A convenient stereospecific synthesis of substituted 1,2,3,4,6,6a,-7,11b,12,12a-decahydropyrazino[1',2':1,6]pyrido[3,4-b]indoles \#

Jyoti Rao, Ruchika Chakrabarty, Raja Roy, Anil Mishra, and Anil K. Saxena*
Medicinal and Process Chemistry Division,Central Drug Research Institute, Lucknow 226001, India
E-mail: anilsak@hotmail.com

Dedicated to Dr. Nitya Anand on the occasion of his $80^{\text {th }}$ birthday

(received 29 Jul 04; accepted 24 Sep 04; published on the web 05 Oct 04)

Abstract

A stereospecific reduction of the indole double bond of substituted 1,3,4,6,6a, 11b, 12,12a-octahydro- $2 H, 7 H$-pyrazino $\left[2^{\prime} 1^{\prime}: 6,1\right]$ pyrido[3,4-b]indoles using borane dimethylsulfide complex was developed affording ($6 \mathrm{a} R^{*}, 11 \mathrm{~b} S^{*}$) $-1,2,3,4,6,7,12,12 \mathrm{a}$-octahydropyrazino $\left[2^{\prime} 1 \quad\right.$ ':6,1]pyrido-[3,4-b]indoles. Product structures have been verified by NMR spectroscopy.

Keywords: Borane dimethylsulfide complex reduction, fused indoles, fused indolines

Introduction

1,2,3,4,6,7,12,12a-Octahydropyrazino[2', 1':6,1]pyrido[3,4-b]indole (1) has been used for the synthesis of various compounds having a wide range of biological activities such as CNS depressant, ${ }^{1-5}$ antihistaminic, ${ }^{6,7}$ hypotensive, ${ }^{1}$ phosphodiesterase inhibitors, ${ }^{8,9}$ neoplasm inhibitors. ${ }^{10}$ One of the major outcome of these studies has been the development of the neuroleptic drug centbutindole. ${ }^{11}$ In continuation of this program for major structural modifications we required a convenient method for the reduction of the indole double bond of $\mathbf{1 b}, \mathbf{g}-\mathbf{l}$ to give. $1,2,3,4,6,6 \mathrm{a}, 7,11 \mathrm{~b}, 12,12 \mathrm{a}$-decahydropyrazino[1',2':1,6]pyrido[3,4-b]indoles.

Results and Discussion

Chemistry

The starting material 1a was synthesized according to a literature method. ${ }^{1}$ The reduction of the indole double bond of 1a was attempted utilizing the previously reported reagents including sodium cyanoborohydride-aceticacid, sodium borohydride-trifluoroacetic acid, catalytic

[^0]hydrogenation with platinum oxide-fluoroboric acid, and borane-tetrahydrofuran. Unfortunately, all of the these methods proved to be unsuccessful. The use of sodium cyanoborohydride and trifluoroacetic acid at $0{ }^{\circ} \mathrm{C}$ yielded the desired $1,2,3,4,6,6 \mathrm{a}, 7,11 \mathrm{~b}, 12,12 \mathrm{a}$-decahydropyrazino [2', 1 ': 6,1$]$ pyrido $[3,4-b]$ indoles in poor yield.

Ultimately, a convenient method for the reduction of substituted 1,2,3,4,6,7,12,12a-octa-hydropyrazino[1',2':1,6]pyrido[3,4-b]indoles 1 was devised providing ($6 \mathrm{a} R^{*}, 11 \mathrm{~b} S^{*}$)1,2,3,4,6,6a, $7,11 \mathrm{~b}, 12,12 \mathrm{a}$-decahydropyrazino[$\left.2^{\prime}, 1^{\prime}: 6,1\right]$ pyrido[3,4-b]indoles 2 in good yields. $1,2,3,4,6,7,12,12 a-O c t a h y d r o p y r a z i n o\left[1^{\prime}, 2^{\prime}: 1,6\right]$ pyrido $[3,4-b]$ indole (1a) was treated with borane dimethylsulfide complex in TFA at $0{ }^{\circ} \mathrm{C}$ to give ($6 \mathrm{a} R^{*}, 11 \mathrm{~b} S^{*}$) $-1,2,3,4,6,6 \mathrm{a}, 7,11 \mathrm{~b}, 12,12 \mathrm{a}-$ decahydropyrazino[$\left.1^{\prime}, 2^{\prime}: 1,6\right]$ pyrido[3,4-b]indole (2a) (Scheme 1). 1a was condensed with 4toluenesulphonyl chloride in dry pyridine to give 2-[(4-methylphenyl)sulfonyl]$1,2,3,4,6,7,12,12$ a-octahydropyrazino $\left[1^{\prime}, 2^{\prime}: 1,6\right]$ pyrido[3,4-b]indole (1b). Reduction of compound 1b with borane dimethylsulfide complex in TFA at $0{ }^{\circ} \mathrm{C}$ afforded ($6 \mathrm{a} R^{*}, 11 \mathrm{~b} S^{*}$)-2-[(4-methyl-phenyl)sulfonyl]-1,2,3,4,6,6a,7,11b,12,12a-decahydropyrazino[1',2':1,6]pyrido[3,4-b]indole (2b) (Scheme 1).

Compound $\mathbf{2 b}$ has poor solubility in chloroform and was purified with difficulty by column chromatography. Therefore, $\mathbf{2 b}$ was derivatized to the corresponding 7-benzyl and 7-methyl derivatives 2c and 2d, respectively (Scheme 1). Compound 2c was subjected to 2D NMR studies in order to confirm the $6 \mathrm{a}, 11 \mathrm{~b}$-cis stereochemistry. With the view of expanding the scope of this reaction, compounds $\mathbf{2 c}$,d were detosylated with conc. sulfuric acid to 7-benzyl- and 7-methyl$1,2,3,4,6,6 a, 7,11 \mathrm{~b}, 12,12 \mathrm{a}-$ decahydropyrazino $\left[1^{\prime}, 2^{\prime}: 1,6\right]$ pyrido[3,4-b]indoles 2e,f (Scheme 1).

