 9$ and $\mathrm{H} 6-\mathrm{H} 10 \mathrm{a}$ as well as large value of about 10 Hz for $\mathrm{J}_{5,6}, \mathrm{~J}_{5,10 \mathrm{a}}$ and $\mathrm{J}_{9,10 \mathrm{a}}$ whereas large NOE cross peaks between $\mathrm{H} 5-\mathrm{H} 7$ as well as $\mathrm{J}_{5,10 \mathrm{a}} 13.0 \mathrm{~Hz}$ and $\mathrm{J}_{7,8} 10.8 \mathrm{~Hz}$ confirm the structure of compound 3.

2

4
5

Figure 2. Diagramatic representation of NOEs.
Such a conformation for the carbocycle ring is again energetically favored, as apart from substituent at C-6 and C-9, all the substituents are placed equatorial. For compound 4 the characteristic NOE cross peaks H6-H10a and $\mathrm{H} 5-\mathrm{H} 9$ as well as large value of about 10 Hz for J_{9}, ${ }_{10 \mathrm{a}}$ and $\mathrm{J}_{5,10 \mathrm{a}}$ and 9.8 Hz for $\mathrm{J}_{5,6}$ are in conformity with a chair conformation, while for 5 , the
structure and conformation are supported by strong NOE cross peaks between H5-H7, H8-H10a and $\mathrm{J}_{5,10 \mathrm{a}}$ and $\mathrm{J}_{7,8}$ of about 10 Hz . The six membered rings in all these molecules take ${ }^{8} \mathrm{C}_{5}$ chair conformation. The five membered ring is puckered in all the compounds. Small values of $\mathrm{J}_{1,2}, \mathrm{~J}_{2,3}$ and $\mathrm{J}_{3,4}$ point out to a twist conformation for the sugar ring. The presence of NOE cross peaks between $\mathrm{H} 1-\mathrm{Me}(\mathrm{A}), \mathrm{H} 2-\mathrm{Me}(\mathrm{A})$ and $\mathrm{H} 4-\mathrm{Me}(\mathrm{B})$ implies an envelop conformation for the five membered ring containing isopropylidine group. The relative orientation of the carbocycle and sugar rings is derived with the help of NOESY experiments. For 1-3 the strong NOE cross peaks between $\mathrm{H} 3-\mathrm{H} 10 \mathrm{e}, \mathrm{H} 4-\mathrm{H} 10 \mathrm{a}$, and weak NOE cross peaks between $\mathrm{H} 3-\mathrm{H} 10 \mathrm{a}$ and $\mathrm{H} 4-\mathrm{H} 10 \mathrm{e}$ and H10e-OMe confirm the structures shown in Figure 2. For 4 and 5, on the other hand, there is change in configuration at C5 and the NOE cross peak between H3-H6 and H4-H6 support relative orientation of the rings. Molecular mechanics study is carried out on 1-5 using Sybyl ${ }^{22}$ and the results obtained agree with the experimental data. Dihedral angle H4-C4-C5-H5 of about 170° for $\mathbf{1 - 3}$ and 5 (Figure 3) is consistent with large $\mathrm{J}_{4,5}$ of about 10 Hz . For 4 the calculated dihedral angle $\mathrm{H} 4-\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5$ of -129° is conformity in experimentally observed $\mathrm{J}_{4,5} 4.3 \mathrm{~Hz}$.

These observations are in agreement with the experimental data supporting the trans stereochemistry across the rings.

Figure 3. Structures obtained from energy minimization for 1-5. (Note: For clarity in visualization the protecting groups are not shown in the figure).

Thus, pseudo saccharide precursors 1-5 were synthesised by adopting an 'off template site' stereoselective $[3+3]$ annulation approach, where the chirality of the carbocycle is induced from the sugar template. In this present [3+3] annulation protocol, Michael-Wittig reaction was exploited for the first time in carbohydrate chemistry for the installation of carbocycle ring system at C-5 of sugar synthon. Due to the ready availability of reagents and simple reaction conditions, the present protocol and the pseudo saccharide precursors $\mathbf{1 - 5}$ should find a wide use in the synthesis of several C-glycoside mimics towards the bioactive carbohydrates.

Experimental Section

General Procedures. Solvents were dried over standard drying agents and freshly distilled prior to use. ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, 400 \mathrm{MHz}, 500 \mathrm{MHz}$) and ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, 100 \mathrm{MHz}, 125 \mathrm{MHz}$) spectra were recorded in deuteriochloroform solution with tetramethylsilane as an internal reference on Varian Gemini- 200 MHz , Unity- 400 MHz and INOVA- 500 MHz spectrometers and J values are given in Hz. Optical rotations were measured with a JASCO DIP-370 instrument and $[\alpha]_{D}$ values are in units of $10^{-1} \mathrm{deg} \mathrm{cm} \mathrm{cm}^{2}$. Organic solutions were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated below $40^{\circ} \mathrm{C}$ in vacuo. HRMS were recorded on V G Autospec Mass Spectrometer at 5 or 7 K resolution using perfluoro kerosene as an internal reference. Infrared (IR) are reported in wavenumbers $\left(\mathrm{cm}^{-1}\right)$. The nomenclature mentioned in the experimental section was adopted from ACD/Name version 1.0β, ACD Inc., Toronto, Canada.

Synthesis

Ethyl 3-[6-methoxy-2,2-dimethyl-(3aR,5R,6S,6aR)-perhydrofuro[2,3-d][1,3]dioxol-5-yl]-(E)-2-propenoate (10). A mixture of $9(5.0 \mathrm{~g}, 24.75 \mathrm{mmol})$ and (ethoxycarbonylmethylene) triphenylphosphorane ($10.3 \mathrm{~g}, 29.60 \mathrm{mmol}$) in benzene $(50 \mathrm{~mL})$ was heated at reflux temperature for 4 h . The reaction mixture was brought to room temperature and solvent evaporated under reduced pressure. The crude product was purified by column chromatography ($60-120$ mesh $\mathrm{Si}-$ gel, Ethyl acetate: Pet. ether 1:9) to give the title compound $10(5.5 \mathrm{~g})$ in 82% yield as a light yellow syrup. $[\alpha]_{\mathrm{D}}{ }^{20}-125.38$ (c 1.30, CHCl_{3}); $v_{\text {max }}$ (Neat): $3020,1200,1160,1080 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(200$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$): 6.36-6.22 (m, 1H, H-5), 5.96-5.85 (m, 2H, H-1,6), 5.62-5.52 (m, 1H, H-4), 4.55 (d, 1H, J $\left.\mathrm{I}_{1,2} 4.4 \mathrm{~Hz}, \mathrm{H}-2\right), 4.18\left(\mathrm{q}, 2 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.02\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{3,4} 4.0 \mathrm{~Hz}, \mathrm{H}-3\right), 3.32(\mathrm{~s}, 3 \mathrm{H},-$ OMe), 1.52 (s, 3H, CH3), 1.30 (t, 6H, CH3); m/z (FABMS) 273 (100 MH ${ }^{+}$), 272 (9), 271 (26), 257 (39), 227 (64).
3-[6-Methoxy-2,2-dimethyl- (3aR,5R,6S,6aR)- perhydrofuro [2,3-d][1,3] dioxol-5-yl]-(E)-2-propen-1-ol (11). To a stirred solution of $10(4.0 \mathrm{~g}, 14.70 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$, DIBAL-H ($29.4 \mathrm{~mL}, 29.41 \mathrm{mmol}$, 1 M solution in hexane) was added dropwise at $-23{ }^{\circ} \mathrm{C}\left(\mathrm{CCl}_{4}+\right.$ solid CO_{2}) under nitrogen atmosphere for 15 min . After 3 h , methanol (15 mL) was added, stirred for 1 h and brought to room temperature. The separated solid was filtered off and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 50 \mathrm{~mL})$. The combined organic layers were washed with brine (50 mL) and
dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Solvent was evaporated under reduced pressure and purification of the residue by column chromatography ($60-120$ mesh $\mathrm{Si}-\mathrm{gel}$, Ethyl acetate: Pet. ether $1: 4$) gave the title compound $11(2.9 \mathrm{~g})$ in 86% yield as a colorless syrup $[\alpha]_{\mathrm{D}}{ }^{20}-84.57$ (c 1.40, $\left.\mathrm{CHCl}_{3}\right) ; v_{\text {max }}$ (Neat): $3500,2980,1760,1420,1140 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 5.98-5.83(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1,5), 5.75-5.62$ (m, 1H, H-6), $4.92\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{3,4} 3.6 \mathrm{~J}_{4,5} 8.6 \mathrm{~Hz}, \mathrm{H}-4\right), 4.56\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{1,2} 4.0 \mathrm{~Hz}, \mathrm{H}-2\right), 4.40-4.10(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{H}-7,7$ '), 3.61 (d, 1H, J3,4 $3.6 \mathrm{~Hz}, \mathrm{H}-3$), 3.40 (s, 3H, -OMe), 1.95 (br. t, 1H, -OH), 1.50, 1.32 ($2 \mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}$); m/z (FABMS) 253 ($15 \mathrm{M}^{+}+23$), 231 (57), 215 (18), 213 (100).
Michael-Wittig reaction on enal 7 (preparation of 6a-d). A solution of $\mathbf{1 1}(2.5 \mathrm{~g}, 10.86 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ was treated with $\operatorname{PDC}(4.9 \mathrm{~g}, 13.04 \mathrm{mmol})$ and heated at reflux for 2 h . The reaction mixture was brought to room temperature; $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was removed under reduced pressure and filtered through silica gel bed using ether as eluent. Evaporation of solvent gave the title compound 3-[6-methoxy-2,2-dimethyl-(3aR,5R,6S,6aR)-perhydrofuro[2,3-d][1,3]di-oxol-5-yl]-(E)-2-propenal (7; 2.36 g) in 95\% yield as a light yellow syrup. $[\alpha]_{\mathrm{D}}{ }^{20}-61.91$ (c 2.40, $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 9.55\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{6, \text { СНо }} 8.8 \mathrm{~Hz},-\mathrm{CHO}\right), 6.72\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{4,5} 5.8, \mathrm{~J}_{5,6} 17.6\right.$ $\mathrm{Hz}, \mathrm{H}-5), 6.32$ (dd, 1H, $\left.\mathrm{J}_{5,6} 17.6, \mathrm{~J}_{6, \text { сно }} 8.8 \mathrm{~Hz}, \mathrm{H}-6\right), 5.88$ (d, 1H, J $\mathrm{J}_{1,2} 4.4 \mathrm{~Hz}, \mathrm{H}-1$), 4.85-4.76 (m, $1 \mathrm{H}, \mathrm{H}-4), 4.56\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{1,2} 4.4 \mathrm{~Hz}, \mathrm{H}-2\right), 3.75\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{3,4} 4.0 \mathrm{~Hz}, \mathrm{H}-3\right), 3.35(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OMe}), 1.45$, $1.28\left(2 \mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right)$.

