Synthesis of 2,3-dihydrobenzofuran-2-ones and 2,3-dihydrobenzothiophen-2- and 3-ones by rearrangements of 3hydroxy analogs

Alan R. Katritzky, ${ }^{\text {a }}$ Kostyantyn Kirichenko, ${ }^{\text {a }}$ Deniz Hür, ${ }^{\text {a }}$ Xiaoming Zhao, ${ }^{\mathbf{a}}{ }^{\text {Yu Ji, }}{ }^{\text {a }}$ and Peter J. Steel ${ }^{\text {§b }}$
${ }^{\text {a }}$ Center for Heterocyclic Compounds, University of Florida, Department of Chemistry, Gainesville, Florida 32611-7200, USA; ${ }^{\mathrm{b}}$ Department of Chemistry, University of Canterbury, Christchurch, New Zealand
E-mail: Katritzky@chem.ufl.edu

Dedicated to Professor Otto Gottlieb

(received 19 Jan 04; accepted 21 Mar 04; published on the web 26 May 04)

Abstract

Reactions of 2-hydroxybenzophenones 7a-c and 2-sulfanylbenzophenones 13a-c with 1-(1chloroalkyl)benzotriazoles $\mathbf{8 a - c}$ gave 2-(1-benzotriazolylalkoxy)- and 2-(1-benzotriazolylalkylsulfanyl)-benzophenones $\mathbf{9 a - h}$ and $\mathbf{1 4 a}-\mathbf{h}$, respectively. Treatment of $\mathbf{9 a - h}$ and 14a-h with lithium diisopropylamide (LDA) formed 2-(benzotriazol-1-yl)-3-substituted-2,3-dihydrobenzofuran-3-ols 10a-h and -2,3-dihydrobenzothiophen-3-ols 15a-h. Rearrangement of derivatives 10a-h by ZnBr_{2} afforded 3-alkyl-3-aryl-2,3-dihydrobenzofuran-2-ones 11a-h. Rearrangement of derivatives 15a-h gave 2-alkyl-2-aryl-2,3-dihydrobenzothiophen-3-ones 16a\mathbf{g}, 3-alkyl-3-aryl-2,3-dihydrobenzothiophen-2-ones $\mathbf{1 7 b}, \mathbf{c}, \mathbf{g}$, and benzothiophenes $\mathbf{1 8 g}, \mathbf{h}$ depending on reaction conditions and substituents.

Keywords: Rearrangement, 2,3-dihydrobenzofuran-2-ones, 2,3-dihydrobenzothiophen-2-ones, 2,3-dihydrobenzothiophen-3-ones, benzotriazole

Introduction

The homologation of aldehydes and ketones by the insertion of a carbon atom next to the carbonyl group is an important transformation in synthetic organic chemistry, and one which has been extensively investigated. Available methods for the insertions of a single carbon carrying

[^0]substituents next to a carbonyl have been summarized in several reviews ${ }^{1}$ and in our own recent publications. ${ }^{2}$

The reported benzotriazole-mediated one-carbon insertion - functionalizations of ketones and aldehydes involve intermolecular reaction of a carbonyl group with a benzotriazole-activated nucleophile prior to rearrangement. Recently, we reported the preparation of 2,3-disubstituted benzofurans ${ }^{3}$ and benzothiophenes ${ }^{4}$ of common structure 3 ($\mathrm{X}=\mathrm{O}$ and S respectively) starting from 2-hydroxy- and 2-sulfanyl-benzophenones $1(X=O$ and S) via intermediate 2,3-dihydrobenzofurans and -benzothiophenes $2(\mathrm{X}=\mathrm{O}$ and S$)$. According to our previous work on the homologation of ketones and aldehydes, ${ }^{2 \mathrm{a}, \mathrm{c}, \mathrm{d}}$ the Lewis Acid promoted rearrangement of intermediates 2 should provide ketones of structure 5 via oxiran 4 formation followed by the oxiran ring opening and migration of the 3 -aryl group into the 2-position. ${ }^{2 a, c, d}$ However, previous literature work shows that 2-alkyl-3-aryl-2,3-dihydrobenzofuran epoxides of the structure 4 ($\mathrm{X}=$ O) can undergo tetraethylammonium bromide catalyzed rearrangement into 3-alkyl-3-aryl-2,3-dihydrobenzofuran-2-ones $6(X=O)$ via the shift of a 2-alkyl group into the 3-position. ${ }^{5}$ No information on possible formation of benzothiophene epoxides $4(X=S)$ or their involvement in similar transformations has been previously reported.

Scheme 1

We now report type $\mathbf{4} \boldsymbol{\rightarrow}$ Lewis Acid promoted rearrangements of 2,3-dihydrobenzofuran-3-ols 10a-h, which provide a new approach to 3-alkyl-3-aryl-substituted 2,3-dihydrobenzofuran-2-ones 11a-h starting from the appropriate 2-hydroxybenzophenones 7a-c and 1-(1chloroalkyl)benzotriazoles 8a-c (Scheme 2). We also report the synthesis of both 2-alkyl-2-arylsubstituted 2,3-dihydrobenzothiophen-3-ones 16a-g and 3-alkyl-3-aryl-substituted 2,3-dihydrobenzothiophen-2-ones $\mathbf{1 7 b}, \mathbf{c}, \mathbf{g}$ (Scheme 3) via type $\mathbf{4} \boldsymbol{5}$ and type $\mathbf{4} \rightarrow \mathbf{6}$ rearrangements, respectively, of the corresponding intermediates 15.

Results and Discussion

Intermediates $\mathbf{9 a}-\mathbf{h}$ were prepared by the reaction of 2-hydroxybenzophenones 7a-c with compounds 8a-c (available from aldehydes, benzotriazole and thionyl chloride in 87-96\% yields ${ }^{6}$) similar to published procedure, ${ }^{3,7}$ but in the presence of anhydrous potassium carbonate as a base instead of sodium hydroxide in DMF solution at $20-25^{\circ} \mathrm{C}$.

9d, 11d: $R^{1}=\mathrm{MeO}, R^{2}=H, R^{3}=\mathrm{Me}$
9e, 11e: $R^{1}=\mathrm{MeO}, R^{2}=H, R^{3}=E t$
9f, 11f: $R^{1}=\mathrm{MeO}, R^{2}=H, R^{3}=\mathrm{Pr}$
9g, 11g: $R^{1}=H, R^{2}=M e, R^{3}=M e$
9h, 11h: $R^{1}=H, R^{2}=M e, R^{3}=E t$

Scheme 2

Scheme 3

Intermediates $\mathbf{9 a - h}$ were treated with an equimolar amount of LDA in THF at temperatures ranging from $-78^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$ to give the corresponding lithium salts of 2-(benzotriazolyl)-2,3-dihydrobenzofuran-3-ols $\mathbf{1 0 a}-\mathbf{h}^{3}$ (mixtures of diastereoisomers according to TLC analysis; for 9a, a single isomer was observed), which were treated without isolation with 2-3 equivalents of zinc bromide in 1,1,2,2-tetrachloroethane under reflux for 24 h to give new products. The ${ }^{1} \mathrm{H}$ NMR spectra of these products show no signals corresponding to those assigned to the N substituted benzotriazole groups of intermediates $\mathbf{9 a - h}(7.2-8.1 \mathrm{ppm})$. The ${ }^{13} \mathrm{C}$ NMR spectra of these compounds also no longer show signals for a N-substituted benzotriazole group (in this particular case our assignments were based on signals with chemical shifts around 120 ppm and 146 ppm) and carbonyl carbon (in the range 195-196 ppm) of $\mathbf{9 a - h}$.

The product carbonyl signals appear at 178-180 ppm rather than at $190-200 \mathrm{ppm}$ as would be expected for compounds of type 5. ${ }^{8}$ This suggests that zinc bromide promoted rearrangement of $\mathbf{1 0 a} \mathbf{- h}$ results in the migration of an alkyl group to give 3-alkyl-3-aryl-substituted 2,3-dihydrobenzofuran-2-ones 11a-h rather than 2,3-dihydrobenzofuran-3-ones $5(X=O)$. Compounds 11a-h were obtained in 41-70 \% yields. Intermediate lithium salts of 2-(benzotriazolyl)-2,3-dihydrobenzofuran-3-ols 10a,c were treated without isolation with 2-3 equivalents of zinc bromide in THF at $150-155^{\circ} \mathrm{C}$ for $1-2 \mathrm{~h}$ in a sealed tube to give 11a, \mathbf{c} in 95% and 42% yields, respectively. The initiation of the rearrangement usually can be observed by the formation of a suspension (benzotriazole / zinc bromide complex). Unexpectedly, the treatment of 2-benzotriazolyl-2-methyl-3-phenyl-2,3-dihydrobenzofuran-3-ol 10a with zinc bromide (2.5 equivalents) in THF solution at $150-155{ }^{\circ} \mathrm{C}$ for 1 h in a sealed tube gave exclusively 2-methyl-3-phenylbenzofuran (12) ${ }^{3}$ in 65% yield. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data for $\mathbf{1 2}$ are identical with those reported in the literature. ${ }^{3}$ The mechanism of transformation $\mathbf{1 0 a} \rightarrow \mathbf{1 2}$ is unclear and may involve the reduction of 10a by bromide anion.