In order to generalize this reaction, various substituted $1,2,3,4,6,7,12,12 \mathrm{a}$-octahydropyrazino[$\left.1^{\prime}, 2^{\prime}: 1,6\right]$ pyrido[3,4-b]indoles $\mathbf{1 g}-\mathbf{l}$ were reduced with borane dimethylsulfide complex in TFA at $0^{\circ} \mathrm{C}$ to give the corresponding cis-6a,11b-dihydro derivatives $\mathbf{2 g}-\mathbf{l}$.

1a
1a $\xrightarrow{\text { (ii) }}$
(id
id

$\mathbf{1}$	R^{1}	R^{2}	R^{3}	$\mathbf{2}$
\mathbf{a}	H	H	H	\mathbf{a}
\mathbf{b}	H	H	Tos	\mathbf{b}
	Bn	H	Tos	\mathbf{c}
	Me	H	Tos	\mathbf{d}
	Bn	H	H	\mathbf{e}
	Me	H	H	\mathbf{f}
\mathbf{g}	H	H	Bn	\mathbf{g}
\mathbf{h}	Me	H	Bn	\mathbf{h}
\mathbf{i}	H	Ph	H	
\mathbf{j}	H	H	$4-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}$	\mathbf{i}
\mathbf{k}	H	H	$\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NEt}_{2}$	\mathbf{k}
\mathbf{l}	H	H	Me	\mathbf{l}

Scheme 1. Reagents and conditions: (i) $\mathrm{TosCl}, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}, 3{ }^{\circ} \mathrm{C}, 15 \mathrm{~min}$; (ii) $4-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}, \mathrm{Na}_{2} \mathrm{CO}_{3}$, NaI , DMF, $75{ }^{\circ} \mathrm{C}, 12 \mathrm{~h}$; (iii) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~S} \cdot \mathrm{BH}_{3}$, TFA, $0 \rightarrow 30^{\circ} \mathrm{C}, 3 \mathrm{~h}$; (iv) $\mathrm{BnCl}, \mathrm{Na}_{2} \mathrm{CO}_{3}$, NaI, DMF, $70{ }^{\circ} \mathrm{C}, 48 \mathrm{~h}$; (v) conc. $\mathrm{H}_{2} \mathrm{SO}_{4}, 35^{\circ} \mathrm{C}, 72 \mathrm{~h}$; (vi). $\mathrm{HCHO}, \mathrm{H}_{2}-\mathrm{Pd} / \mathrm{C}, \mathrm{EtOH}, 30^{\circ} \mathrm{C}, 50 \mathrm{psi}, 72 \mathrm{~h}$.

Figure 1. COSY Spectrum of 2.

NMR spectroscopy

The $6 \mathrm{a}, 11 \mathrm{~b}$-cis stereochemistry of the substituted $1,2,3,4,6,6 \mathrm{a}, 7,11 \mathrm{~b}, 12,12 \mathrm{a}$-decahydropyrazino[$\left.2^{\prime}, 1^{\prime}: 6,1\right]$ pyrido[3,4-b]indoles 2 has been established on the basis of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra. The COSY spectrum of 2c is shown in Figure 1. The assignment of one of the proton signals was confirmed by the long range COSY spectrum: The signal at $\delta 7.03$ exhibits a cross peak with the signal at $\delta 2.98$ due to an allylic coupling between $\mathrm{H}-11$ and $\mathrm{H}-11 \mathrm{~b}$. With the unambiguous assignment of $\mathrm{H}-11 \mathrm{~b}$, tracing of the cross peaks in the COSY spectrum was then carried out as an unbroken sequence from $\mathrm{H}-11 \mathrm{~b}$ to $\mathrm{H}-1$ and $\mathrm{H}-11 \mathrm{~b}$ to $\mathrm{H}-6$, respectively. The most downfield signal in the aliphatic region at $\delta 3.63$ is attributed to $\mathrm{H}-3$ due to the deshielding of the sulfonyl group. The correlation of one of the geminal $\mathrm{H}-3$ to the other $\mathrm{H}-3$ and with both $\mathrm{H}-4$ was drawn as outlined in the Figure 1. ${ }^{13} \mathrm{C}$ NMR and various DEPT experiments revealed that 2c has three aliphatic methines, thirteen aromatic methines, six methylenes, one methyl and five quarternary carbons. Assignment of the aliphatic methine and methylene carbons is based on selective low power proton decoupled ${ }^{13} \mathrm{C}$ NMR experiments (Table 1). For example the selective decoupling of the signals at $\delta 3.38$ (6a), 2.98 (11b) and 2.09 (12a) showed signal enhancement in the ${ }^{13} \mathrm{C}$ NMR spectra at $\delta 61.56,37.86$ and 57.25 , respectively.

Table 1. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data ($400 / 100 \mathrm{MHz}$) of $\mathbf{2 c}\left(\mathrm{R}^{1}=\mathrm{Bn}, \mathrm{R}^{2}=\mathrm{H}, \mathrm{R}^{3}=\mathrm{Tos}\right.$; in $\left.\mathrm{CDCl}_{3}\right)$

