Synthesis of 4-aryl-2-methyl-1,2,3,4-tetrahydroisoquinolines via Pummerer-type cyclization of N -(arylmethyl)- N -methyl-2-aryl-2(phenylsulfinyl) acetamides

Jun Toda, Akihiro Sonobe, Tsuyoshi Ichikawa, Toshiaki Saitoh, Yoshie Horiguchi and Takehiro Sano*

Showa Pharmaceutical University, 3-3165, Higashi-tamagawagakuen, Machida, Tokyo 1948543, Japan
E-mail: t-sano@ac.shoyaku.ac.jp
(received 12 Jan 00; accepted 25 Apr 00; published on the web 03 May 00)
DOI: http://dx.doi.org/10.3998/ark.5550190.0001.211

Abstract

The synthesis of 4-aryl-2-methyl-1,2,3,4-tetrahydroisoquinolines (16) was achieved via the intramolecular cyclization of N -(arylmethyl)- N -methyl-2-aryl-2-(phenylsulfinyl)acetamides (10) utilizing the Pummerer reaction as key step. Trifuoroacetic anhydride induced cyclization of the sulfoxides 10 at ambient temperature readily provided 4-aryl-2-methyl-4-(phenylsulfanyl)-1,2,3,4-tetrahydroisoquinolin-3-ones (11) in almost quantitative yield. Subsequent reductive removal of the phenylsulfanyl group from 11 with $\mathrm{NaBH}_{4}-\mathrm{NiCl}_{2}$ followed by the reduction of the lactam function of the resulting 4-aryl-2-methyl-1,2,3,4-tetrahydroisoquinolin-3-ones (15) furnished the title products 16 in excellent yields. This conversion offers a total synthesis of (\pm)cherylline 16 g , an amaryllidaceae alkaloid.

Keywords: Tetrahydroisoquinolines, Pummerer reaction

Introduction

It is well known that the in situ formed thionium ion generated under acidic conditions from an α-sulfinylacyl precursor (Pummerer reaction) is a particularly powerful electrophilic group reacting efficiently with nucleophilic carbon species such as alkenes, aromatics and enol ethers. This reaction was successfully applied for the synthesis of various carbocycles and heterocycles. ${ }^{1}$ Ishibashi et al. widely explored the reaction and used it as the key strategy for the synthesis of nitrogen heterocycles such as oxyindoles, ${ }^{2}$ 3-oxo-1,2,3,4-tetrahydroisoquinolines, ${ }^{3}$ 1,3,4,5-tetrahydro-2H-3-benzazepin-2-one, ${ }^{4}$ and for the synthesis of alkaloids such as erythrinan ${ }^{5}$ and cephalotaxine. ${ }^{6}$

Scheme 1

In this paper we show that the intramolecular cyclization of N-benzyl- N-methyl-2-aryl-2(phenylsulfinyl)acetamides provides a convenient method for the construction of the 4 -aryl-1,2,3,4-tetrahydroisoquinoline ring system, a physiologically interesting class of compounds ${ }^{7}$ including (\pm)-cherylline, an amaryllidaceae alkaloid ${ }^{8}$ (Scheme 1).

Results and Discussion

The N-(arylmethyl)- N-methyl-2-aryl-2-(phenylsulfinyl)acetamides (10a-d) were prepared as follows (Scheme 2). Treatment of 2-bromophenylacetic acid (3) with potassium benzenethiolate in eyhanol under reflux provided 2-(phenylsulfanyl)acetic acid (4). The acid chloride prepared from 4 was condensed with the amines $2 a-c$ giving rise to the corresponding amides $9 a-c$.

Scheme 2

The preparation of (\pm)-2-(4-benzyloxyphenyl)-2-(phenylsulfanyl)acetic acid (8) started from (\pm)-2-(4-hydroxyphenyl)-2-hydroxyacetic acid (5) (Scheme 2). Alkylation of 5 with benzyl chloride in the presence of potassium carbonate and tetraethylammonium bromide (TEAB) in refluxing acetone gave benzyl (\pm)-2-(4-benzyloxyphenyl)-2-hydroxyacetate (6). Bromination of 6 with phosphorus tribromide in dry diethyl ether yielded benzyl (\pm)-2-(4-benzyloxyphenyl)-2bromoacetate (7). Treatment of 7 with potassium benzenethiolate in dioxane under reflux afforded 8 ; the corresponding acid chloride was condensed with the amine 2 c and afforded the amide 9 d . The ${ }^{1} \mathrm{H}$ NMR spectra of $9 \mathrm{a}-\mathrm{d}$ indicated a mixture of E / Z isomers with respect to the rotational isomerism of the amide group. Oxidation of the sulfides $9 \mathrm{a}-\mathrm{d}$ with sodium metaperiodate in aqueous methanol or acetone afforded a diastereomeric mixture of sulfoxides $10 \mathrm{a}-\mathrm{d}$, respectively.
When a solution of the sulfoxide 10 b in benzene was treated with TFAA at room temperature for 10 min , the expected cyclization was readily induced, and 6,7-dimethoxy-2-methyl-4-phenyl-4-(phenylsulfanyl)-1,2,3,4-tetrahydoisoquinolin-3-one (11b) was formed (Scheme 3). Cyclization of 10 c also occurred under similar conditions and furnished 11c.
OOcking the alkoxy groups enhancing the nucleophilicity of the phenyl ring of the N benzylacetamide moiety, and on treatment with TFAA in benzene at room temperature the tetrahydoisoquinolin-3-one 11a was obtained in only 20% yield together with non-cyclized products 12 and 13. Addition of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}^{9}$ to a benzene solution of 10 a containing TFAA considerably improved the cyclization reaction and increased the yield of 11a at the expense of the side products 12 and 13 . On the contrary, the sulfoxide 10d bearing a benzyloxy group in two benzene rings, when treated with TFAA in benzene at room temperature rapidly decomposed to give a complex mixture, and no products could be isolated from this reaction mixture. Previously, we noticed that this Pummerer-type cyclization in some cases ${ }^{9 a}$ was strongly dependent on the solvent used. Therefore, we carried out the reaction in several solvents and found that tetrahydrofuran (THF) dramatically improved the cyclization reaction. Thus, reaction of 10d with TFAA in THF induced the expected cyclization at room temperature leading to its completion within 10 min and furnishing 11d. Similarly, the reaction of 10 c in THF afforded 11 c , although the cyclization in this solvent was slower (300 min) compared with the reaction carried out in benzene as described above. These results demonstrate that the cyclization of 10 readily proceeds under mild conditions. The putative reaction intermediate, the sulfonium ion 14 , features the $\mathrm{C}=\mathrm{S}$ bond in conjugation with the 2-aryl group. This is considered to favor the formation of the electrophilic intermediate 14, and, in turn, facilitates the intramolecular cyclization reaction.
We achieved the conversion of the 4-aryl-2-methyl-4-(phenylsulfanyl)-1,2,3,4-tetrahydroisoquinolin-3-ones 11 into 4-aryl-2-methyl-1,2,3,4-tetrahydroisoquinolines 16 by conventional reductive steps (Scheme 3).
Reductive removal of the phenylsulfanyl group of $11 \mathrm{a}-\mathrm{b}$ occurred on treatment with $\mathrm{NaBH}_{4}-\mathrm{NiCl}_{2}$ in methanol-THF to afford 2-methyl-4-phenyl-1,2,3,4-tetrahydroisoquinolin-3ones $15 \mathrm{a}-\mathrm{b}$. Subsequent reduction of $15 \mathrm{a}-\mathrm{b}$ with lithium aluminum hydride (LAH) furnished the
corresponding 2-methyl-4-aryl-1,2,3,4-tetrahydroisoquinolines 16a-b

14

12

13

| 11 R1 R2 R3
 a H H H
 b OMe OMe H
 c OMe OBn H
 d OMe OBn OBn |
| :--- | :--- | :--- | :--- |

16	R1	R2	R3
a	H	H	H
b	OMe	OMe	H
c	OMe	OBn	H
d	OMe	OBn	OBn
e	OMe	OH	H
f	OMe	OH	OBn
g	OMe	OH	OH
\square	h	OMe	OAc

Scheme 3

Desulfurization of 7-benzyloxy-6-methoxy-4-phenyl-4-(phenylsulfanyl)-1,2,3,4-tetrahydroisoquinolin-3-one 11c by treatment with $\mathrm{NaBH}_{4}-\mathrm{NiCl}_{2}$ in MeOH-THF also caused concomitant debenzylation and afforded 7-hydroxy-6-methoxy-2-methyl-4-phenyl-1,2,3,4-tetrahydroisoquinolin-3-one (15e). The 7-benzyloxy derivative 15 c was prepared by benzylation of 15 e , which, in turn, upon reduction with LAH provided the tetrahydroisoquinoline derivative 16c. Reductive desulfurization of 11d with $\mathrm{NaBH}_{4}-\mathrm{NiCl}_{2}$ proceeded with concomitant debenzylation and gave two products, 4-(4-benzyloxyphenyl)-7-hydroxy-6-methoxy-2-methyl-

1,2,3,4-tetrahydroisoquinolin-3-one (15f) and 7-hydroxy-4-(4-hydroxyphenyl)-6-methoxy-2-methyl-1,2,3,4-tetrahydroisoquinolin-3-one (15g). Sequential treatment of 11d with $\mathrm{NaBH}_{4}-\mathrm{NiCl}_{2}$ and conc. HCl produced 15 g as sole product. Reduction of 15 g with LAH in diethyl ether followed by acetylation of the product yielded (\pm)-cherylline diacetate 16 h , though in rather low yield (12%). This poor result may be due to the extreme insolubility of 15 g in the solvent used. This difficulty was overcome as follows (Scheme 4). We incidentally found that treatment of 11c with LAH in THF caused not only the reduction of the lactam carbonyl group but also the reductive removal of the phenylsulfanyl group to give 16 c in one step. Hydrogenation of 16 c with $10 \% \mathrm{Pd}-\mathrm{C}$ caused the removal of the benzyl group to afford $(\pm)-4$ 'dehydroxycherylline 16e.

