Asymmetrically protected porphyrin meso-tetraphenols and their application in the synthesis of pentaporphyrin dendrimers.

Stefaan Smeets, Hilde Roex and Wim Dehaen*
Department of Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200F, 3001 Leuven (Belgium)
E-mail : wim.dehaen@chem.kuleuven.ac.be
Dedicated to Professor Georges Hoornaert on his 65 ${ }^{\text {th }}$ birthday
(received 16 Jan 03; accepted 07 Mar 03; published on the web 24 Mar 03)

Abstract

The readily available tetrakis(4-hydroxyphenyl)porphyrin core $\mathbf{1}$ was silylated to the trisprotected $2 \mathbf{2 a}$ and the tetraprotected 3a. These two molecules were used, respectively as monomers and core reagents in a synthesis of pentaporphyrin dendrimers 7a-c with benzyl ether branches or hexadecyl groups as the peripheral groups.

Keywords: Dendrimers, porphyrins, protection

Introduction

Numerous research groups have used porphyrins or metalloporphyrins as central building blocks (cores) in dendrimers. [1-11] The first example was described by Inoue and Aida. [1] It has been suggested that dendritic porphyrins could act as model sytems for natural electron transfer hemoproteins such as cytochrome c or hemoglobin. [2,3] Because of their large size and the possibility of host-guest interactions, the porphyrins represent attractive cores for the design of dendritic sensors and catalysts. Introduction of bulky dendrons at the peripheral positions of a metalloporphyrin results in steric protection and could provide regio- and stereoselective catalysis. [4]

In earlier work, we described benzyl ether dendrimers derived from the readily available tetrakis(4-hydroxyphenyl)porphyrin core 1. [11] We wanted to devise a synthesis of dendrimers having porphyrins at several levels of the macromolecule. [12] Therefore, it was necessary to desymmetrize 1. We previously have used the t-butyldiphenylsilyl (TBDPS) group previously [13,14] as a protecting group for the 3,5-dihydroxybenzyl alcohol monomer in the accelerated synthesis of benzyl ether [15] dendrons previously described by Fréchet. An additional
advantage of the bulky silyl group is its solubilizing ability, which adresses the main problem associated with working with $\mathbf{1}$.

Results and Discussion

The tetraphenol 1 is readily available in 95 \% yield from the corresponding tetramethoxy derivative by demethylation with pyridinium hydrochloride. Then, reaction of $\mathbf{1}$ with 4.4 equivalents of TBDPS-Cl and nine equivalents of imidazole gave a mixture of products from which the trisprotected 2a and the tetraprotected 3a could be isolated by flash chromatography, respectively in 34 and 38 \% yield. As expected, 2a and $\mathbf{3 a}$ had excellent solubilities in most organic solvents. In comparison, alkylation of 1 with 1-bromohexadecane was very sluggish and gave, after painstaking chromatography, the trisalkylated and tetraalkylated porphyrins $\mathbf{2 b}$ and 3b in 10 and 12% yield, respectively. The use of the G1 benzylic bromide to desymmetrize $\mathbf{1}$ afforded only 24% of the desired 2c, together with 60% of the tetrasubstituted 3c. The products $\mathbf{2 b} \mathbf{- c}$ and $\mathbf{3 b}-\mathbf{c}$ were much less soluble in organic solvents than their silylated analogs $\mathbf{2 a}$ and $\mathbf{3 a}$.

Mitsunobu reaction of 2a with an excess of 1,4-benzenedimethanol gave a good yield (85 \%) of the porphyrin 4, having a single benzyl alcohol function. Reaction of 4 with the benzylic G1Br , using deprotection/realkylation conditions described earlier [13,14], gave the corresponding dendron $\mathbf{5 a}$ in 95% yield. Bromination using soft conditions $\left(\mathrm{CBr}_{4} / \mathrm{PPh}_{3}\right)$ gave the bromide $\mathbf{6 a}$ in 83 \% yield. In preliminary work, 6a was obtained in 70% yield from 2c and 1,4bis(bromomethyl)benzene. The pentaporphyrin 7a was then prepared in 48% yield by combining the tetraprotected porphyrin core $\mathbf{3 a}$ with the bromide $\mathbf{6 a}$ under deprotection/realkylation conditions.

The same reaction sequence, starting from 4 and using 1-bromohexadecane instead of $\mathrm{G} 1-\mathrm{Br}$, gave 90 \% of the dendron $\mathbf{5 b}$, 65 \% of bromide $\mathbf{6 b}$ (90 \% from $\mathbf{2 b}$ and 1,4-bis(bromomethyl)-
${ }^{\circ}$ ARKAT USA, Inc
benzene) and 18 \% of the pentaporphyrin 7b. Starting from 4 and the Fréchet G2-Br, 5c (70 \%), $\mathbf{6 c}(80 \%)$ were obtained. The final pentaporphyrin $\mathbf{7 c}$ was prepared from $\mathbf{6 c}$ and $\mathrm{Zn}[\mathbf{1}]($ not $\mathbf{3 a})$ in 40 \% yield. Only a very small amount of $\mathrm{Zn}[1]$ was necessary, so there were no solubility problems in this case. Thus, this modular approach allows the preparation of oligoporphyrins metallated at a chosen level within the dendrimer structure.