We isolated intermediate $\mathbf{1 0 a}(82 \%$, single isomer) to support the proposed reaction pathway (Scheme 2). The structure of $\mathbf{1 0 a}$ was deduced from its ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR spectra (see experimental section). The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 0 a}$ shows no signals assigned to ethoxy group protons of 9 a (doublet at 1.8 ppm and multiplet in the range $6.92-7.08 \mathrm{ppm}$), but shows a singlet at 1.77 ppm assigned to the 2-methyl group and a singlet at 3.03 ppm assigned to the 3-hydroxy group of 10a. The ${ }^{13} \mathrm{C}$ NMR spectrum shows no carbonyl carbon signal, while two new signals at 106.0 ppm and 86.7 ppm were assigned to $\mathrm{C}-2$ and $\mathrm{C}-3$ carbons of the 2,3-dihydrobenzofuran ring.

Following our previous work, ${ }^{4}$ intermediates $\mathbf{1 4 a - h}$ were prepared from 2sulfanylbenzophenones 13a-c and compounds $\mathbf{8 a - c}$ in the presence of anhydrous potassium carbonate in DMF at $20-25^{\circ} \mathrm{C}$ under a nitrogen atmosphere. On treatment with an equimolar amount of LDA in THF at temperatures ranging from $-78^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}, \mathbf{1 4 a} \mathbf{- h}$ give the corresponding 2,3-dihydrobenzothiophen-3-ols $\mathbf{1 5 a}-\mathbf{h}^{4}$ as mixtures of diastereoisomers (for $\mathbf{1 4 d}$, the single isomer $\mathbf{1 5 d}$ was isolated).

We isolated and characterized intermediates $\mathbf{1 5 c}$ (two diastereoisomers, $\left(2 R^{*}, 3 R^{*}\right) \mathbf{1 5} \mathbf{c}^{\prime}$ and $\left(2 R^{*} / 3 S^{*}\right) \mathbf{1 5} \mathbf{c}^{\prime \prime}$, were isolated with approx. ratio $56: 44$) and $\mathbf{1 5 d}$ (single isomer) to support the
reaction route described. The structures of $\mathbf{1 5 c} \mathbf{c}^{\prime}, \mathbf{1 5} \mathbf{c}^{\prime \prime}$ and $\mathbf{1 5 d}$ were deduced from their ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra (see experimental section). For both isomers of $\mathbf{1 5 c}$, the ${ }^{1} \mathrm{H}$ NMR spectra no longer show the doublet at 2.06 ppm corresponding to methyl protons of S-ethyl group in $\mathbf{1 4 c}$, while new signals, singlets at $2.58 \mathrm{ppm}(\mathbf{1 5 c})$ and $2.04 \mathrm{ppm}\left(\mathbf{1 5} \mathbf{c}^{\prime \prime}\right)$, were assigned to 2-methyl groups in 15c. The disappearance of the singlet signals at $3.05 \mathrm{ppm}\left(\mathbf{1 5 c} \mathbf{c}^{\prime}\right)$ and $4.21 \mathrm{ppm}\left(\mathbf{1 5} \mathbf{c}^{\prime \prime}\right)$ in the spectra of diastereoisomers 15 c after the addition of $\mathrm{D}_{2} \mathrm{O}$ suggested the presence of hydroxy groups. In the ${ }^{13} \mathrm{C}$ NMR spectra of diastereoisomers $\mathbf{1 5 c}$, the signal at 195.8 ppm corresponding to the carbonyl group in $\mathbf{1 4 c}$, as well as a signal at 62.4 ppm assigned to the carbon between benzotriazolyl group and sulfur in $\mathbf{1 4 c}$ are no longer present. The new signals at $90.2 \mathrm{ppm}, 87.5 \mathrm{ppm}$ in ${ }^{13} \mathrm{C}$ NMR spectrum of the major diastereoisomer $\mathbf{1 5} \mathbf{c}^{\prime}$, as well as at 90.3 ppm, 86.3 ppm in the spectrum of the minor isomer $\mathbf{1 5 c} \mathbf{c}^{\prime \prime}$, were assigned to the $\mathrm{C}-2$ and $\mathrm{C}-3$ carbons of the 2,3-dihydrobenzothiophene ring in $\mathbf{1 5 c}$.

Compounds 15a-h were treated without separation or further purification with 2-3 equivalents of anhydrous zinc bromide in $1,1,2,2$-tetrachloroethane at $100-110^{\circ} \mathrm{C}$ for $0.3-2 \mathrm{~h}$ to give the corresponding 2,3-dihydrobenzothiophen-3-ones 16a-f admixed in two cases with the benzothiophenes $\mathbf{1 8 g}, \mathrm{h}$.

The structures 16a-f were deduced from their ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra (see experimental section). The ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{1 6 a - f}$ show no signals at $7.2-8.0 \mathrm{ppm}$ characteristic for the N substituted benzotriazolyl groups in intermediates $\mathbf{1 4 a - f}$ and $\mathbf{1 5 c}$,d. In the ${ }^{13} \mathrm{C}$ NMR spectra of 16a-f, the signals assigned to the N-substituted benzotriazolyl groups of $\mathbf{1 4 a - f}$ around 110 ppm , $120 \mathrm{ppm}, 132 \mathrm{ppm}$, and 146 ppm are no longer present, while the new signals at 200.6-203.2 ppm were assigned to the carbonyl groups of 16a-f.

For intermediates $\mathbf{1 5 g}, \mathbf{h}$, concurrent processes of dehydration - benzotriazole elimination occur to form 2-(1-propenyl)benzothiophenes 18g,h. Structures 18g,h were deduced from their ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR. The ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{1 8 g}, \mathrm{h}$ show no characteristic signals of a N substituted benzotriazolyl group as found for intermediates $\mathbf{1 4 g}$,h at $7.2-8.0 \mathrm{ppm}$, and no propyl group signals. The doublet of doublets around 1.83 ppm , multiplet at $6.13-6.28 \mathrm{ppm}$, and doublet of quartets at $6.52-6.54 \mathrm{ppm}$ with $J=15.5 \mathrm{~Hz}$ were assigned to trans-propenyl groups in $\mathbf{1 8 g}, \mathbf{h}$. The ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1 8 g}$,h show no carbonyl carbon signals and no characteristic benzotriazolyl signals; the only single signals in the aliphatic region at $18.6-18.7 \mathrm{ppm}$ were assigned to the methyl carbon of the propenyl groups in $\mathbf{1 8 g}, \mathbf{h}$.

To optimize the procedure, compounds $\mathbf{1 4 b}, \mathbf{c}, \mathbf{g}$ were treated with LDA (1 equivalent) in THF at temperatures ranging from $-78^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$ followed by addition of anhydrous zinc bromide (23 equivalents) to lithium salts of $\mathbf{1 5 b}, \mathbf{c}, \mathbf{g}$ formed and rearrangement at $90-100^{\circ} \mathrm{C}$ for $0.5-2 \mathrm{~h}$ in a sealed tube. These rearrangements, unlike the previous in tetrachloroethane, gave three pairs of products. For compounds $\mathbf{1 4 b}, \mathbf{c}$, one of the products was identical to $\mathbf{1 6 b}, \mathbf{c}$ according to NMR data. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of one product for $\mathbf{1 4 g}$ show peaks similar to the $\mathbf{1 6 a} \mathbf{- f}$ pattern of signals (carbonyl group signal at 202.7 ppm). The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of the second products for $\mathbf{1 4 b}, \mathbf{c}, \mathbf{g}$ showed sets of signals that are also in agreement with the expected structures $\mathbf{1 6 b}, \mathbf{c}, \mathbf{g}$, with the only difference being in the appearance of carbonyl signals at 207.2-
208.0 ppm . The formation of pairs of two carbonyl compounds suggested simultaneous $\mathbf{4} \boldsymbol{\rightarrow} \mathbf{5}$ type and $\mathbf{4} \rightarrow \mathbf{6}$ type transformations of $\mathbf{1 4 b}, \mathbf{c}, \mathbf{g}$. The IR spectra of these products showed absorption bands in the range $1696-1701 \mathrm{~cm}^{-1}$ for products with carbonyl group signals in the range 201-203 ppm and in the range $1712-1707 \mathrm{~cm}^{-1}$ for products with carbonyl group signals in the range 207.4-208.0 ppm. These data suggest 2,3-dihydrobenzothiophen-3-ones structures $\mathbf{1 6 b}, \mathbf{c}, \mathbf{g}$ for products with signals of the carbonyl group in ${ }^{13} \mathrm{C}$ NMR spectra at 201-203 ppm (IR absorption bands at $1696-1701 \mathrm{~cm}^{-1}$) and structures $\mathbf{1 7 b}, \mathbf{c}, \mathbf{g}$ for products with carbonyl group signals at 207.4-208.0 ppm (IR 1712-1707 cm ${ }^{-1}$). A single crystal X-ray structure determination for the product from $\mathbf{1 4 c}$ with carbonyl group signal at 207.4 ppm (IR $1707 \mathrm{~cm}^{-1}$) unambiguously confirmed the thiolactone structure $\mathbf{1 7 c}$ (Figure 1).

Figure 1. X -Ray crystal structure of $\mathbf{1 7 c}$.