Scheme 4

Reduction of 11d with LAH yielded two products, dibenzyl cherylline 16d and dibenzyl 4phenylthiocherylline 17 . On the other hand, treatment of 11d with aluminum hydride selectively reduced the lactam carbonyl group and produced 17. Reductive desulfurization of 17 with $\mathrm{NaBH}_{4}-\mathrm{NiCl}_{2}$ afforded 16d, together with the partially debenzylated product 16f. Dibenzyl cherylline 16 d was resistant to debenzylation under hydrogenolytic conditions. For example, hydrogenation of 16 d over $10 \% \mathrm{Pd}-\mathrm{C}$ in MeOH failed, while hydrogenation over PtO_{2} in acetic acid selectively caused debenzylation of the 7-benzyloxy group to afford 4'-O-benzyl cherylline 16 f . Hydrolysis of either 16 d or 16 f with conc. HCl furnished (\pm)-cherylline 16 g in good yields. In summary, the synthesis of (\pm)-cherylline 16 g starting from the amine 2 c was achieved in five steps with a total yield of about 35%.
In conclusion, we present a convenient synthesis of 4-aryl-1,2,3,4-tetrahydroisoquinolines using the Pummerer reaction as a key step. The acid-induced intramolecular cyclization under $\mathrm{C}-\mathrm{C}$ bond formation between the α-C of 2-aryl-2-(phenylsulfinyl)acetamides and the ortho-C of the attached N-arylmethyl group effectively proceeded under extremely mild conditions. This
method is applicable for the construction of 4-aryl-1,2,3,4-tetrahydroisoquinoline ring systems ${ }^{10}$ bearing an acid labile group such as the benzyloxy substituent, and it offers a useful alternative synthesis of (\pm)-cherylline 16 g in addition to the many previously reported ones. ${ }^{11}$

Experimental Section

General Procedures. Melting points were taken on a Yanagimoto SP-M1 hot-stage melting point apparatus. Thin layer chromatography (TLC) was performed on Merck precoated Silica gel $60 \mathrm{~F}_{254}$ plates (Merck). Column chromatography was carried out with silica gel (Wakogel C200). Medium pressure liquid chromatography (MPLC) was performed on Kusano CIG prepacked column. Spectral data were obtained with the following instruments: JASCO FT/IR5000 spectrometer (IR), Hitachi U-3200 spectrophotometer (UV), JEOL JNM-EX90 (${ }^{1} \mathrm{H}$ NMR $90 \mathrm{MHz},{ }^{13} \mathrm{C}$ NMR 22.5 MHz) or JEOL JMS-AL $300\left({ }^{1} \mathrm{H}\right.$ NMR $300 \mathrm{MHz},{ }^{13} \mathrm{C}$ NMR 75.0 MHz$)$, JEOL JMS-AX 505H (Low resolution LRMS and high resolution HRMS at 70 eV (EI-MS) or at 270 eV (CI-MS, reactant gas isobutane) using direct or GC-MS inlet systems.
The organic extract from each reaction mixture was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ or MgSO_{4} before concentration in vacuo. N-Arylmethyl- N-methylamines $2 \mathrm{a}-\mathrm{c}$ were prepared according to the known method by condensation of arylaldehydes $1 \mathrm{a}-\mathrm{c}$ with methylamine followed by reduction with $\mathrm{NaBH}_{4}{ }^{12}$

2-Phenyl-2-(phenylsulfanyl)acetic acid (4). A solution of 2-bromo-2-phenylacetic acid (3) $(9.7 \mathrm{~g}, 45.1 \mathrm{mmol})$ and $\mathrm{KOH}(3.3 \mathrm{~g}, 58.9 \mathrm{mmol})$ in $\mathrm{EtOH}(75 \mathrm{~mL})$ was slowly added to a solution of $\mathrm{KOH}(3.3 \mathrm{~g}, 58.9 \mathrm{mmol})$ and benzenethiol ($5.0 \mathrm{~g}, 45.0 \mathrm{mmol}$) in EtOH (75 mL) at rt under argon atmosphere. The mixture was refluxed under stirring for 4 h . After removal of inorganic precipitates by filtration, the filtrate was concentrated in vacuo. The residue was acidified with $5 \% \mathrm{HCl}$ and extracted with CHCl_{3}. Recrystallization of the residual solid from $\mathrm{CHCl}_{3}-\mathrm{Et}_{2} \mathrm{O}$ gave $4\left(9.1 \mathrm{~g}, 83 \%\right.$) as pale yellow plates, mp $100-103{ }^{\circ} \mathrm{C}$ (lit. ${ }^{13} \mathrm{mp} 102-103{ }^{\circ} \mathrm{C}$); IR (KBr): 1694, $1580 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($90 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.89(\mathrm{~s}, 1 \mathrm{H}), 6.02(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.0-7.8$ (m, 10H); LRMS m/z $244\left(\mathrm{M}^{+}\right), 199$ (base peak). Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 68.83 ; \mathrm{H}, 4.95$. Found: C, 68.43; H, 5.10.
Benzyl 2-(4-benzyloxyphenyl)-2-hydroxyacetate (6). A solution of (\pm)-4-hydroxymandelic acid (5) ($10.0 \mathrm{~g}, 53.8 \mathrm{mmol}$), benzyl chloride ($20 \mathrm{~g}, 157 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(22 \mathrm{~g}, 159 \mathrm{mmol})$, and TEAB ($2.3 \mathrm{~g}, 11.0 \mathrm{mmol}$) in acetone (150 mL) was refluxed under stirring for 24 h . After removal of inorganic precipitates by filtration, the filtrate was concentrated in vacuo. The residual oil was chromatographed, eluting with ethyl acetate/hexane (1:3) to give $6(12.9 \mathrm{~g}, 68 \%)$ as colorless needles from ethyl acetate, mp $100-102{ }^{\circ} \mathrm{C}$. Anal. Calcd. for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O}_{4}$: $\mathrm{C}, 75.84 ; \mathrm{H}$, 5.79. Found: C, 75.62; H, 5.92.

Benzyl 2-(4-benzyloxyphenyl)-2-bromoacetate (7). Phosphorous tribromide ($1.5 \mathrm{~mL}, 5.4 \mathrm{~g}$, $20.3 \mathrm{mmol})$ was added to a solution of $6(14.0 \mathrm{~g}, 40.2 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$ under ice-cooling
and the mixture was stirred at rt for 2 h . Flash chromatography of the reaction mixture over SiO_{2} with $\mathrm{Et}_{2} \mathrm{O}$ gave an oily material. This was further chromatographed, eluting with ethyl acetate/hexane (1:20) to give $7(16.0 \mathrm{~g}, 97 \%)$ as colorless prisms from $\mathrm{CHCl}_{3}-\mathrm{Et}_{2} \mathrm{O}, \mathrm{mp}$ $51-54{ }^{\circ} \mathrm{C}$; IR (KBr): 1744, 1607, $1512 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($90 \mathrm{MHz}, \mathrm{CDC}_{3}$): $\delta 5.37(1 \mathrm{H}, \mathrm{s}), 5.06$ $(2 \mathrm{H}, \mathrm{s}), 5.20(2 \mathrm{H}, \mathrm{s}), 6.9-7.5(14 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR ($22.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 46.4,67.7,69.8,114.9$, $127.2,127.7,127.9,128.2,128.4,130.0,134.9,136.4,159.3,168.0 ;$ LRMS m/z $410\left(\mathrm{M}^{+}\right), 91$ (base peak); HRMS Calcd. for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{O}_{3} \mathrm{Br}\left(\mathrm{M}^{+}\right): 410.0517$. Found 410.0477.
2-(4-Benzyloxyphenyl]-2-(phenylsulfanyl)acetic acid (8). A solution of 7 ($13.0 \mathrm{~g}, 31.6 \mathrm{mmol}$) and $\mathrm{KOH}(2.7 \mathrm{~g}, 48.2 \mathrm{mmol})$ in dioxane $(100 \mathrm{~mL})$ was added to a solution of KOH and benzenethiol ($3.25 \mathrm{~mL}, 3.5 \mathrm{~g}, 31.6 \mathrm{mmol}$) in dioxane (200 mL) at rt under argon atmosphere, and the mixture was refluxed for 3 h . After removal of inorganic precipitates by filtration, the filtrate was concentrated in vacuo, and the residue was diluted with $5 \% \mathrm{HCl}$ and extracted with CHCl_{3}. The residual oil was chromatographed, eluting with ethyl acetate to give $8(11.1 \mathrm{~g}, 99 \%)$ as colorless needles from $\mathrm{Et}_{2} \mathrm{O}$-hexane, $\mathrm{mp} 133-136{ }^{\circ} \mathrm{C}$; IR (KBr): 1707, 1690, 1607, $1510 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($90 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.44(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 4.86(1 \mathrm{H}, \mathrm{s}), 5.05(2 \mathrm{H}, \mathrm{s}), 6.8-7.4(14 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR ($22.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 55.6,70.1,115.1,127.2,127.4,128.0,128.1,128.6,129.1,129.8$, 132.6, 133.5, 136.7, 159.0, 176.3; LRMS m/z $350\left(\mathrm{M}^{+}\right)$, 91 (base peak). Anal. Calcd. for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 71.98$; H, 5.18. Found: C, 71.92; H, 5.29.