Position	$\delta_{\text {C }}$	$\delta_{\text {H }}$	$J[\mathrm{~Hz}]$
1	53.98	3.49 eq	$J_{1(\mathrm{eqq}) 12 \mathrm{a}(\mathrm{ax})}=2.35 ; J_{\mathrm{gem}}=12.52$
		1.96 ax	$J_{1(\mathrm{ax}), 12 \mathrm{a}(\mathrm{ax})}=10.96 ; J_{\text {gem }}=12.52$
3	45.79	3.63 eq	$J_{3(\mathrm{eq}), 4(\mathrm{ax})}=2.35 ; J_{3(\mathrm{eq}), 4(\mathrm{eq})}=2.35 ; J_{\mathrm{gem}}=11.74$
		2.45 ax	$J_{3(\mathrm{ax}), 4(\mathrm{eq})}=2.35 ; J_{3(\mathrm{ax}), 4(\mathrm{ax})}=10.96 ; J_{\text {gem }}=11.74$
4	50.86	2.72 eq	$J_{4(\mathrm{eq}), 3(\mathrm{eq}),}=2.35 ; J_{4(\mathrm{eq}), 3(\mathrm{ax})}=2.35 ; J_{\mathrm{gem}}=11.74$
		2.31 ax	$J_{4(\mathrm{ax}), 3(\mathrm{eq})}=2.35 ; J_{4(\mathrm{ax}), 3(\mathrm{ax})}=10.96 ; \mathrm{J}_{\text {gem }}=11.74$
6	34.20	3.13 eq	$J_{6(\text { eq) , 6a(eq) }}=0.0, J_{\text {gem }}=13.0$
		2.21 ax	$J_{6(\text { ax }), 6 \mathrm{araq})}=3.13, J_{\mathrm{gem}}=13.0$
6a	61.56	3.38 eq	$J_{6 \mathrm{a}(\mathrm{eq}), 6(\mathrm{ax})}=3.13, J_{6 \mathrm{a}(\mathrm{eq}), 11 \mathrm{~b}(\mathrm{ax})}=6.26 ; J_{6 \mathrm{a}(\mathrm{eq}), 6(\mathrm{eq})}=0.0$
7 a	150.93	-	-
8	118.11	6.62	$J_{8,9}=7.50$
9	123.10	7.0-7.1	overlapped
10	127.04	6.68	$J_{9,10}=7.20, J_{10,11}=7.20$
11	127.65	7.0-7.1	overlapped
11a	143.69	-	-
11b	37.86	2.98 ax	$\begin{aligned} & J_{6 \mathrm{a}(\mathrm{eq}), 11 \mathrm{~b}(\mathrm{ax})}=6.26 ; J_{11 \mathrm{~b}(\mathrm{ax}), 12(\mathrm{eq})}=6.26 ; \\ & J_{1 \mathrm{bb(ax)}, 12(\mathrm{ax})}=10.96 \end{aligned}$
12	53.08	$\begin{aligned} & 1.73 \mathrm{eq} \\ & 1.07 \mathrm{ax} \end{aligned}$	$\begin{aligned} & J_{12(\mathrm{eq}), 12 \mathrm{a}(\mathrm{ax})}=2.35 ; J_{12(\mathrm{eq}), 11 \mathrm{~b}(\mathrm{ax})}=6.26 ; J_{\mathrm{gem}}=12.52 \\ & J_{12(\mathrm{ax}), 1 \mathrm{~b}(\mathrm{ax})}=10.96 ; J_{12(\mathrm{ax}), 12 \mathrm{a}(\mathrm{ax})}=10.96 ; J_{\mathrm{gem}}=12.52 \end{aligned}$
12a	57.25	2.09 ax	$\begin{aligned} & J_{12 \mathrm{a}(\mathrm{ax}), 12(\mathrm{eq})}=2.35 ; J_{12 \mathrm{a}(\mathrm{ax}), 12(\mathrm{ax})}=10.96 ; \\ & J_{12 \mathrm{a}(\mathrm{ax}), 1(\mathrm{ax})}=10.96 ; J_{12 \mathrm{a}(\mathrm{ax}), 1(\mathrm{eq})}=2.35 \end{aligned}$
$\mathrm{Bn}: \mathrm{CH}_{2}$	49.59	$\begin{aligned} & 4.59 \mathrm{H}_{\mathrm{A}} \\ & 4.18 \mathrm{H}_{\mathrm{B}} \end{aligned}$	$J_{\text {gem }}=16.43$
CH_{3}	21.46	4.15	s
Tos: 3,5	128.0	7.26	AA^{\prime}
Tos: 2,6	129.0	7.56	XX'
Tos: 1	139.0	-	-
Tos: 4	131.90	-	-
Ph: 2,6	129.0	7.40	7
Ph: 3,5	127.2	7.40	\}s
Ph: 4	127.0	7.40	J

The nOe difference spectrum of 2c provided information about the relative orientation of H 6a and H-11b: Irradiation of the signal at $\delta 3.38$ (6a) exhibited nOe with the signal at δ 2.98 (11b) and 2.21 ((6ax). The nOe difference spectra and the coupling constants of 6.26 Hz $\left(\mathrm{J}_{6 \mathrm{a}(\mathrm{eq}), 11 \mathrm{~b}(\mathrm{ax})}\right)$ indicate the cis relationship between $\mathrm{H}-6 \mathrm{a}$ and $\mathrm{H}-11 \mathrm{~b}$. The signal at $\delta 2.98$ (11b) showed nOe's with the signals at $\delta 3.38$ (6a), 2.09 (12a) and 1.07 (12 eq), thus confirming that
$\mathrm{H}-6 \mathrm{a}, \mathrm{H}-11 \mathrm{~b}, \mathrm{H}-12$ and $\mathrm{H}-12 \mathrm{a}$ are oriented in the same plane and the relative stereochemistry of $\mathrm{H}-12 \mathrm{a}$ is cis with respect to $\mathrm{H}-6 \mathrm{a}$ and $\mathrm{H}-11 \mathrm{~b}$. In compound 1 i position 6 is another chiral center in addition to 12 a , with relative cis stereochemistry of $\mathrm{H}-6 \mathrm{a}$ and $\mathrm{H}-12 \mathrm{a} .{ }^{17}$ Since the reaction conditions should not affect the stereochemistry at position 6 of the starting molecule $\mathbf{1 i}$, it is assumed that the reduction product 2 i has a cis relationship between positions $6,6 \mathrm{a}, 11 \mathrm{~b}$ and 12 a .