3-Alkyl-3-aryl-2,3-dihydrobenzofuran-2-ones are important intermediates for the synthesis of the anti-cancer compound diazonamide A, ${ }^{9}$ analgesics ${ }^{10}$ and antidepressants. ${ }^{10}$ 3-Alkyl-3-aryl-2,3-dihydrobenzofuran-2-one derivatives also possess antispasmodic, ${ }^{11}$ antihypoxic, ${ }^{12}$ and nootropic activity. ${ }^{12}$ Previously reported synthetic routes to 2,2-disubstituted 2,3-dihydrobenzofuran-3-ones include (Scheme 4): (i) condensation of phenols with (a) 2hydroxycarboxylic acids ${ }^{13}$ or (b) acrylic esters; ${ }^{14}$ (ii) hydrolysis - cyclization of 2methoxyphenylacetonitriles in the presence of hydrobromic acid; ${ }^{10}$ (iii) acid-catalyzed condensation of phenols with 2-oxo-carboxylic acids; ${ }^{15}$ (iv) oxidative decyanation; ${ }^{9 a}$ e) alkylation of 3-aryl-2,3-dihydrobenzofuran-2-ones. ${ }^{11-13,16}$

Scheme 4

2,3-Dihydrobenzothiophen-3-ones are useful intermediates for the preparation of tetrahydro-1,2-benzothiazepin-5-ones and 3-vinyl-1,2-benzoisothiazoles. ${ }^{17}$ Typical ring syntheses of 2,3-dihydrobenzothiophen-3-ones (Scheme 5) involve two steps: cyclization to a 2,3-dihydrobenzothiophen-3-one-1,1-dioxide followed by reduction of the sulfonyl group. ${ }^{17 \mathrm{~b}}$ These ring closures include (Scheme 5): a) the cyclization of o-methoxycarbonylphenyl methyl sulfones by base; ${ }^{18} \mathrm{~b}$) the cyclization of α-chlorocarbonyl sulfones under Lewis acid catalysis; ${ }^{19}$ c) the cyclization of lithiated aryl alkyl sulfones with phosgene; ${ }^{19} \mathrm{~d}$) the cyclization of o carboxyphenylsulfonylacetic acid with acetic anhydride in the presence of potassium acetate; ${ }^{20} \mathrm{e}$) the cyclization of a benzoylacetic ester in oleum. ${ }^{21}$ 2,3-Dihydrobenzothiophen-3-ones have also been obtained by ring transformation of 2-substituted 3-chlorothiochromen-4-ones (Scheme 2, route f). ${ }^{22}$

Scheme 5

No preparation of 3-alkyl-3-aryl-2,3-dihydrobenzothiophen-2-ones has been previously reported.

In summary, an efficient and simple route to 2,3-dihydrobenzofuran-2-ones 11 and 2,3-dihydrobenzothiophen-3-ones $\mathbf{1 6}$ has been developed from 1-(1-chloroalkyl)benzotriazoles and appropriate 2-hydroxybenzophenones and 2-sulfanylbenzophenones via the rearrangement of intermediates 10 and 15.

Experimental Section

General Procedures. Melting points were determined on a hot-stage apparatus and are uncorrected. NMR spectra were recorded on a Varian Gemini 300 spectrometer in CDCl_{3} with TMS as the internal standard for ${ }^{1} \mathrm{H}(300 \mathrm{MHz})$ or a solvent as the internal standard for ${ }^{13} \mathrm{C}(75$ MHz). The elemental analyses were performed on a Carlo Erba EA-1108 instrument. DMF was dried over molecular sieves. THF was dried over sodium / benzophenone and used freshly distilled. LDA was used freshly prepared from n-butyllithium and di-iso-propylamine. Di-isopropylamine was dried over calcium hydride. Column chromatography was conducted with silica gel 200-425 mesh.

X-Ray crystallography. Data were collected with a Siemens SMART CCD area detector, using graphite monochromatized MoK α radiation $(\lambda=0.71073 \AA)$. The intensities were corrected for Lorentz and polarization effects and for absorption. ${ }^{23}$ The structure was solved by direct methods using SHELXS ${ }^{24}$ and refined on F^{2}, using all data, by full-matrix least-squares procedures using SHELXTL. ${ }^{25}$ All non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atoms were included in calculated positions, with isotropic displacement parameters 1.2 times the isotropic equivalent of their carrier carbons. The crystal data and refinement details are listed along with the other data for the compound.

Phenyl(2-sulfanylphenyl)methanones (13a,c). were prepared according to the previously published procedure: ${ }^{4}$ phenyl(2-sulfanylphenyl)methanone 13a, white microcrystals from hexane, mp $50-52{ }^{\circ} \mathrm{C}\left(\right.$ lit. ${ }^{4} 51-52{ }^{\circ} \mathrm{C}$) and (5-methyl-2-sulfanylphenyl)(phenyl)methanone $\mathbf{1 3 c}$, yellow prisms from benzene / hexane, mp 72-74 ${ }^{\circ} \mathrm{C}$ (lit. ${ }^{4} 73-74{ }^{\circ} \mathrm{C}$).
(4-Methoxy-2-sulfanylphenyl)(phenyl)methanone (13b). was prepared from 2-hydroxy-4-methoxy-benzophenone via Newman-Kwart ${ }^{26}$ rearrangement of the corresponding dialkylthiocarbamate similarly to a published procedure ${ }^{27}$ as yellow microcrystals, mp 72-74 ${ }^{\circ} \mathrm{C}$ (lit. ${ }^{27} 74-76{ }^{\circ} \mathrm{C}$).

General procedure for the preparation of ortho-substituted benzophenones 9a-h

To a stirred solution of 2-hydroxybenzophenone $\mathbf{7 a - c}(4.0 \mathrm{mmol})$ and 1-(1chloroalkyl)benzotriazole 8a-c (5.0 mmol) in DMF (20 mL), $\mathrm{K}_{2} \mathrm{CO}_{3}(0.83 \mathrm{~g}, 6.0 \mathrm{mmol}$) was
added at room temperature and the reaction mixture was stirred for 4 h . The reaction mixture was poured into iced water and extracted with ethyl acetate. The extract was dried over magnesium sulfate and solvent was evaporated under vacuum. The residue was purified by column chromatography to give pure $\mathbf{9 a - h}$.
\{2-[1-(1H-Benzotriazol-1-yl)ethoxy]phenyl\}(phenyl)methanone (9a). White microcrystals from ethylacetate / hexanes (65%), mp 79-80 ${ }^{\circ} \mathrm{C}$ (lit. ${ }^{3} 65-66^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR $\delta 8.02-7.98(\mathrm{~m}, 1 \mathrm{H})$, 7.74-7.71 (m, 2H), 7.61-7.56 (m, 1H), 7.44-7.39 (m, 3H), 7.33-7.26 (m, 4H), 7.08-6.92 (m, 3H), $1.80(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ 195.8, 153.6, 146.6, 137.7, 133.1, 131.9, 130.8, 130.2, 129.7, 129.6, 128.3, 127.7, 124.3, 122.8, 119.9, 115.4, 111.1, 85.2, 20.5.
\{2-[1-(1H-Benzotriazol-1-yl)propoxy]phenyl\}(phenyl)methanone (9b). White plates from ethyl acetate / hexanes (60%), mp 94-95 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\delta 8.02-7.98(\mathrm{~m}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=7.3 \mathrm{~Hz}$, $2 \mathrm{H}), 7.59(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.27(\mathrm{~m}, 7 \mathrm{H}), 7.08-6.97(\mathrm{~m}, 2 \mathrm{H}), 6.73(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H})$, 2.27-2.06 (m, 2H), $0.78(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 195.8,153.7,146.6,137.7,133.1,131.8$, 130.9, 130.1, 129.7, 129.5, 128.4, 127.7, 124.3, 122.6, 119.9, 114.8, 111.2, 89.5, 27.6, 8.8. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2}$: C, 73.93; H, 5.36; N, 11.76. Found: C, 73.71; H, 5.48; N, 11.82.
\{2-[1-(1H-Benzotriazol-1-yl)butoxy]phenyl\}(phenyl)methanone (9c). White solid from ethyl acetate / hexanes (70%), mp $85-87{ }^{\circ} \mathrm{C}$ (lit. ${ }^{3} 85-87^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR $\delta 8.02-7.98(\mathrm{~m}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.26(\mathrm{~m}, 7 \mathrm{H}), 7.07-6.97(\mathrm{~m}, 2 \mathrm{H}), 6.81(\mathrm{t}, J=6.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.22-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.33-1.18(\mathrm{~m}, 1 \mathrm{H}), 1.14-1.00(\mathrm{~m}, 1 \mathrm{H}), 0.83(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 195.9,153.7,146.6,137.8,133.1,131.9,130.9,130.2,129.7,129.5,128.4,127.7,124.3$, 122.6, 119.9, 114.7, 111.3, 88.2, 36.1, 17.7, 13.2.
\{2-[1-(1H-Benzotriazol-1-yl)ethoxy]-4-methoxyphenyl\}(phenyl)methanone (9d). White plates from ethyl acetate / hexanes (75%), mp 138-140 ${ }^{\circ} \mathrm{C}$ (lit. ${ }^{3} 138-140{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR $\delta 8.01(\mathrm{~d}$, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.28(\mathrm{~m}, 6 \mathrm{H}), 6.95(\mathrm{q}, J$ $=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.40(\mathrm{~s}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 1.80(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 195.1,162.9,155.8,146.6,138.8,132.5,132.1,131.0,129.5,128.2,127.7,124.3,122.5$, 119.9, 111.1, 108.4, 102.1, 85.3, 55.4, 20.4.
\{2-[1-(1H-Benzotriazol-1-yl)propoxy]-4-methoxyphenyl\}(phenyl)methanone (9e). White plates from ethyl acetate / hexanes (56\%), mp 93-94 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\delta 8.02-7.98(\mathrm{~m}, 1 \mathrm{H}), 7.74-$ $7.71(\mathrm{~m}, 2 \mathrm{H}), 7.57(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.27(\mathrm{~m}, 6 \mathrm{H}), 6.71(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{dd}, J=$ $2.1 \mathrm{~Hz}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 2.25-2.07(\mathrm{~m}, 2 \mathrm{H}), 0.78(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 195.2,162.9,155.8,146.6,138.8,132.6,132.0,131.0,129.6,128.2$, $127.8,124.4,122.3,120.0,111.2,108.1,101.3,89.6,55.5,27.5,8.8$. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3}$: C, 71.30; H, 5.46; N, 10.85. Found: C, 71.41; H, 5.77; N, 11.17.
\{2-[1-(1H-Benzotriazol-1-yl)butoxy]-4-methoxyphenyl\}(phenyl)methanone (9f). Colorless prisms from methanol (72\%), mp 76-77 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 8.01(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=7.3$ $\mathrm{Hz}, 2 \mathrm{H}), 7.57(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.29(\mathrm{~m}, 6 \mathrm{H}), 6.80(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.58-6.48(\mathrm{~m}, 2 \mathrm{H})$, 3.67 (s, 3H), 2.20-2.01 (m, 2H), 1.32-1.20 (m, 1H), 1.12-1.01 (m, 1H), 0.83 (t, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\delta 195.1,162.8,155.7,146.5,138.8,132.4,131.9,130.9,129.4,128.1,127.7,124.3$,
122.2, 119.8, 111.2, 108.0, 101.2, 88.1, 55.3, 35.8, 17.6, 13.2. Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{3}$: C, 71.80 ; H, 5.77; N, 10.47. Found: C, 72.04; H, 5.79; N, 10.73.
\{2-[1-(1H-Benzotriazol-1-yl)ethoxy]-5-methylphenyl\}(phenyl)methanone (9g). White solid from ethyl acetate / hexanes (77%), mp 80-81 ${ }^{\circ} \mathrm{C}$ (lit. ${ }^{3} 80-81{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR $\delta 8.01-7.95(\mathrm{~m}, 1 \mathrm{H})$, $7.75-7.71(\mathrm{~m}, 2 \mathrm{H}), 7.57(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.26(\mathrm{~m}, 5 \mathrm{H}), 7.11(\mathrm{~s}, 1 \mathrm{H}), 7.08-7.02(\mathrm{~m}, 1 \mathrm{H})$, $6.92(\mathrm{q}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}), 1.78(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 195.9,151.4,146.5,137.6,133.0,132.5,132.3,130.8,130.1,130.0,129.6,128.2,127.6$, 124.2, 119.8, 115.7, 111.1, 85.5, 20.4, 20.3.
\{2-[1-(1H-Benzotriazol-1-yl)propoxy]-5-methylphenyl\}(phenyl)methanone (9h). White plates from ethyl acetate / hexanes (73%), mp 99-100 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 8.01-7.97(\mathrm{~m}, 1 \mathrm{H}), 7.74(\mathrm{~d}$, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.37(\mathrm{~m}, 3 \mathrm{H}), 7.32-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.10-7.05(\mathrm{~m}$, $2 \mathrm{H}), 6.82(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.23-2.04(\mathrm{~m}, 5 \mathrm{H}), 0.76(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 196.0,151.5,146.6,137.8,133.1,132.4,132.3,131.9,130.0,129.9,129.7$, $128.3,127.6,124.3,120.0,115.0,111.2,90.0,27.6,20.3,8.8$. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{2}$: C, 74.37; H, 5.70; N, 11.31. Found: C, 73.93; H, 5.84; N, 11.31.