General procedures for N-(3,4-Dimethoxybenzyl)- N-methyl-2-phenyl-2-(phenylsulfanyl) acetamide (9b)

A solution of $8(6.5 \mathrm{~g}, 26.6 \mathrm{mmol})$ and oxalyl chloride ($16.9 \mathrm{~g}, 132.3 \mathrm{mmol}$) was stirred at rt for 2 h . Removal of excess oxalyl chloride by repeated evaporation under reduced pressure gave an oily material. To a solution of this chloride in $\mathrm{CHCl}_{3}(50 \mathrm{~mL})$ a solution of the amine $2 \mathrm{~b}^{14}(2.7 \mathrm{~g}$, $26.7 \mathrm{mmol})$ and triethylamine $(4.0 \mathrm{~g}, 22.1 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(50 \mathrm{~mL})$ was slowly added under icecooling, and the mixture was stirred at rt for 3 h . The residual oil was chromatographed eluting with $\mathrm{CHCl}_{3} /$ benzene (1:2) to give $9 \mathrm{~b}(5.5 \mathrm{~g}, 57 \%)$ as a yellow gum: IR (neat): $1647,1516 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($90 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.83$, 2.94 (total 3 H , each s), 3.70, 3.75, 3.85 (total 6 H , each s), 4.41, 4.68 (total $2 \mathrm{H}, \mathrm{d}, J=15 \mathrm{~Hz}$), $5.11,5.14$ (total 1 H , each s), $6.4-6.8(3 \mathrm{H}, \mathrm{m}), 7.2-7.3(10 \mathrm{H}$, m); LRMS $m / z 407\left(\mathrm{M}^{+}\right)$, 298 (base peak); HRMS Calcd. for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{NO}_{3}\left(\mathrm{M}^{+}\right): 407.1555$, found 407.1592.
N-Benzyl- N-methyl-2-phenyl-2-(phenylsulfanyl)acetamide (9a). From 2a (7 g, 57.8 mmol) and 8 ($14.2 \mathrm{~g}, 40.5 \mathrm{mmol}$); column chromatography (ethyl acetate/hexane 1:9) gave 9a (15.8 g, 79%) as a yellowish gum: IR (neat): $1646 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($90 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.82,2.96$ (total 3 H , each s), 4.49, 4.55 (total 1 H , each d, $J=15 \mathrm{~Hz}$), 5.04, 5.16 (total 1H, each s), 6.9-7.6 (15H, $\mathrm{m})$; LRCIMS $m / z 348\left(\mathrm{M}+\mathrm{H}^{+}\right)$; HRMS Calcd. for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{NOS}\left(\mathrm{M}^{+}\right) 347.1344$, found 347.1354. N -(3-Benzyloxy-4-methoxybenzyl)- N -methyl-2-phenyl-2-(phenylsulfanyl)acetamide (9c). From 2c ($4.0 \mathrm{~g}, 15.5 \mathrm{mmol}$) and $4(5.7 \mathrm{~g}, 23.4 \mathrm{mmol})$; column chromatography (ethyl acetate/hexane 3:4) gave $9 \mathrm{c}(6.5 \mathrm{~g}, 87 \%)$ as colorless prisms from ethyl acetate-hexane, mp $116-119{ }^{\circ} \mathrm{C}$; IR (KBr): 1628, $1514 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($90 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.75$, 2.84 (total 3H,
each s), 3.84, 3.86 (total 3 H , each s), 4.40, 4.34, 4.60 (total 2 H , each d, $J=15 \mathrm{~Hz}$), 4.95, 5.00 (total 2 H , each s), $5.06,5.12$ (total 1 H , each s), $6.4-6.9(3 \mathrm{H}, \mathrm{m}), 7.1-7.4(15 \mathrm{H}, \mathrm{m}) ;$ LRMS m / z $483\left(\mathrm{M}^{+}\right), 374$ (base peak).
\boldsymbol{N}-(3-Benzyloxy-4-methoxybenzyl)- N -methyl-2-(4-benzyloxyphenyl)-2-(phenylsulfanyl) acetamide (9d). From 2c ($7.0 \mathrm{~g}, 27.2 \mathrm{mmol}$) and $8(11.3 \mathrm{~g}, 32.3 \mathrm{mmol})$; column chromatography (ethyl acetate/hexane 7:10) gave $9 \mathrm{~d}(14.7 \mathrm{~g}, 92 \%$) as pale yellow gum: IR (neat): 1642, 1607, $1512 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($90 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.75,2.84$ (total 3 H , each s, 3.84, 3.86 (total 3 H , each s), 4.33, 4.40, 4.59 (total 2H, d, $J=15 \mathrm{~Hz}$), 4.9-5.1 (5H, m), 6.4-7.4 (22H, m); LRMS m/z 590 $\left(\mathrm{M}^{+}\right), 480$ (base peak).

General procedures for N-(3,4-Dimethoxybenzyl)- N-methyl-2-phenyl-2-(phenylsulfinyl) acetamide (10b)

A solution of $9 \mathrm{~b}(4.0 \mathrm{~g}, 9.83 \mathrm{mmol})$ and $\mathrm{NaIO}_{4}(3.2 \mathrm{~g}, 15.0 \mathrm{mmol})$ in $\mathrm{MeOH}(50 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}$ (30 mL) was heated under reflux for 1.5 h . After removal of inorganic precipitates by filtration, the filtrate was concentrated in vacuo. The residue was extracted with CHCl_{3} and washed with brine. The product was chromatographed, eluting with $\mathrm{CHCl}_{3} /$ benzene (1:2) to give 10 b (3.0 g , 72%) as colorless needles from $\mathrm{CHCl}_{3}-\mathrm{Et}_{2} \mathrm{O}, \mathrm{mp} 161-164{ }^{\circ} \mathrm{C}$; IR (KBr): $1631,1516,1026 \mathrm{~cm}^{-1}$; UV (EtOH, nm, ε): 233 (11400), 276 (4200); ${ }^{1} \mathrm{H}$ NMR ($90 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.80,2.98$ (total 3H, each s), 3.77, 3.78, 3.84, 3.87 (total 6 H , each s), $3.6-4.8(3 \mathrm{H}, \mathrm{m}), 6.5-7.5(13 \mathrm{H}, \mathrm{m})$; LRMS m / z 298 (M ${ }^{+}$- SOPh), 151 (base peak).
\boldsymbol{N}-Benzyl- \boldsymbol{N}-methyl-2-phenyl-2-(phenylsulfinyl)acetamide (10a). From 9a (15 g, 43.1 mmol); column chromatography (ethyl acetate/hexane 1:2) gave 10a (15.4 g, 98\%) as a yellow gum: IR (neat): $1637 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($90 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.59,2.80,3.00$ (total 3 H , each s), 3.8-5.0 $(3 \mathrm{H}$, m), 6.4-8.0 (15H, m); LRFABMS m/z $364\left(\mathrm{M}+\mathrm{H}^{+}\right)$; HRFABMS Calcd. for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{NO}_{2} \mathrm{~S}(\mathrm{M}+$ H^{+}) 364.1372 , found 364.1355 .
N-(3-Benzyloxy-4-methoxybenzyl)- N-methyl-2-phenyl-2-(phenylsulfinyl)acetamide (10c). From $9 \mathrm{c}(4.0 \mathrm{~g}, 8.2 \mathrm{mmol})$; column chromatography (ethyl acetate/hexane 1: 2) gave $10 \mathrm{c}(3.0 \mathrm{~g}, 72 \%)$ as colorless plates from ethyl acetate-hexane, mp 130-132 ${ }^{\circ} \mathrm{C}$; IR (KBr): $1638,1516,1046 \mathrm{~cm}^{-1}$; UV (EtOH, nm, ع): $275 \mathrm{~nm}(6600) ;{ }^{1} \mathrm{H}$ NMR ($90 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.71,2.87$ (total 3 H , each s), 3.84, 3.87 (total 3 H , each s), 4.4-5.1 ($5 \mathrm{H}, \mathrm{m}$), 6.6-7.5 ($8 \mathrm{H}, \mathrm{m}$); LRMS m/z 374 ($\mathrm{M}^{+}-\mathrm{SOPh}$), 91 (base peak).
N-(3-Benzyloxy-4-methoxybenzyl)- N-methyl-2-(4-benzyloxyphenyl)-2-(phenylsulfinyl)
acetamide (10d). From 9d ($10 \mathrm{~g}, 18.8 \mathrm{mmol}$); column chromatography (ethyl acetate/hexane 1:2) gave $10 \mathrm{~d}(9.0 \mathrm{~g}, 87 \%)$ as colorless needles from ethyl acetate-hexane, mp $78-81{ }^{\circ} \mathrm{C}$; IR (KBr): 1638, 1607, 1512, $1048 \mathrm{~cm}^{-1}$; UV (EtOH, nm, ε): 237 (23200), 275 (8500); ${ }^{1} \mathrm{H}$ NMR (90 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.71,2.87$ (total 3 H , each s), $3.84,3.86$ (total 3 H , each s), $4.4-5.2(7 \mathrm{H}, \mathrm{m})$, 6.6-7.5 (22H, m). Anal. Calcd. for $\mathrm{C}_{31} \mathrm{H}_{30} \mathrm{NO}_{5} \mathrm{~S}: \mathrm{C}, 70.43$; H, 5.72; N, 2.65. Found: C, 70.21; H, 5.56, N, 2.70.