Conclusions

Among several methods available for the reduction of indole to indoline the use of borane dimethylsulfide complex in trifluoroacetic acid was found suitable for the stereospecific reduction of the indole double bond in substituted-1,2,3,4,6,7,12,12a-octahydropyrazino-[1',2':1,6]pyrido[3,4-b]indoles $\mathbf{1}$ to the corresponding dihydro derivatives 2 and may be employed for the synthesis of other pharmacologically useful agents.

Experimental Section

General Procedures. Melting points were determined on an electrically heated apparatus (Tempo and Toshniwal). The IR spectra were taken on a Perkin- Elmer 157 spectrometer. The ${ }^{1} \mathrm{H}$ NMR were recorded on Varian R-32 (90 MHz) and EL-360 (60 MHz) instrument, using tetramethylsilane as an internal standard and the chemical shift values are expressed in δ scale. The low power selective decoupling nOe and 2D experiments were carried out on Bruker WM$400(400 \mathrm{MHz})$ spectrometer. Mass spectra (EI-MS) were recorded on Jeol-JMS-01SG ${ }_{2}$ at 70 eV . The analytical samples had spectral data compatible with its assigned structure and moved as a single spot on TLC. Elemental analysis ($\mathrm{C}, \mathrm{H}, \mathrm{N}$) of the compounds were found to be satisfactory.
1,2,3,4,6,7,12,12a-Octahydropyrazino $\left[1^{\prime}, 2^{\prime}: 1,6\right]$ pyrido[3,4-b]indole ${ }^{1}$ (1a), the 2-benzyl derivative $\mathbf{1 g},{ }^{18}$ the 2-benzyl-7-methyl derivative $\mathbf{1 h},{ }^{18}$ the 6 -phenyl derivative $\mathbf{1 i},{ }^{17}$ the 2,2 -dimethylaminopropyl derivative $\mathbf{1 k},{ }^{1}$ and the 2 -methyl derivative $\mathbf{1 l}^{1}$ were prepared by reported procedures.

2-[(4-Methylphenyl)sulfonyl]-1,2,3,4,6,7,12,12a-octahydropyrazino[1',2':1,6]pyrido[3,4-b]-

indole (1b). A solution of $1 \mathbf{1 a}(0.70 \mathrm{~g}, 3.0 \mathrm{mmol})$ and 4-toluenesulphonyl chloride ($0.70 \mathrm{~g}, 3.6$ mmol) in dry pyridine (8 mL) was stirred at $30^{\circ} \mathrm{C}$ for 15 min . The separated solid was filtered off, washed with water ($6 \times 30 \mathrm{~mL}$) and crystallized from $\mathrm{CHCl}_{3} / \mathrm{DMSO}$ to give light yellow crystals $1 \mathrm{~b}(0.46 \mathrm{~g}, 39 \%)$; mp $206{ }^{\circ} \mathrm{C}$. IR (KBr): $\widetilde{v} 3200,2900,2400,1620,1460,1420,1340$, 1280, 1230, 1180, 1140, 1100, 1070, 960, 920, 860, 830, 760, 720, $670 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (60 MHz , $\left.\mathrm{CDCl}_{3} / \mathrm{DMSO}_{6}\right): \delta 2.35\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.35-4.9\left(\mathrm{~m}, 11 \mathrm{H}, \mathrm{H}_{\text {aliph }}\right), 6.8\left(\mathrm{AA}^{\prime}, 2 \mathrm{H}, 3,5-\mathrm{H}_{\text {Tos }}\right), 7.2-$ $7.6\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 10.0\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}\right.$, exchangeable with $\left.\mathrm{D}_{2} \mathrm{O}\right)$. EI-MS: m/z (\%) $381(26)\left[\mathrm{M}^{+}\right]$.

Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$ (381): C, 66.14; H, 6.04; N, 11.02. Found: C, 66.28; H, 6.20; N , 11.20 .