General procedure for the preparation of 11a-h

To a stirred solution of the intermediate $\mathbf{9 a - h}(1.0 \mathrm{mmol})$ in THF $(10 \mathrm{~mL})$, a solution of LDA $(0.6 \mathrm{~mL}, 1.2 \mathrm{mmol}, 2 \mathrm{M})$ was added at $-78^{\circ} \mathrm{C}$ and the reaction mixture was stirred for 12 h at temperatures ranging from $-78^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$. (In the case of 9 a , saturated aqueous ammonium chloride (20 mL) was added and the product $\mathbf{1 0 a}$ was extracted with ethyl acetate; the extract was washed with water, dried and concentrated in vacuum. Intermediate 10a was isolated using column chromatography on silica gel). Then a solution of anhydrous zinc bromide in THF (2.0$3.0 \mathrm{~mL}, 1 \mathrm{M}$) was added followed by the addition of anhydrous 1,1,2,2-tetrachloroethane (30 mL) and THF was distilled off at normal pressure followed by reflux for $12-24 \mathrm{~h}$ (under nitrogen atmosphere). The reaction progress was monitored by TLC analysis. Upon completion, chloroform (20 mL) was added to the reaction mixture and it was washed with dilute hydrochloric acid and then with water. The organic layer was dried over magnesium sulfate and evaporated under vacuum. The product was purified by column chromatography to give 11a-h.
2-(1H-Benzotriazol-1-yl)-2-methyl-3-phenyl-2,3-dihydro-1-benzofuran-3-ol (10a). White plates from ethyl acetate (82%), mp $179-181{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.98(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J$ $=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.44(\mathrm{~m}, 1 \mathrm{H}), 7.39-7.28(\mathrm{~m}, 8 \mathrm{H}), 7.18-7.11(\mathrm{~m}, 2 \mathrm{H}), 3.03(\mathrm{~s}, 1 \mathrm{H}), 1.77(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 157.2,145.9,139.2,134.1,131.5,130.5,128.6,128.3,127.7,127.6,126.2$, 123.9, 122.9, 119.7, 113.4, 111.1, 106.0, 86.7, 25.4. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{2}$: C, 73.45; H, 4.99; N, 12.24. Found: C, 73.53; H, 5.11; N, 12.31.

3-Methyl-3-phenyl-1-benzofuran-2(3H)-one (11a). Colorless oil ${ }^{5 \mathrm{~L}, 28}$ (70\%); ${ }^{1} \mathrm{H}$ NMR $\delta 7.30-$ $7.19(\mathrm{~m}, 6 \mathrm{H}), 7.16-7.09(\mathrm{~m}, 3 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\delta 178.6,152.7,139.4,132.6,129.0$, 128.7, 127.8, 126.4, 124.5, 124.5, 110.9, 50.8, 24.7.

3-Ethyl-3-phenyl-1-benzofuran-2(3H)-one (11b). Yellow oil (50\%); ${ }^{1} \mathrm{H}$ NMR $\delta 7.42-7.15$ (m, 9H), 2.56-2.44 (m, 1H), 2.35-2.21(m, 1H), $0.79(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ 178.1, 153.4,
138.8, 130.0, 129.0, 128.8, 127.8, 126.7, 125.1, 124.3, 110.9, 56.4, 32.0, 9.3. HRMS Calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{2}$ [M]: 238.0994; Found: 238.0995.
3-Phenyl-3-propyl-1-benzofuran-2(3H)-one (11c). Yellow oil (41\%); ${ }^{1}$ H NMR $\delta 7.41-7.16$ (m, 9H), 2.47-2.37 (m, 1H), 2.26-2.15 (m, 1H), 1.35-1.16(m, 1H), 1.08-0.90 (m, 1H), $0.88(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 178.3,153.3,139.0,130.4,129.0,128.8,127.8,126.7,125.1,124.4$, 111.0, 55.9, 41.1, 18.3, 14.0. HRMS Calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{2}$ [M]: 252.1150; Found: 252.1151.

6-Methoxy-3-methyl-3-phenyl-1-benzofuran-2(3H)-one (11d). Yellow oil (41\%); ${ }^{1} \mathrm{H}$ NMR δ $7.36-7.26(\mathrm{~m}, 5 \mathrm{H}), 7.12(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.77-6.72(\mathrm{~m}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 1.88(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 25.1,50.6,55.7,97.6,110.3,124.2,125.0,126.5,127.7,128.7,139.9,153.7,160.5$, 179.0. HRMS Calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{3}$ [M]: 254.0942; Found: 254.0929.

3-Ethyl-6-methoxy-3-phenyl-1-benzofuran-2(3H)-one (11e). White plates from ethyl acetate / hexanes (43%), mp $88-89{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 7.41-7.25(\mathrm{~m}, 5 \mathrm{H}), 7.15(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.80-6.76$ $(\mathrm{m}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 2.50-2.40(\mathrm{~m}, 1 \mathrm{H}), 2.30-2.17(\mathrm{~m}, 1 \mathrm{H}), 0.79(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\delta 178.5,160.5,154.3,139.1,128.7,127.7,126.8,125.6,121.4,110.2,97.4,56.2,55.6,32.1,9.3$. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{3}$: C, 76.10; H, 6.01; Found: C, 76.03; H, 6.19.
6-Methoxy-3-phenyl-3-propyl-1-benzofuran-2(3H)-one (11f). White plates from ethyl acetate / hexanes (41%), mp $86-87{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 7.41-7.25(\mathrm{~m}, 5 \mathrm{H}), 7.16$ (d, $\left.J=8.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.79-$ $6.75(\mathrm{~m}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 2.44-2.33(\mathrm{~m}, 1 \mathrm{H}), 2.21-2.11(\mathrm{~m}, 1 \mathrm{H}), 1.28-1.16(\mathrm{~m}, 1 \mathrm{H}), 1.10-0.97$ $(\mathrm{m}, 1 \mathrm{H}), 0.88(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 178.6,160.5,154.2,139.3,128.7,127.7,126.7$, $125.6,121.7,110.2,97.4,55.7,55.5,41.2,18.3$, 14.0. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{3}$: C, 76.57; H, 6.43; Found: C, 76.44 ; H, 6.70 .