Pummerer reaction of 10a. i) A solution of TFAA ($1.45 \mathrm{~g}, 6.9 \mathrm{mmol}$) in benzene (5 mL) was added to a solution of $10 \mathrm{a}(500 \mathrm{mg}, 1.38 \mathrm{mmol})$ in benzene $(45 \mathrm{~mL})$ at rt , and the mixture was
${ }^{\bullet}$ ARKAT USA, Inc
stirred for 20 h under argon atmosphere. After removal of the solvent in vacuo, the product was chromatographed eluting with ethyl acetate/hexane (1:9) to give 12 ($192 \mathrm{mg}, 15 \%$) and 13 ($83 \mathrm{mg}, 24 \%$). Further elution with ethyl acetate/hexane (2:5) gave 11a ($96 \mathrm{mg}, 20 \%$).
2-Methyl-4-phenyl-4-(phenylsulfanyl)-1,2,3,4-tetrahydroisoquinolin-3-one (11a). Pale yellow prisms from ether, mp 136-138 ${ }^{\circ} \mathrm{C}$; IR (KBr): $1646 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $2.95(3 \mathrm{H}, \mathrm{s}), 3.36,4.09$ (total 1 H , each d, $J=16 \mathrm{~Hz}$), 6.8-7.7 ($14 \mathrm{H}, \mathrm{m}$); ${ }^{13} \mathrm{C}$ NMR (75 MHz , CDCl_{3}): $\delta 35.1,51.8,63.4,123.8,127.0,127.3,127.4,128.0,128.1,129.0,129.2,130.6,131.2$, 131.3, 136.5, 137.6, 141.1, 168.2; LRCIMS $m / z 346\left(\mathrm{M}^{+}+\mathrm{H}\right)$. Anal. Calcd. for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{NOS}: \mathrm{C}$, 76.49; H, 5.54; N, 4.05. Found: C, 76.39; H, 5.65; N, 4.01.
\boldsymbol{N}-Benzyl- N -methyl-2-phenyl-2,2-bis(phenylsulfanyl)acetamide (12). Colorless prisms from ether, mp 148.5-150.5 ${ }^{\circ} \mathrm{C}$; IR (KBr): $1643 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.67(3 \mathrm{H}, \mathrm{s})$, $4.45(2 \mathrm{H}, \mathrm{s}), 6.7-7.7(20 \mathrm{H}, \mathrm{m})$; LRCIMS $m / z 456\left(\mathrm{M}^{+}+\mathrm{H}^{+}\right), 346$ (base peak).
N-Benzyl- N-methyl-2-oxo-2-phenylacetamide (13). ${ }^{15}$ A pale yellow gum; IR (neat): 1679, $1644 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.85,3.00$ (total 3 H , each s), 4.40, 4.74 (total 2 H , each s), 7.1-8.3 (10H, m); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 31.3$, 34.4, 49.8, 53.4, 127.7, 127.8, $128.1,128.2,128.7,128.8,128.9,129.0,129.5,129.7,134.68,134.70,133.0,133.1,134.8$, 135.7, 167.1, 167.3, 191.4; LRCIMS $m / z 254\left(\mathrm{M}^{+}+\mathrm{H}\right)$; HRMS Calcd. for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{2}\left(\mathrm{M}^{+}\right)$ 253.1101, found 253.1096.
ii) A solution of $10 \mathrm{a}(500 \mathrm{mg}, 1.38 \mathrm{mmol})$ and TFAA ($1.45 \mathrm{~g}, 6.9 \mathrm{mmol}$) in benzene (45 mL) was stirred at rt under argon atmosphere for 10 min . To this solution $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(0.59 \mathrm{~g}$, 4.15 mmol) was added and the mixture was stirred at rt for 1 h . After removal of the solvent in vacuo, the residue was extracted with CHCl_{3}. The residual oil was chromatographed eluting with ethyl acetate/hexane (1:6) to give $12(<1 \mathrm{mg})$ and $13(65 \mathrm{mg}, 19 \%)$. Further elution with ethyl acetate/hexane (1:2) gave 11a ($248 \mathrm{mg}, 52 \%$).
6,7-Dimethoxy-2-methyl-4-phenyl-4-(phenylsulfanyl)-1,2,3,4-tetrahydroisoquinolin-3-one (11b). i) In benzene: TFAA ($0.17 \mathrm{ml}, 1.18 \mathrm{mmol}$) was added to a solution of $10 \mathrm{~b}(100 \mathrm{mg}, 1.38 \mathrm{mmol})$ in benzene (7 mL) at rt under argon atmosphere, and the mixture was stirred for 10 min at the same temperature. The residual oil was chromatographed eluting with CHCl_{3}, and the eluate was further purified by MPLC with ethyl acetate to give $11 \mathrm{~b}(94 \mathrm{mg}, 98 \%)$ as pale yellow plates from ethyl acetate-hexane, $\mathrm{mp} 149-152^{\circ} \mathrm{C}$; IR (KBr): 3458, 1643, $1520 \mathrm{~cm}^{-1}$; UV (EtOH, nm, ε): 288 (4700); ${ }^{1} \mathrm{H}$ NMR ($90 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.93(3 \mathrm{H}), 3.29,4.05($ each $1 \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz}$), $3.69,3.85$ (each $3 \mathrm{H}, \mathrm{s}$), $6.30,6.55$ (each $1 \mathrm{H}, \mathrm{s}$), $7.1-7.6(10 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR ($22.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 35.1$, $51.6,55.9,63.5,105.7,112.7,123.9,127.4,128.0,128.1,129.0,129.2,131.4,136.6,141.2$, 148.4, 148.6, 168.1; LRCIMS $m / z 407\left(\mathrm{M}^{+}+\mathrm{H}\right.$), 57 (base peak); HRMS Calcd. for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{~S}$ (M^{+}) 405.1396, found 405.1051.
ii) In THF: TFAA ($0.17 \mathrm{~mL}, 240 \mathrm{mg}, 1.18 \mathrm{mmol}$) was added to a solution of 10 b . $(100 \mathrm{mg}$, 1.38 mmol) in THF (7 mL) at rt under argon atmosphere, and the mixture was stirred for 5 h at the same temperature. The residual oil was chromatographed, eluting with CHCl_{3}. The eluate was further purified by MPLC with ethyl acetate/hexane (1/3) to give 11 b ($88 \mathrm{mg}, 92 \%$).