2-(4-Nitrophenyl)-1,2,3,4,6,7,12,12a-octahydropyrazino[1',2':1,6]pyrido[3,4-b]indole (1j). A solution of $1 \mathbf{a}(0.227 \mathrm{~g}, 1.0 \mathrm{mmol})$, 4 -chloronitrobenzene $(0.165 \mathrm{mg}, 1.05 \mathrm{mmol})$, baked $\mathrm{Na}_{2} \mathrm{CO}_{3}$ ($0.053 \mathrm{~g}, 0.5 \mathrm{mmol}$), and $\mathrm{NaI}(7 \mathrm{mg}, 0.05 \mathrm{mmol})$ in dry DMF (5 mL) was stirred at $75^{\circ} \mathrm{C}$ for 12 h . The separated solid was filtered off, washed with water, dried, and purified by column chromatography using chloroform as eluent to yield the yellow solid $\mathbf{1 j}(0.25 \mathrm{~g}, 72 \%)$; mp $230^{\circ} \mathrm{C}$. IR (KBr): $\widetilde{v} 3500,2800,1600,1500,1340,1270,1200,1120,1100,1209,860,760 \mathrm{~cm}^{-}$ ${ }^{1} .{ }^{1} \mathrm{H}$ NMR $\left(60 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.1-3.8\left(\mathrm{~m}, 11 \mathrm{H}, \mathrm{H}_{\text {aliph }}\right), \delta 8.0\left(\mathrm{AA}^{\prime}, 2 \mathrm{H}, 3,5-\mathrm{H}_{\mathrm{C} 6 \mathrm{H} 4}\right), 6.7-7.5(\mathrm{~m}$, $6 \mathrm{H}, \mathrm{H}_{\text {arom }}$). EI-MS: m/z (\%): 348 (24) [M $\left.{ }^{+}\right]$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{2}$ (348): C, 68.97; H, 5.75; N, 16.09. Found: C, 68.84; H, 5.84; N, 15.90.
(6aR*,11bS*)-1,2,3,4,6,6a,7,11b,12,12a-Decahydropyrazino[1',2':1,6]pyrido[3,4-b]indole
(2a). Typical procedure. A solution of borane dimethylsulfide complex ($10 \mathrm{M}, 0.4 \mathrm{~mL}$) was added dropwise to a stirred solution of $1 \mathbf{a}(0.454 \mathrm{~g}, 2.0 \mathrm{mmol})$ in trifluroacetic acid $(6 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ in an atmosphere of nitrogen for 10 min . The reaction mixture was stirred at $30{ }^{\circ} \mathrm{C}$ for another 3 h , and was then diluted with water $(0.4 \mathrm{~mL})$, concentrated and basified with ammonia solution. The precipitated product was filtered off and crystallized from chloroform to afford the off-white solid 2a ($0.32 \mathrm{~g}, 70.5 \%$); mp $220^{\circ} \mathrm{C}$. IR (KBr): $\widetilde{v} 3150,1500,1440,1360,1280$, 1140, 1020, 960, 820, $740 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($60 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.0(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{H}-11 \mathrm{~b}$), 3.76 (distorted $\mathrm{t}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{a}), 2.2-4.9\left(\mathrm{~m}, 11 \mathrm{H}, \mathrm{H}_{\text {aliph }}\right), 4.5\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}\right.$, exchangeable with $\left.\mathrm{D}_{2} \mathrm{O}\right), 6.9$ (dd, 2H, H-8, H-10), 7.32 (dd, 2H, H-9, H-11). EI-MS: m/z (\%): 229 (26.7) [M^{+}. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~N}_{3}$ (229): C, 73.36; H, 8.30; N, 18.34. Found: C, 74.42; H, 8.52; N, 18.02.
(6aR*,11bS*)-2-[(4-Methylphenyl)sulfonyl]-1,2,3,4,6,6a,7,11b,12,12a-decahydropyrazino-[1',2':1,6]pyrido[3,4-b]indole (2b). A solution of borane dimethylsulfide complex (10 M, $0.2 \mathrm{~mL})$ was added dropwise to a stirred solution of $\mathbf{1 b}(0.382 \mathrm{~g}, 1.0 \mathrm{mmol})$ in trifluroacetic acid $(3 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ in an atmosphere of nitrogen for 10 min . The reaction mixture was stirred for another 3 h at $30{ }^{\circ} \mathrm{C}$, diluted with water (0.2 mL), concentrated and basified with ammonia solution. The precipitated product was filtered off and crystallized from ethanol/water to give yellow crystals 2b ($0.19 \mathrm{~g}, 49 \%$); mp $118^{\circ} \mathrm{C}$. IR (KBr): $\widetilde{v} 3400,2900,1620,1470,1360,1300$, $1260,1180,1120,1020,960,840,770,750,680 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($60 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.3(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}), 3.0 (distorted $\mathrm{t}, 1 \mathrm{H}, \mathrm{H}-11 \mathrm{~b}$), 3.72 (bs, $1 \mathrm{H}, \mathrm{H}-6 \mathrm{a}$), $1.5-3.8$ (m, $11 \mathrm{H}, \mathrm{H}_{\text {aliph }}$), 6.6 (dd, $2 \mathrm{H}, \mathrm{H}-8$, $\mathrm{H}-10), 7.5\left(\mathrm{~d}, 2 \mathrm{H}, 3,5-\mathrm{H}_{\text {Tos }}\right.$), 6.8-7.3 (m, $4 \mathrm{H}, \mathrm{H}_{\text {arom }}$). EI-MS: m/z (\%): 383 (8.12) [$\left.\mathrm{M}^{+}\right]$. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$ (383): C, 65.80; H, 6.53; N, 10.97. Found: C, 66.02; H, 6.82; N, 10.84. ($6 a R^{*}, \mathbf{1 1 b S *}$)-7-Benzyl-2-[(4-methylphenyl)sulfonyl]-1,2,3,4,6,6a,7,11b,12,12a-decahydro-pyrazino[1',2':1,6]pyrido[3,4-b]indole (2c). A solution of benzyl chloride ($0.139 \mathrm{~g}, 1.1 \mathrm{mmol}$) in dry DMF (1 mL) was added to a stirred solution of $\mathbf{2 b}(0.383 \mathrm{~g}, 1.0 \mathrm{mmol})$, baked $\mathrm{Na}_{2} \mathrm{CO}_{3}$ $(0.53 \mathrm{~g}, 0.5 \mathrm{mmol})$ and $\mathrm{NaI}(8 \mathrm{mg}, 0.05 \mathrm{mmol})$ in dry DMF $(1.5 \mathrm{~mL})$. Stirring was continued at $70^{\circ} \mathrm{C}$ for 48 h . The reaction mixture was cooled, poured into water (15 mL), and the separated solid was filtered off and purified by column chromatography using silica gel and chloroform to give the off-white solid 2c ($0.36 \mathrm{~g}, 76 \%$); mp $82^{\circ} \mathrm{C}$. IR (KBr): $\widetilde{v} 3500,2900-2800,1620,1600$,