3,5-Dimethyl-3-phenyl-1-benzofuran-2(3H)-one (11g). Yellow oil (41\%); ${ }^{1} \mathrm{H}$ NMR $\delta 7.34$ $7.28(\mathrm{~m}, 5 \mathrm{H}), 7.17-7.11(\mathrm{~m}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.89(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 179.1,150.6,139.6,134.2,132.6,129.4,128.8,127.8,126.5,124.9,110.6$, 51.0, 24.7, 21.2. HRMS Calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{2}$ [M]: 238.0994; Found: 238.0991.

3-Ethyl-5-methyl-3-phenyl-1-benzofuran-2(3H)-one (11h). Yellow oil (43\%); ${ }^{1} \mathrm{H}$ NMR δ $7.41-7.25(\mathrm{~m}, 5 \mathrm{H}), 7.15(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.55-2.18(\mathrm{~m}, 5 \mathrm{H}), 0.79(\mathrm{t}$, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\delta 178.5,151.3,139.0,134.0,129.9,129.4,128.7,127.7,126.7,125.4$, 110.5, 56.6, 31.8, 21.2, 9.3. HRMS Calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{2}[\mathrm{M}]^{+}$: 252.1150; Found: 252.1151.

The rearrangement of zinc reagent of 10 a in THF using a sealed tube. A solution of butyllithium in hexanes $(0.7 \mathrm{~mL}, 1.12 \mathrm{mmol}, 1.6 \mathrm{M})$ was added to a stirred solution of $\mathbf{1 0 a}$ ($0.34 \mathrm{~g}, 1 \mathrm{mmol}$) in THF (10 mL) at $-78{ }^{\circ} \mathrm{C}$ followed by the addition of a solution of anhydrous zinc bromide in THF ($2.5 \mathrm{~mL}, 2.5 \mathrm{mmol}, 1 \mathrm{M}$) under a nitrogen atmosphere. The reaction mixture (slurry) was allowed to warm to $20-25^{\circ} \mathrm{C}$ and was transferred to a sealed tube. The reaction mixture was stirred at $150-155{ }^{\circ} \mathrm{C}$ for 1 h . Then, the mixture was cooled down to $20-25^{\circ} \mathrm{C}$ and filtered. The filtrate was concentrated in vacuum and the residue was purified by gradient column chromatography on silica gel using ethyl acetate / hexanes (1/20) to give 11a (0.21 g , 93%) as a colorless oil. ${ }^{5 b, 28}$

The preparation of 2-methyl-3-phenylbenzofuran (12). A mixture of 2-benzotriazolyl-2-methyl-3-phenyl-2,3-dihydrobenzofuran-3-ol $\mathbf{1 0 a}(0.34 \mathrm{~g}, 1 \mathrm{mmol})$ with anhydrous zinc bromide ($0.9 \mathrm{~g}, 4 \mathrm{mmol}$; additionally dried by heating at $220-225^{\circ} \mathrm{C}$ for 1 h in vacuum) in THF (10 mL) was stirred at $150-155^{\circ} \mathrm{C}$ for 30 min (the formation of a slurry was observed at $155^{\circ} \mathrm{C}$). Then, the reaction mixture was cooled down to $20-25^{\circ} \mathrm{C}$, filtered and concentrated in vacuum. The residue was purified by column chromatography on silica gel using hexanes to give $\mathbf{1 2}$ (135 mg , 65%) as a colorless oil. ${ }^{29}{ }^{1} \mathrm{H}$ NMR $\delta 7.59-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.52-7.43(\mathrm{~m}, 5 \mathrm{H}), 7.38-7.32(\mathrm{~m}, 1 \mathrm{H})$, $7.28-7.18(\mathrm{~m}, 2 \mathrm{H}), 2.53(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 154.0,151.2,132.8,128.9,128.7,126.9,123.5$, 122.6, 119.3, 116.9, 110.7, 12.8.

General procedure for the preparation of ortho-substituted benzophenones 14a-h

To a stirred solution of $\mathbf{1 3 a - c}(4.0 \mathrm{mmol})$ and 1-(1-chloroalkyl)benzotriazole $\mathbf{8 a - c}(5.0 \mathrm{mmol})$ in DMF (20 mL) under a nitrogen atmosphere, $\mathrm{K}_{2} \mathrm{CO}_{3}(0.83 \mathrm{~g}, 6.0 \mathrm{mmol})$ was added at room temperature and the reaction mixture was stirred for 4 h . After starting material $\mathbf{1 3}$ had disappeared, iced water was added slowly and a product was extracted with ethyl acetate. The extract was dried over magnesium sulfate and evaporated under vacuum. The residue was purified by column chromatography using ethyl acetate / hexanes mixture to give pure 14a-h.
(2-\{[1-(1H-Benzotriazol-1-yl)ethyl]sulfanyl\}phenyl)(phenyl)methanone (14a). White microcrystals from ethyl acetate / hexanes (93%), mp $125-126{ }^{\circ} \mathrm{C}$ (lit. ${ }^{4} 135-136{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR $\delta 8.00-$ $7.94(\mathrm{~m}, 1 \mathrm{H}), 7.64-7.54(\mathrm{~m}, 3 \mathrm{H}), 7.52-7.46(\mathrm{~m}, 1 \mathrm{H}), 7.40(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.20(\mathrm{~m}$, 4H), 7.14-7.04 (m, 1H), 7.00-6.97 (m, 1H), $6.46(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.03(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\delta 196.6,146.0,143.5,136.7,135.3,133.4,131.8,130.3,130.1,130.0,129.8,128.4$, $128.3,127.0,123.8,119.8,110.7,62.9,20.5$.
(2-\{[1-(1H-Benzotriazol-1-yl)propyl]sulfanyl\}phenyl)(phenyl)methanone (14b). White microcrystals from methanol (95%), mp $114-115{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.99-7.95(\mathrm{~m}, 1 \mathrm{H}), 7.62-7.51$ (m, 4H), 7.39 (t, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.23(\mathrm{~m}, 4 \mathrm{H}), 7.14-7.08(\mathrm{~m}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, 6.22-6.16 (m, 1H), 2.50-2.25 (m, 2H), $0.88(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 196.5,146.1,143.3$, $136.8,134.9,133.3,131.7,130.3,129.9,129.8,128.4,128.3,128.1,127.0,123.9,119.8,110.8$, 69.1, 27.7, 11.1. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{OS}: \mathrm{C}, 70.75$; H, 5.13; N, 11.25. Found: C, 70.83; H, 5.01; N, 11.24.
(2-\{[1-(1H-Benzotriazol-1-yl)ethyl]sulfanyl\}-4-methoxyphenyl)(phenyl)methanone (14c). White prisms from ethyl acetate / hexanes (98\%), mp 118-119 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR δ 7.99-7.97 (m, 1H), 7.62-7.52 (m, 4H), 7.42-7.37 (m, 2H), 7.28-7.22 (m, 3H), 6.68-6.59 (m, 3H), $3.57(\mathrm{~s}, 3 \mathrm{H}), 2.06$ (d, $J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 195.8,161.0,146.3,137.6,134.5,133.4,132.8,131.6,130.0$, $128.3,127.1,124.0,119.8,117.5,114.0,111.1,100.2,62.4,55.4,20.6$. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 67.84 ; \mathrm{H}, 4.92$; N, 10.79. Found: C, 68.07; H, 4.82; N, 10.92.
(2-\{[1-(1H-Benzotriazol-1-yl)propyl]sulfanyl\}-4-methoxyphenyl)(phenyl)methanone (14d). White microcrystals from ethyl acetate / hexanes (89\%), mp 114-115 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\delta 8.00-7.97$ $(\mathrm{m}, 1 \mathrm{H}), 7.67-7.52(\mathrm{~m}, 4 \mathrm{H}), 7.40(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-7.23(\mathrm{~m}, 3 \mathrm{H}), 6.67-6.65(\mathrm{~m}, 2 \mathrm{H}), 6.36$ $(\mathrm{dd}, J=8.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 2.45-2.35(\mathrm{~m}, 2 \mathrm{H}), 0.92(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ
$195.8,161.1,146.4,137.7,135.0,133.0,132.7,131.8,131.6,130.0,128.3,127.1,124.0,119.8$, 116.9, 113.7, 111.2, 68.4, 55.4, 27.8, 11.2. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 68.46 ; \mathrm{H}, 5.25 ; \mathrm{N}$, 10.41. Found: C, 68.49; H, 5.22; N, 10.49 .
(2-\{[1-(1H-Benzotriazol-1-yl)ethyl]sulfanyl\}-5-methylphenyl)(phenyl)methanone (14e). White prisms from ethyl acetate / hexanes (43%), mp 112-113 ${ }^{\circ} \mathrm{C}$ (lit. ${ }^{4} 109-111{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR $\delta 8.00-$ $7.95(\mathrm{~m}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.60-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.40(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=$ $7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.05(\mathrm{~s}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.37(\mathrm{q}, J=7.0$, $1 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 2.00(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 196.5,145.8,143.8,138.8,136.6,135.5$, $133.2,131.5,130.8,129.7,128.5,128.2,126.7,125.6,123.6,119.5,110.6,62.9,20.8,20.2$.
(2-\{[1-(1H-Benzotriazol-1-yl)propyl]sulfanyl\}-5-methylphenyl)(phenyl)methanone (14f). Brown microcrystals from ethyl acetate / hexanes (76\%), mp 107-108 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.99-7.96(\mathrm{~m}, 1 \mathrm{H})$, 7.63-7.51 (m, 4H), 7.42-7.36 (m, 2H), 7.29-7.22 (m, 2H), $7.04(\mathrm{~s}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.79(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.13-6.07(\mathrm{~m}, 1 \mathrm{H}), 2.44-2.20(\mathrm{~m}, 2 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 0.86(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 196.7,146.2,143.8,138.8,136.9,135.4,133.3,131.8,131.0,129.9,128.8$, 128.4, 126.9, 125.9, 123.8, 119.8, 110.9, 69.5, 27.6, 20.9, 11.1. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{OS}: \mathrm{C}$, 71.29; H, 5.46; N, 10.84. Found: C, 71.47; H, 5.43; N, 11.22.
(2-\{[1-(1H-Benzotriazol-1-yl)butyl]sulfanyl\}phenyl)(phenyl)methanone (14g). Colorless prisms from ethyl acetate / hexanes (62%), mp 97-98 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 7.99-7.95(\mathrm{~m}, 1 \mathrm{H}), 7.63-7.59(\mathrm{~m}$, $2 \mathrm{H}), 7.56-5.50(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.19(\mathrm{~m}, 4 \mathrm{H}), 7.12-7.06(\mathrm{~m}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=$ $7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.29(\mathrm{dd}, J=9.1,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.45-2.17(\mathrm{~m}, 2 \mathrm{H}), 1.36-1.14(\mathrm{~m}, 2 \mathrm{H}), 0.87(\mathrm{t}, J=7.3$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 196.5,146.1,143.3,136.8,134.9,133.3,131.8,130.2,130.0,129.8,128.4$, 128.3, 128.1, 127.0, 123.8, 119.8, 110.8, 67.4, 36.1, 19.7, 13.1. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{OS}: \mathrm{C}$, 71.29 ; H, 5.46; N, 10.84. Found: C, 70.97; H, 5.35; N, 10.85.
(2-\{[1-(1H-Benzotriazol-1-yl)butyl]sulfanyl\}-5-methylphenyl)(phenyl)methanone (14h). White microcrystals from petroleum ether / ethyl acetate (86%), mp 71-71 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR δ 7.99-7.96 (m, $1 \mathrm{H}), 7.63(\mathrm{~d}, J=7.42 \mathrm{~Hz}, 2 \mathrm{H}), 7.59-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.40(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.22(\mathrm{~m}, 2 \mathrm{H})$, $7.04(\mathrm{~s}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=8.0,1 \mathrm{H}), 6.77(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{dd}, J=9.1 \mathrm{~Hz}, 6.2 \mathrm{~Hz}, 1 \mathrm{H})$, 2.39-2.30 (m, 1H), 2.26-2.16 (m, 1H), 2.23 (s, 3H), 1.36-1.10 (m, 2H), $0.85(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\delta 196.7,146.1,143.8,138.8,136.9,135.4,133.3,131.8,131.0,129.9,128.7,128.4$, $126.9,125.9,123.8,119.8,110.9,67.7,36.0,20.9,19.7,13.1$. Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{OS}: \mathrm{C}$, 71.79; H, 5.77; N, 10.46. Found: C, 71.55; H, 5.74; N, 10.45.