To a stirred solution of $7(2.0 \mathrm{~g}, 8.77 \mathrm{mmol})$ and ylide $8(3.42 \mathrm{~g}, 8.77 \mathrm{mmol})$ in dry THF (25 mL), $\mathrm{NaH}\left(0.8 \mathrm{~g}, 17.54 \mathrm{mmol}, 60 \%\right.$ suspension in paraffin oil) was added in portions at $50{ }^{\circ} \mathrm{C}$ under nitrogen atmosphere followed by 2 drops of water and stirred for 15 min . at the same temperature. The reaction mixture was brought to room temperature, acidified with $5 \% \mathrm{aq} . \mathrm{HCl}$ solution ($\mathrm{pH} \sim 6$) and extracted into ether $(2 \times 50 \mathrm{~mL})$. The organic layer was washed with water $(50 \mathrm{~mL})$, brine $(50 \mathrm{~mL})$ and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Evaporation of solvent under reduced pressure and purification of the residue by column chromatography (finer than 200 mesh Si-gel, Ethyl acetate: Pet. ether 1:4) gave the title compounds 6a-d (2.23 g) in 75% yield as partially separable mixtures 6a, b $(1.66 \mathrm{~g}, 56 \%)$ and $\mathbf{6 c}$, $\mathbf{d}(0.56 \mathrm{~g}, 19 \%)$. However, the mixture was separated by HPLC (ODS-preparative column, MeOH: $\mathrm{H}_{2} \mathrm{O}, 7: 3$, $\mathrm{UV}: 225 \mathrm{~nm}$) to afford 6a-d in 6:1.5:1.5:1 ratio respectively. First eluted was ethyl 6-[6-methoxy-2,2-dimethyl-(3aR,5R,6S,6aR)-perhydro-furo[2,3-d][1,3]dioxol-5-yl]-2-oxo-(1S,6R)-3-cyclohexene-1-carboxylate (6a) as a light yellow syrup. $[\alpha]_{\mathrm{D}}{ }^{20}-88.55\left(c ~ 1.16, \mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.00-6.86(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-9)$, 6.14-6.02 (m, 1H, H-8), $5.81\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{1,2} 4.6 \mathrm{~Hz}, \mathrm{H}-1\right), 4.52\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{1,2} 4.6 \mathrm{~Hz}, \mathrm{H}-2\right), 4.20(\mathrm{q}, 2 \mathrm{H}$, $-\mathrm{OCH}_{2} \mathrm{CH}_{3}$), $4.02\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{3,4} 4.4, \mathrm{~J}_{4,5} 9.3 \mathrm{~Hz}, \mathrm{H}-4\right), 3.62\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{3,4} 4.4 \mathrm{~Hz}, \mathrm{H}-3\right), 3.45$ (d, 1H, $\left.\mathrm{J}_{5,6} 9.3 \mathrm{~Hz}, \mathrm{H}-6\right), 3.40(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OMe}), 3.12-2.96(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 2.70-2.51(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-10), 2.34-$ $2.14\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-10^{\prime}\right), 1.42\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.30-1.20\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) ; \mathrm{m} / \mathrm{z}$ (FABMS) $341\left(29 \mathrm{MH}^{+}\right)$, 295 (43), 133 (85), 87 (100), 43 (94); $\mathrm{HRMS}(\mathrm{FAB})$: MH^{+}found $340.150527 . \mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{7}$ required 340.152203.

Second eluted was ethyl 6-[6-methoxy-2,2-dimethyl-(3aR,5R,6S,6aR)-perhydrofuro[2,3-d][1,3]dioxol-5-yl]-2-oxo-(1R,6R)-3-cyclohexene-1-carboxylate (6b) as a pale yellow syrup. $[\alpha]_{\mathrm{D}}{ }^{20}-60.24\left(c 0.80, \mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.05-6.92(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-9), 6.12-6.00(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{H}-8), 5.82\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{1,2} 4.0 \mathrm{~Hz}, \mathrm{H}-1\right), 4.55\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{1,2} 4.0 \mathrm{~Hz}, \mathrm{H}-2\right), 4.20\left(\mathrm{q}, 2 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.18$
(dd, 1H, J ${ }_{3,4} 4.0, \mathrm{~J}_{4,5} 8.5 \mathrm{~Hz}, \mathrm{H}-4$), 3.62 (d, $1 \mathrm{H}, \mathrm{J}_{3,4} 4.0 \mathrm{~Hz}, \mathrm{H}-3$), 3.45-3.35 (m, 4H, H-6, -OMe), 3.15-3.00 (m, 1H, H-5), 2.75-2.62 (m, 1H, H-10), 2.32-2.10 (m, 1H, H-10'), 1.44 (s, 3H, CH3), $1.35-1.20\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) ; \mathrm{m} / \mathrm{z}(\mathrm{FABMS}) 363\left(\mathrm{M}^{+}+23,28\right), 341$ (42), 295 (44), 55 (100), 41 (85); HRMS (FAB): MH^{+}, found $340.151054 . \mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{7}$ requires 340.152203 .

Third eluted was ethyl 6-[6-methoxy-2,2-dimethyl-(3aR,5R,6S,6aR)-perhydrofuro[2,3-d][1,3]dioxol-5-yl]-2-oxo-(1R,6S)-3-cyclohexene-1-carboxylate (6c) as a light yellow syrup. $[\alpha]_{\mathrm{D}}{ }^{20}+94.40\left(c \quad 0.70, \mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.00-6.90(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-9), 6.12-6.03(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{H}-8), 5.82\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{1,2} 3.7 \mathrm{~Hz}, \mathrm{H}-1\right), 4.54\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{1,2} 3.7 \mathrm{~Hz}, \mathrm{H}-2\right), 4.21\left(\mathrm{q}, 2 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.00$ (dd, 1H, J $\mathrm{J}_{3,4} 3.2, \mathrm{~J}_{4,5} 9.3 \mathrm{~Hz}, \mathrm{H}-4$), $3.60\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{3,4} 3.2 \mathrm{~Hz}, \mathrm{H}-3\right), 3.41(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OMe}), 3.30(\mathrm{~d}, 1 \mathrm{H}$, $\left.\mathrm{J}_{5,6} 6.9 \mathrm{~Hz}, \mathrm{H}-6\right), 3.10-2.95(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 2.85-2.50\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-10,10\right.$ '), $1.44\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.36-$ $1.22\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), \mathrm{m} / \mathrm{z}$ (FABMS): $341\left(17 \mathrm{MH}^{+}\right), 295$ (35), 133 (100). 55 (45); HRMS (FAB) MH^{+}, found $340.154248 . \mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{7}$ requires 340.152203 .