The pentaporphyrins 7a-c were characterized by ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectroscopy (for 7a and 7b), MALDI-TOF mass spectrometry and GPC (for 7a and 7c). The latter technique gave an M_{n} (respectively 7513 and 11305) that was very close to the theoretically expected one (7496 and 12588), proving that these dendrimers still have a very open structure. Also, the dendrimers 7a and 7c are essentially monodisperse ($\mathrm{PD}=1.04$). All dendrimers 7a-c gave only the theoretically expected MALDI TOF MS peak for MH^{+}.

Conclusions

The tetrakis(4-hydroxyphenyl)porphyrin $\mathbf{1}$ can be desymmetrized to the trisilylated $\mathbf{2 a}$ and the latter compound can be used as a soluble building block for the synthesis of pentaporphyrin systems $\mathbf{7 a} \mathbf{a} \mathbf{c}$, possessing Fréchet dendrons (first and second generation) or hexadecyl groups as the terminal groups.

Experimental Section

General Procedures. ${ }^{1} \mathrm{H}$ NMR or ${ }^{13} \mathrm{C}$ NMR spectra were measured with a 400 MHz Bruker apparatus. Mass spectra were obtained on a Micromass Quatro II in ESI (infusion $50 \mu \mathrm{l}$ $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{NH}_{4} \mathrm{OAc}(0.1 \mathrm{M}$ in MeOH$)$ with a Harvard pump, model 11) or in APCI (250 $\mu \mathrm{l}$ $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ using a Hewlett Packard HP 1100 binary pump and infusion of 20-30 $\mu \mathrm{l}$ $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{NH}_{4} \mathrm{OAc}(0.1 \mathrm{M}$ in MeOH) with a Harvard pump model 11). The higher molecular mass compounds were measured with a MALDI-TOF apparatus, using a tetrahydrofuran solution of indoleacrylic acid (0.4 M) as the matrix. GPC (Waters apparatus) used polystyrene standards and absorbance detection.

5,10,15,20-Tetrakis(4-hydroxyphenyl)porphyrin (1). A mixture of pyridine (64 ml) and hydrochloric acid (72 ml) was evaporated during 1 h until an inner temperature of at least $170^{\circ} \mathrm{C}$ was reached. Then the tetrakis(4-methoxyphenyl)porphyrin (10 g) was added. The mixture was heated at reflux while stirring for a further 3 h . After cooling, water (200 ml) was added and the resulting precipitate was filtered and washed with a saturated sodium acetate solution. The resulting solid was redissolved in a mixture of acetone (150 ml) and triethylamine (5 ml). Then, 600 ml of hexane was added. The resulting precipitate (95% yield) was isolated and consists of 1, of sufficient purity for further synthesis.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.94$ (s, 4H, OH), 8.88 (s, $8 \mathrm{H}, \beta$-pyrrole), 8.01 (d, $J=7.6 \mathrm{~Hz}, 8 \mathrm{H}$, 2,6-phenyl-H), 7.22 (d, $J=7.6 \mathrm{~Hz}, 8 \mathrm{H}, 3,5-\mathrm{phenyl}-\mathrm{H}$), -2.83 (s, 2H, NH) ; ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 157.4,135.5,131.9,131.3,120.0,113.9$.
$\mathbf{Z n}[1]$: A solution of $\mathbf{1}(0.50 \mathrm{~g}, 0.73 \mathrm{mmol})$ in methanol (20 ml) was treated with zinc acetate ($1.35 \mathrm{~g}, 7.40 \mathrm{mmol}$). The mixture was stirred for 2 h at room temperature, poured in ethyl acetate $(50 \mathrm{ml})$ and washed with water (3 x 50 ml). After drying on magnesium sulfate, the solvent was removed in vacuo and the residue chromatographed over silica with a ethyl acetate / hexane 3:2 mixture. This gave $\mathrm{Zn}[1](0.49 \mathrm{~g}, 90 \%)$.
${ }^{1}{ }^{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.80(\mathrm{~s}, 4 \mathrm{H}, \mathrm{OH}$), 8.80 (s, $8 \mathrm{H}, \beta$-pyrrole), 7.94 (d, $J=8.3 \mathrm{~Hz}, 8 \mathrm{H}$, 2,6-phenyl-H), 7.16 (d, $J=8.3 \mathrm{~Hz}, 8 \mathrm{H}, 3,5-$ phenyl-H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.8$, 149.6, 135.2, 133.4, 131.3, 120.2, 113.5; UV/Vis ($\lambda_{\max }, n m$, dichloromethane) 424.0, 557.1, 598.2; ESI MS $742\left(\mathrm{MH}^{+}\right)$.