General procedure for the preparation of 16a-f

To a stirred solution of the intermediate $\mathbf{1 4 a - f}(1.0 \mathrm{mmol})$ in THF (10 mL), LDA (0.6 mL , $1.2 \mathrm{mmol}, 2 \mathrm{M}$) was added at $-78^{\circ} \mathrm{C}$ and the reaction mixture was stirred for 12 h at temperatures ranging from $-78^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$ (under a nitrogen atmosphere). Then, saturated aqueous ammonium chloride was added and 15a-f was extracted with ethyl acetate. The extract was washed with water, dried over magnesium sulfate and evaporated under vacuum to dryness (in the case of $\mathbf{1 4 d}$, the intermediate $\mathbf{1 5 c}$,d was purified by column chromatography on silica gel and characterized). The mixture of crude $\mathbf{1 5 a - f}$ with anhydrous zinc bromide ($0.68 \mathrm{~g}, 3.0 \mathrm{mmol}$) in

1,1,2,2-tetrachloroethane (30 mL) was heated up to $100-110^{\circ} \mathrm{C}$ for $0.3-2 \mathrm{~h}$. The reaction was monitored by TLC and upon disappearance of starting material was cooled down to $20-25^{\circ} \mathrm{C}$. Chloroform (20 mL) was added to the reaction mixture. The mixture was washed with dilute hydrochloric acid $(5 \%, 30 \mathrm{~mL})$, and then with water. The organic layer was dried over magnesium sulfate and evaporated under vacuum. The residue was purified by column chromatography using mixture of hexanes / ethyl acetate as an eluent to give the corresponding 16a-f.
($2 R^{*}, 3 R^{*}$)-2-(1H-Benzotriazol-1-yl)-6-methoxy-2-methyl-3-phenyl-2,3-dihydro-1-benzothiophen-3-ol (15c'). Yellow microcrystals from ethyl acetate / hexanes (35\%), mp 192-193 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR δ 7.80-7.77 (m, 1H), 7.29-7.26 (m, 1H), 7.15-7.12 (m, 2H), 6.99-6.95 (m, 3H), 6.86-6.79 (m, $4 \mathrm{H}), 6.68(\mathrm{dd}, J=8.5,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.05(\mathrm{~s}, 1 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H}) ; 13 \mathrm{C}$ NMR δ 161.6, $146.2,141.8,137.7,134.5,132.9,128.2,127.7,127.4,126.8,126.5,123.1,119.6,112.8,111.9$, 107.6, 90.2, 87.5, 55.6, 23.5. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 67.84 ; \mathrm{H}, 4.92$; $\mathrm{N}, 10.79$. Found: C, 67.60; H, 4.88; N, 10.79.
($2 R^{*}, \mathbf{3 S}$ *)-2-(1H-Benzotriazol-1-yl)-6-methoxy-2-methyl-3-phenyl-2,3-dihydro-1-benzothiophen-3-ol ($\mathbf{1 5 c} \mathbf{c}^{\prime \prime}$). White microcrystals from ethyl acetate / hexanes (28%), mp $160-161{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR δ $8.01(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.18(\mathrm{~m}, 8 \mathrm{H}), 6.82(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H})$, $6.73(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{~s}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 161.1,146.1,139.4$, $138.5,134.6,133.8,128.4,128.1,127.8,127.3,127.0,123.9,120.0,114.5,112.1,108.3,90.3$, 86.3, 55.5, 26.1. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 67.84 ; \mathrm{H}, 4.92$; N, 10.79. Found: C, 68.07; H, 4.89; N, 10.84 .

2-(1H-Benzotriazol-1-yl)-6-methoxy-2-ethyl-3-phenyl-2,3-dihydro-1-benzothiophen-3-ol

(15d). White microcrystals from ethyl acetate / hexanes (74\%), mp 152-153 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.81-$ $7.78(\mathrm{~m}, 1 \mathrm{H}), 7.48-7.45(\mathrm{~m}, 1 \mathrm{H}), 7.20-7.15(\mathrm{~m}, 2 \mathrm{H}), 6.98-6.92(\mathrm{~m}, 3 \mathrm{H}), 6.83-6.82(\mathrm{~m}, 4 \mathrm{H}), 6.65$ (dd, $J=8.5,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.40-3.30(\mathrm{~m}, 1 \mathrm{H}), 3.24(\mathrm{~s}, 1 \mathrm{H}), 2.75-2.67(\mathrm{~m}, 1 \mathrm{H}), 0.91$ (t, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 161.4,146.2,140.7,138.3,135.1,133.2,128.0,127.3,127.2$, 126.9, 126.4, 123.1, 119.5, 112.8, 111.8, 107.7, 93.2, 90.5, 55.6, 27.5, 10.1. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$: C, 68.46; H, 5.25; N, 10.41. Found: C, 68.23; H, 5.21; N, 10.45.
2-Methyl-2-phenyl-1-benzothiophen-3(2H)-one (16a). Yellow microcrystals from ethyl acetate / hexanes (44\%), mp 84-85 ${ }^{\circ} \mathrm{C}\left(\right.$ lit. $\left.^{17 \mathrm{~b}} 95-97{ }^{\circ} \mathrm{C}\right)$; ${ }^{1} \mathrm{H}$ NMR $\delta 7.80(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.45$ (d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.39$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.20(\mathrm{~m}, 4 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\delta 203.2,151.8,140.2,136.1,128.9,128.6,127.8,127.7,126.6,124.9,123.8,63.7$, 25.5. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{OS}$: C, 74.97; H, 5.03. Found: C, 75.30; H, 4.92.