Fourth eluted was ethyl 2-hydroxy-6-[6-methoxy-2,2-dimethyl-(3aR,5R,6S,6aR)-perhydrofuro[2,3-d][1,3]dioxol-5-yl]-(1S,2R,6S)-3-cyclohexene-1-carboxylate (6d) as a colorless solid, m. p. $105-107{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}+72.64\left(c 0.65, \mathrm{CHCl}_{3}\right) ; v_{\max }$ (Neat): $3040,1680,1080 \mathrm{~cm}^{-1}$; $\delta_{\mathrm{H}}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.15-7.02(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-9), 6.12-6.02(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-8), 5.82\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{1,2} 3.7 \mathrm{~Hz}\right.$, $\mathrm{H}-1), 4.55\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{1,2} 3.7 \mathrm{~Hz}, \mathrm{H}-2\right), 4.18\left(\mathrm{q}, 2 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.05\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{3,4} 3.2, \mathrm{~J}_{4,5} 9.3 \mathrm{~Hz}\right.$, $\mathrm{H}-4), 3.80\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{3,4} 3.2 \mathrm{~Hz}, \mathrm{H}-3\right), 3.42$ (s, $3 \mathrm{H},-\mathrm{OMe}$), 3.29 (d, 1H, J $\mathrm{J}_{5,6} 4.6 \mathrm{~Hz}, \mathrm{H}-6$), 2.75-2.55 (m, 3H, H-5, 10, 10'), $1.45\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.32-1.20\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) ; \mathrm{m} / \mathrm{z}$ (FABMS) 363 (19 $\mathrm{M}^{+}+23$), 341 (13 $\left.\mathrm{MH}^{+}\right), 133$ (57), 43 (100); $\operatorname{HRMS}(\mathrm{FAB}): \mathrm{MH}^{+}$, found 340.153724. $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{7}$ requires 340.152203 .
Reduction of enones 6a and 6b. Preparation of 12-14. To a stirred solution of $\mathbf{6 a - b}(0.8 \mathrm{~g}, 2.35$ $\mathrm{mmol})$ and $\mathrm{CeCl}_{3} .7 \mathrm{H}_{2} \mathrm{O}(1.75 \mathrm{~g}, 4.70 \mathrm{mmol})$ in ethanol $(10 \mathrm{~mL}), \mathrm{NaBH}_{4}(0.08 \mathrm{~g}, 2.35 \mathrm{mmol})$ was added in portions at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was brought to room temperature and stirred for 1h. Ethanol was removed under reduced pressure, diluted with water (25 mL) and extracted into ether $(3 \times 25 \mathrm{~mL})$. The combined ether layers were washed with water (50 mL), brine (50 mL) and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Solvent was evaporated under reduced pressure and residue purified by column chromatography (finer than 200 mesh Si-gel, Ethyl acetate: Pet. ether 1:4) gave a mixture of title diastereoisomers 12, 13 and $\mathbf{1 4}(0.7 \mathrm{~g})$ in 88% yield in 4:1:2 ratio respectively. First eluted was ethyl 2-hydroxy-6-[6-methoxy-2,2-dimethyl-(3aR,5R,6S,6aR)-perhydrofuro[2,3-d][1,3]dioxol-5-yl]-(1S,2R,6R)-3-cyclohexene-1-carboxylate (13; 0.1 g) in 13% yield as a colorless solid, m. p. $84-86^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{20}-123.22$ (c 1.30, CHCl_{3}), $v_{\max }$ (Neat) 3560 , $2960,1140 \mathrm{~cm}^{-1}$; $\delta_{\mathrm{H}}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 5.92-5.70(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-1,8,9), 4.50\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{1,2} 4.5 \mathrm{~Hz}, \mathrm{H}-\right.$ 2), 4.40-4.05 (m, 3H, H-7, $-\mathrm{OCH}_{2} \mathrm{CH}_{3}$), $4.00\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{3,4} 4.2, \mathrm{~J}_{4,5} 8.5 \mathrm{~Hz}, \mathrm{H}-4\right), 3.56\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{3,4}\right.$ $4.2 \mathrm{~Hz}, \mathrm{H}-3), 3.40(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OMe}), 2.86-2.62(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-5,6), 2.32-2.14(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-10), 1.84-1.66$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-10$ '), $1.46\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.35-1.25\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{3}\right)$; m/z (FABMS): $365\left(15 \mathrm{M}^{+}+23\right), 343$ (14 MH ${ }^{+}$), 325 (28), 281 (29), 221 (50), 147 (100), 109 (75); HRMS (FAB): MH^{+}, found 343.175791. $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{O}_{7}$ requires 343.175679 .

Second eluted was ethyl 2-hydroxy-6-[6-methoxy-2,2-dimethyl-(3aR,5R,6S,6aR)-perhydrofuro[2,3-d][1,3]dioxol-5-yl]-(1R,2S,6R)-3-cyclohexene-1-carboxylate (14; 0.2 g) in
25% yield as a colorless solid, m. p. 103-105 ${ }^{0} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{20}-37.20\left(c 2.20, \mathrm{CHCl}_{3}\right), \delta_{\mathrm{H}}(200 \mathrm{MHz}$, CDCl_{3}): 5.78 (d, $1 \mathrm{H}, \mathrm{J}_{1,2} 4.0 \mathrm{~Hz}, \mathrm{H}-1$), $5.70-5.62(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-8,9), 4.48\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{1,2} 4.0 \mathrm{~Hz}, \mathrm{H}-2\right)$, 4.40-4.25 (m, 2H, H-4,7), 4.14 (q, 2H, $-\mathrm{OCH}_{2} \mathrm{CH}_{3}$), $3.49\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{3,4} 3.7 \mathrm{~Hz}, \mathrm{H}-3\right), 3.35(\mathrm{~s}, 3 \mathrm{H},-$ OMe), 3.15 (dd, $1 \mathrm{H}, \mathrm{J}_{5,6} 6.2, \mathrm{~J}_{6,7} 4.1 \mathrm{~Hz}, \mathrm{H}-6$), 2.48-2.30 (m, 1H, H-5), 1.95-1.86 (m, 2H, H$\left.10,10^{\prime}\right), 1.42\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.30-1.20\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) ; \mathrm{m} / \mathrm{z}(\mathrm{FABMS}) 343\left(75 \mathrm{MH}^{+}\right), 342\left(45, \mathrm{M}^{+}\right)$, 325 (100), 221 (70), 154 (89), 136 (86); $\mathrm{HRMS}(\mathrm{FAB}): \mathrm{MH}^{+}$, found 343.176421. $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{O}_{7}$ requires 343.175679 .

Third eluted was ethyl 2-hydroxy-6-[6-methoxy-2,2-dimethyl-(3aR,5R,6S,6aR)-perhydrofuro[2,3-d][1,3]dioxol-5-yl]-(1S,2S,6R)-3-cyclohexene-1-carboxylate (12; 0.4 g) in 50% yield as a colorless solid, m. p. $78-80^{0} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{20}-56.80$ (c 2.00, CHCl_{3}); $v_{\max }$ (Neat): 3540, 2950, $1120 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 5.79\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{1,2} 4.4 \mathrm{~Hz}, \mathrm{H}-1\right), 5.68$ (br. s, 2H, H-8,9), 4.62-4.52 (m, 1H, H-7), $4.48\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{1,2} 4.4 \mathrm{~Hz}, \mathrm{H}-2\right), 4.28-4.05\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.98$ (dd, $\left.1 \mathrm{H}, \mathrm{J}_{3,4} 4.0, \mathrm{~J}_{4,5} 9.5 \mathrm{~Hz}, \mathrm{H}-4\right), 3.55\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{3,4} 4.0 \mathrm{~Hz}, \mathrm{H}-3\right), 3.36$ (s, 3H, -OMe), 2.42-2.26 (m, $2 \mathrm{H}, \mathrm{H}-5,6$), 2.20-2.00 (m, 1H, H-10), 1.95-1.76 (m, 1H, H-10'), 1.46 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 1.35-1.22 (m, $6 \mathrm{H}, \mathrm{CH}_{3}$); m/z (FABMS): 343 (52 MH ${ }^{+}$), 327 (18), 325 (100), 297 (31), 221 (70); HRMS(FAB): MH^{+}, found $343.176149 . \mathrm{C}_{17} \mathrm{H}_{27} \mathrm{O}_{7}$ requires 343.175679 .
6-Ethyloxycarbonyl-5-[6-methoxy-2,2-dimethyl-(3aR,5R,6S,6aR)-perhydrofuro[2,3-d] [1,3] dioxol-5-yl]-(1S,5R,6S)-2-cyclohexenyl acetate (16). A solution of 12 ($0.075 \mathrm{~g}, 0.219 \mathrm{mmol}$) in pyridine $(0.5 \mathrm{~mL})$ containing DMAP (catalytic) was treated with $\mathrm{Ac}_{2} \mathrm{O}(0.02 \mathrm{~g}, 0.219 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$ and stirred for 1 h at room temperature. The reaction mixture was diluted with sat. aq. NaHCO_{3} solution (15 mL) and extracted into $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 15 \mathrm{~mL})$. The combined organic layers were washed with sat. CuSO_{4} solution (10 mL), water $(10 \mathrm{~mL})$, brine $(15 \mathrm{~mL})$ and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Solvent was evaporated under reduced pressure and residue purified by column chromatography ($60-120$ mesh Si-gel, Ethyl acetate: Pet. ether 1:4) to give the title compound $16(0.075 \mathrm{~g})$ in 90% yield as a colorless solid, m. p. $86-88^{\circ}{ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{20}-19.90$ (c 0.75, CHCl_{3}); $v_{\text {max }}$ (Neat): 2960, $1730,1230 \mathrm{~cm}^{-1}$; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 5.84\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{1,2} 4.0 \mathrm{~Hz}, \mathrm{H}-1\right), 5.83-5.81(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-8)$, 5.74-5.70 (m, 1H, H-9), 5.64-5.61 (m, 1H, H-7), 4.54 (d, 1H, J $1,24.0 \mathrm{~Hz}, \mathrm{H}-2$), 4.20-4.10 (m, $\left.3 \mathrm{H}, \mathrm{H}-4,-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.60\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{3,4} 3.2 \mathrm{~Hz}, \mathrm{H}-3\right), 3.38(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OMe}), 2.84\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{5,6} 8.4\right.$, $\left.\mathrm{J}_{6,7} 6.8 \mathrm{~Hz}, \mathrm{H}-6\right), 2.59-2.51(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 2.25-2.18(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-10), 2.04$ (s, 3H, -OAc), 1.91-1.84 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-10$ '), 1.48, $1.30\left(2 \mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 1.26\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}} \mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 172.54$, 170.36, 128.68, 125.27, 111.19, 104.63, 83.68, 80.65, 80.54, 69.67, 60.76, 57.26, 47.34, 33.57, 26.62, 26.20, 25.62, 21.03, 13.94; m/z (FABMS): 385 ($6 \mathrm{MH}^{+}$), 325 (84), 221 (50), 173 (72), 115 (95), HRMS(FAB): MH^{+}, found $385.184093 . \mathrm{C}_{19} \mathrm{H}_{29} \mathrm{O}_{8}$ requires 385.186243.
6-Ethyloxycarbonyl-5-[6-methoxy-2,2-dimethyl-(3aR,5R,6S,6aR)-perhydrofuro[2,3-d] [1,3] dioxol-5-yl]-(1S,5R,6R)-2-cyclohexenyl acetate (17). A solution of $13(0.02 \mathrm{~g}, 0.058 \mathrm{mmol})$ in pyridine $(0.3 \mathrm{~mL})$ containing DMAP (catalytic) was treated with $\mathrm{Ac}_{2} \mathrm{O}(0.006 \mathrm{~g}, 0.058 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$, worked up and purified as described for 16, gave $17(0.021 \mathrm{~g})$ in 94% yield as a pale yellow syrup. $[\alpha]_{\mathrm{D}}{ }^{20}-144.60\left(c 1.65, \mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: 5.96-5.91 (m, 1H, H-8); 5.86 (d, 1H, J $\mathrm{J}_{1,2} 4.0 \mathrm{~Hz}, \mathrm{H}-1$), 5.77-5.72 (m, 1H, H-9), 5.56 (br. t, 1H, H-7), 4.52 (d, 1H, J J 4.2 $\mathrm{Hz}, \mathrm{H}-2)$, 4.15-4.06 (m, 3H, H-4, - $\mathrm{OCH}_{2} \mathrm{CH}_{3}$), 3.57 (d, 1H, J,4 $2.8 \mathrm{~Hz}, \mathrm{H}-3$), 3.37 (s, $3 \mathrm{H},-\mathrm{OMe}$),
2.92 (dd, 1H, J $\left.{ }_{5,6} 9.2, \mathrm{~J}_{6,7} 7.2 \mathrm{~Hz}, \mathrm{H}-6\right), 2.74-2.69(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 2.45-2.38(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-10), 2.04(\mathrm{~s}$, $3 \mathrm{H},-\mathrm{OAc}), 1.96-1.89\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-10\right.$ '), 1.46, $1.30\left(2 \mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 1.24\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), \delta_{\mathrm{c}}(50 \mathrm{MHz}$, CDCl_{3}): $171.48,170.43,131.00,123.75,111.31,104.87,84.38,80.87,80.45,65.65,60.47$, 57.28, 45.28, 31.18, 26.73, 26.20, 25.80, 21.10, 14.05; m/z (FABMS): 369 (7), 325 (29), 301 (18), 221 (100); HRMS (FAB): MH^{+}, found 385.186374. $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{O}_{8}$ requires 385.186243.