Silylation of 1 . Porphyrin $1(2.00 \mathrm{~g}, 2.90 \mathrm{mmol})$, chloro-t-butyldiphenylsilane ($3.57 \mathrm{~g}, 13 \mathrm{mmol}$) and imidazole ($1.77 \mathrm{~g}, 26 \mathrm{mmol}$) were dissolved in dimethylformamide (30 ml) and stirred at ambient temperature under inert atmosphere for 12 h . The solvent was removed in vacuo and the residue chromatographed over silica with a dichloromethane/hexane 1:1 mixture. This gave 3a (1.81g, 38 \%) as a first fraction. Further elution gave 2a (1.38g, 34%).

5-(4-Hydroxyphenyl)-10,15,20-tris(4-t-butyldiphenylsilyloxyphenyl)porphyrin (2a). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.82$ (s, 4H, β-pyrrole), 8.79 (d, $J=4.8 \mathrm{~Hz}, 2 \mathrm{H}, \beta$-pyrrole), 8.73 (d, $J=$ $4.8 \mathrm{~Hz}, 2 \mathrm{H}, \beta$-pyrrole), 8.01 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.93 (m, 12H), 7.86 (d, $J=9.0 \mathrm{~Hz}, 6 \mathrm{H}$), $7.53-$ 7.46 (m, 18H), 7.14 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.13 (d, $J=9.0 \mathrm{~Hz}, 6 \mathrm{H}$), 1.22 (s, $27 \mathrm{H}, \mathrm{t}-\mathrm{Bu}$), -2.90 (s, $2 \mathrm{H}, \mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 155.6,155.3,135.8,135.7,135.3,135.1,134.9$, 133.1, 130.1, 127.9, 119.8, 119.4, 118.2, 113.6, 26.7, 19.7; UV/Vis ($\lambda_{\max }, n m$, dichloromethane) 421.1, 518.3, 555.0, 593.4, 649.9; ESI MS $1395\left(\mathrm{MH}^{+}\right)$.