2-Ethyl-2-phenyl-1-benzothiophen-3(2H)-one (16b). Yellow oil (75\%); ${ }^{1} \mathrm{H}$ NMR $\delta 7.75$ (d, $J=$ $7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.52(\mathrm{~m}, 3 \mathrm{H}), 7.41(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.17(\mathrm{~m}, 4 \mathrm{H}), 2.50-2.29(\mathrm{~m}, 2 \mathrm{H})$, $0.97(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR} \delta 202.7,151.9,139.1,135.9,130.1,128.5,127.7$, 127.3, 127.1, 124.8, 123.8, 70.5, 32.4, 9.8; $v_{\max }(\mathrm{KBr}) 1701 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O})$; Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{OS}: \mathrm{C}$, 75.56; H, 5.55. Found: C, 75.49; H, 5.55.

6-Methoxy-2-methyl-2-phenyl-1-benzothiophen-3(2H)-one (16c). Yellow oil (43\%); ${ }^{1} \mathrm{H}$ NMR $\delta 7.73(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.25(\mathrm{~m}, 3 \mathrm{H}), 6.84(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.77$
(dd, $J=2.0 \mathrm{~Hz}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 201.2,166.4,154.7$, $140.5,129.1,128.6,127.7,126.6,122.1,113.6,106.7,64.1,55.8,25.5 ; v_{\max }(\mathrm{KBr}) 1694 \mathrm{~cm}^{-1}$ $(\mathrm{C}=\mathrm{O})$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 71.08 ; \mathrm{H}, 5.22$; Found: $\mathrm{C}, 70.81 ; \mathrm{H}, 5.25$.
2-Ethyl-6-methoxy-2-phenyl-1-benzothiophen-3(2H)-one (16d). Green oil (37%); ${ }^{1} \mathrm{H}$ NMR δ $7.68(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.81(\mathrm{~m}, 1 \mathrm{H}), 7.33-7.22(\mathrm{~m}, 3 \mathrm{H}), 6.86(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.74$ (dd, $J=8.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 2.45-2.31(\mathrm{~m}, 2 \mathrm{H}), 0.97(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ 200.6, 166.2, 154.9, 139.6, 128.8, 128.5, 127.6, 127.1, 123.5, 113.4, 106.7, 70.9, 55.8, 32.2, 9.8. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{~S}$: C, 71.80; H, 5.67; Found: C, 72.01; H, 5.75.
2,5-Dimethyl-2-phenyl-1-benzothiophen-3(2H)-one (16e). Yellow microcrystals from ethyl acetate / hexanes (40%), mp 82-83 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 7.60(\mathrm{~s}, 1 \mathrm{H}), 7.44-7.37(\mathrm{~m}, 3 \mathrm{H}), 7.31-7.22(\mathrm{~m}$, 4H), $2.34(\mathrm{~s}, 3 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\delta 203.1,148.6,140.3,137.4,134.9,128.9,128.5$, 127.7, 127.5, 126.5, 123.4, 63.9, 25.5, 20.6. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{OS}: \mathrm{C}, 75.55$; H, 5.55; Found: C, 75.93; H, 5.69.
2-Ethyl-2-phenyl-5-methyl-1-benzothiophen-3(2H)-one (16f). Yellow oil (58\%); ${ }^{1} \mathrm{H}$ NMR δ 7.57-7.54 (m, 3H), 7.40-7.36(m, 1H), 7.33-7.24 (m, 4H), 2.46-2.30 (m, 5H), $0.96(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 202.7,148.9,139.4,137.2,134.8,130.3,128.5,127.6,127.2,127.1,123.5$, 70.8, 32.3, 20.7, 9.8. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{OS}: \mathrm{C}, 76.08$; H, 6.01; Found: C, 76.32; H, 6.51.

General procedure for the preparation of benzothiophenes $18 \mathrm{~g}, \mathrm{~h}$

By following the same procedure described for $\mathbf{1 6 a} \mathbf{- f}$, benzothiophenes $\mathbf{1 8 g}$,h were prepared from $14 \mathrm{~g}, \mathrm{~h}$ respectively.
5-Methyl-3-phenyl-2-(1-propenyl)-1-benzothiophene (18g). Yellow oil (20\%); ${ }^{1} \mathrm{H}$ NMR δ $7.64(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.27(\mathrm{~s}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.52(\mathrm{dq}, J=15.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{dq}, J=15.5,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{~m}, 3 \mathrm{H}), 1.83(\mathrm{dd}, J=$ 6.7, $1.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 140.8,138.9,135.1,134.7,134.0,133.2,130.4,128.7,128.5$, 127.4, 126.3, 124.1, 122.7, 121.7, 21.4, 18.6. HRMS Calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~S}$ [M]: 264.0972; Found: 264.0969.

3-Phenyl-2-(1-propenyl)-1-benzothiophene (18h). Orange oil (43\%); ${ }^{1} \mathrm{H}$ NMR δ 7.77-7.75 (m, $1 \mathrm{H}), 7.52-7.23(\mathrm{~m}, 7 \mathrm{H}), 6.54(\mathrm{dq}, J=15.5,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{dq}, J=15.5,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.83$ (dd, $J=6.6 \mathrm{~Hz}, J=1.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 140.6,138.7,137.6,135.0,133.5,130.4,129.0$, $128.5,127.5,124.6,124.3,124.0,122.8,122.0,18.7$. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~S}: \mathrm{C}, 81.56 ; \mathrm{H}, 5.64$; Found: C, 81.28; H, 5.94.

General procedure for the preparation of $16 \mathrm{~b}, \mathrm{c}, \mathrm{g}$ and $17 \mathrm{~b}, \mathrm{c}, \mathrm{g}$

To a stirred solution of the intermediate $\mathbf{1 4 b}, \mathbf{c}, \mathbf{g}(1.0 \mathrm{mmol})$ in THF $(10 \mathrm{~mL})$, LDA $(0.6 \mathrm{~mL}$, $1.2 \mathrm{mmol}, 2 \mathrm{M}$) was added at $-78^{\circ} \mathrm{C}$ and the reaction mixture was stirred for 12 h at temperatures ranging from $-78^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$ (under nitrogen atmosphere). A solution of anhydrous zinc bromide in THF $(1 \mathrm{M}, 3 \mathrm{~mL}, 3.0 \mathrm{mmol})$ was added to the reaction mixture. The reaction mixture was transferred to a sealed tube and stirred at $90-100^{\circ} \mathrm{C}$ for $1-2 \mathrm{~h}$ (a suspension of benzotriazole / zinc bromide usually appears at $80^{\circ} \mathrm{C}$). The reaction mixture was cooled down to $20-25^{\circ} \mathrm{C}$ and
filtered. The filtrate was concentrated in vacuum. The residue was subjected to column chromatography using a mixture of hexanes as an eluent to give corresponding $\mathbf{1 6 b}, \mathbf{c}, \mathbf{g}$ and $17 \mathrm{~b}, \mathrm{c}, \mathrm{g}$.
2-Ethyl-2-phenyl-1-benzothiophen-3(2H)-one (16b). Yellow oil (20\%); identical with compound 16b prepared following the procedure for 16a-f.
3-Ethyl-3-phenyl-1-benzothiophen-2(3H)-one (17b). Yellow oil (20\%); ${ }^{1} \mathrm{H}$ NMR $\delta 7.44$ (d, $J=$ $7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.22(\mathrm{~m}, 7 \mathrm{H}), 7.05(\mathrm{dd}, J=7.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.74-2.65(\mathrm{~m}, 1 \mathrm{H}), 2.26-2.14(\mathrm{~m}$, $1 \mathrm{H}), 0.79(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\delta 207.4,140.7,140.6,136.0,128.6,128.4,127.6,126.9$, $126.5,125.8,123.0,68.1,31.5,8.8 ; v_{\max }(\mathrm{KBr}) 1712 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O})$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{OS}: \mathrm{C}$, 75.56; H, 5.55. Found: C, 75.35; H, 5.66.