1560, 1360, 1300, 1160, 1100, 1040, 1020, 940, 900, 820, 770, 750, 700, $680 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR data in Table 1. EI-MS: $m / z(\%)$: 473 (22.8) [$\left.\mathrm{M}^{+}\right]$. Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$ (473): C, 71.04; H, 6.55; N, 8.88. Found: C, 71.22; H, 6.68; N, 9.10.
(6aR*,11bS*)-7-Methyl-2-[(4-methylphenyl)sulfonyl]-1,2,3,4,6,6a,7,11b,12,12a-decahydropyrazino[1',2':1,6] pyrido[3,4-b]indole (2d). A mixture of $\mathbf{2 b}$ ($0.5 \mathrm{~g}, 1.3 \mathrm{mmol}$), formaldehyde solution $(37 \%, 2 \mathrm{~mL})$ and $\mathrm{Pd} / \mathrm{C}(0.2 \mathrm{~g})$ in ethanol $(25 \mathrm{~mL})$ was shaken in a Parr apparatus in hydrogen atmosphere at $30^{\circ} \mathrm{C}$ and 50 psi for 72 h . The filtrate of the reaction mixture was concentrated to get a solid residue which was recrystallized from ethanol to yield the yellow solid 2d ($0.30 \mathrm{~g}, 58 \%$); mp $144{ }^{\circ} \mathrm{C}$. IR (KBr): $\widetilde{v} 3400,2800,1660,1600,1480,1350,1180$, $1120,1100,1000,940,820,760,740,660 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($60 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.3\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $2.62\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 1.0-4.3\left(\mathrm{~m}, 13 \mathrm{H}, \mathrm{H}_{\text {aliph }}\right), 7.5\left(\mathrm{AA}^{\prime}, 2 \mathrm{H}, 3,5-\mathrm{H}_{\mathrm{Tos}}\right), 6.4-7.3\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H}_{\text {arom }}\right)$. EIMS: m/z (\%): 397 (49.3) [$\left.\mathrm{M}^{+}\right]$. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$ (397): C, 66.50; H, 6.80; N, 10.58. Found: C, 66.82; H, 6.68; N, 10.62.
(6aR*,11bS*)-7-Benzyl-1,2,3,4,6,6a,7,11b,12,12a-decahydropyrazino[1',2':1,6]pyrido[3,4-b]indole (2e). A solution of $2 \mathrm{c}(0.5 \mathrm{~g}, 1.2 \mathrm{mmol})$ in conc. sulfuric acid $(1.0 \mathrm{~mL})$ was stirred at $35^{\circ} \mathrm{C}$ for 72 h . The reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$ in an ice bath and basified with ammonia solution. The separated solid was filtered and recrystallized from petroleum ether (40$60^{\circ} \mathrm{C}$ fraction) to give the pale yellow solid $2 \mathrm{e}(0.25 \mathrm{~g}, 74 \%)$; mp $112{ }^{\circ} \mathrm{C}$. IR (KBr): $\widetilde{v} 3300$, $2800,1600,1500,1460,1300,1100,1020,940,840,760,700 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(60 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 4.0\left(\mathrm{~d},{ }^{2} J=15 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{A}(\mathrm{Bn})}\right), 4.48\left(\mathrm{~d},{ }^{2} J=15 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{B}(\mathrm{Bn})}\right), 1.8-3.7\left(\mathrm{~m}, 13 \mathrm{H}, \mathrm{H}_{\text {aliph }}\right), 6.3-$ 7.4 (m, 9H, $\mathrm{H}_{\text {arom }}$). EI-MS: $\mathrm{m} / \mathrm{z}(\%): 319$ (21.7) [$\left.\mathrm{M}^{+}\right]$. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{3}$ (397): C, 79.00; H, 7.84; N, 13.17. Found: C, 80.30; H, 7.98; N, 13.02.
(6aR*,11bS*)-7-Methyl-1,2,3,4,6,6a,7,11b,12,12a-decahydropyrazino[1',2':1,6]pyrido[3,4b]indole (2f). In the same manner as described above for $\mathbf{2 e}$, compound $\mathbf{2 d}(0.5 \mathrm{~g}, 1.26 \mathrm{mmol})$ and conc. sulfuric acid $(1.0 \mathrm{~mL})$ afforded the white solid $2 f(0.17 \mathrm{~g}, 56 \%)$; $\mathrm{mp} 225^{\circ} \mathrm{C}$. IR (KBr): $\widetilde{v} 3300,3200,1400,1120,1040,950,840,760,700 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($60 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.63(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 1.0-3.7\left(\mathrm{~m}, 13 \mathrm{H}, \mathrm{H}_{\text {aliph }}\right), 6.5-7.1\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{\text {arom }}\right)$. EI-MS: m/z (\%): $243(23)\left[\mathrm{M}^{+}\right]$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{~N}_{3}$ (243): C, 74.07 ; H, 8.64; N, 17.28. Found: C, 73.81; H, 8.32; N, 17.02.
($\mathbf{6 a} R^{*}, 11 \mathrm{~b} S^{*}$)-1,2,3,4,6,6a,7,11b,12,12a-Decahydropyrazino[1',2':1,6]pyrido[3,4-b]indoles
($2 \mathbf{g}-\mathbf{l}$). The Typical Procedure as described above for the preparation of $\mathbf{2 a}$ was utilized to convert compounds $\mathbf{1 g} \mathbf{- l}$ into $\mathbf{2 g} \mathbf{- l}$. The products were obtained either as precipitated solids and were filtered off, or the reaction mixture was extracted with $\mathrm{CHCl}_{3}(3 \times 20 \mathrm{~mL})$, the extract was dried and concentrated, and the residue was recrystallized or purified by chromatography using silica gel as adsorbent and a mixture of chloroform and hexane as eluent.
($\mathbf{6 a} R^{*}, 11 \mathrm{~b} S^{*}$)-2-Benzyl-1,2,3,4,6,6a,7,11b,12,12a-decahydropyrazino[1',2':1,6]pyrido[3,4-b]indole (2 g). $\mathbf{1 g}(0.5 \mathrm{~g}, 1.6 \mathrm{mmol})$ was converted into the pale yellow solid $\mathbf{2 g}(0.42 \mathrm{~g}, 84 \%) ; \mathrm{mp}$ $152{ }^{\circ} \mathrm{C}$. IR (KBr): $\widetilde{v} 3300,3000,2800,1620,1500,1360,1320,1300,1260,1200,1160,1120$, $1060,1040,1020,940,920,870,740,700 .{ }^{1} \mathrm{H}$ NMR ($60 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.0$ (bs, $1 \mathrm{H}, \mathrm{H}-11 \mathrm{~b}$), $3.72(\mathrm{bs}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{a}), 3.4\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{Bn}}\right), 1.9-3.9\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{H}_{\text {aliph }}\right), 6.6\left(\mathrm{dd}, 2 \mathrm{H}, \mathrm{H}_{\text {arom }}, \mathrm{H}-9, \mathrm{H}-11\right), 7.2$