5,10,15,20-Tetrakis(4-t-butyldiphenylsilyloxyphenyl)porphyrin (3a). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.70(\mathrm{~s}, 8 \mathrm{H}, \beta$-pyrrole), 7.93 (m, 16 H), 7.86 (d, $J=8.4 \mathrm{~Hz}, 8 \mathrm{H}$), 7.51 (m, 24H), 7.12 (d, $J=8.4 \mathrm{~Hz}, 8 \mathrm{H}$), 1.20 (s, $36 \mathrm{H}, \mathrm{t}-\mathrm{Bu}$), $-2.90(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 155.6, 135.8, 135.3, 135.1, 133.1, 130.1, 127.9, 119.7, 118.2, 26.7, 19.7; UV/Vis ($\lambda_{\max }, \mathrm{nm}$, dichloromethane) 421.4, 518.7, 555.4, 593.9, 649.6; ESI MS $1633\left(\mathrm{MH}^{+}\right)$.
Hexadecylation of 1. Porphyrin $1(1 \mathrm{~g}, 1.47 \mathrm{mmol})$, 1-bromohexadecane ($1.49 \mathrm{~g}, 4.87 \mathrm{mmol}$) and potassium carbonate $(0.67 \mathrm{~g}, 4.85 \mathrm{mmol})$ were added to 30 ml of dimethylformamide. The mixture was heated at reflux under argon for 48 h . After cooling, 50 ml of dichloromethane was
added and the organic layer was washed with water ($3 \times 50 \mathrm{ml}$), and dried on magnesium sulfate. The solvent was removed in vacuo and the residue chromatographed over silica with a dichloromethane / hexane $1: 1$ mixture. This gave the known [16] 3b ($0.21 \mathrm{~g}, 12 \%$) as a first fraction. Further elution gave $\mathbf{2 b}$ ($0.24 \mathrm{~g}, 10 \%$).
5-(4-Hydroxyphenyl)-10,15,20-tris(4-n-hexadecyloxyphenyl)porphyrin (2b). ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.85$ (s, 4H, β-pyrrole), 8.82 (d, $J=4.8 \mathrm{~Hz}, 2 \mathrm{H}, \beta$-pyrrole), 8.80 (d, $J=4.8 \mathrm{~Hz}$, $2 \mathrm{H}, \beta$-pyrrole), 8.07 (d, $J=8.1 \mathrm{~Hz}, 6 \mathrm{H}$), 8.01 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.23 (d, $J=8.1 \mathrm{~Hz}, 6 \mathrm{H}$), 7.13 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 4.17 (t, $J=6.4 \mathrm{~Hz}, 6 \mathrm{H}), 1.94$ (m, 6H), 1.59 (m, 6H), 1.27 (m, 72 H), 0.88 (t, $J=7.0 \mathrm{~Hz}, 9 \mathrm{H}),-2.70(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.0,155.2,135.6,135.5$, $135.4,130.9,119.9,113.5,112.7,68.3,31.9,29.7,29.5,29.4,26.9,26.5,22.7,14.1$; UV/Vis ($\lambda_{\text {max }}$, nm, dichloromethane) 421.7, 517.9, 555.8, 594.4, 649.9; ESI MS $1351\left(\mathrm{MH}^{+}\right)$.
Dendronisation (G1) of 1. A mixture of porphyrin 1 (1g, 1.47 mmol), G1-Br (1.86g, 4.87 mmol), potassium carbonate ($1.34 \mathrm{~g}, 9.69 \mathrm{mmol}$) and 18 -crown-6 ($40 \mathrm{mg}, 0.15 \mathrm{mmol}$) in dimethylformamide (30 ml) was heated while stirring in argon at $80^{\circ} \mathrm{C}$ for 48 h . After removal of the solvent in vacuo, the residue was dissolved in dichloromethane (50 ml) and washed with water ($3 \times 50 \mathrm{ml}$). The organic layer was dried on magnesium sulfate. The solvent was removed in vacuo and the residue chromatographed over silica with a dichloromethane / hexane 9:1 mixture. This gave the known [11] 3c (1.67g, 60 \%) as a first fraction. Further elution gave 2c (0.56g, 24 \%).
5-(4-Hydroxyphenyl)-10,15,20-tris(4-(3,5-bis(benzyloxy)benzyloxy)phenyl)porphyrin (2c). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.85$ (s, $8 \mathrm{H}, \beta$-pyrrole), 8.09 (d, $J=8.5 \mathrm{~Hz}, 6 \mathrm{H}$), 8.05 (d, $J=8.4$ Hz, 2H), 7.47 (d, $J=7.9 \mathrm{~Hz}, 12 \mathrm{H}$), 7.38 (m, 12H), 7.32 (d, $J=8.5 \mathrm{~Hz}, 6 \mathrm{H}), 7.30$ (m, 6H), 7.16 (d, $J=8.5 \mathrm{~Hz}, 6 \mathrm{H}$), 6.79 (d, $J=2.0 \mathrm{~Hz}, 6 \mathrm{H}), 6.66$ (t, $J=2.0 \mathrm{~Hz}, 3 \mathrm{H}), 5.26$ (s, 6H), 5.13 (s, 12H), -2.70 (s, 2H, NH); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.3,158.6,155.2,139.5,136.9,135.7(2)$, 135.0, 134.9, 128.6, 128.0, 127.6, 119.7, 113.7, 113.2, 113.0, 106.7, 101.8, 70.3, 67.1; UV/Vis ($\lambda_{\text {max }}, \mathrm{nm}$, dichloromethane) 421.6, 518.7, 555.3, 593.2, 650.3; ESI MS $1589\left(\mathrm{MH}^{+}\right)$.
5,10,15-Tris(4-t-butyldiphenylsilyloxyphenyl)-20-(4-(4-(hydroxymethyl)benzyloxy)phenyl)porphyrin (4). Porphyrin 2a ($0.50 \mathrm{~g}, 0.36 \mathrm{mmol}$), 1,4-benzenedimethanol ($0.49 \mathrm{~g}, 3.59$ mmol), diethyl azodicarboxylate ($90 \mathrm{mg}, 0.54 \mathrm{mmol}$) and triphenylphosphine ($0.14 \mathrm{~g}, 0.54$ mmol) were dissolved in dry tetrahydrofuran (5 ml). The mixture was stirred for 3h at ambient temperature, evaporated in vacuo and redissolved in dichloromethane (15 ml). After washing with water ($3 \times 20 \mathrm{ml}$) the organic layer was dried over magnesium sulfate. The solvent was removed in vacuo and the residue chromatographed over silica with a dichloromethane / hexane 3:1 mixture. This afforded the porphyrin $4(0.47 \mathrm{~g}, 85 \%)$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.80(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 2 \mathrm{H}, \beta$-pyrrole), 8.73 (d, $J=4.7 \mathrm{~Hz}, 2 \mathrm{H}, \beta-$ pyrrole), 8.72 (s, 4H, β-pyrrole), 8.08 (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.93 (m, 12 H), 7.87 (d, $J=8.4 \mathrm{~Hz}$, $6 \mathrm{H}), 7.61$ (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.55-7.45(\mathrm{~m}, 18 \mathrm{H}), 7.49(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, 2H), 7.12 (d, $J=8.4 \mathrm{~Hz}, 6 \mathrm{H}$), 5.34 (s, 2H), 4.77 (d, $J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.49$ (t, $J=5.6 \mathrm{~Hz}, 1 \mathrm{H}$), 1.28 (s, 27H), -2.90 (s, 2H, NH); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.6,155.6,140.9,136.6$, 135.8, 135.6, 135.3, 135.1, 135.0, 133.1, 131.0, 128.0, 127.9, 127.3, 119.8, 119.5, 118.2, 113.1,
70.1, 65.2, 26.8, 19.7; UV/Vis ($\lambda_{\max }$, nm, dichloromethane) 422.4, 518.4, 555.5, 593.5, 649.5; ESI MS $1516\left(\mathrm{MH}^{+}\right)$.