6-Methoxy-2-methyl-2-phenyl-1-benzothiophen-3(2H)-one (16c). Yellow oil (20\%); identical with compound $\mathbf{1 6 c}$ prepared following the procedure for $\mathbf{1 6 a}-\mathbf{f}$.
6-Methoxy-3-methyl-3-phenyl-1-benzothiophen-2(3H)-one (17c). Colorless needles from hexanes (30%), mp $87-88{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 7.33-7.20(\mathrm{~m}, 5 \mathrm{H}), 6.98(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~s}$, $1 \mathrm{H}), 6.78(\mathrm{dd}, J=8.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 1.85(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 207.4,159.6,141.1$, $135.4,134.9,128.6,127.6,126.7,126.2,112.9,108.3,62.5,55.5,24.7 ; v_{\max }(\mathrm{KBr}) 1707 \mathrm{~cm}^{-1}$ (C=O). Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 71.08$; H, 5.22; Found: C, 71.03; H, 5.35.
Crystal data for 17c: $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{~S}$, MW 270.33, triclinic, space group P-1, $a=8.3006(10), b=$ $8.5277(11), c=11.2064(14) \AA, \alpha=73.496(2), \beta=70.336(2), \gamma=62.764(2)^{\circ}, \mathrm{V}=656.1(1) \AA^{3}$, $\mathrm{F}(000)=284, \mathrm{Z}=2, \mathrm{~T}=-105^{\circ} \mathrm{C}, \mu(\mathrm{MoK} \alpha)=0.241 \mathrm{~mm}^{-1}, \mathrm{D}_{\text {calcd }}=1.368 \mathrm{~g} . \mathrm{cm}^{-3}, 2 \theta_{\max } 53^{\circ}(\mathrm{CCD}$ area detector, $\mathrm{MoK} \alpha$ radiation), $\mathrm{GOF}=1.060, \mathrm{wR}\left(\mathrm{F}^{2}\right)=0.0907$ (all 2624 data), $\mathrm{R}=0.0328$ (2174 data with I > $2 \sigma \mathrm{I}$).
5-Methyl-2-phenyl-2-propyl-1-benzothiophen-3(2H)-one (16g). Orange oil (31\%); ${ }^{1}$ H NMR δ 7.64-7.55 (m, 3H), 7.39 (dd, $J=8.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.24(\mathrm{~m}, 4 \mathrm{H}), 2.44-2.22(\mathrm{~m}, 4 \mathrm{H}), 1.53-$ $1.43(\mathrm{~m}, 1 \mathrm{H}), 1.32-1.21(\mathrm{~m}, 2 \mathrm{H}), 0.92(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 202.7,148.9,137.2,134.8$, $130.5,130.2,128.5,127.6,127.3,127.1,123.5,70.1,41.5,20.7,18.8,14.1 ; v_{\max }(\mathrm{KBr}) 1696 \mathrm{~cm}^{-1}$ $(\mathrm{C}=\mathrm{O})$. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{OS}: \mathrm{C}, 76.55$; H, 6.42; Found: C, 76.23; H, 6.72.
5-Methyl-3-phenyl-3-propyl-1-benzothiophen-2(3H)-one (17g). White microcrystals from ethyl acetate / hexanes (16%), mp 64-65 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 7.33-7.20(\mathrm{~m}, 6 \mathrm{H}), 7.15-7.13(\mathrm{~m}, 1 \mathrm{H})$, $6.86(\mathrm{~s}, 1 \mathrm{H}), 2.65-2.55(\mathrm{~m}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 2.17-2.07(\mathrm{~m}, 1 \mathrm{H}), 1.35-1.22(\mathrm{~m}, 1 \mathrm{H}), 1.07-0.94$ $(\mathrm{m}, 1 \mathrm{H}), 0.89(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 208.0,141.1,136.5,132.3,129.3,128.6,127.6$, 126.9, 126.3, 122.7, 67.7, 40.6, 21.3, 17.7, 14.3; $v_{\max }(\mathrm{KBr}) 1711 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O})$. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{OS}: \mathrm{C}, 76.55$; H, 6.42; Found: C, 76.43; H, 6.68.

Supplementary Information Available: Crystallographic data for compound 17c. This material is available free of charge via the Internet at http://www.arkat-usa.org/. See Page 147

References

1. (a) Gutsche, C. D. Org. Reactions 1954, 8, 364. (b) Smith, P. A. S.; Baer, D. R. Org. Reactions 1960, 11, 157. (c) Gutsche, C. D.; Redmore, D. Carbocyclic Ring Expansion Reactions; Academic Press: New York, 1968; Vol. 4, p 81. (d) Cowell, G. W.; Ledwith, A. Q. Rev. 1970, 24, 119. (e) Pizey, J. S. Synthetic reagents; Halsted Press: New York, 1974; Vol. 2, p 102. (f) Krow, G. R. Tetrahedron 1987, 43, 3.
2. (a) Katritzky, A. R.; Xie, L.; Toader, D.; Serdyuk, L. J. Am. Chem. Soc. 1995, 117, 12015. (b) Katritzky, A. R.; Yang, Z.; Moutou, J.-L. Tetrahedron Lett. 1995, 36, 841. (c) Katritzky, A. R.; Xie, L.; Serdyuk, L. J. Org. Chem. 1996, 61, 7564. (d) Katritzky, A. R.; Toader, D.; Xie, L. J. Org. Chem. 1996, 61, 7571.
3. Katritzky, A. R.; Ji, Y.; Fang, Y.; Prakash, I. J. Org. Chem. 2001, 66, 5613.
4. Katritzky, A. R.; Kirichenko, K.; Ji, Y.; Prakash, I. Chem. Heterocycl. Comp. (Engl. Transl.) 2002, 38, 156.
5. (a) Adam, W.; Hadjiarapoglou, L.; Peters, K.; Sauter, M. Angew. Chem., Int. Ed. 1993, 32, 735. (b) Adam, W.; Peters, K.; Sauter, M. Synthesis 1994, 111.
6. Katritzky, A. R.; Kuzmierkiewicz, W.; Rachwal, B.; Rachwal, S.; Thomson, J. J. Chem. Soc., Perkin Trans. 1 1987, 811.
7. Katritzky, A. R.; Kirichenko, K.; Ji, Y.; Steel, P. J.; Karelson, M. ARKIVOC 2003, (vi), 49.
8. (a) Kraus, G. A.; Sy, J. O. J. Org. Chem. 1989, 54, 77. (b) Hasegawa, T.; Imada, M.; Imase, Y.; Yamazaki, Y.; Yoshioka, M. J. Chem. Soc., Perkin Trans. 1 1997, 1271.
9. (a) Nicolaou, K. C.; Snyder, S. A.; Simonsen, K. B.; Koumbis, A. E. Angew. Chem., Int. Ed. 2000, 39, 3473. (b) Fuerst, D. E.; Stoltz, B. M.; Wood, J. L. Org. Lett. 2000, 2, 3521.
10. Tegeler, J. J.; Diamond, C. J.; Wilker, J. C.; Kruse, H.; Spaulding, T. C.; Helsley, G. C. J. Pharm. Sci. 1985, 74, 44.
11. Weston, A. W.; Brownell, W. B. J. Am. Chem. Soc. 1952, 74, 653.
12. Lavielle, G.; Lepagnol, J. US Pat. 4859 700, 1989; Chem. Abstr. 1989, 110, 75296.
13. Löwenbein, A.; Simonis, H.; Lang, H.; Jacobus, W. Chem. Ber. 1924, 57, 2040.
14. Das Gupta, A. K.; Chatterje, R. M. J. Chem. Soc., Perkin Trans. 1 1973, 1802.
15. (a) Parris, C. L.; Dowbenko, R.; Smith, R. V.; Jacobson, N. A.; Pearce, J. W.; Christenson, R. M. J. Org. Chem. 1962, 27, 455. (b) Yonezawa, N.; Hino, T.; Kinuno, T.; Matsuki, T.; Ikeda, T. Synth. Commun. 1999, 29, 1687. (c) Nowakowska, E. M.; Zaleski, J.; Kyzioł, J. B. Pol. J. Chem. 2001, 75, 419.
16. (a) Zaugg, H. E.; DeNet, R. W. J. Org. Chem. 1964, 29, 2769. (b) Oude-Alink, B. A. M.; Chan, A. W. K.; Gutsche, C. D. J. Org. Chem. 1973, 38, 1993. (c) Zaugg, H. E.; Leonard, J. E.; DeNet, R. W.; Arendsen, D. L. J. Heterocycl. Chem. 1974, 11, 797.
17. (a) Tamura, Y.; Bayomi, S. M.; Mukai, C.; Ikeda, M.; Murase, M.; Kise, M. Tetrahedron Lett. 1980, 21, 533. (b) Tamura, Y.; Bayomi, S. M. M.; Mukai, C.; Ikeda, M.; Kise, M. J. Chem. Soc., Perkin Trans. 1 1980, 2830.
18. Beck, J. R. J. Heterocycl. Chem. 1978, 15, 513.
19. Cabiddu, M. G.; Cabiddu, S.; Fattuoni, C.; Floris, C.; Gelli, G.; Melis, S. Synthesis 1993, 41.
20. Regitz, M. Chem. Ber. 1965, 98, 36.
21. (a) Matskanova, M. A.; Vanags, G. Dokl. Akad. Nauk SSSR 1960, 132, 615. (b) Shenoy, V. U.; Patel, V. P.; Seshadri, S. Dyes and Pigments 1989, 11, 37.
22. (a) Hudson, A. T.; Pether, M. J. J. Chem. Res. (S) 1983, 56. (b) Gabbutt, C. D.; Hepworth, J. D.; Heron, B. M.; Kanjia, M. Tetrahedron 1994, 50, 827.
23. Sheldrick, G. M. SADABS, University of Göttingen, Germany, 1998.
24. Sheldrick, G. M. Acta Crystallogr., Sect. A 1990, 46, 467.
25. Sheldrick, G. M. SHELXTL; Bruker Analytical X-ray Systems, 1997.
26. (a) Newman, M. S.; Karnes, H. A. J. Org. Chem. 1966, 31, 3980. (b) Kwart, H.; Evans, E. R. J. Org. Chem. 1966, 31, 410.
27. Brieaddy, L. E.; Hodgson, G. L., Jr. Int. Appl WO 9418184, 1994; Chem. Abstr. 1995, 122, 314587.
28. Padwa, A.; Au, A.; Owens, W. J. Org. Chem. 1978, 43, 303.
29. Fürstner, A.; Jumbam, D. N. Tetrahedron 1992, 48, 5991.

[^0]: § e-mail: p.steel@chem.canterbury.ac.nz.