7-Benzyloxy-6-methoxy-2-methyl-4-phenyl-4-(phenylsulfanyl)-1,2,3,4-

tetrahydroisoquinolin-3-one (11c). TFAA ($2.8 \mathrm{~mL}, 4.1 \mathrm{~g}, 20.0 \mathrm{mmol}$) was added to a solution of $10 \mathrm{c}(2.0 \mathrm{~g}, 4.01 \mathrm{mmol})$ in benzene $(70 \mathrm{~mL})$ at rt under argon atmosphere, and the mixture was stirred for 1 h . The residual oil was chromatographed, eluting with $1 / 3$ ethyl acetate/hexane to give $1.89 \mathrm{~g}(99 \%)$ of 11 c as pale yellow plates from ethyl acetate-hexane: $\mathrm{mp} 137-139{ }^{\circ} \mathrm{C}$; IR (KBr): 1651, $1516 \mathrm{~cm}^{-1}$; UV (EtOH, nm, ε): 289 (4400); ${ }^{1} \mathrm{H}$ NMR ($90 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.89$ $(3 \mathrm{H}, \mathrm{s}), 3.17,3.96$ (each $1 \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz}), 3.69(3 \mathrm{H}, \mathrm{s}), 5.11(2 \mathrm{H}, \mathrm{s}), 6.30,6.66$ (each 1 H$)$, 7.0-7.6 (15H, m); ${ }^{13} \mathrm{C}$ NMR ($22.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 35.0,51.4,55.9,63.5,70.9,108.4,113.2$, $123.8,127.2,127.4,127.9,128.0,129.0,129.2,129.7,131.3,136.6,141.1,147.5,149.1,168.0$; LRCIMS $m / z 482\left(\mathrm{M}+\mathrm{H}^{+}\right)$, 218 (base peak). Anal. Calcd. for $\mathrm{C}_{30} \mathrm{H}_{27} \mathrm{NO}_{2} \mathrm{~S}: \mathrm{C}, 74.82 ; \mathrm{H}, 5.65$; N, 2.91. Found: C, 74.57; H, 5.75; N, 3.08.
Pummerer reaction of 10d. i) In benzene: TFAA ($0.12 \mathrm{ml}, 169 \mathrm{mg}, 0.83 \mathrm{mmol}$) was added to a solution of $10 \mathrm{~d}(100 \mathrm{mg}, 0.17 \mathrm{mmol})$ in benzene $(7 \mathrm{~mL})$ at rt under argon atmosphere, and the mixture was stirred for 15 min at the same temperature. After removal of the solvent in vacuo, the residual oil was chromatographed, eluting with ethyl acetate/hexane (1:2) but gave no characterizable product.
7-Benzyloxy-4-(4-benzyloxyphenyl)-6-methoxy-2-methyl-4-(phenylsulfanyl)-1,2,3,4-tetrahydroisoquinolin-3-one (11d). ii) In THF: TFAA ($0.12 \mathrm{~mL}, 169 \mathrm{mg}, 0.83 \mathrm{mmol}$) was added to a solution of $10 \mathrm{~d}(100 \mathrm{mg}, 0.17 \mathrm{mmol})$ in THF $(7 \mathrm{~mL})$ at rt under argon atmosphere, and the mixture was stirred at the same temperature for 10 min . The residual oil was chromatographed eluting with ethyl acetate/hexane (1:2) to give $11 \mathrm{~d}(91 \mathrm{mg}, 94 \%)$ as pale yellow gum; IR (neat): 1651, 1607, $1510 \mathrm{~cm}^{-1}$; UV (EtOH, nm, ε): 284 (4700); ${ }^{1} \mathrm{H}$ NMR ($90 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.88(3 \mathrm{H}$, s), $3.18,3.95$ (each $1 \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz}$), $3.72(3 \mathrm{H}, \mathrm{s}), 5.06,5.11$ (each $2 \mathrm{H}, \mathrm{s}), 6.30,6.72$ (each 1 H , s), $6.8-7.5(19 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR ($22.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 35.1,51.5,56.0,63.0,70.1,71.0,108.5$, $111.3,114.3,123.9,127.2,127.5,127.9,128.0,128.0,128.5,129.1,129.7,130.3,131.6,133.4$, $136.5,136.7,137.0,147.5,149.1,158.1,168.1 ;$ LRMS $m / z 478$ (${ }^{+}$-SPh), 110 (base peak).
Reductive Desulfurization of 11a-c. General Procedure. To a stirred solution of 11 (a, b or c) (1 mol eq) in MeOH-THF (3:1) (100 mL) with $\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(7 \mathrm{~mol} \mathrm{eq})$ was added under icecooling and in small portions $\mathrm{NaBH}_{4}(21 \mathrm{~mol}$ eq). After the addition was complete stirring was continued at rt for 20 min . The reaction mixture was filtered and the filtrate was concentrated in vacuo. The products were purified by recrystalization or column chromatography.
2-Methyl-4-phenyl-1,2,3,4-tetrahydroisoquinoline-3-one (15a). From 11a ($1 \mathrm{~g}, 2.46 \mathrm{mmol}$); recrystalization from ether gave 15 a ($611 \mathrm{mg}, 89 \%$) as pale yellow needles, $\mathrm{mp} 119-121^{\circ} \mathrm{C}$; IR $(\mathrm{KBr}): 1625 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.09(3 \mathrm{H}, \mathrm{s}), 4.31,4.64$ (each $1 \mathrm{H}, \mathrm{d}, J=16$ $\mathrm{Hz}), 4.87(1 \mathrm{H}, \mathrm{s}), 7.1-7.4\left(9 \mathrm{H}, \mathrm{m}\right.$,) ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 34.9,52.4,52.6,125.2$, 127.0, 127.1, 127.8, 127.9, 128.5, 128.6, 131.5, 135.6, 138.9, 169.9; LRMS $m / z 237\left(\mathrm{M}^{+}\right), 179$ (base peak). Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}: \mathrm{C}, 80.98$; H, 6.37; N, 5.90. Found: C, 81.11; H, 6.53; N, 5.85.
6,7-Dimethoxy-2-methyl-4-phenyl-1,2,3,4-tetrahydroisoquinolin-3-one (15b). From 11b ($620 \mathrm{mg}, 1.53 \mathrm{mmol}$); column chromatography $\left(\mathrm{CHCl}_{3}\right)$ gave 15 b ($332 \mathrm{mg}, 73 \%$) as a yellow
${ }^{\circ}$ ARKAT USA, Inc
gum: IR (KBr): 3449, 1643, $1518 \mathrm{~cm}^{-1}$; UV (EtOH, nm, ع): 286 (2200); ${ }^{1} \mathrm{H}$ NMR (90 MHz , CDCl_{3}): $\delta 3.07(3 \mathrm{H}, \mathrm{s}), 3.80,3.90$ (each $3 \mathrm{H}, \mathrm{s}$), 4.23 , 4.64 (each $1 \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz}$), $4.77(1 \mathrm{H}, \mathrm{s})$, 6.57, 6.71 (each $1 \mathrm{H}, \mathrm{s}$), $7.1-7.3$ ($5 \mathrm{H}, \mathrm{m}$); ${ }^{13} \mathrm{C}$ NMR ($22.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 34.7,52.1,52.3,55.9$, 56.0, 108.1, 111.0, 123.3, 127.0, 127.5, 127.9, 128.5, 139.4, 148.2, 148.9, 169.7; LRMS m/z 297 (M^{+}), 297 (base peak).
7-Hydroxy-6-methoxy-2-methyl-4-phenyl-1,2,3,4-tetrahydroisoquinolin-3-one (15e). From 11c ($1.5 \mathrm{~g}, 3.12 \mathrm{mmol}$); recrystallization from ethyl acetate-hexane gave $15 \mathrm{e}(620 \mathrm{mg}, 73 \%)$ as pale yellow needles, mp $255-258{ }^{\circ} \mathrm{C}$; IR (KBr): $1611 \mathrm{~cm}^{-1}$; UV (EtOH, nm, ع): 287 (2900); ${ }^{1} \mathrm{H}$ NMR ($90 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.06(3 \mathrm{H}, \mathrm{s}), 3.81(3 \mathrm{H}, \mathrm{s}), 4.18,4.59$ (each $\left.1 \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz}\right), 4.76$ $(1 \mathrm{H}, \mathrm{s}), 5.69(1 \mathrm{H}, \mathrm{s}), 6.55,6.79$ (each $1 \mathrm{H}, \mathrm{s}), 7.0-7.3(5 \mathrm{H}, \mathrm{m})$; LRMS m/z $283\left(\mathrm{M}^{+}\right), 283$ (base peak).
7-Benzyloxy-6-methoxy-2-methyl-4-phenyl-1,2,3,4-tetrahydroisoquinolin-3-one (15c). A solution of $15 \mathrm{e}(0.5 \mathrm{~g}, 1.77 \mathrm{mmol})$, benzyl chloride ($247 \mathrm{mg}, 1.94 \mathrm{mmol}$), and $\mathrm{K}_{2} \mathrm{CO}_{3}$ (244 mg , $1.77 \mathrm{mmol})$ in acetone (100 mL) was refluxed for 26 h . After removal of inorganic precipitates by filtration, the filtrate was concentrated in vacuo. The residue was extracted with CHCl_{3}, and the extract was washed with $10 \% \mathrm{NaOH}$ and brine. Recrystallization of the residual solid from ethyl acetate-hexane gave $15 \mathrm{c}(350 \mathrm{mg}, 53 \%)$ as colorless needles, mp $123-126^{\circ} \mathrm{C}$; IR (KBr): $1651,1516 \mathrm{~cm}^{-1}$; UV (EtOH, nm, ε): 285 (4100); ${ }^{1} \mathrm{H}$ NMR ($90 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.02(3 \mathrm{H}, \mathrm{s})$, $3.77(3 \mathrm{H}, \mathrm{s}), 4.14,4.56($ each $1 \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz}), 4.75(1 \mathrm{H}, \mathrm{s}), 5.14(2 \mathrm{H}, \mathrm{s}), 6.58,6.73$ (each 1 H , s), $7.0-7.5(10 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR ($22.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 34.7,52.1,52.1,56.0,71.3,111.0,111.5$, $123.3,127.0,127.2,127.8,128.2,128.5,136.9,139.4,147.3,149.6,169.6$; LRMS $m / z 373\left(\mathrm{M}^{+}\right)$, 91 (base peak). Anal. Calcd. for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{NO}_{3}$: C, 77.19 ; H, 6.21; N, 3.75. Found: C, 76.30; H, 6.28; N, 3.68.

Reductive Desulfurization of 11d. i) To a stirred solution of $11 \mathrm{~d}(0.7 \mathrm{~g}, 1.19 \mathrm{mmol})$ and $\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(2.0 \mathrm{~g}, 8.40 \mathrm{mmol})$ in $\mathrm{MeOH}-\mathrm{THF}(3: 1)(20 \mathrm{~mL})$ was added in small portions and under ice-cooling $\mathrm{NaBH}_{4}(1.0 \mathrm{~g}, 26.4 \mathrm{mmol})$. After the addition was complete stirring was continued at rt for 1 h . After removal of inorganic precipitates by filtration, the filtrate was concentrated in vacuo. The product was chromatographed eluting with CHCl_{3}, and the eluate was further purified by preparative TLC developed with $\mathrm{CHCl}_{3} / \mathrm{MeOH}(9.5: 10)$ to give 15 f ($120 \mathrm{mg}, 26 \%$) and 15 g ($108 \mathrm{mg}, 30 \%$).
4-(4-Benzyloxyphenyl)-7-hydroxy-6-methoxy-2-methyl-1,2,3,4-tetrahydroisoquino-lin-3-
one (15f). Colorless needles from $\mathrm{CHCl}_{3}-\mathrm{Et}_{2} \mathrm{O}$, mp $245-247{ }^{\circ} \mathrm{C}$; IR (KBr): $1615,1510 \mathrm{~cm}^{-1}$; UV (EtOH, nm, ε): 229 (10000), 284 (3000); ${ }^{1} \mathrm{H}$ NMR ($90 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.05(3 \mathrm{H}, \mathrm{s}), 3.82(3 \mathrm{H}$, s), $4.17,4.57($ each $1 \mathrm{H}, \mathrm{d}), 4.70(1 \mathrm{H}, \mathrm{s}), 5.01(2 \mathrm{H}, \mathrm{s}), 5.64(1 \mathrm{H}, \mathrm{s}), 6.54,6.78($ each $1 \mathrm{H}, \mathrm{s}), 6.86$, 7.06 (each $2 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}$), 7.2-7.5 (5H, m); LRMS m/z 389 (M^{+}), 91 (base peak); HRMS Calcd. for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{NO}_{4}\left(\mathrm{M}^{+}\right): 389.1624$, found 389.1612.
7-Hydroxy-4-(4-hydroxyphenyl)-6-methoxy-2-methyl-1,2,3,4-tetrahydroisoquinolin-3-one (15g).Colorless needles from $\mathrm{CHCl}_{3}-\mathrm{MeOH}, \mathrm{mp} 275-277{ }^{\circ} \mathrm{C}$; IR (KBr): 3322, 1601, $1512 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (pyridine- d_{5}): $\delta 3.00(3 \mathrm{H}, \mathrm{s}), 3.67(3 \mathrm{H}, \mathrm{s}), 4.15,4.60($ each $1 \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz}), 5.01(1 \mathrm{H}$, s), $6.85,7.13$ (each $1 \mathrm{H}, \mathrm{s}$), 7.13, 7.40 (each $2 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}$); LRMS $m / z 299$ (M^{+}, base peak).

Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{4} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 66.19$; H, 5.56; N, 4.55. Found: C, 66.80; H, 5.86; N, 4.54.
ii) $11 \mathrm{~d}(0.5 \mathrm{~g}, 0.87 \mathrm{mmol})$ was reduced with $\mathrm{NaBH}_{4}(0.7 \mathrm{~g}, 18.4 \mathrm{mmol})$ and $\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(1.4 \mathrm{~g}$, $5.88 \mathrm{mmol})$ as described under I). A solution of the crude product in $\mathrm{EtOH}_{-\mathrm{CHCl}_{3}(2: 1)(15 \mathrm{~mL})}$ and conc. $\mathrm{HCl}(15 \mathrm{~mL})$ was refluxed for 4 h . After concentration of the solvent in vacuo, the residue was extracted with CHCl_{3}. The residual oil was chromatographed, eluting with $\mathrm{CHCl}_{3} / \mathrm{MeOH}(9: 10)$ to give $15 \mathrm{~g}(152 \mathrm{mg}, 60 \%)$.
7-Acetoxy-4-(4-acetoxyphenyl)-6-methoxy-2-methyl-1,2,3,4-tetrahydroisoquinolin-3-one ($\mathbf{1 5 h}$).A solution of $15 \mathrm{~g}(80 \mathrm{mg}, 0.27 \mathrm{mmol})$ in $\mathrm{Ac}_{2} \mathrm{O}(2 \mathrm{~mL}, 2.2 \mathrm{~g}, 21.2 \mathrm{mmol})$ and pyridine $(4 \mathrm{~mL}, 3.9 \mathrm{~g}, 49.5 \mathrm{mmol})$ was allowed to stand at rt for 17 h . The reaction mixture was diluted with CHCl_{3}, and the organic layer was washed, in turn, with $10 \% \mathrm{HCl}, 10 \% \mathrm{NaOH}$, and brine. The residual oil was chromatographed, eluting with ethyl acetate/hexane (3:4) to give 15h (102 $\mathrm{mg}, 99 \%$) as a colorless gum; IR (KBr): 1765, 1651, $1506 \mathrm{~nm}^{-1}$; UV(EtOH, nm, ε): 278 (3000); ${ }^{1} \mathrm{H}$ NMR $\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.27,2.33($ each $3 \mathrm{H}, \mathrm{s}), 3.05(3 \mathrm{H}, \mathrm{s}), 3.76(3 \mathrm{H}, \mathrm{s}), 4.19,4.58$ (each $1 \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz}), 4.81(1 \mathrm{H}, \mathrm{s}), 6.66,6.94$ (each $1 \mathrm{H}, \mathrm{s}$), $6.98,7.17$ (each $2 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}$) ${ }^{13} \mathrm{C}$ NMR ($22.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 20.5,21.0,34.8,51.6,51.9,56.0,112.1,119.8,121.6,123.7,128.9$, 133.6, 136.0, 138.8, 149.8, 150.9, 168.9, 169.0, 169.3; LRMS m/z 383 (${ }^{+}$), 83 (base peak). Reduction of 15 with LiAlH_{4}.

General experimental procedure

To a solution of 15 (1 molar eq) in dry THF ($30-100 \mathrm{~mL}$) was added under ice-cooling $\mathrm{LiAlH}_{4}(1$ molar eq), and the mixture was refluxed for $1-2 \mathrm{~h} . \mathrm{Et}_{2} \mathrm{O}$ saturated with water was added to the reaction mixture, and insoluble material was filtered off. The product was chromatographed to give 16. In the case of 15 g the starting material (52%) was recovered, and the product 16 g was characterized as the diacetate 16 h (12%).
2-Methyl-4-phenyl-1,2,3,4-tetrahydroisoquinoline (16a). From 15a ($200 \mathrm{mg}, 0.84 \mathrm{mmol}$); column chromatography (ethyl acetate/hexane $2: 3$) gave 16 a ($119 \mathrm{mg}, 63 \%$) as pale yellow prisms from $\mathrm{Et}_{2} \mathrm{O}$, mp $29-31{ }^{\circ} \mathrm{C}$ (lit. ${ }^{10} \mathrm{HCl}$ salt, mp $169-174{ }^{\circ} \mathrm{C}$); IR (KBr): $1598 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.43(3 \mathrm{H}, \mathrm{s}), 2.57(1 \mathrm{H}, \mathrm{dd}, J=8,11 \mathrm{~Hz}), 3.03(1 \mathrm{H}, \mathrm{ddd}, J=1,6,11 \mathrm{~Hz})$, 3.61, 3.76 (each $1 \mathrm{H}, \mathrm{d}, J=15 \mathrm{~Hz}$), $4.28\left(1 \mathrm{H}, \mathrm{br}\right.$ dd, $J=6,8 \mathrm{~Hz}$), $6.8-7.7(9 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 45.95,46.00,58.5,61.9,125.9,126.2,126.3,126.4,128.3,129.1,129.4,135.2$, 137.1, 144.7; LRMS m/z: 223 (M^{+}), 179 (base peak); HRMS Calcd. for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}\left(\mathrm{M}^{+}\right)$: 223.1362, found 223.1389.

6,7-Dimethoxy-2-methyl-4-phenyl-1,2,3,4-tetrahydroisoquinoline (16b). From 15 b (530 mg , $1.78 \mathrm{mmol})$; column chromatography $\left(\mathrm{CHCl}_{3}\right)$ gave $16 \mathrm{~b}(400 \mathrm{mg}, 79 \%)$ of as a yellow oil; IR (KBr): $1514 \mathrm{~cm}^{-1}$; UV (EtOH, nm, ε): 288 (3300); ${ }^{1} \mathrm{H}$ NMR ($90 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.41$ (3H, s), $2.52(1 \mathrm{H}, \mathrm{dd}, J=8,11 \mathrm{~Hz}), 3.00(1 \mathrm{H}, \mathrm{ddd}, J=1,5,11 \mathrm{~Hz}), 3.61(2 \mathrm{H}, \mathrm{br}$ s), 3.64, 3.86 (each 3 H , s), $4.20(1 \mathrm{H}, \mathrm{br}$ dd, $J=5,8 \mathrm{~Hz}), 6.34,6.57($ each $1 \mathrm{H}, \mathrm{s}), 7.1-7.4(5 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR (22.5 MHz , CDCl_{3}): $\delta 45.3,45.6,55.5,57.9,61.7,108.7,111.9,126.1,127.3,128.0,128.7,128.7,144.6$, 147.3, 147.4 .
$16 \mathrm{~b} \cdot \mathrm{HCl}$: Colorless prisms from $\mathrm{MeOH}, \mathrm{mp} 247-248{ }^{\circ} \mathrm{C}$ (lit. ${ }^{10} \mathrm{mp} 185-187{ }^{\circ} \mathrm{C}$); LRMS $\mathrm{m} / \mathrm{z} 283$ $\left(\mathrm{M}^{+}-\mathrm{HCl}\right), 209$ (base peak). Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}_{2} \mathrm{Cl}: \mathrm{C}, 67.59 ; \mathrm{H}, 6.93$; N, 4.34. Found: C, 67.20; H, 6.92; N, 4.06.
7-Benzyloxy-6-methoxy-2-methyl-4-phenyl-1,2,3,4-tetrahydroisoquinoline (16c). From 15c $(1.5 \mathrm{~g}, 4.02 \mathrm{mmol})$; recrystallization from ethyl acetate gave $16 \mathrm{c}(816 \mathrm{mg}, 71 \%)$ as colorless plates, mp 136-139 ${ }^{\circ} \mathrm{C}$; IR (KBr): $1520 \mathrm{~cm}^{-1}$; UV (EtOH, nm, ε): 286 (4200); ${ }^{1} \mathrm{H}$ NMR (90 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.38(3 \mathrm{H}, \mathrm{s}), 2.50(1 \mathrm{H}, \mathrm{dd}, J=8,11 \mathrm{~Hz}), 2.98(1 \mathrm{H}, \mathrm{dd}, J=5,11 \mathrm{~Hz}), 3.54(2 \mathrm{H}$, br s), $3.64(3 \mathrm{H}, \mathrm{s}), 4.20(1 \mathrm{H}, \mathrm{br}$ dd, $J=5,8 \mathrm{~Hz}), 5.11(2 \mathrm{H}, \mathrm{s}), 6.37,6.60($ each $1 \mathrm{H}, \mathrm{s}), 7.1-7.5$ $(10 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\left(22.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 45.6,45.9,56.0,58.1,62.0,71.2,111.8,112.8,126.4$, 127.3, 127.5, 127.7, 128.3, 128.5, 129.0, 129.6, 137.3, 144.8, 146.8, 148.4; LRMS m/z 359 $\left(\mathrm{M}^{+}\right)$:, 91 (base peak). Anal. Calcd. for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{NO}_{2}: \mathrm{C}, 80.19 ; \mathrm{H}, 7.01$; N, 3.90. Found: C, 80.30; H, 7.00; N, 4.02.
Reduction of 11c with LiAlH_{4}. To a solution of 11 c ($500 \mathrm{mg}, 1.04 \mathrm{mmol}$) in dry THF (50 mL) was added under ice-cooling $\mathrm{LiAlH}_{4}(79 \mathrm{mg}, 2.08 \mathrm{mmol})$, and the mixture was refluxed for $2.5 \mathrm{~h} . \mathrm{Et}_{2} \mathrm{O}$ saturated with water was added to the reaction mixture, and insoluble material was filtered off. The product was chromatographed eluting with ethyl acetate/hexane (1:2) to give 16 c ($170 \mathrm{mg}, 46 \%$).
7-Hydroxy-6-methoxy-2-methyl-4-phenyl-1,2,3,4-tetrahydroisoquinoline (16e). A solution of $16 \mathrm{c}(0.5 \mathrm{~g}, 1.40 \mathrm{mmol})$ in $\mathrm{MeOH}(50 \mathrm{~mL})$ was hydrogenated over $10 \% \mathrm{Pd}-\mathrm{C}$ under atmospheric pressure at rt for 2.5 h . After removal of the catalyst by filtration, the residual oil was chromatographed eluting with ethyl acetate to give $16 \mathrm{e}(375 \mathrm{mg}, 99 \%)$ as colorless needles from benzene, mp 165-166 ${ }^{\circ} \mathrm{C}$ (lit. ${ }^{1 \mathrm{k}} \mathrm{mp} 161-162{ }^{\circ} \mathrm{C}$); IR (KBr): 1600, $1537 \mathrm{~cm}^{-1}$; UV (EtOH, nm, ع): 288 (3700); ${ }^{1} \mathrm{H}$ NMR ($90 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.39(3 \mathrm{H}, \mathrm{s}), 2.49(1 \mathrm{H}, \mathrm{dd}, J=8,11 \mathrm{~Hz}), 2.99$ $(1 \mathrm{H}, \mathrm{ddd}, J=1,5,11 \mathrm{~Hz}), 3.49,3.66$ (each $1 \mathrm{H}, \mathrm{d}, J=15 \mathrm{~Hz}), 3.64(3 \mathrm{H}, \mathrm{s}), 4.20(1 \mathrm{H}, \mathrm{dd}, J=5,8$ $\mathrm{Hz}), 6.30,6.60($ each $1 \mathrm{H}, \mathrm{s}), 7.0-7.4\left(5 \mathrm{H}, \mathrm{m}\right.$,); ${ }^{13} \mathrm{C}$ NMR ($22.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 45.5,45.8,55.8$, $57.9,62.0,111.4,112.0,126.4,128.0,128.2,128.3,129.0,144.3,144.8,145.6 ;$ LRMS m/z 269 $\left(\mathrm{M}^{+}\right), 165$ (base peak); HRMS Calcd. for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{2}\left(\mathrm{M}^{+}\right): 269.1413$, found 269.1367.
$16 \mathrm{e} \cdot \mathrm{HCl}$: Colorless prisms from $\mathrm{MeOH}, \mathrm{mp} 247-250{ }^{\circ} \mathrm{C}$. Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NO}_{2} \mathrm{Cl}: \mathrm{C}$, 66.77; H, 6.59; N, 4.58. Found: C, 66.61; H, 6.56; N, 4.44.