General procedure for deprotection/realkylation

5,10,15-Tris(4-(3,5-bis(benzyloxy)-benzyloxy)phenyl)-20-(4-(4-(hydroxymethyl)benzyloxy) phenyl)porphyrin (5a). Porphyrin $4(180 \mathrm{mg}, 0.12 \mathrm{mmol})$, $\mathrm{G} 1-\mathrm{Br}$ ($0.21 \mathrm{~g}, 0.55 \mathrm{mmol}$), potassium fluoride ($58 \mathrm{mg}, 1 \mathrm{mmol}$) and 18-crown-6 ($0.26 \mathrm{~g}, 0.98 \mathrm{mmol}$) were added to acetone (10 ml) and heated at reflux for 24 h while stirring under an argon atmosphere. After cooling, the mixture was added to dichloromethane (25 ml) and the organic layer was washed with water ($3 \times 30 \mathrm{ml}$) and dried over magnesium sulfate. The solvent was removed in vacuo and the residue chromatographed over silica with a dichloromethane / diethyl ether 19:1 mixture. This afforded the porphyrin $5 \mathrm{a}(0.17 \mathrm{~g}, 90 \%) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.08$ (s, $8 \mathrm{H}, \beta$-pyrrole), 8.06 (d, J $=8.6 \mathrm{~Hz}, 6 \mathrm{H}), 7.53(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{~m}, 12 \mathrm{H}), 7.40(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{~m}, 12 \mathrm{H})$, 7.30 (m, 6H), 7.24 (d, $J=8.6 \mathrm{~Hz}, 6 \mathrm{H}$), 6.84 (d, $J=2.2 \mathrm{~Hz}, 6 \mathrm{H}), 6.65$ (t, $J=2.2 \mathrm{~Hz}, 3 \mathrm{H}), 5.22$ (s, 2 H), 5.17 ($\mathrm{s}, 2 \mathrm{H}$), 5.16 ($\mathrm{s}, 4 \mathrm{H}$), 5.10 (s, 12H), 4.68 (s, 2H), 1.64 (s, 1H), $-2.30(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 160.3,158.6,158.5,140.8,139.4,136.9,136.4,135.6,135.4,134.9$, $131.0,128.6,128.0,127.8,127.6,127.2,119.7,113.1,70.2,70.0$; UV/Vis ($\lambda_{\max }, n m$, dichloromethane) 421.4, 518.5, 555.8, 593.5, 650.1; ESI MS $1708\left(\mathrm{MH}^{+}\right)$.
5,10,15-Tris(4-n-hexadecyloxyphenyl)-20-(4-(4-(hydroxymethyl)benzyloxy)-
phenyl)porphyrin (5b). Porphyrin 5b was prepared analogously in 90% yield from 4 and 1bromohexadecane. The reaction was carried out at room temperature in dimethylformamide (24h). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.85$ (s, $4 \mathrm{H}, \beta$-pyrrole), 8.84 (d, $J=4.7 \mathrm{~Hz}, 2 \mathrm{H}, \beta$-pyrrole), 8.83 (d, $J=4.7 \mathrm{~Hz}, 2 \mathrm{H}, \beta$-pyrrole), 8.07 (d, $J=8.4 \mathrm{~Hz}, 8 \mathrm{H}$), 7.53 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.41 (d, J $=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 6 \mathrm{H}), 5.22(\mathrm{~s}, 2 \mathrm{H}), 4.70(\mathrm{~s}, 2 \mathrm{H}), 4.18$ (t, $J=6.4 \mathrm{~Hz}, 6 \mathrm{H}), 3.60(\mathrm{~s}, 1 \mathrm{H}), 1.94(\mathrm{~s}, 6 \mathrm{H}), 1.58(\mathrm{~s}, 6 \mathrm{H}), 1.27(\mathrm{~m}, 72 \mathrm{H}), 0.86(\mathrm{t}, J=7.0 \mathrm{~Hz}$, 9H), -2.70 (s, 2H, NH); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.0,158.6,140.9,136.5,135.6,135.0$, $134.4,127.9,127.2,119.8,119.5,113.1,112.7,70.1,68.3,65.1,31.9,29.6,29.5,29.4,26.2$, 25.7, 22.7, 14.1; UV/Vis ($\lambda_{\max }$, nm, dichloromethane) 422.1, 518.9, 556.2, 595.0, 650.8; ESI MS $1473\left(\mathrm{MH}^{+}\right)$.
5,10,15-Tris(4-(3,5-bis(3,5-bis(benzyloxy)benzyloxy)benzyloxy)phenyl)-20-(4-(4(hydroxymethyl)benzyloxy)phenyl)porphyrin (5c). Porphyrin 5c was prepared analogously in 70% yield from 4 and G2-Br. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.85(\mathrm{~s}, 8 \mathrm{H}, \beta-$ pyrrole), 8.08 (d, $J=8.5 \mathrm{~Hz}, 8 \mathrm{H}$), 7.57 (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.46 (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.45-7.25 (m, 68 H), 6.85 (d, $J=2.3 \mathrm{~Hz}, 6 \mathrm{H}), 6.73(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 12 \mathrm{H}), 6.63(\mathrm{t}, J=2.3 \mathrm{~Hz}, 3 \mathrm{H}), 6.58(\mathrm{t}, J$ $=2.3 \mathrm{~Hz}, 6 \mathrm{H}), 5.28(\mathrm{~s}, 2 \mathrm{H}), 5.21(\mathrm{~s}, 6 \mathrm{H}), 5.04(\mathrm{~s}, 12 \mathrm{H}), 5.02(\mathrm{~s}, 24 \mathrm{H}), 4.72(\mathrm{~d}, \mathrm{~J}=4.2 \mathrm{~Hz}, 2 \mathrm{H})$, $1.71(\mathrm{t}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}),-2.75(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.2,158.6,140.8$, 139.5, 139.3, 136.7, 135.6, 135.0, 128.5, 127.9, 127.5, 127.3, 119.7, 113.1, 106.7, 106.5, 101.8, 101.6, 70.3, 70.1, 65.1; MALDI TOF $2980.5\left(\mathrm{MH}^{+}\right)$.