6-Ethyloxycarbonyl-5-[6-methoxy-2,2-dimethyl-(3aR,5R,6S,6aR)-perhydrofuro[2,3-d] [1,3] dioxol-5-yl]-(1R,5R,6S)-2-cyclohexenyl acetate (18). A solution of $\mathbf{1 4}(0.05 \mathrm{~g}, 0.14 \mathrm{mmol})$ in pyridine $(0.5 \mathrm{~mL})$ containing DMAP (catalytic) was treated with $\mathrm{Ac}_{2} \mathrm{O}(0.014 \mathrm{~g}, 0.14 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$, worked up and purified as described for 16 , to give the title compound $18(0.044 \mathrm{~g})$ in 79% yield as a colorless solid, m. p. 102-104 ${ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{20}-32.14\left(c 1.40, \mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: 5.94-5.89 (m, 1H, H-8), 5.86 (d, 1H, J $\mathrm{J}_{1,2} 4.0 \mathrm{~Hz}, \mathrm{H}-1$), 5.59-5.57 (m, 2H, H-7,9), 4.56 (d, 1H, J $4.0 \mathrm{~Hz}, \mathrm{H}-2), 4.20-4.00\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.92\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{3,4} 2.8, \mathrm{~J}_{4,5} 9.0 \mathrm{~Hz}, \mathrm{H}-4\right), 3.57(\mathrm{~d}, 1 \mathrm{H}$, $\left.\mathrm{J}_{3,4} 2.8 \mathrm{~Hz}, \mathrm{H}-3\right), 3.49\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{5,6} 7.2, \mathrm{~J}_{6,7} 3.6 \mathrm{~Hz}, \mathrm{H}-6\right), 3.40(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OMe}), 2.47-2.40(\mathrm{~m}, 1 \mathrm{H}$, H-5), 2.34-2.24 (m, 1H, H-10), 2.04 ($\mathrm{s}, 3 \mathrm{H},-\mathrm{OAc}$), 2.00-1.93 (m, 1H, H-10'), 1.42, $1.31(2 \mathrm{~s}, 6 \mathrm{H}$, CH_{3}), $1.26\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 170.85, 170.07, 129.38, 124.43, 111.38, $104.58,83.30,80.88,80.52,69.33,60.08,57.48,42.28,33.38,26.83,26.30,24.10,20.92,14.31$; m / z (FABMS): $407\left(\mathrm{M}^{+}+23,17\right), 385\left(\mathrm{MH}^{+}, 17\right), 370$ (13), 326 (72), 173 (100), 135 (68); HRMS (FAB): MH^{+}, found $385.186289 . \mathrm{C}_{19} \mathrm{H}_{29} \mathrm{O}_{8}$ requires 385.186243 .
Reduction of enones $\mathbf{6 c}$ and $\mathbf{6 d}$. A solution of $\mathbf{6 c} \mathbf{- d}(0.40 \mathrm{~g}, 1.17 \mathrm{mmol})$ and $\mathrm{CeCl}_{3} .7 \mathrm{H}_{2} \mathrm{O}(0.87$ $\mathrm{g}, 2.35 \mathrm{mmol})$ in ethanol $(5 \mathrm{~mL})$, was treated with $\mathrm{NaBH}_{4}(0.04 \mathrm{~g}, 1.17 \mathrm{mmol})$, worked up and purified as described for $\mathbf{1 2 - 1 4}$ to give $\mathbf{1 5}(0.31 \mathrm{~g})$ in 78% yield as an inseparable mixture of isomers.

A solution of above alcohols $15(0.20 \mathrm{~g}, 0.58 \mathrm{mmol})$ in pyridine $(0.5 \mathrm{~mL})$ was treated with $\mathrm{Ac}_{2} \mathrm{O}(0.05 \mathrm{~g}, 0.58 \mathrm{mmol})$, worked up and purified as described for 16, to give 19, 20 and 21a-b $(0.20 \mathrm{~g})$ in 89% yield in $1: 1: 1.7$ ratio respectively, after purification by column chromatography (finer than 200 mesh Si-gel, Ethyl acetate: Pet. ether 1:9). First eluted was 6-ethyloxycarbonyl-5-[6-methoxy-2,2-dimethyl-(3aR,5R,6S,6aR)-perhydrofuro[2,3-d][1,3]-dioxol-5-yl]-(1R,5S,6S)-2-cyclohexenyl acetate ($20 ; 0.054 \mathrm{~g}$) in 24% yield as a pale yellow syrup. $[\alpha]_{\mathrm{D}}{ }^{20}$ $+116.33\left(с 0.60, \mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 6.00-5.96(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-8), 5.85\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{1,2} 4.0 \mathrm{~Hz}\right.$, $\mathrm{H}-1)$, 5.73-5.68 (m, 1H, H-9), 5.51-5.49 (m, 1H, H-7), 4.54 (d, 1H, J $\left.1 \mathrm{H}, \mathrm{J}_{3,4} 3.6, \mathrm{~J}_{4,5} 5.0 \mathrm{~Hz}, \mathrm{H}-4\right), 4.14-4.08\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.75\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{3,4} 3.6 \mathrm{~Hz}, \mathrm{H}-3\right), 3.43$ (s, 3H, -OMe), 2.96 (dd, 1H, $\mathrm{J}_{5,6} 4.8, \mathrm{~J}_{6,7} 9.2 \mathrm{~Hz}, \mathrm{H}-6$), 2.63-2.53 (m, 1H, H-5), 2.50-2.48 (m, 1H, $\mathrm{H}-10), 2.32-2.25\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-10^{\prime}\right), 2.03(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OAc}), 1.43,1.31\left(2 \mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 1.24(\mathrm{t}, 3 \mathrm{H},-$ $\mathrm{OCH}_{2} \mathrm{CH}_{3}$); $\delta_{\mathrm{c}}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 171.52,170.38,132.48,122.38,111.35,104.38,85.62,81.61$, $79.78,67.00,60.49,57.62,45.88,30.83,26.71,26.29,25.14,21.01,14.12 ; \mathrm{m} / \mathrm{z}$ (FABMS): 385 (14 MH ${ }^{+}$), 383 (18), 369 (46), 325 (97), 173 (100), 147 (50); HRMS (FAB): MH^{+}, found 385.186112. $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{O}_{8}$ requires 385.186243 .