Reduction of 11 d with LiAlH_{4}. A solution of $11 \mathrm{~d}(0.5 \mathrm{~g}, 0.85 \mathrm{mmol})$ and $\mathrm{LiAlH}_{4}(65 \mathrm{mg}$, 1.71 mmol) in THF (20 mL) was refluxed for 24 h . After decomposition of excess hydride with $10 \% \mathrm{NaOH}$, the precipitated inorganic material was removed by filtration. The filtrate was extracted with CHCl_{3}. The residual oil was chromatographed eluting with ethyl acetate/hexane (1:2) to give $16 \mathrm{~d}(237 \mathrm{mg}, 60 \%)$ and $17(103 \mathrm{mg}, 25 \%)$.
7-Benzyloxy-4-(4-benzyloxyphenyl)-6-methoxy-2-methyl-1,2,3,4-tetrahydroisoquinoline (16d). Colorless needles from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}$, mp $136-138{ }^{\circ} \mathrm{C}$ (lit. ${ }^{11 \mathrm{~h}} \mathrm{mp} 144-145{ }^{\circ} \mathrm{C}$); IR (KBr): 1609 , $1510 \mathrm{~cm}^{-1}$; UV (EtOH, nm, ε): 278 (3600), 283 (3800); ${ }^{1} \mathrm{H}$ NMR ($90 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.34$ $(3 \mathrm{H}, \mathrm{s}), 2.46(1 \mathrm{H}, \mathrm{dd}, J=8,11 \mathrm{~Hz}), 2.96(1 \mathrm{H}, \mathrm{dd}, J=6,11 \mathrm{~Hz}), 3.53(2 \mathrm{H}, \mathrm{s}), 3.65(3 \mathrm{H}, \mathrm{s}), 4.14$ (1 H , br dd, $J=6,8 \mathrm{~Hz}$), 5.04, 5.11 (each $2 \mathrm{H}, \mathrm{s}$), $6.38,6.58$ (each $1 \mathrm{H}, \mathrm{s}$), 6.90, 7.11 (each $2 \mathrm{H}, \mathrm{d}, J$ $=9 \mathrm{~Hz}$), 7.2-7.5 (10H, m); ${ }^{13} \mathrm{C}$ NMR ($22.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 44.7,45.8,55.9,58.0,62.0,69.9$,
71.0, 111.7, 112.7, 114.6, 127.2, 127.4, 127.4, 127.6, 127.8, 128.4, 129.8, 129.9, 137.1, 137.2, 137.2, 146.6, 148.2, 157.4; LRMS $m / z 466\left(\mathrm{M}^{+}\right), 91$ (base peak). Anal. Calcd. for $\mathrm{C}_{31} \mathrm{H}_{31} \mathrm{NO}_{3}: \mathrm{C}$, 79.97; H, 6.71; N, 3.01. Found: C, 79.11; H, 6.73; N, 2.98.

7-Benzyloxy-4-(4-benzyloxyphenyl)-6-methoxy-2-methyl-4-(phenylsulfanyl)-1,2,3,4tetrahydroisoquinoline (17). A yellow gum; IR (neat): $1607,1510 \mathrm{~cm}^{-1}$; $\mathrm{UV}(\mathrm{EtOH}, \mathrm{nm}, \varepsilon)$: 278 (4000), 285 (4100); ${ }^{1} \mathrm{H}$ NMR ($90 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.25(3 \mathrm{H}, \mathrm{s}), 2.84,3.07$ (each $1 \mathrm{H}, \mathrm{d}, J=$ 12 Hz), $3.22,3.50$ (each $1 \mathrm{H}, \mathrm{d}, J=15 \mathrm{~Hz}$), $3.64(3 \mathrm{H}, \mathrm{s}), 5.05,5.12$ (each $2 \mathrm{H}, \mathrm{s}$), $6.52(1 \mathrm{H}, \mathrm{s}, 5-$ H), 6.8-7.5 (20H, m); ${ }^{13} \mathrm{C}$ NMR ($22.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 45.6,55.8,58.0,59.5,66.9,69.9,70.9$, $113.3,114.0,114.2,127.3,127.4,127.8,127.9,128.1,128.2,128.3,128.4,129.4,129.7,133.5$, 135.7, 137.0, 137.6, 147.1, 147.6, 157.6; LRMS m/z 465 ($\left.{ }^{+}-\mathrm{SPh}\right), 91$ (base peak).

Reduction of 11d with AlH_{3}. A solution of $11 \mathrm{~d}(280 \mathrm{mg}, 0.48 \mathrm{mmol})$ in dry $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ was added to a solution of AlH_{3} in dry $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ prepared in situ from $\mathrm{LiAlH}_{4}(130 \mathrm{mg})$ and $\mathrm{AlCl}_{3}(152 \mathrm{mg})$ at $0{ }^{\circ} \mathrm{C}$ under argon atmosphere. The mixture was stirred at rt for 2 h . The reaction mixture was diluted with $5 \% \mathrm{NH}_{4} \mathrm{OH}$ and extracted with CHCl_{3}. The residual solid was chromatographed eluting with ethyl acetate/hexane (1:2) to give 17 ($240 \mathrm{mg}, 88 \%$).
Desulfurization of 17 with $\mathrm{NiCl}_{2}-\mathrm{NaBH}_{4}$. To a solution of 17 ($130 \mathrm{mg}, 0.23 \mathrm{mmol}$) and $\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(378 \mathrm{mg}, 1.59 \mathrm{mmol})$ in MeOH-THF (3:1) $(10 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added NaBH_{4} $(180 \mathrm{mg}, 4.74 \mathrm{mmol})$, and the mixture was stirred at rt for 1 h . The reaction mixture was diluted with water and extracted with CHCl_{3}. The residual oil was chromatographed eluting with ethyl acetate to give $16 \mathrm{~d}(32 \mathrm{mg}, 30 \%)$. Further elution with CHCl_{3} gave $16 \mathrm{f}(21 \mathrm{mg}, 25 \%)$.
4-(4-Benzyloxyphenyl)-7-hydroxy-6-methoxy-2-methyl-1,2,3,4-tetrahydroisoquinoline (16f). Colorless prisms from $\mathrm{CHCl}_{3}-\mathrm{Et}_{2} \mathrm{O}, \mathrm{mp} 179-182{ }^{\circ} \mathrm{C}$; $\mathrm{IR}(\mathrm{KBr}): 1611,1512 \mathrm{~cm}^{-1}$; $\mathrm{UV}(\mathrm{EtOH}$, $\mathrm{nm}, \varepsilon): 278$ (5400), 283 (5500); ${ }^{1} \mathrm{H}$ NMR ($90 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.39(3 \mathrm{H}, \mathrm{s}), 2.47(1 \mathrm{H}, \mathrm{dd}, J=8$, $11 \mathrm{~Hz}), 2.96(1 \mathrm{H}, \mathrm{dd}, J=6,11 \mathrm{~Hz}), 3.47(1 \mathrm{H}, \mathrm{d}, J=14 \mathrm{~Hz}), 3.65(1 \mathrm{H}, \mathrm{d}, J=14 \mathrm{~Hz}), 3.66(3 \mathrm{H}$, s), $4.15(1 \mathrm{H}, \mathrm{dd}, J=6,8 \mathrm{~Hz}), 5.04(2 \mathrm{H}, \mathrm{s}), 6.32,6.61($ each $1 \mathrm{H}, \mathrm{s}), 6.90,7.11$ (each $2 \mathrm{H}, \mathrm{d}, J=9$ Hz), 7.2-7.4 (5H, m); LRMS m/z $375\left(\mathrm{M}^{+}\right)$, 91 (base peak); HRMS Calcd. for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{NO}_{3}\left(\mathrm{M}^{+}\right)$: 375.1831, found 375.1829.