General procedure for bromination
5,10,15-Tris(4-(3,5-bis(benzyloxy)benzyloxy)-phenyl)-20-(4-(4-(bromomethyl)benzyloxy) phenyl)porphyrin (6a). To a solution of porphyrin 5 a ($0.50 \mathrm{~g}, 0.29 \mathrm{mmol}$) and CBr_{4} (0.292 g ,
0.88 mmol) in dry tetrahydrofuran (5 ml) was added triphenylphosphine ($0.231 \mathrm{~g}, 0.88 \mathrm{mmol}$) and the mixture was stirred for 1 h at ambient temperature and then added to water (20 ml). The mixture was extracted ($3 x 20 \mathrm{ml}$) with dichloromethane and the organic layer was dried over magnesium sulfate. The solvent was removed in vacuo and the residue chromatographed over silica with a dichloromethane / hexane 3:1 mixture. This yielded 6a ($0.43 \mathrm{~g}, 83 \%$). Alternatively, 6a was obtained in 70 \% yield from 2c and 10 equivalents of 1,4-bis(bromomethyl)benzene using potassium carbonate (2 equivalents), 18-crown-6 (0.5 equivalents), in tetrahydrofuran at reflux for $12 \mathrm{~h} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.84$ (s, $8 \mathrm{H}, \beta$-pyrrole), 8.08 (d, $J=8.05 \mathrm{~Hz}, 8 \mathrm{H}$), 7.55 (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.48 (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.47 (m, 12H), 7.39 (m, 6H), 7.30 (m, 12H), 7.29 (d, $J=8.3 \mathrm{~Hz}, 8 \mathrm{H}), 6.86(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 6 \mathrm{H}), 6.66(\mathrm{t}, J=2.0 \mathrm{~Hz}, 3 \mathrm{H}), 5.27(\mathrm{~s}, 2 \mathrm{H}), 5.23(\mathrm{~s}$, $6 \mathrm{H}), 5.11$ (s, 12H), $4.54(\mathrm{~s}, 2 \mathrm{H}),-2.54(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.3,158.5$, 158.2, 148.0, 139.5, 137.7, 137.4, 135.6, 135.0, 131.0, 129.4, 128.6, 128.0, 127.6, 119.6, 113.1; 106.6, 101.8, 70.2, 69.8, 69.7, 33.2; UV/Vis ($\lambda_{\max }$, nm, dichloromethane) 422.0, 518.6, 555.7, 593.7, 650.3; ESI MS $1769\left(\mathrm{MH}^{+}\right)$.

5,10,15-Tris(4-n-hexadecyloxyphenyl)-20-(4-(4-bromomethyl)benzyloxy)phenyl)-porphyrin (6b). Porphyrin 6 b was prepared analogously from 5 b in 65% yield. Alternatively, 6 b was obtained in 90% yield from 2 b and 10 equivalents of 1,4-bis(bromomethyl)benzene. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.85$ (s, 8H, β-pyrrole), 8.83 (d, $J=4.6 \mathrm{~Hz}, 2 \mathrm{H}, \beta$-pyrrole), 8.81 (d, $J=4.6$ Hz, 2H, β-pyrrole), 8.08 (d, $J=8.0 \mathrm{~Hz}, 6 \mathrm{H}$), 8.05 (d, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}$), 7.49 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.44 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.22 (d, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}$), 7.21 (d, $J=8.0 \mathrm{~Hz}, 6 \mathrm{H}), 5.18$ (s, 2H), 4.52 (s, $2 \mathrm{H}), 4.17(\mathrm{t}, J=6.4 \mathrm{~Hz}, 6 \mathrm{H}), 1.94(\mathrm{~m}, 6 \mathrm{H}), 1.59(\mathrm{~m}, 6 \mathrm{H}), 1.27(\mathrm{~m}, 72 \mathrm{H}), 0.88(\mathrm{t}, J=7.0 \mathrm{~Hz}, 9 \mathrm{H})$, -2.70 (s, 2H, NH); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 159.0, 158.5, 137.6, 137.4, 135.6, 135.4, 135.1, 130.9, 129.4, 128.0, 119.9, 119.5, 113.0, 112.7, 69.8, 14.1; UV/Vis ($\lambda_{\max }, n m$, dichloromethane) 421.9, 518.7, 556.1, 593.9, 650.6; ESI MS $1533\left(\mathrm{MH}^{+}\right)$.
5,10,15-Tris(4-(3,5-bis(3,5-bis(benzyloxy)benzyloxy)benzyloxy)phenyl)-20-(4-(4(bromomethyl)benzyloxy)phenyl)porphyrin (6c). Porphyrin 6c was prepared analogously from 5 c in 80% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.85$ (s, $8 \mathrm{H}, \beta$-pyrrole), 8.08 (d, $J=8.4$ $\mathrm{Hz}, 8 \mathrm{H}$), 7.55 (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.45-7.24(\mathrm{~m}, 68 \mathrm{H}), 6.85(\mathrm{~d}, J=2.0$ $\mathrm{Hz}, 6 \mathrm{H}$), 6.73 (d, $J=2.0 \mathrm{~Hz}, 12 \mathrm{H}), 6.63(\mathrm{t}, J=2.0 \mathrm{~Hz}, 3 \mathrm{H}), 6.58(\mathrm{t}, J=2.0 \mathrm{~Hz}, 6 \mathrm{H}), 5.27$ (s, $2 \mathrm{H}), 5.21(\mathrm{~s}, 6 \mathrm{H}), 5.04(\mathrm{~s}, 12 \mathrm{H}), 5.02(\mathrm{~s}, 24 \mathrm{H}), 4.53(\mathrm{~s}, 2 \mathrm{H}),-2.75(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.2,158.6,139.4,139.3,137.6,137.4,136.7$, 135.6, 135.0, 129.4, 128.5, 128.0, 127.5, 119.7, 113.1, 106.7, 106.4, 101.7, 101.6, 70.3, 70.1; MALDI TOF $3043.4\left(\mathrm{MH}^{+}\right)$.