Second eluted was 6-ethyloxycarbonyl-5-[6-methoxy-2,2-dimethyl-(3aR,5R,6S,6aR)-perhydro- furo[2,3-d][1,3]dioxol-5-yl]-(1S,5S,6R)-2-cyclohexenyl acetate (19; 0.054 g) in 24% yield as a pale yellow syrup. $[\alpha]_{\mathrm{D}}{ }^{20}+215.99\left(c 0.65, \mathrm{CHCl}_{3}\right)$; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $5.98-$
$5.948(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-8), 5.87\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{1,2} 3.6 \mathrm{~Hz}, \mathrm{H}-1\right), 5.58-5.55(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-7,9), 4.58\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{1,2} 3.6\right.$ $\mathrm{Hz}, \mathrm{H}-2), 4.24-4.08\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.90\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{3,4} 3.2, \mathrm{~J}_{4,5} 6.6 \mathrm{~Hz}, \mathrm{H}-4\right), 3.77\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{3,4}\right.$ $3.2 \mathrm{~Hz}, \mathrm{H}-3), 3.45$ (s, 3H, -OMe), 3.09 (dd, $\left.1 \mathrm{H}, \mathrm{J}_{5,6} 3.6, \mathrm{~J}_{6,7} 7.2 \mathrm{~Hz}, \mathrm{H}-6\right), 2.48-2.41$ (m, 1H, H5), 2.39-2.29 (m, 2H, H-10,10'), 2.06 (s, 3H, -OAc), 1.44, 1.31 ($2 \mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}$), 1.26 (t, 3H, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$); $\delta_{\mathrm{c}}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 170.47,170.04,130.37,123.63,111.30,104.57,83.28,81.80$, 80.96, 69.68, 60.22, 57.57, 42.70, 33.60, 26.61, 26.19 (2C), 21.05, 14.31; m/z (FABMS): 385 (10 MH ${ }^{+}$), 383 (14), 369 (29), 325 (100), 173 (63), 133 (49); HRMS(FAB): MH^{+}, found 385.186972. $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{O}_{8}$ requires 385.186243 .

Further eluted was 21a-b (0.092 g) in 41% yield as an inseparable mixture.
Ethyl 3,4-dihydroxy-6-[6-methoxy-2,2-dimethyl-(3aR,5R,6S,6aR)-perhydrofuro-[2,3-d][1,3] dioxol-5-yl]2-methylcarbonyloxy-(1S,2R,3R,4R,6R)-cyclohexane-1-carboxylate (22). To a stirred solution of $16(0.059 \mathrm{~g}, 0.15 \mathrm{mmol})$ and $\mathrm{NMO}(0.036 \mathrm{~g}, 0.30 \mathrm{mmol}, 50 \% \mathrm{aq}$. solution) in acetone: water ($3: 1,4 \mathrm{~mL}$), OsO_{4} in toluene (catalytic) was added and stirred for 12 h at room temperature in dark. Excess solid $\mathrm{NaHSO}_{3}(100 \mathrm{mg})$ was added, stirred for 20 min ., diluted with water (10 mL) and extracted into ethyl acetate $(2 \times 15 \mathrm{~mL})$. The combined ethyl acetate layers were washed with brine $(15 \mathrm{~mL})$ and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Evaporation of solvent under reduced pressure and purification of residue by column chromatography ($60-120$ mesh Si-gel, Ethyl acetate: Pet. ether, 1:1) gave the title compound $22(0.052 \mathrm{~g})$ in 82% yield as a colorless solid, m . p. $158-160{ }^{0} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{20}-82.35\left(c \quad 0.85, \mathrm{CHCl}_{3}\right)$; $\delta_{\mathrm{H}}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 5.74\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{1,2} 4.0 \mathrm{~Hz}, \mathrm{H}-\right.$ 1), $5.30\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{6,7} 12.0, \mathrm{~J}_{7,8} 12.0 \mathrm{~Hz}, \mathrm{H}-7\right), 4.45\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{1,2} 4.0 \mathrm{~Hz}, \mathrm{H}-2\right), 4.20-4.00(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-$ $9,-\mathrm{OCH}_{2} \mathrm{CH}_{3}$), $3.82\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{3,4} 3.6, \mathrm{~J}_{4,5} 10.0 \mathrm{~Hz}, \mathrm{H}-4\right), 3.55\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{3,4} 3.6 \mathrm{~Hz}, \mathrm{H}-3\right), 3.46$ (dd, $1 \mathrm{H}, \mathrm{J}_{7,8} 12.0, \mathrm{~J}_{8,9} 4.0 \mathrm{~Hz}, \mathrm{H}-8$), 3.40 (s, $3 \mathrm{H},-\mathrm{OMe}$), 2.80-2.55 (m, 1H, H-5), 2.38 (dd, $1 \mathrm{H}, \mathrm{J}_{5,6}$ $\left.12.0, \mathrm{~J}_{6,7} 10.5 \mathrm{~Hz}, \mathrm{H}-6\right), 2.20-2.07(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-10), 2.05(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OAc}), 1.98-1.82\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-10^{\prime}\right)$, 1.45 (s, 3H, CH3), 1.31-1.18 (m, 6H, CH3); m/z (FABMS): 419 (26 MH ${ }^{+}$), 375 (17), 373 (100); HRMS(FAB): MH^{+}, found $419.190253 . \mathrm{C}_{19} \mathrm{H}_{31} \mathrm{O}_{10}$ requires 419.191723 .
Ethyl 3,4-dihydroxy-6-[6-methoxy-2,2-dimethyl-(3aR,5R,6S,6aR)-perhydrofuro [2,3-d][1,3] dioxol-5-yl]-2-methylcarbonyloxy-(1S,2S,3S,4S,6R)-cyclohexane-1-carboxylate (23). To a stirred solution of $17(0.02 \mathrm{~g}, 0.05 \mathrm{mmol})$ and NMO $(0.012 \mathrm{~g}, 0.10 \mathrm{mmol}, 50 \%$ aqueous solution) in acetone: water ($3: 1,4 \mathrm{ml}$), OsO_{4} in toluene (catalytic) was added, worked up and purified as described for 22, to give the title compound $23(0.018 \mathrm{~g})$ in 86% yield as a pale yellow syrup. $[\alpha]_{\mathrm{D}}{ }^{20}-36.00\left(c 0.80, \mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 5.75\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{1,2} 4.4 \mathrm{~Hz}, \mathrm{H}-1\right), 5.25(\mathrm{dd}, 1 \mathrm{H}$, $\mathrm{J}_{6,7} 9.0, \mathrm{~J}_{7,8} 4.4 \mathrm{~Hz}, \mathrm{H}-7$), 4.45 (d, 1H, J $\mathrm{J}_{1,2} 4.4 \mathrm{~Hz}, \mathrm{H}-2$), 4.10-3.90 (m, 5H, H-4,8,9, $-\mathrm{OCH}_{2} \mathrm{CH}_{3}$), 3.60 (d, 1H, J,4 $4.0 \mathrm{~Hz}, \mathrm{H}-3$), 3.40 (s, 3H, -OMe), 2.90 (dd, 1H, $\left.\mathrm{J}_{5,6} 4.5, \mathrm{~J}_{6,7} 9.0 \mathrm{~Hz}, \mathrm{H}-6\right), 2.52-$ 2.36 (m, 1H, H-5), 2.05 (s, 3H, -OAc), 1.92-1.72 (m, 2H, H-10, -OH), 1.60-1.45 (m, 1H, H-10'), $1.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.30-1.15\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{3}\right)$; m/z (FABMS): 419 (100 MH ${ }^{+}$), 375 (17), 373 (84), 185 (13); HRMS (FAB): MH^{+}found $419.192092 . \mathrm{C}_{19} \mathrm{H}_{31} \mathrm{O}_{10}$ requires 419.191723.
Ethyl 3,4-dihydroxy-6-[6-methoxy-2,2-dimethyl-(3aR,5R,6S,6aR)-perhydrofuro [2,3-d][1,3] dioxol-5-yl]-2-methylcarbonyloxy-(1R,2R,3R,4R,6R)-cyclohexane-1-carboxylate (24). To a stirred solution of $18(0.044 \mathrm{~g}, 0.11 \mathrm{mmol})$ and $\mathrm{NMO}(0.026 \mathrm{~g}, 0.22 \mathrm{mmol}, 50 \% \mathrm{aq}$. solution) in acetone: water ($3: 1,4 \mathrm{~mL}$), OsO_{4} in toluene (catalytic) was added, worked up and purified as
described for 22, gave the title compound $24(0.039 \mathrm{~g})$ in 83% yield as a colorless solid, m. p. $154-156{ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{20}-73.90\left(c 2.20, \mathrm{CHCl}_{3}\right.$); $v_{\max }$ (Neat): $3470,2960,1725,1230,1080 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}$ ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $5.76\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{1,2} 4.4 \mathrm{~Hz}, \mathrm{H}-1\right), 5.10\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{6,7} 6.0, \mathrm{~J}_{7,8} 10.0 \mathrm{~Hz}, \mathrm{H}-7\right), 4.45$ (d, $1 \mathrm{H}, \mathrm{J}_{1,2} 4.4 \mathrm{~Hz}, \mathrm{H}-2$), 4.20-4.00 (m, 4H, H-8,9, $-\mathrm{OCH}_{2} \mathrm{CH}_{3}$), 3.72 (dd, 1H, J $\mathrm{J}_{3,4} 4.0, \mathrm{~J}_{4,5} 11.3$ $\mathrm{Hz}, \mathrm{H}-4), 3.50\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{3,4} 4.0 \mathrm{~Hz}, \mathrm{H}-3\right), 3.45-3.30(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-6,-\mathrm{OMe}), 2.75-2.50(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5)$, 2.15-1.86 (m, 4H, H-10, -OAc), 1.65-1.50 (m, 1H, H-10'), 1.35 (s, 3H, CH3), 1.32-1.20 (m, 6H, CH_{3}); m/z (FABMS) 419 (100 MH ${ }^{+}$), 403 (6), 373 (86), 87 (32), 43 (57); HRMS(FAB): MH^{+} found 419.194050. $\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{O}_{10}$ requires 419.191723 .
Ethyl 3,4-dihydroxy-6-[6-methoxy-2,2-dimethyl-(3aR,5R,6S,6aR)-perhydrofuro [2,3-d][1,3]-dioxol-5-yl]-2-methylcarbonyloxy-(1R,2R,3R,4R,6S)-cyclohexane-1-carboxylate (25). To a stirred solution of $19(0.035 \mathrm{~g}, 0.09 \mathrm{mmol})$ and $\mathrm{NMO}(0.021 \mathrm{~g}, 0.18 \mathrm{mmol}, 50 \% \mathrm{aq}$. solution) in acetone: water ($3: 1,4 \mathrm{~mL}$), OsO_{4} in toluene (catalytic) was added, worked up and purified as described for 22, to give the title compound $25(0.03 \mathrm{~g})$ in 79% yield as a colorless solid, m. p. $140-142{ }^{0} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{20}+21.90\left(c 1.05, \mathrm{CHCl}_{3}\right) ; v_{\max }$ (Neat): 3490, 1735, 1230, $1070 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(200$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $5.82\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{1,2} 4.0 \mathrm{~Hz}, \mathrm{H}-1\right), 5.15\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{6,7} 5.5, \mathrm{~J}_{7,8} 9.3 \mathrm{~Hz}, \mathrm{H}-7\right), 4.55(\mathrm{~d}, 1 \mathrm{H}$, $\mathrm{J}_{1,2} 4.0 \mathrm{~Hz}, \mathrm{H}-2$), $4.32\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{3,4} 3.7, \mathrm{~J}_{4,5} 9.3 \mathrm{~Hz}, \mathrm{H}-4\right), 4.24-4.04\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-8,-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, 3.78-3.68 (m, 2H, H-3,9), 3.45 (s, 3H, -OMe), 3.05 (dd, 1H, $\mathrm{J}_{5,6} 5.5, \mathrm{~J}_{6,7} 7.0 \mathrm{~Hz}, \mathrm{H}-6$), 2.74-2.40 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-5$), 2.19-1.86 (m, 5H, H-10,10', -OAc), $1.42\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.34-1.22\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{3}\right)$; m / z (FABMS): 419 (135 MH^{+}), 373 (47), 361 (33), 154 (100); $\operatorname{HRMS}(\mathrm{FAB}): \mathrm{MH}^{+}$found 419.190928. $\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{O}_{10}$ requires 419.191723.