Catalytic Debenzylation of 16d. A solution of $16 \mathrm{~d}(160 \mathrm{mg}, 0.34 \mathrm{mmol})$ in $\mathrm{AcOH}(20 \mathrm{~mL})$ was hydrogenated over $\mathrm{PtO}_{2}(16 \mathrm{mg})$ at rt under atmospheric pressure for 2.5 h . After removal of the catalyst by filtration, the filtrate was concentrated in vacuo to dryness. The residual solid was chromatographed eluting with $1 / 2$ ethyl acetate/hexane to give $60 \mathrm{mg}(47 \%)$ of 16 f and unchanged starting material ($27 \mathrm{mg}, 17 \%$).
4-(4-Hydroxyphenyl)-6-methoxy-2-methyl-1,2,3,4-tetrahydroisoquinolin-7-ol[(土)-cherylline] (16g). ${ }^{1 \mathbf{h}}$ A solution of $16 \mathrm{~d}(100 \mathrm{mg}, 0.22 \mathrm{mmol})$ in $\mathrm{EtOH}(10 \mathrm{~mL})$ and conc. $\mathrm{HCl}(5 \mathrm{~mL})$ was refluxed for 4 h . After evaporation of the solvent in vacuo, the residue was treated with $5 \% \mathrm{NH}_{4} \mathrm{OH}$ and extracted with CHCl_{3}. The residual solid was chromatographed, eluting with $\mathrm{CHCl}_{3} / \mathrm{MeOH}(9: 10)$ to give 16 g ($47 \mathrm{mg}, 77 \%$) as colorless needles from $\mathrm{CH}_{3} \mathrm{Cl}-\mathrm{MeOH}$, mp 214-217 ${ }^{\circ} \mathrm{C}$ (lit. ${ }^{11 \mathrm{ab}}{ }^{\mathrm{b}} \mathrm{mp} 215-216$ ${ }^{\circ} \mathrm{C}$); IR (KBr): 3424, $1516 \mathrm{~cm}^{-1}$; UV(EtOH, nm, ε): 281 (4300), 285 (4300); ${ }^{1} \mathrm{H}$ NMR (90 MHz , acetone- $\left.d_{6}\right): \delta 2.33(3 \mathrm{H}, \mathrm{s}), 2.45(1 \mathrm{H}, \mathrm{dd}, J=7,11 \mathrm{~Hz}), 2.86(1 \mathrm{H}, \mathrm{dd}, J=5,11 \mathrm{~Hz}), 3.49(2 \mathrm{H}, \mathrm{s})$, $3.60(3 \mathrm{H}, \mathrm{s}), 4.04(1 \mathrm{H}, \mathrm{br} \mathrm{dd}, J=5,7 \mathrm{~Hz}), 6.37,6.55($ each $1 \mathrm{H}, \mathrm{s}), 6.73,7.03($ each $2 \mathrm{H}, \mathrm{d}, J=9$

Hz), $7.95(2 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR (22.5 MHz , acetone- d_{6}): $\delta 45.9,46.6,56.7,59.0,63.2,113.3,116.2$, 129.3, 129.8, 131.0, 137.6, 146.1, 147.3, 157.0; LRMS $m / z 285\left(\mathrm{M}^{+}\right), 83$ (base peak); HRMS Calcd. for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{3}\left(\mathrm{M}^{+}\right): 285.1365$, found 285.1368.
Hydrolytic Debenzylation of 16f. A solution of $16 \mathrm{f}(30 \mathrm{mg}, 0.08 \mathrm{mmol})$ in $\mathrm{EtOH}(10 \mathrm{~mL})$ and conc. $\mathrm{HCl}(5 \mathrm{~mL})$ was refluxed for 4 h . After evaporation of the solvent in vacuo, the residue was treated with $5 \% \mathrm{NH}_{4} \mathrm{OH}$ and extracted with CHCl_{3}. The residual solid was chromatographed, eluting with $\mathrm{CHCl}_{3} / \mathrm{MeOH}(9: 10)$ to give $16 \mathrm{~g}(20 \mathrm{mg}, 80 \%)$.
7-Acetoxy-4-(4-acetoxy)phenyl-6-methoxy-2-methyl-1,2,3,4-tetrahydroisoquinoline (16h). Acetylation of 16 g with $\mathrm{Ac}_{2} \mathrm{O}$ in pyridine gave 16 h as a colorless gum; IR (neat): 1767, $1512 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($90 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.29(6 \mathrm{H}, \mathrm{s}), 2.41(3 \mathrm{H}, \mathrm{s}), 2.54(1 \mathrm{H}, \mathrm{dd}, J=8,11 \mathrm{~Hz})$, $2.99(1 \mathrm{H}, \mathrm{dd}, J=6,11 \mathrm{~Hz}), 3.46(1 \mathrm{H}, \mathrm{d}, J=13 \mathrm{~Hz}), 3.60(3 \mathrm{H}, \mathrm{s}), 3.74(1 \mathrm{H}, \mathrm{d}, J=13 \mathrm{~Hz}), 4.24$ (1 H , br dd, $J=6,8 \mathrm{~Hz}$), 6.44, 6.76 (each $1 \mathrm{H}, \mathrm{s}$), $7.01,7.22$ (each $2 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}$); LRMS m / z $285\left(\mathrm{M}^{+}-\mathrm{COCH}_{3}\right), 242$ (base peak).

Acknowledgement

This work was supported by a Grant-in-Aid for Scientific Research (No. 11672115) from the Ministry of Education, Science, Sports, and Culture of Japan.

References and Notes

1. Padwa, A.; Gunn, D.E., Jr.; Osterhout, H.Synthesis 1997, 1353.
2. Tamura, Y.; Uenishi, J. I.; Maeda, H.; Choi, H. D.; Ishibashi, H. Synthesis 1981, 534.
3. Tamura, Y.; Uenishi, J. I.; Choi, H. D.; Haruta, J. I.; Ishibashi, H. Chem. Pharm. Bull. 1984, 32, 1995.
4. Ishibashi, H.; Harada, S.; Okada, M.; Somekawa, M.; Kido, M.; Ikeda, M. Chem. Pharm. Bull. 1989, 37, 939.
5. (a) Ishibashi, H.; Harada, S.; Sato, K.; Ikeda, M.; Akai, S.; Tamura, Y. Chem. Pharm. Bull. 1985, 33, 5278. (b) Ishibashi, H.; Sato, K.; Ikeda, M. J. Chem. Soc., Perkin Trans. I 1985, 605.
6. Ishibashi, H.; Kawanami, H.; Iriyama, H.; Ikeda, M. Tetrahedron Lett. 1982, 23, 2209.
7. Examples of physiologically active compounds having the 4-aryl-1,2,3,4tetrahydroisoquinoline ring system are (a) Nomifensine. Hunt, P.; Kannengiesser, M. H.; Raynand, J. P. J. Pharm. Pharmacol. 1974, 26, 370; (b) 4-phenyl-1,2,3,4tetrahydroisoquinoline. Satoh, M.; Ohta, S.; Nagao, T.; Hirobe, M.; Fukuda, H.; Ono, H. Jpn. J. Pharmacol. 1992, 60, 121.
8. Brossi, A.; Grethe, G.; Teitel, S.; Wildman, W. C.; Bailey, D. T. J. Org. Chem. 1970, 35, 1100.
9. (a) Shinohara, T.; Toda, J.; Sano,T.Chem. Pharm. Bull. 1997, 45, 813. (b) Shinohara, T.; Takeda, A.; Toda, J.; Ueda, Y.; Kohno, M.; Sano, T. Chem. Pharm. Bull. 1998, 46, 918. (c) Shinohara, T.; Takeda, A.; Toda, J.; Terasawa, N.; Sano, T. Heterocycles 1997, 46, 555. (d) Shinohara, T.; Takeda, A.; Toda, J.; Sano, T..Heterocycles 1998, 48, 981. (e) Shinohara, T.; Takeda, A.; Toda, J.; Sano, T. Chem. Pharm. Bull. 1998, 46, 430.
10. Venkov, A.; Vodenicharov, D. Synthesis 1990, 253.
11. (a) Brossi, A.; Grethe, G.; Teitel, S.; Wildman, W. C.; Bailey, D. T. J. Org. Chem. 1970, 35, 1100. (b) Brossi, A.; Teitel, S. Tetrahedron Lett. 1970, 417. (c) Brossi, A.; Teitel, S. J. Org. Chem. 1970, 35, 3559. (d) Schwartz, M. A.; Scott, S. W. J. Org. Chem. 1971, 36, 1827. (e) Kametani, T.; Takahashi, K. Tetrahedron, 1975, 31, 235. (f) Hart, D. J.; Cain, P. A.; Evans, D. A. J. Am. Chem. Soc. 1978, 100, 1548. (g) Irie, H.; Shiina, A.; Fushimi, T.; Katakawa, J.; Fujii, N.; Yajima, H. Chem. Lett. 1980, 875. (h) Kametani, T.; Higashiyama, K.; Honda, T.; Otomatsu, H.; J. Chem. Soc., Perkin Trans. 1 1982, 2935. (i) Hara, H.; Shirai, R.; Hoshino, O.; Umezawa, B. Heterocycles 1983, 20, 1945. (j) Nomoto, T.; Nasui, N.; Takayama, H.; J. Chem. Soc., Chem. Commun. 1984, 1646. (k) Hara, H.; Shirai, R.; Hoshino, O.; Umezawa, B. Chem. Pharm. Bull., 1985, 33, 3107. (1) Katakawa, J.; Yoshimatsu, H.; Yoshida, M.; Zhang, Y.; Irie, H.; Yajima, H. Chem. Pharm. Bull. 1988, 36, 3928. (m) Couture, A.; Deniau, E.; Woisel, P.; Grandclaudon, P.; Carpentier, J. F. Tetrahedron Lett. 1996, 37, 3697. (n) Couture, A.; Deniau, E.; Lebrun, S.; Grandclaudon, P. J. Chem. Soc., Perkin Trans. 1 1999, 789.
12. Hamada, T.; Okuno, Y.; Ohmori, M.; Nishi, T., Yonemitsu, O. Chem. Pharm. Bull. 1981, 29, 128.
13. Bonner, W. A. J. Org. Chem. 1967, 32, 2496.
14. Hayes, J. F. Synlett 1999, 865.
15. Ozawa, F.; Soyama, H.; Yanagihara, H.; Aoyama, I.; Takino, H.; Izawa, K.; Yamamoto, T.; Yamamoto, A. J. Am. Chem. Soc. 1985, 107, 3235.