General procedure for synthesis of pentaporphyrins

5, 10, 15, 20-Tetrakis(4-(4-(4-(5,10,15-tris(4-(3,5-bis(benzyloxy)benzyloxy)phenyl)porphyrin-20-yl) fenoxymethyl)-benzyloxy)phenyl)porphyrin (7a). A solution of porphyrin 6a ($0.24 \mathrm{~g}, 0.13$ mmol), porphyrin 3 a ($50 \mathrm{mg}, 30 \mu \mathrm{~mol}$), and 18-crown-6 ($0.110 \mathrm{~g}, 0.42 \mathrm{mmol}$) in acetone (3 ml) was treated with potassium fluoride ($30 \mathrm{mg}, 0.46 \mathrm{mmol}$). The resulting mixture was heated for 48h at reflux under an argon atmosfere. After cooling, the mixture was added to dichloromethane $(25 \mathrm{ml})$ and the organic layer was washed with water $(3 \times 30 \mathrm{ml})$ and dried over magnesium sulfate. The solvent was removed in vacuo and the residue chromatographed over silica with a
dichloromethane/hexane 3:1 mixture. The pentaporphyrin was further purified by precipitation from a dichloromethane solution in methanol to afford pure 7a ($0.11 \mathrm{~g}, 48 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}) $\delta 8.84$ (s, $8 \mathrm{H}, \beta$-pyrrole), 8.83 (m, 32H, β-pyrrole), 8.09 (m, 40 H), 7.62 (s, 16 H), $7.45-$ 7.19 (m, 160H), 6.81(d, $J=2.0 \mathrm{~Hz}, 24 \mathrm{H}), 6.62(\mathrm{t}, J=2.0 \mathrm{~Hz}, 12 \mathrm{H}), 5.25$ (s, 8H), 5.21 (s, 8H), 5.14 (s, 8H), 5.12 (s, 16H), 5.08 (s, 16H), 5.06 (s, 32H), $-2.70(\mathrm{~s}, 10 \mathrm{H}, \mathrm{NH})$; UV/Vis ($\lambda_{\max }, \mathrm{nm}$, dichloromethane) 422.6, 518.8, 556.0, 593.8, 650.4; GPC $\mathrm{M}_{\mathrm{n}}=7513$, $\mathrm{PD}=1.04$; MALDI TOF $7496\left(\mathrm{MH}^{+}\right)$.
5, 10, 15, 20-Tetrakis(4-(4-(4-(5,10,15-tris(4-(n-hexadecyloxy)phenyl)-porphyrin-20-yl)fenoxymethyl)benzyloxy)phenyl)porphyrin (7b). Pentaporphyrin 7b was prepared from 6b and 4 in 18% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.85$ (m, $40 \mathrm{H}, \beta$-pyrrole), 8.11 (d, $J=8.6$ Hz, 40H), 7.60 (d, $J=8.1 \mathrm{~Hz}, 8 \mathrm{H}$), 7.47 (d, $J=8.1 \mathrm{~Hz}, 8 \mathrm{H}$), 7.31 (d, $J=8.6 \mathrm{~Hz}, 8 \mathrm{H}$), 7.25 (d, J $=8.6 \mathrm{~Hz}, 32 \mathrm{H}), 5.31(\mathrm{~s}, 8 \mathrm{H}), 5.18(\mathrm{~s}, 8 \mathrm{H}), 4.20(\mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, 24 \mathrm{H}), 1.96(\mathrm{~m}, 24 \mathrm{H}), 1.27(\mathrm{~m}$, $144 \mathrm{H}), 0.88(\mathrm{t}, J=7.0 \mathrm{~Hz}),-2.60(\mathrm{~s}, 10 \mathrm{H}, \mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.0,158.5$, $135.6,135.1,134.4,128.6,127.9,113.0,112.7,70.1,68.3,68.1,31.9,29.6,29.5,29.4,26.2$, 25.7, 22.7, 14.1; UV/Vis ($\lambda_{\max }$, nm, dichloromethane) 422.1, 518.6, 555.3, 593.1, 650.4; MALDI TOF $6496\left(\mathrm{MH}^{+}\right)$.
5, 10, 15, 20-Tetrakis(4-(4-(4-(5,10,15-tris(4-(3,5-(3,5-bis(benzyloxy)benzyloxy)benzyl-oxy)phenyl)porphyrin-20-yl)fenoxymethyl)benzyloxy)phenyl)porphyrin (7c). Pentaporphyrin 7c was prepared from 6c ($50 \mu \mathrm{~mol}$) and $\mathrm{Zn}[1](10 \mu \mathrm{~mol})$ in 40% yield. The reaction was carried out in dimethylformamide with potassium carbonate base ($50 \mu \mathrm{~mol}$) at $50^{\circ} \mathrm{C}$.