(s, $5 \mathrm{H}, \mathrm{H}_{\mathrm{Ph}}$). EI-MS: $m / z(\%): 319$ (38) [$\left.\mathrm{M}^{+}\right]$. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{3}$ (319): C, 79.00; H, 7.84; N, 13.17. Found: C, 79.28; H, 7.90; N, 13.02
(6aR*,11bS*)-2-Benzyl-7-methyl-1,2,3,4,6,6a,7,11b,12,12a-decahydropyrazino[1',2':1,6]-pyrido[3,4-b]indole ($\mathbf{2 h}$). $\mathbf{1 h}(0.5 \mathrm{~g}, 1.5 \mathrm{mmol})$ was converted into the off-white solid $\mathbf{2 h}(0.30 \mathrm{~g}$, 60%); mp $146{ }^{\circ} \mathrm{C}$. IR (KBr): \widetilde{v} IR (KBr): $\widetilde{v} 3300,3000,2800,1620,1480,1460,1420,1350$, 1320, 1280, 1240, 1200, 1180, 1150, 1120, 1080, 1020, 1000, 980,950, 930, 880, 840, 780, 720 $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($60 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.4\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{Bn}}\right), 3.74(\mathrm{bs}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{a}), 1.0-3.2(\mathrm{~m}, 15 \mathrm{H}$, $\mathrm{H}_{\text {aliph }}$), 6.62 (dd, 2H, $\mathrm{H}_{\text {arom }}, \mathrm{H}-8, \mathrm{H}-10$), 7.2 ($\mathrm{s}, 5 \mathrm{H}, \mathrm{H}_{\mathrm{Ph}}$). EI-MS: m/z (\%): 333 (25) [$\left.\mathrm{M}^{+}\right]$. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~N}_{3}$ (333): C, 79.28; H, 8.11; N, 12.61. Found: C, 79.10; H, 7.98; N, 12.52.
(6R*,6aR*,11bS*)-6-Phenyl-1,2,3,4,6,6a,7,11b,12,12a-decahydropyrazino[1',2':1,6]pyrido-[3,4-b]indole (2i). $\left(6 R^{*}, 12 \mathrm{a}^{*}\right)(2 \mathrm{i})-\mathbf{1 i}(0.5 \mathrm{~g}, 1.7 \mathrm{mmol})$ was converted into the yellow oil $\mathbf{2 i}$ ($0.32 \mathrm{~g}, 64 \%$), IR (KBr): $\widetilde{v} 3400,1700,1630,1480,1350,1220,1150,1040,860,780,740$, $700 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($60 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.1$ (distorted t, $1 \mathrm{H}, \mathrm{H}-11 \mathrm{~b}$), 4.0 (br s, $1 \mathrm{H}, \mathrm{H}-6 \mathrm{a}$), $1.05-$ $3.7\left(\mathrm{~m}, 11 \mathrm{H}, \mathrm{H}_{\text {aliph }}\right), 7.5\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{H}_{\mathrm{Ph}}\right), 6.6-7.0\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{\text {arom }}\right)$. EI-MS: m/z (\%): $305(28)\left[\mathrm{M}^{+}\right]$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{3}$ (305): C, 78.95; H, 7.24; N, 13.82. Found: C, 79.02; H, 7.32; N, 13.90. (6aR*,11bS*)-2-(4-Nitrophenyl)-1,2,3,4,6,6a,7,11b,12,12a-decahydropyrazino[1',2':1,6]-pyrido[3,4-b]indole ($\mathbf{2 j} \mathbf{~}) \mathbf{1 j} \mathbf{~ (~} 0.5 \mathrm{~g}, 1.4 \mathrm{mmol}$) was converted into the yellow solid $\mathbf{2 j}(0.34 \mathrm{~g}$, 68%); mp 148-150 ${ }^{\circ} \mathrm{C}$ (dec.). IR (KBr): $\widetilde{v} 3500,1620,150,1340,1260,1220,1140,1040,950$, $850,780 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($60 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.04$ (distorted $\mathrm{t}, 1 \mathrm{H}, \mathrm{H}-11 \mathrm{~b}$), $3.8(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{a}$), $1.2-3.7\left(\mathrm{~m}, 14 \mathrm{H}, \mathrm{H}_{\text {aliph }}\right), 7.95\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}-3,5_{\mathrm{C} 6 \mathrm{H} 4}\right), 6.42-7.95\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H}_{\text {arom }}\right)$. EI-MS: m/z (\%): 350 (52.7) $\left[\mathrm{M}^{+}\right]$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{2}(350)$: C, 68.57 ; H, $6.28 ; \mathrm{N}, 16.00$. Found: C, $68.62 ; \mathrm{H}$, 6.38; N, 16.28.
N, N-Diethyl- N-[2-[(6aR*,11bS*)-3,4,6,6a,7,11b,12,12a-octahydropyrazino[1',2':1,6]pyrido [3,4-b]indol-2(1H)-yl]propyl]amine ($\mathbf{2 k}$). 1k ($0.5 \mathrm{~g}, 1.4 \mathrm{mmol}$) was converted into the light brown oil $2 k$ ($0.31 \mathrm{~g}, 62 \%$). IR (KBr): $\widetilde{v} 3400,3000,2800,1680,1630,1480,1380,1330,1300$, 1280, 1230, 1170, 1070, 1040, 960, 770, $670 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($60 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.0(\mathrm{t}, 6 \mathrm{H}$, CH_{3}), 3.02 (distorted t, $1 \mathrm{H}, \mathrm{H}-11 \mathrm{~b}$), 3.75 (br s, $1 \mathrm{H}, \mathrm{H}-6 \mathrm{a}$), $1.2-2.9\left(\mathrm{~m}, 22 \mathrm{H}, \mathrm{H}_{\text {aliph }}\right), 6.6$ (dd, 2 H , H-8, H-10), 7.0 (dd, 2H, H-9, H-11). EI-MS: m/z (\%): 342 (35) [M ${ }^{+}$. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{~N}_{4}$ (342): C, 73.68; H, 9.94; N, 16.37. Found: C, 73.56; H, 9.82; N, 16.48.
(6aR*,11bS*)-2-Methyl-1,2,3,4,6,6a,7,11b,12,12a-decahydropyrazino[1',2':1,6]pyrido[3,4blindole (2l). $1 \mathbf{1 l}(0.5 \mathrm{~g}, 2.1 \mathrm{mmol})$ was converted into the yellowish oil $2 \mathrm{l}(0.35 \mathrm{~g}, 70 \%)$. IR (KBr): $\widetilde{v} 3400,2900,1740,8-1600,1500,1240,1170,1100,1040,940,840,780 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($60 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.95\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}^{2} \mathrm{CH}_{3}\right.$), 3.0 (distorted t, $1 \mathrm{H}, \mathrm{H}-11 \mathrm{~b}$), 3.75 (br s, $1 \mathrm{H}, \mathrm{H}-$ 6a), 2.8-3.6 (m, 12H, Haliph $)$, 6.6 (dd, 2H, H-8, H-10), 7.9 (dd, 2H, H-9, H-11). EI-MS: m/z (\%): 243 (39) [M^{+}. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{~N}_{3}$ (243): C, 74.07; H, 8.64; N, 17.28. Found: C, 73.92; H, 8.78; N, 17.12.