Ethyl 3,4-dihydroxy-6-[6-methoxy-2,2-dimethyl-(3aR,5R,6S,6aR)-perhydrofuro[2,3-d][1,3] dioxol-5-yl]-2-methylcarbonyloxy-(1S,2S,3S,4S,6S)-cyclohexane-1-carboxylate (26). To a stirred solution of $20(0.05 \mathrm{~g}, 0.13 \mathrm{mmol})$ and NMO $(0.03 \mathrm{~g}, 0.25 \mathrm{mmol}, 50 \%$ aq. solution) in acetone: water ($3: 1,4 \mathrm{~mL}$), OsO_{4} in toluene (catalytic) was added, worked up and purified as described for 22, to give the title compound $26(0.05 \mathrm{~g})$ in 93% yield as a colorless solid, m. p. $136-138^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{20}-34.46\left(c 0.65, \mathrm{CHCl}_{3}\right)$; $\delta_{\mathrm{H}}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 5.81\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{1,2} 4.0 \mathrm{~Hz}, \mathrm{H}-1\right)$, 5.28 (br. t, 1H, H-7), 4.51 (d, 1H, J $1,24.0 \mathrm{~Hz}, \mathrm{H}-2$), 4.28-3.94 (m, 5H, H-4,8,9, $-\mathrm{OCH}_{2} \mathrm{CH}_{3}$), 3.68 (d, 1H, J ${ }_{2,3} 3.6 \mathrm{~Hz}, \mathrm{H}-3$), $3.42(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OMe}), 3.00\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{5,6} 4.0, \mathrm{~J}_{6,7} 8.1 \mathrm{~Hz}, \mathrm{H}-6\right), 2.56-2.38$ (m, 1H, H-5), 2.08 (s, 3H, -OAc), 2.04-1.80 (m, 2H, H-10,10'), 1.45 (s, 3H, CH3), 1.34-1.18 (m, $6 \mathrm{H}, \mathrm{CH}_{3}$); m/z (FABMS): 419 (100 MH ${ }^{+}$), 401 (10), 373 (95), 154 (31); HRMS(FAB): MH^{+}, found 419.191573. $\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{O}_{10}$ requires 419.191723 .
Ethyl 6-[6-methoxy-2,2-dimethyl-(3aR,5R,6S,6aR)-perhydrofuro[2,3-d][1,3]dioxol-5-yl]-2, 3,4-tri(methylcarbonyloxy)-(1S,2R,3R,4R,6R)-cyclohexane-1-carboxylate (1). Ac $\mathrm{C}_{2} \mathrm{O}$ (0.016 g , $0.16 \mathrm{mmol})$ was added to a stirred solution of diol $22(0.036 \mathrm{~g}, 0.086 \mathrm{mmol})$ in pyridine $(0.32 \mathrm{~mL})$ containing DMAP (catalytic), worked up and purified as described for 16, gave the title compound $1(0.03 \mathrm{~g})$ in 75% yield as a colorless solid, m. p. $95-97{ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{20}-53.41$ (c 1.70, $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 5.80\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{1,2} 3.9 \mathrm{~Hz}, \mathrm{H}-1\right), 5.60(\mathrm{t}, 1 \mathrm{H}, \mathrm{H}-7), 5.33(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{J}_{9,10 \mathrm{a}} 2.3$, $\left.\mathrm{J}_{9,10 \mathrm{e}} 4.2 \mathrm{~Hz}, \mathrm{H}-9\right), 4.88$ (dd, 1H, $\mathrm{J}_{7,8} 9.9$, $\left.\mathrm{J}_{8,9} 3.1 \mathrm{~Hz}, \mathrm{H}-8\right), 4.51\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{1,2} 3.9 \mathrm{~Hz}, \mathrm{H}-2\right)$, $4.13\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{J} 7.1 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.93\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{3,4} 2.9, \mathrm{~J}_{4,5} 8.8 \mathrm{~Hz}, \mathrm{H}-4\right), 3.60\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{3,4} 2.9\right.$ $\mathrm{Hz}, \mathrm{H}-3$), 3.35 ($\mathrm{s}, 3 \mathrm{H},-\mathrm{OMe}$), 2.65 (m, 1H, $\mathrm{J}_{5,10 \mathrm{e}} 3.5 \mathrm{~Hz}, \mathrm{H}-5$), 2.56 (dd, 1H, $\mathrm{J}_{5,6} 11.3, \mathrm{~J}_{6,7} 10.5$
$\mathrm{Hz}, \mathrm{H}-6), 2.13(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OAc}), 2.02(\mathrm{dt}, 1 \mathrm{H}, \mathrm{H}-10 \mathrm{e}), 1.99(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OAc}), 1.98$ ($\mathrm{s}, 3 \mathrm{H},-\mathrm{OAc}), 1.52$ (ddd, 1H, J ${ }_{5,10 \mathrm{a}} 12.4, \mathrm{~J}_{10 \mathrm{a}, 10 \mathrm{e}} 13.6, \mathrm{~J}_{9,10 \mathrm{a}} 2.3 \mathrm{~Hz}, \mathrm{H}-10 \mathrm{a}$), $1.45\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.28\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.25$ (t, $3 \mathrm{H}, \mathrm{J} 7.1 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{CH}_{3}$); $\delta_{\mathrm{c}}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 170.88,170.24,170.18,168.11,111.38$, 104.56, 85.32, 81.06, 80.85, 72.32, 70.37, 68.62, 60.38, 57.20, 47.08, 33.16, 29.53, 28.02, 26.83, 26.17, 20.98, 20.64,13.31; m/z (FABMS): $503\left(36 \mathrm{MH}^{+}\right), 487$ (12), 457 (100), 443 (27); HRMS(FAB): MOEt^{+}, found 457.169200. $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{O}_{11}$ requires 457.170987.
Ethyl 6-[6-methoxy-2,2-dimethyl-(3aR,5R,6S,6aR)-perhydrofuro[2,3-d][1,3]dioxol-5-yl]-2,3, 4-tri(methylcarbonyloxy)-(1S,2S,3S,4S,6R)-cyclohexane-1-carboxylate (2). $\mathrm{Ac}_{2} \mathrm{O}$ (0.006 g , $0.06 \mathrm{mmol})$ was added to a stirred solution of diol $23(0.014 \mathrm{~g}, 0.033 \mathrm{mmol})$ in pyridine $(0.3 \mathrm{~mL})$ containing DMAP (catalytic), worked up and purified as described for 16, to give the title compound $2(0.012 \mathrm{~g})$ in 75% yield as a pale yellow syrup. $[\alpha]_{\mathrm{D}}{ }^{20}+3.20\left(c 0.50, \mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}(400$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$): 5.83 (d, 1H, $\mathrm{J}_{1,2} 3.8 \mathrm{~Hz}, \mathrm{H}-1$), 5.42 (dd, $1 \mathrm{H}, \mathrm{J}_{6,7} 3.5, \mathrm{~J}_{7,8} 6.0 \mathrm{~Hz}, \mathrm{H}-7$), 5.34 (dd, $\left.1 \mathrm{H}, \mathrm{J}_{7,8} 6.0, \mathrm{~J}_{8,9} 3.2 \mathrm{~Hz}, \mathrm{H}-8\right), 5.30$ (ddd, 1H, $\mathrm{J}_{8,9} 3.2, \mathrm{~J}_{9,10 \mathrm{a}} 9.9$, $\left.\mathrm{J}_{9,10 \mathrm{e}} 4.2 \mathrm{~Hz}, \mathrm{H}-9\right), 4.55$ (d, 1H, $\left.\mathrm{J}_{1,2} 3.8 \mathrm{~Hz}, \mathrm{H}-2\right), 4.11\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{3,4} 3.0, \mathrm{~J}_{4,5} 9.1 \mathrm{~Hz}, \mathrm{H}-4\right), 4.10\left(\mathrm{qd}, 2 \mathrm{H}, \mathrm{J} 7.1 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, 3.57 (d, 1H, J $\mathrm{J}_{3,4} 3.0 \mathrm{~Hz}, \mathrm{H}-3$), 3.40 (s, $3 \mathrm{H},-\mathrm{OMe}$), 2.92 (dd, $1 \mathrm{H}, \mathrm{J}_{5,6} 9.1, \mathrm{~J}_{6,7} 3.5 \mathrm{~Hz}, \mathrm{H}-6$), 2.67 (dq, 1H, $\left.\mathrm{J}_{5,10 \mathrm{e}} 4.8 \mathrm{~Hz}, \mathrm{H}-5\right), 2.10,2.08,2.03(3 \mathrm{~s}, 9 \mathrm{H},-\mathrm{OAc}), 1.99\left(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}_{10 \mathrm{a}, 10 \mathrm{e}} 13.2, \mathrm{~J}_{9,10 \mathrm{e}} 4.2\right.$, $\left.\mathrm{J}_{5,10 \mathrm{e}} 4.8 \mathrm{~Hz}, \mathrm{H}-10 \mathrm{e}\right), 1.64\left(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}_{5,10 \mathrm{a}} 9.8, \mathrm{~J}_{9,10 \mathrm{a}} 9.9, \mathrm{~J}_{10 \mathrm{a}, 10 \mathrm{e}} 13.2 \mathrm{~Hz}, \mathrm{H}-10 \mathrm{a}\right), 1.49\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $1.31\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.24\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J} 7.1 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$; $\delta_{\mathrm{c}}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 171.18,160.80$, 160.33 (2C), 111.54, 104.50, 83.73, 81.30, 80.66, 68.59, 68.21, 67.70, 60.81, 57.32, 44.71, 32.85, 28.62, 26.74, 26.27, 26.21, 20.83, 20.77, 13.85; m/z (FABMS): 503 (100), 457 (52), 443 (22); HRMS (FAB): MH^{+}, found 503.210874. $\mathrm{C}_{23} \mathrm{H}_{35} \mathrm{O}_{12}$ requires 503.212852.