The NMR spectra were broadened, GPC $\mathrm{M}_{\mathrm{n}}=11305, \mathrm{PD}=1.04$; MALDI TOF $12588\left(\mathrm{MH}^{+}\right)$

Acknowledgements

We thank the Ministerie voor Wetenschapsbeleid, the FWO-Vlaanderen and the Katholieke Universiteit Leuven for their financial support. S. S. thanks the I. W. T. for a predoctoral fellowship.

References

1. Jin, R.-H.; Aida, T.; Inoue, S. J. Chem. Soc., Chem. Commun. 1993, 1260.
2. Dandliker, P.J. ; Diederich, F. ; Gross, M. ; Knobler, C. B.; Louati, A.; Sanford, E.M.; Angew. Chem. Int. Ed. Engl. 1994, 33,1739.
3. (a) Dandliker, P.J. ; Diederich, F. ; Gisselbrecht, P.-J.; Louati,A.; Gross, M. Angew. Chem. Int. Ed. Engl. 1996, 34, 2725 (b)Weyermann, P, Diederich, F. Helv. Chim. Acta 2002, 85, 599.
4. Bhyrappa, P.; Young, J. K.; Moore, J. S., Suslick, K. S. J. Am. Chem. Soc. 1996, 118, 5708.
5. Pollak, K.W.; Leon, J.W.; Fréchet, J.M.J.; Maskus, M.; Abruna, H. D. Chem. Mater. 1998, 10, 30.
6. (a) Sadamoto, R.; Tomioka, N.; Aida, T. J. Am. Chem. Soc. 1996, 118, 3978. (b) Tomoyose, Y.; Jiang, D.L. ; Jin, R.H. ; Aida, T.; Yamashita, T. ; Horic, K. Macromolecules 1996, 29, 5236.
7. (a) Jiang, D.L.; Aida, T. J. Am. Chem. Soc. 1998, 120, 10895 (b) Kimura, M.; Shiba, T.; Muto, T.; Shirai, K.; Hanabusa, K. Macromolecules 1999, 32, 8237.
8. Choi, M. S.; Aida, T.; Yamazaki, T. Yamazaki, I.; Chem. Eur. J. 2002, 8, 2668.
9. Norsten, T.; Branda, N. J. Chem. Soc., Chem. Commun. 1998, 1257.
10. Capitosti, G.J.; Cramer, S.J.; Rajesh, C.S.; Modarelli, D.A. Org. Lett. 2001, 3, 1645.
11. Vinogradov, S.A.; Wilson, D. F. Chem. Eur. J. 2000, 6, 2456.
12. Matos, M.S.; Hofkens, J. Verheijen, W.; De Schryver, F.C.; Hecht, S.; Pollak, K. W.; Fréchet, J.M.J.; Forier, B.; Dehaen, W. Macromolecules 2000, 33, 2967.
13. Review on multiporphyrin systems : Burrell, A.K.; Officer, D.L.; Pliege, P.G.; Reid, D.C.W. Chem. Rev. 2001, 101, 2751.
14. L’abbé, G.; Forier, B; Dehaen,W. J. Chem. Soc., Chem. Commun. 1996, 2143.
15. Forier, B. ; Dehaen, W. Tetrahedron 1999, 55, 9829.
16. Hawker, C.J. ; Fréchet, J.M.J. J. Am. Chem. Soc. 1990, 112, 7638.
17. Hofkens J.; Latterini L.; Vanoppen P.; Faes H.; Jeuris K.; De Feyter S.; Kerimo J.; Barbara P.F.; DeSchryver F.C.; Rowan A.E., Nolte R.J.M. J. Phys. Chem. B 1999, 101, 10588.