Acknowledgments

The authors are thankful to the RSIC, Lucknow for the spectroscopic data and Mr. Z. Ali for excellent technical assistance. R.C. is thankful to CSIR, New Delhi for a Research fellowship.

References

1. Saxena, A. K.; (late) Jain, P. C.; Anand, N.; Dua, P. R. J. Med. Chem. 1973, 16, 560.
2. Dhaon, M. K.; Kumar, N.; Agarwal, S. K.; Saxena, A. K.; (late) Jain, P. C.; Anand, N. Indian J. Chem. 1980, 19b, 882.
3. Kumar, N.; Dhaon, M. K.; Agarwal, S. K.; Saxena, A. K.; (late) Jain, P. C.; Anand, N. Indian J. Chem. 1980, 19b, 1087.
4. Kumar, N.; Dhaon, M. K.; Agarwal, S. K.; Saxena, A. K.; (late) Jain, P. C.; Anand, N. Eur. J. Med. Chem. 1982, 17, 312.
5. Saxena, A. K.; Jain, P. C.; Dua, P. R.; Srimal, R. C.; Dhawan, B. N.; Anand, N.; Singh, G. B. U.S. Patent 3,917,599, 1975; Chem. Abstr. 1976, 84, 164842.
6. Saxena, A. K.; Dhaon, M. K.; Ram, S.; Saxena, M.; (late) Jain, P. C.; Patnaik, G. K.; Anand, N. Indian J. Chem. 1983, 22b, 1224
7. Saxena, M.; Agarwal, S. K.; Patnaik, G. K.; Saxena, A. K. J. Med. Chem. 1990, 33, 2970.
8. Daugan, A.; Grondin, P.; Ruault, C.; Le Monnier de Gouville, A.-C.; Coste, H.; Kirilovsky, J.; Hyafil, F.; Labaudiniere, R. J. Med. Chem. 2003, 46, 4525. Daugan, A.; Grondin, P.; Ruault, C.; Le Monnier de Gouville, A.-C.; Coste, H.; Linget, J. M.; Kirilovsky, J.; Hyafil, F.; Labaudiniere, R. J. Med. Chem. 2003, 46, 4533.
9. Jiang, W.; Alford, V. C.; Qiu, Y.; Bhattacharjee, S.; T. Matthew, J.; Haynes-Johnson, D.; Kraft, P. J.; Lundeen, S. G.; Sui, Z. Bioorg. Med. Chem. 2004, 12, 1505.
10. Pamukcu, R.; Laary, A, P.; U.S. Patent 6,046,199, 2000; Chem. Abstr. 2000, 132, 251162.
11. Dua, P. R.; Gupta, P. P.; Raghubir, R.; Singh, H. K.; Saxena, A. K.; Anand, N.; Dhawan, B. N. Pharmacology for Health in Asia. Dhawan, B. N.; Agarwal, K. K.; Arora, R. B.; Parmar, S. S. Eds.; Allied Publishers: New Delhi, 1987.
12. Gribble, G. W.; Hoffman, J. H. Synthesis 1977, 859.
13. Lanzilotti, A. E.; Littell, R.; Fanshawe, W. J.; McKenzie, T. C.; Lovell, F. M. J. Org. Chem. 1979, 44, 4809.
14. Smith, A.; Utley, J. H. P. Chem. Comm. 1965, 427.
15. Berger, J. G. J. Med. Chem. 1977, 20, 600.
16. Kotsuki, H.; Ushio, Y.; Ochi, M. Heterocycles 1987, 26, 1771.
17. Saxena, A. K.; Jain, P. C.; Anand, N.; Dua, P. R. Indian J. Chem. 1973, 11, 417
18. Agarwal, S. K.; Saxena, A. K.; Anand, N. Synthesis 1981, 465.

[^0]: \# CDRI communication no. 4742