Ethyl 6-[6-methoxy-2,2-dimethyl-(3aR,5R,6S,6aR)-perhydrofuro[2,3-d][1,3]dioxol-5-yl]-2,3, 4-tri(methylcarbonyloxy)-(1R,2R,3R,4R,6R)-cyclohexane-1-carboxylate (3). $\mathrm{Ac}_{2} \mathrm{O}$ (0.018 g , $0.18 \mathrm{mmol})$ was added to a stirred solution of diol $24(0.04 \mathrm{~g}, 0.095 \mathrm{mmol})$ in pyridine $(0.3 \mathrm{~mL})$ containing DMAP (catalytic), worked up and purified as described for 16, to give the title compound $3(0.04 \mathrm{~g})$ in 83% yield as a colorless solid, m. p. $95-97{ }^{\circ} \mathrm{C}$. $[\alpha]_{\mathrm{D}}{ }^{20}-54.54$ (c 2.30, $\left.\mathrm{CHCl}_{3}\right), \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 5.85\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{1,2} 3.8 \mathrm{~Hz}, \mathrm{H}-1\right), 5.60\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{7,8} 10.8, \mathrm{~J}_{8,9} 3.3 \mathrm{~Hz}\right.$, H-8), $5.44\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{J}_{8,9} 3.3 \mathrm{~Hz}, \mathrm{H}-9\right), 5.36\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{7,8} 10.8 \mathrm{~Hz}, \mathrm{H}-7\right), 4.54\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{1,2} 3.8 \mathrm{~Hz}, \mathrm{H}-\right.$ 2), 4.25-4.11 (m, 2H, $-\mathrm{OCH}_{2} \mathrm{CH}_{3}$), $3.83\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{3,4} 2.9, \mathrm{~J}_{4,5} 10.5 \mathrm{~Hz}, \mathrm{H}-4\right), 3.54\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{3,4} 3.0\right.$ $\mathrm{Hz}, \mathrm{H}-3), 3.53$ (t, 1H, H-6), 3.36 ($\mathrm{s}, 3 \mathrm{H},-\mathrm{OMe}$), 2.58 (m, 1H, J4,5 10.5, $\mathrm{J}_{5,6} 4.2, \mathrm{~J}_{5,10 \mathrm{e}} 3.3 \mathrm{~Hz}, \mathrm{H}-5$), $2.23\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{J}_{9,10 \mathrm{e}} 2.5, \mathrm{~J}_{5,10 \mathrm{a}} 13.0 \mathrm{~Hz}, \mathrm{H}-10 \mathrm{a}\right), 2.00,2.01,2.09(3 \mathrm{~s}, 9 \mathrm{H},-\mathrm{OAc}), 1.64\left(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}_{9,10 \mathrm{e}}\right.$ $\left.5.8, \mathrm{~J}_{5,10 \mathrm{e}} 3.3, \mathrm{~J}_{10 \mathrm{a}, 10 \mathrm{e}} 14.2 \mathrm{~Hz}, \mathrm{H}-10 \mathrm{e}\right), 1.41,1.31\left(2 \mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 1.28(\mathrm{t}, 3 \mathrm{H}, \mathrm{J} 7.1 \mathrm{~Hz},-$ $\mathrm{OCH}_{2} \mathrm{CH}_{3}$); $\delta_{\mathrm{c}}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 171.30,170.19,169.97,169.75,111.48,104.60,83.23,80.97$, $79.93,69.68,69.57,69.16,60.60,57.66,45.15,31.30,29.64,26.61,26.40,26.25,20.76,20.69$, 14.31; m/z (FABMS): 503 (36 MH ${ }^{+}$), 457 (52), 279 (100); HRMS(FAB): MH^{+}found $503.214328 . \mathrm{C}_{23} \mathrm{H}_{35} \mathrm{O}_{12}$ requires 503.212852 .
Ethyl 6-[6-methoxy-2,2-dimethyl-(3aR,5R,6S,6aR)-perhydrofuro[2,3-d][1,3]dioxol-5-yl]-2,3, 4-tri(methylcarbonyloxy)-(1R,2R,3R,4R,6S)-cyclohexane-1-carboxylate (4). $\mathrm{Ac}_{2} \mathrm{O}$ (0.009 g , $0.09 \mathrm{mmol})$ was added to a stirred solution of diol $25(0.02 \mathrm{~g}, 0.048 \mathrm{mmol})$ in pyridine $(0.3 \mathrm{~mL})$ containing DMAP (catalytic), worked up and purified as described for 16, to give the title
compound $4(0.022 \mathrm{~g})$ in 94% yield as a colorless solid, m. p. $150-152{ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{20}+185.71(\mathrm{c}$ $\left.0.35, \mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 5.85\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{1,2} 3.8 \mathrm{~Hz}, \mathrm{H}-1\right), 5.36\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{6,7} 3.5, \mathrm{~J}_{7,8} 5.6\right.$ $\mathrm{Hz}, \mathrm{H}-7), 5.32\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{7,8} 5.6, \mathrm{~J}_{8,9} 2.7 \mathrm{~Hz}, \mathrm{H}-8\right), 5.25\left(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}_{8,9} 2.7 \mathrm{~Hz}, \mathrm{H}-9\right), 4.53\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{1,2}\right.$ $3.8 \mathrm{~Hz}, \mathrm{H}-2), 4.18-4.13\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-4,-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.71\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{3,4} 3.5 \mathrm{~Hz}, \mathrm{H}-3\right), 3.43$ (s, $3 \mathrm{H},-$ OMe), 3.01 (dd, $1 \mathrm{H}, \mathrm{J}_{5,6} 9.8, \mathrm{~J}_{6,7} 3.5 \mathrm{~Hz}, \mathrm{H}-6$), $2.65\left(\mathrm{tt}, 1 \mathrm{H}, \mathrm{J}_{4,5} 4.3, \mathrm{~J}_{5,6} 9.8 \mathrm{~Hz}, \mathrm{H}-5\right), 2.13$ (dt, $1 \mathrm{H}, \mathrm{J}_{5,10 \mathrm{e}} 4.4, \mathrm{~J}_{9,10 \mathrm{e}} 4.2 \mathrm{~Hz}, \mathrm{H}-10 \mathrm{e}$), 2.10, 2.08, 2.01 ($3 \mathrm{~s}, 9 \mathrm{H},-\mathrm{OAc}$), 1.97 (dt, 1H, $\mathrm{J}_{5,10 \mathrm{a}} 10.3, \mathrm{~J}_{9,10 \mathrm{a}}$ $\left.10.3, \mathrm{~J}_{10 \mathrm{a}, 10 \mathrm{e}} 13.6 \mathrm{~Hz}, \mathrm{H}-10 \mathrm{a}\right), 1.45,1.32\left(2 \mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 1.24\left(\mathrm{t}, 3 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$; $\delta_{\mathrm{c}}(100 \mathrm{MHz}$, CDCl_{3}): 171.49, 170.14, 169.46, 169.37, 111.29, 104.45, 85.76, 81.36, 79.83, 69.20, 68.90, $67.77,60.94,57.68,45.14,31.73,26.68,26.15,24.90,20.98,20.81,20.74,14.05 ; \mathrm{m} / \mathrm{z}$ (FABMS): 525 ($10 \mathrm{M}^{+}+23,10$), 445 (18), 207 (35), 73 (61), 57 (100), 55 (96); HRMS(FAB): MH^{+}, found 503.213914. $\mathrm{C}_{23} \mathrm{H}_{35} \mathrm{O}_{12}$ requires 503.212852 .
Ethyl 6-[6-methoxy-2,2-dimethyl-(3aR,5R,6S,6aR)-perhydrofuro[2,3-d][1,3]dioxol-5-yl]-2,3, 4-tri(methylcarbonyloxy)-(1S,2S,3S,4S,6S)-cyclohexane-1-carboxylate (5). $\mathrm{Ac}_{2} \mathrm{O}$ ($0.02 \mathrm{~g}, 0.2$ $\mathrm{mmol})$ was added to a stirred solution of diol $26(0.045 \mathrm{~g}, 0.107 \mathrm{mmol})$ in pyridine $(0.3 \mathrm{~mL})$ containing DMAP (catalytic), worked up and purified as described for 16, to give the title compound $5(0.052 \mathrm{~g})$ in 98% yield as a pale yellow syrup. $[\alpha]_{\mathrm{D}}{ }^{20}-27.12\left(c 2.50, \mathrm{CHCl}_{3}\right)$; δ_{H} ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $5.86\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{1,2} 4.0 \mathrm{~Hz}, \mathrm{H}-1\right), 5.69\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{7,8} 10.7, \mathrm{~J}_{8,9} 3.5 \mathrm{~Hz}, \mathrm{H}-8\right), 5.57$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{J}_{8,9} 3.5 \mathrm{~Hz}, \mathrm{H}-9$), 5.32 (dd, $1 \mathrm{H}, \mathrm{J}_{6,7} 6.1, \mathrm{~J}_{7,8} 10.7 \mathrm{~Hz}, \mathrm{H}-7$), 4.59 (d, 1H, J $\mathrm{J}_{1,2} 4.0 \mathrm{~Hz}, \mathrm{H}-2$), 4.25, $4.14\left(2 \mathrm{dq}, 2 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.77\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{3,4} 3.1, \mathrm{~J}_{4,5} 9.6 \mathrm{~Hz}, \mathrm{H}-4\right), 3.74\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{3,4} 3.1 \mathrm{~Hz}\right.$, $\mathrm{H}-3$), 3.46 ($\mathrm{s}, 3 \mathrm{H},-\mathrm{OMe}$), $3.18\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}_{5,6} 4.7, \mathrm{~J}_{6,7} 6.1 \mathrm{~Hz}, \mathrm{H}-6\right.$), 2.56 (tt, $1 \mathrm{H}, \mathrm{J}_{4,5} 9.6, \mathrm{~J}_{5,6} 4.7 \mathrm{~Hz}$, H-5), 2.16 (m, 1H, J. $\left.{ }_{5,10 \mathrm{a}} 12.7, \mathrm{~J}_{9,10 \mathrm{a}} 2.5 \mathrm{~Hz}, \mathrm{H}-10 \mathrm{a}\right), 2.10(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OAc}), 2.09\left(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}_{5,10 \mathrm{e}} 4.3\right.$, $\left.\mathrm{J}_{9,10 \mathrm{e}} 3.1, \mathrm{~J}_{10 \mathrm{a}, 10 \mathrm{e}} 14.8 \mathrm{~Hz}, \mathrm{H}-10 \mathrm{e}\right), 2.03,1.98(2 \mathrm{~s}, 6 \mathrm{H},-\mathrm{OAc}), 1.43,1.31\left(2 \mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 1.29(\mathrm{t}$, $3 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}$); $\delta_{\mathrm{c}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 170.46,170.12,170.10,169.97,111.34,104.44,83.24$, $80.93,80.69,69.72,69.28,68.58,60.91,57.59,45.15,31.44,28.16,26.50,26.06,21.06,20.82$, 20.74,14.27; m/z (FABMS): 503 (12 MH^{+}), 457 (20), 154 (50), 133 (79), 89 (68), 77 (100); HRMS (FAB): MH^{+}found 503.211435. $\mathrm{C}_{23} \mathrm{H}_{35} \mathrm{O}_{12}$ requires 503.212852 .

Acknowledgments

A S C and M H V R R are thankful to CSIR, New Delhi for financial support. This work was supported by a Grant-in-Aid project (CSIR Young Scientist Award to Dr G V M Sharma).

References

1. Higton, A.; Roberts, D. Dictionary of Antibiotics and Related Substances. Bycroft, B. W. Ed., Chapman \& Hall: London 1988.
2. Bach, G.; Breiding-Mack, S.; Grabley, S.; Hammann, P.; Hutter, K.; Thiericke, R.; Uhr, H.; Wink, J.; Zeeck, A. Liebigs Ann. Chem. 1993, 241.
3. McCasland, G. E.; Furuta, S.; Durham, L. J. J. Org. Chem. 1996, 61, 1516.
4. Suami, T.; Ogawa, S. Adv. Carbohydr. Chem. Biochem. 1990, 48, 22.
5. Cookson, R. C.; Dudfield, P. J. J. Chem. Soc., Perkin Trans. 1 1986, 393.
6. Ferrier, R. J.; Middleton, S.; Chem. Rev. 1993, 93, 2779.
7. Sharma, G. V. M.; Chander, A. S.; Krishnudu, K.; Krishna, P. R. Tetrahedron Lett. 1997, 38, 9051.
8. Sharma, G. V. M.; Chander, A. S.; Krishnudu, K.; Krishna, P. R. Tetrahedron Lett. 1998, 39, 6957.
9. Sharma, G. V. M.; Hymavathi, L.; Krishna, P. R. Tetrahedron Lett. 1997, 38, 6929.
10. Sharma, G. V. M.; Reddy, V. G.; Krishna, P. R. Tetrahedron Lett. 1999, 40, 1783.
11. Sharma, G. V. M.; Prasad, T. R.; Krishna, P. R.; Krishnudu, K.; Rao, M. H. V. R.; Kunwar, A. C. Tetrahedron: Asymmetry 2000, 11, 4499.
12. Sharma, G. V. M.; Chander, A. S.; Reddy, V. G.; Krishnudu, K.; Rao, M. H. V. R.; Kunwar, A. C. Tetrahedron Lett. 2000, 41, 1997.
13. Sharma, G. V. M.; Chander, A. S.; Krishna, P. R. Tetrahedron: Asymmetry 2001, 12, 539.
14. Krishna, P. R.; Lavanya, B.; Ilangovan, A.; Sharma, G. V. M. Tetrahedron: Asymmetry 2000, 11, 4463.
15. Sharma, G. V. M.; Chander, A. S.; Krishna, P. R.; Krishnudu, K.; Rao, M. H. V. R.; Kunwar, A. C. Tetrahedron: Asymmetry 2000, 11, 2643.
16. Tronchet, J. M. J.; Baehler, B. J.; Eder, H.; Le Hong, F.; Perret, N.; Poncet, J.; Zumbwald, B. J. Helv. Chem. Acta 1973, 56, 1310.
17. Chem. Abstr. 1967, 66, 2623 f.
18. Pietrusiewicz, K. M.; Monkiewicz, J.; Bodalski, R. J. Org. Chem. 1983, 48, 788.
19. Leonard, J.; Mohialdin, S.; Redd, D.; Ryan, G.; Jones, M. F. J. Chem. Soc., Chem. Commun. 1993, 23.
20. Luche, J. L.; Hahn, L. R.; Crabbe, P. J. Chem. Soc., Chem. Commun. 1978, 601.
21. Cha, J. K.; Christ, W. J.; Kishi, Y. Tetrahedron 1984, 40, 2247.
22. The energy minimization was carried out using Sybyl 6.8 with default Tripose force field Parameters. Minimization was done first with steepest descent followed by conjugate gradient methods for a maximum of 2000 iteration each or RMS deviation of 0.005 $\mathrm{Kcal} /$ mole which ever was earlier.
[^0]
[^0]: \# IICT Communication No. 4656

